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Abstract

By using on-shell recursion relation of string scattering amplitudes (SSA), we show that all n-

point SSA of the open bosonic string theory can be expressed in terms of the Lauricella functions.

This result extends the previous exact SL(K+3,C) symmetry of the 4-point Lauricella SSA (LSSA)

of three tachyons and one arbitrary string states to the whole tree-level open bosonic string theory.

Moreover, we present three applications of the SL(K + 3,C) symmetry on the SSA. They are

the solvability of all n-point SSA in terms of four-tachyon amplitudes, the existence of iteration

relations among residues of a given SSA so as to soften its hard scattering behavior and finally the

re-derivation of infinite linear relations among hard SSA [12].
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I. INTRODUCTION

Symmetry has long been considered as an important property of physical laws for both

classical and quantum physics. Historically, symmetry was used to be thought of as one of the

direct consequences of equation of motion (EOM) of a physical law before the developments

of general relativity and Yang-Mills theory. However, it was soon realized that, in a quantum

field theory (QFT) for example, symmetry principle was even more fundamental than the

EOM itself. Indeed, it was symmetry which determined the form of the interaction or

EOM of a physical law (symmetry dictates interaction). More importantly, for the case of

electrodynamics, in contrast to classical physics, only in quantum theory [1] can the QED

U(1) gauge symmetry be identified and used to derive Ward identities which secure QED

as a consistent renormalizable QFT.

In QFT, for example QCD, one usually considers interactions with up to four-point cou-

plings whose forms are fixed by the symmetry principle. In addition, symmetry principle

can be used to derive Slavnov-Taylor identities which relate different couplings. This is in

contrast to the four-fermion model in the weak interaction which is not a consistent renor-

malizable QFT. In string theory, on the contrary, one is given a set of rules through quantum

consistency of the extended string which was used to fix the forms of interactions or vertices

to calculate perturbative on-shell string scattering amplitudes (SSA). Moreover, instead of

up to four-point couplings in QCD, one encounters n-point couplings with arbitrary n which

correspond to the infinite number of degrees of freedom in the spectrum of string theory.

One crucial issue of string theory is thus to identify symmetry of the theory and uses it to

relate these infinite number of couplings of particles with arbitrary higher masses and spins.

To identify the exact symmetry group (or even a smaller subgroup) of string theory is

much more complicated than that of a QFT. This is because in string theory one needs to

deal with infinite number of massive couplings or vertices instead of up to four in a typical

QFT. The well-known E2
8 and SO(32) symmetries of the 10D Heterotic string are symmetries

of Yang-Mills couplings in the massless sector only. In a series of recent papers, the present

authors calculated a subset of exact 4-point SSA, namely, amplitudes of three tachyons and

one arbitrary string states, and expressed them in terms of the D-type Lauricella functions

[2]. In addition, it was shown that these Lauricella SSA (LSSA) can be expressed in terms

of the basis functions in the infinite dimensional representation of the SL(K + 3, C) group
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[3]. It is important to note that instead of finite dimensional representation of a compact Lie

group, here we encounter an infinite dimensional representation of a noncompact Lie group.

For any fixed positive integer K, we have infinite number of LSSA in the SL(K + 3, C)

representations [4]. Moreover, it was further shown that there existed K + 2 recurrence

relations among the D-type Lauricella functions. These recurrence relations can be used to

reproduce the Cartan subalgebra and simple root system of the SL(K + 3, C) group with

rank K + 2. As a result, the SL(K + 3, C) group with its corresponding stringy Ward

identities (recurrence relations) can be used to solve [5] all the LSSA and express them in

terms of one amplitude. See the recent review paper [6].

As an important application of this solvability in the hard string scattering limit, the

SL(K + 3, C) symmetry group of the LSSA can be used to reproduce [2] infinite linear

relations with constant coefficients among all hard SSA and solve the ratios among them.

These high energy behaviors of string theory [7, 8] were first conjectured by Gross [9] and

later corrected and proved [10–13] by the method of decoupling of zero norm states (ZNS)

[14–16]. See the review papers [17, 18]. Since the decoupling of ZNS and thus the infinite

linear relations in the hard scattering regime persist to all string loop orders, we conjecture

that the SL(K + 3, C) symmetry at string-tree level proposed in this letter is also valid for

string loop amplitudes. One early attempt using the so-called bracket relations to identify

stringy symmetries can be found in [19]. However, neither Lie algebra structure nor the

complete recurrence relations to solve all SSA in terms of one amplitude were identified.

Nevertheless, it is still an interesting problem to find the connections between the bracket

relations and the K + 2 Lauricella recurrence relations associated with the SL(K + 3, C)

group.

In this letter, we will apply the string theory extension [20–23] of field theory BCFW

on-shell recursion relations [24, 25] to show that the SL(K + 3, C) symmetry group of the

4-point LSSA persists for general n-point SSA with arbitrary higher point couplings in string

theory. We thus have shown that, at least at string tree level, the SL(K + 3, C) symmetry

is an exact symmetry of the whole bosonic string theory.

One main effort of this letter is to show that all residues of SSA in the string theory

on-shell recursion prescription can be expressed in terms of the four-point LSSA. We thus

conclude that all n-point SSA of the bosonic string theory form an infinite dimensional

representation of the SL(K + 3, C) symmetry. Indeed, we can use mathematical induction,
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together with the on-shell recursion and the shifting principle, to show that all n-point SSA

can be expressed in terms of the LSSA.

On the other hand, since the LSSA of three tachyons and one arbitrary string states can

be rederived [26] from the deformed cubic string field theory (SFT) [27], it is conjectured

that the proposed SL(K + 3, C) symmetry in this letter can be hidden in Witten SFT.

II. THE 4-POINT SSA

We begin with a brief review of the LSSA of three tachyons and one arbitrary string

states in the 26D open bosonic string theory and its associated SL(K + 3, C) group. The

general states at mass level M2 = 2(N − 1), where N =
∑

X

∑

n>0 nr
X
n ≥ 0 is an integer

representing the mass level, are of the following form [6]

∣
∣rX
〉
=
∏

X

(
∏

n>0

(
αX
−n

)rXn

)

|0, k〉 (1)

where X labels the momentum, longitudinal and transverse polarizations on the (2 + 1)-

dimensional scattering plane.

The 4-point LSSA associated to the above string state Eq.(1) can be calculated to be [6]

A4 = B

(

− t

2
− 1,−s

2
− 1

)

F
(K)
D

(

− t

2
− 1;RX

n ;
u

2
+ 2−N ; Z̃X

n

)
∏

X

(
∏

n=1

[
−(n− 1)!kX

3

]rXn

)

(2)

where B(a, b) is the Beta function with (s, t) being the usual Mandelstam variables, kX
i is

the momentum of the ith string state projected on the X polarization, and

K =
∑

X

∑

j

{for all rXj 6=0}

(3)

is an integer depending on the polarization.

The D-type Lauricella function F
(K)
D in Eq.(2) is one of the four extensions of the Gauss

hypergeometric function to K variables and is defined to be

F
(K)
D (α; β1, ..., βK ; γ; x1, ..., xK) =

∞∑

n1,··· ,nK=0

(α)n1+···+nK

(γ)n1+···+nK

(β1)n1
· · · (βK)nK

n1! · · ·nK !
xn1
1 · · ·xnK

K (4)

where (α)n = α · (α + 1) · · · (α + n− 1) is the Pochhammer symbol.

For the multi-tensor cases, there are new terms with finite number of contractions among

∂nX... and ∂mX..., and one obtains more D-type Lauricella functions with different values
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of K. In general, a state at mass level N with M2 = 2 (N − 1) , and N =
∑

r>0 rNr, is of

the form (it is understood, for example, that the state ǫ
(1)
1 · α−1ǫ

(2)
1 · α−1 means ǫµνα

µ
−1α

ν
−1)

|P 〉 =
∏

r>0

∏Nr

σ=1
ε
(σ)
r ·α

−r√
Nr !rNr

|0, k〉 where ε
(σ)
r are polarizations with σ = 1, · · ·Nr for each

operator α−r. The 4-point SSA with i = 1, 2, 3, 4 can be calculated to be (zij = zi − zj)

A4 =

∫ 1

0

dz2z
k1·k2
2 (1− z2)

k2·k3

·
∑

{

ε
(σi)
ri

}





4∏

i=1

∏

{ri,σi}

(
∑

j 6=i

ε
(σi)
ri · kj
zriji

)

·
4∏

i<j=2

∏

{ri,σi;rj ,σj}

ε
(σi)
ri ε

(σj)
rj

zrijiz
rj
ij





z1=0,z3=1,z4→∞

(5)

where the configurations
{

ε
(σi)
ri

}

satisfy

4∏

i=1

∏

{ri,σi}
ε(σi)
ri

·
4∏

i<j=2

∏

{ri,σi;rj ,σj}

(

ε(σi)
ri

ε(σj)
rj

)

=
4∏

i=1

∏

ri>0

Nri∏

σi=1

ε(σi)
ri

, (6)

which ensures the multi-linear condition. For each configuration
{

ε
(σi)
ri

}

, it is straightforward

to transform Eq.(5) to the sum of standard integral form of the Lauricella functions.

III. THE SL (K + 3, C) SYMMETRY

To obtain the SL(K +3, C) symmetry of the LSSA, it is important to note that one can

define the basis functions [4]

f b1···bK
ac (α; β1, · · · , βK ; γ; x1, · · · , xK)

= B (γ − α, α)F
(K)
D (α; β1, · · · , βK ; γ; x1, · · · , xK) a

αbβ1
1 · · · bβK

K cγ, (7)

so that the LSSA in Eq.(2) can be written as [3]

A4 = f
−(n−1)!kX3
11

(

− t

2
− 1;RX

n , ;
u

2
+ 2−N ; Z̃X

n

)

. (8)

We then introduce the (K + 3)2 − 1 generators Eij of SL(K + 3, C) group [3, 4]

[Eij, Ekl] = δjkEil − δliEkj; 1 6 i, j 6 K + 3. (9)

These are 1 Eα, K Eβk(k = 1, 2 · · ·K), 1 Eγ,1 Eαγ , K Eβkγ and K Eαβkγ which sum up

to 3K + 3 raising generators. There are also 3K + 3 lowering operators. In addition, there
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FIG. 1: Residues of KN amplitudes

are K (K − 1) Eβk

βp
and K + 2 J , {Jα, Jβk

, Jγ}, the Cartan subalgebra. In sum, the total

number of generators are 2(3K + 3) +K(K − 1) +K + 2 = (K + 3)2 − 1 [3].

For the general 4-point LSSA, it is straightforward to calculate the operation of these

generators on the basis functions (k = 1, 2, ...K) f b1···bK
ac (α; β1, · · · , βK ; γ; x1, · · · , xK), and

show the SL(K + 3, C) symmetry [3]. For the cases of higher point (n ≥ 5) LSSA, one

encounters sum of products of the Lauricella functions (extended LSSA or simply LSSA)

Residue of n-point LSSA ∼
∑

coefficient
∏

(single tensor 4-point LSSA) (10)

where the residue will be defined in Eq.(11). Therefore, one needs to deal with product

representations of SL(K + 3, C).

IV. RESIDUES OF THE N-POING KN AMPLITUDES

After showing that all 4-point SSA can be expressed as the Lauricella functions, we con-

sider the general n-point (n ≥ 5) SSA now. The key is to apply the string theory extension of

field theory BCFW on-shell recursion relations. We first consider the KN amplitude. Apply-

ing the BCFW deformation k̂1 (z) = k1+zq and k̂n (z) = kn−zq with q2 = k1 ·q = kn ·q = 0,

the locations of the poles zm,M are given by solutions of
(

k̂1 + k2 + ....+ km

)2

+2(M−1) = 0,

M = 0, 1, 2.... The n-point Koba-Nielsen (KN) amplitude can then be written as [23]

AKN
n =

n−2∑

m=2

∞∑

M=0

2RM
m+1,n−m+1

(k1 + k2 + ...+ km)
2 + 2(M − 1)

, (11)

which is represented in Fig.1.

It turns out that the residue RM
m+1,n−m+1 in Eq.(11) can be calculated and expressed in

terms of the subamplitudes [28]

RM
m+1,n−m+1 =

∑

P

AL
m+1 (1, · · · , m,−P )AR

n−m+1 (P,m+ 1, · · ·n) (12)
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FIG. 2: The left and right subamplitudes

where

AL
m+1 (1, · · · , m,−P )

=

∫ 1

0

dzm−1 · · ·
∫ z3

0

dz2
∏

1≤j<i≤m

(zi − zj)
ki·kj

∏

r=1

[
Nr∏

σ=1

ǫ
(σ)
r ·

∑

2≤i≤m

ki (zi)
r

]

√
Nr!rNr

, (13)

AR
n−m+1 (P,m+ 1, · · ·n)

=

∫ 1

0

dwn−2 · · ·
∫ wm+2

0

dw+1

∏

P=m≤j<i≤n−1

(wi − wj)
ki·kj

∏

r=1

[
Nr∏

σ=1

(−ǫ
(σ)
r ) ·

∑

m+1≤i≤n−1

ki

(
1
wi

)r
]

√
Nr!rNr

(14)

with kP = k̂1 +
m∑

i=2

ki. It is understood that k1 in Eq.(13) should be replaced by k̂1. The

results in Eq.(13), Eq.(14) are consistent with a direct calculation from KN amplitude [28].

The diagram representation of Eq.(12) is given in Fig.2.

In extending the field theory BCFW to the string theory BCFW above, one encountered

difficulty of poles at infinity. To resolve the problem, the authors of [21] used the pomeron

vertex operators in the Regge regime constructed by BPST [29] to show the vanishing of

the string amplitudes at large complex momenta provided that the Regge behavior of the

deformed amplitude is power law falloff M(z) ∼ zn+1+ t
2 (for sufficiently negative t) where n

depends on the mass levels. Indeed, the universal power law falloff behavior V ∼ [ik2·∂X ]1+
t
2

[30] for arbitrary massive pomeron vertex and their associated universal power law falloff
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Regge amplitudes ARegge ∼ s1+
t
2 [31] had all been shown to be independent of the mass

levels of the vertex (n = 0).

V. EXPRESSING N-POINT SSA IN TERMS OF LSSA

In the last subsection, we have shown in Eq.(11) and Eq.(12) that the n-point KN am-

plitude can be expressed in terms of product of lower-point sub-amplitudes. The next step

is to consider n-point SSA with tensor legs. To do it, we introduce the following shifting

principle:

Shifting principle : If the n-point KN amplitude AKN
n can be expressed in terms of the

LSSA, then one can use the shifting method to calculate all n-point SSA An with tensor legs

(excited string states) and express them in terms of the LSSA ((z1, zn−1, zn) = (0, 1,∞))

An(ki · kj; ζk) ∼
∑

c(ki; ζk)A
KN
n (ki · kj → ki · kj − aij). (15)

In Eq.(15), ki · kj with 1 ≤ i < j ≤ n− 1 (ki · kj 6= k1 · kn−1) are kinematic variables of the

n-point SSA which sums up to (n−1)(n−2)
2

− 1 = n(n−3)
2

, aij are shifting integers and ζk are

polarizations of the excited string states.

For example, for a 5-point SSA with four tachyons and one vector ((z1, z4, z5) = (0, 1,∞))

[28]

A5 (ζ1, k1; k2; k3; k4; k5)

=

∫ 1

0

dz3

∫ z3

0

dz2z
k2·k1
2 zk3·k13 (1− z3)

k4·k3 (1− z2)
k4·k2 (z3 − z2)

k3·k2 (−ζ1) ·
[
k2
z2

+
k3
z3

+
k4
1

]

= A
(1)
5 + A

(2)
5 + A

(3)
5 . (16)

where one reads (a12 = 1, aij 6=12 = 0) for A
(1)
5 , (a13 = 1, aij 6=13 = 0) for A

(2)
5 and aij = 0 for

A
(3)
5 . The result can be shown to be a sum of LSSA. Mathematically, the calculation of all

three terms of Eq.(16) are similar to that of the 5-point KN amplitude with shifting some

appropriate kinematic variables. Although the calculation of 5-point SSA with higher tensor

legs is very lengthy, it is trivial by the shifting method adopted in the calculation of Eq.(16)

to see that all of them are LSSA.

We see that while the string on-shell recursion relation can be used to reduce higher

point KN amplitudes to the lower SSA and express them in terms of the LSSA, the shifting

8
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FIG. 3: Expressing the 6-point KN amplitude in terms of the LSSA by the first recursion
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FIG. 4: Expressing the 6-point KN amplitude in terms of the LSSA by the second recursion

method can be used to express SSA with tensor legs in terms of the LSSA.

In general, we can use mathematical induction, together with the on-shell recursion and

the shifting principle, to show that all n-point SSA can be expressed in terms of the LSSA.

The procedure goes as following. We assume that all k-point SSA (k ≤ n − 1) are LSSA,

and we want to prove that all n-point SSA are LSSA. To prove this, we first apply the

on-shell recursion to express the residue of n-point KN amplitude calculated in Eq.(12) in

terms of the lower point (k ≤ n− 1) SSA which were assumed to be LSSA. So the n-point

KN amplitude is a LSSA. We can then apply the shifting principle to show that all n-point

SSA including the n-point KN amplitude are LSSA. This completes the proof.

Finally, we use the example of 6-point KN amplitude to demonstrate its LSSA form. See

Fig.3 and Fig.4. We note that to show the 6-point KN amplitude is a LSSA, one needs only

do 1-step recursion to express it in terms of the lower 5-point and 4-point amplitudes as was

shown in Fig.3. Since we have shown that all 5-point and 4-point SSA are LSSA, the 6-point

KN amplitude is a LSSA. However, to explicitly calculate the LSSA form of the 6-point KN

amplitude, one needs to do the second recursion on the first and the third diagrams of Fig.3

as was shown in Fig.4, and the calculation will be very lengthy as there are two higher

excited string states (two heavy lines) involved. In general, the residues of the n-point KN

amplitude can be expressed as a LSSA with application of up to (recursion)n−4.
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Applications.

VI. APPLICATIONS

After showing that all open bosonic SSA can be expressed in terms of the LSSA, we will

demonstrate three applications of the associated SL(K +3, C) Symmetry of LSSA on SSA:

A. Solvability

The first one is to use SL(K + 3, C) group to solve all SSA and express them in terms

of one amplitude. We first show that there exist K + 2 recurrence relations for the D-type

Lauricella functions. To do this, one begins with the type-1 Appell functions. For the case of

K = 2, the D-type Lauricella functions F
(K)
D (α; β1, ..., βK ; γ; x1, ..., xK) reduce to the type-1

Appell functions F1 (α; β1, β2; γ, x, y), and one has 4 known recurrence relations. It was then

shown that one can generalize the 4 = 2 + 2 fundamental recurrence relations of the Appell

functions F1 and prove the following K + 2 recurrence relations for the D-type Lauricella

functions (m = 1, 2, ..., K) [3]
(

α−
∑

i

βi

)

F
(K)
D − αF

(K)
D (α + 1) + β1F

(K)
D (β1 + 1) + ... + βKF

(K)
D (βK + 1) = 0, (17)

γF
(K)
D − (γ − α)F

(K)
D (γ + 1)− αF

(K)
D (α+ 1; γ + 1) = 0, (18)

γF
(K)
D + γ(xm − 1)F

(K)
D (βm + 1) + (α− γ)xmF

(K)
D (βm + 1, ; γ + 1) = 0 (19)

where for simplicity we have omitted those arguments of F
(K)
D which remain the same in

the relations. Moreover, these recurrence relations can be used to reproduce the Cartan

subalgebra and simple root system of the SL(K+3, C) group with rank K+2 [3]. With the

Cartan subalgebra and the simple roots, one can easily write down the whole Lie algebra

of the SL(K + 3, C) group. So one can construct the SL(K + 3, C) Lie algebra from the

recurrence relations and vice versa

SL(K + 3, C) Lie algebra ⇐⇒ Recurrence relations of Lauricella. (20)

The next step is to use the above recurrence relations to deduce the following key recur-

rence relation [5]

xjF
(K)
D (βi − 1)− xiF

(K)
D (βj − 1) + (xi − xj)F

(K)
D = 0, (21)
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which can be repeatedly used to decrease the value of K and reduce all the Lauricella

functions F
(K)
D in the LSSA to the Gauss hypergeometric functions F

(1)
D = 2F1(α, β, γ, x).

One can further reduce the Gauss hypergeometric functions by deriving a multiplication

theorem for them, and then solve [5] all the LSSA in terms of one single amplitude, say the

four tachyon amplitude. See the recent review [6]. For the cases of higher point functions

in Eq.(10), all amplitudes can be solved and expressed in terms of sum of products of the

four tachyon amplitudes. One of the reason of this solvability is that all βJ in the Lauricella

functions of the LSSA take very special values, namely, nonpositive integers.

B. Iteration Relations

The second application is to use the SL(K + 3, C) symmetry to show the existence of

iteration relations among residues of a given SSA so as to soften its hard scattering behavior.

It is well known that one can express the Veneziano amplitude in terms of a series of simple

pole terms with residues

A4 =
∞∑

n=0

− (α(t) + 1)(α(t) + 2) · · · (α(t) + n)

n!

1

α(s)− n
(22)

where α(t) = α′t + α(0) with α′ = 1/2 and α(0) = 1 [32]. Instead of naive
∑

1
n
divergence,

A4 above behaves as exponential fall-off in the hard scattering limit due to the iteration

relations of the residues among each pole term. We will find generalization of the iteration

relations among residues in A4 for higher point KN amplitudes in the following. We note

that because of the solvability discussed in subsection (A) or the SL(K+3, C) symmetry of

the LSSA, we expect relations among various residues M = 0, 1, 2 . . .of a given RM
m+1,n−m+1

which is a sum of LSSA for a fixed M and (m,n). Indeed, if we define

FM (x1, · · · , xn) ≡
∑

a1 + · · ·+ an = M

a1, · · · , an = 0

(T1)a1
a1!

· · ·
(Tn)an
an!

xa1
1 · · ·xan

n

=
∑

{Nr},with fixed M=
∑

r

rNr

∏

r=1

(
1

Nr!rNr
[T1x

r
1 + · · ·+ Tnx

r
n]

Nr

)

, (23)

one can prove the second equality in Eq.(23). We can now express the residue RM
m+1,n−m+1

in terms of FM
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RM
m+1,n−m+1

(
1̂, 2, · · · , m,m+ 1, · · · , n− 1, n̂

)

=

∫ 1

0

dzm−1 · · ·
∫ z3

0

dz2

∫ 1

0

dwn−2 · · ·
∫ wm+2

0

dwm+1

∏

1≤j<i≤m

(zi − zj)
ki·kj

×
∏

P=m≤j<i≤n−1

(wi − wj)
ki·kj FM

(
zj
wi

)

(24)

where j = 2, · · · , m; i = m + 1, · · · , n − 1 and zm = wn−1 = 1, and show the following

iteration relation

FM =
1

M

M−1∑

N=0

FN

[
∑

2≤j≤m,m+1≤i≤n−1

(−kj · ki)
(
zj
wi

)M−N
]

, (25)

which expresses FM in terms of FM−1, FM−2, ...., F1, F0 ≡ 1. For illustration, we give one

explicit example here. The n = 4 term in the Veneziano amplitude A4 can be written as

A4 = · · ·+








T

4
︸︷︷︸

α
−4

+
T 2

1!1!

1

11
1

31
︸ ︷︷ ︸

α
−3α−1

+
T 2

2!

1

22
︸ ︷︷ ︸

α2
−2

+
T 3

2!1!

1

1221
︸ ︷︷ ︸

α2
−1α−2

+
T 4

4!

1

14
︸ ︷︷ ︸

α4
−1








∫ 1

0

dzzk1·k2+4 + · · · (26)

where T = −k2 · k3. On the other hand, the explicit form of the residue R4
4,3 of the 5-point

KN amplitude can be calculated to be

R4
4,3 =

1

4

∫ 1

0

dz2z
k̂1·k2
2 (1− z2)

k2·k3 [−k3 · k4 − (−k2 · k4)z42
]

+
1

1!1!

(
1

3

)(
1

1

)∫ 1

0

dz2z
k̂1·k2
2 (1− z2)

k2·k3 [−k3 · k4 − (−k2 · k4)z32
]
[−k3 · k4 − (−k2 · k4)z2]

+
1

2!

(
1

2

)2 ∫ 1

0

dz2z
k̂1·k2
2 (1− z2)

k2·k3 [−k3 · k4 − (−k2 · k4)z22
]2

+
1

2!1!

(
1

1

)2(
1

2

)∫ 1

0

dz2z
k̂1·k2
2 (1− z2)

k2·k3 [−k3 · k4 − (−k2 · k4)z2]2
[
−k3 · k4 − (−k2 · k4)z22

]

+
1

4!

(
1

1

)4 ∫ 1

0

dz2z
k̂1·k2
2 (1− z2)

k2·k3 [−k3 · k4 − (−k2 · k4)z2]4 . (27)

We see that the coefficients of each of the 5 terms in Eq.(27) and Eq.(26) are the same!

Furthermore, we have the correspondence α−l =⇒
[
−k3 · k4 − (−k2 · k4)zl2

]
. Similarly, R0

4,3,

R1
4,3, R

2
4,3 and R3

4,3 (and the corresponding RM
3,4) can all be expressed in terms of the LSSA.

Moreover, because of the solvability or the SL(K +3, C) symmetry of the LSSA, we expect

12



relations among various residues R0
4,3, R

1
4,3, R

2
4,3, R

3
4,3, R

4
4,3 · · · and R0

3,4, R
1
3,4, R

2
3,4, R

3
3,4,

R4
3,4 · · · of the 5-point KN amplitude as was given in Eq.(25) and Eq.(24).

C. Linear Relations

It was first observed that for each fixed mass level N with M2 = 2(N − 1), the following

states are of leading order in energy at the hard scattering limit [12, 13]

|N, 2m, q〉 ≡ (αT
−1)

N−2m−2q(αL
−1)

2m(αL
−2)

q|0, k〉. (28)

One important application of the LSSA presented in Eq.(2) is to reproduce [2] infinite linear

relations among all hard 4-point SSA and solve the ratios among them [12, 13]

A(N,2m,q)

A(N,0,0)
=

(

− 1

M

)2m+q (
1

2

)m+q

(2m− 1)!!. (29)

These high energy behaviors of string theory [7, 8] were first conjectured by Gross [9] and

later corrected and proved [10–13] by the method of decoupling of zero norm states (ZNS)

[14–16].

Since the linear relations obtained by the decoupling of ZNS are valid order by order and

share the same forms for all orders in string perturbation theory, one expects that there

exists stringy symmetry of the theory associated with the ratios in Eq.(29). In fact, there

is a simple analogy from the ratios of the nucleon-nucleon scattering processes in particle

physics (a) p+p → d+π+, (b) p+n → d+π0 and (c) n+n → d+π, which can be calculated

to be (ignore the mass difference between proton and neutron) Aa : Ab : Ac = 1 : 1√
2
: 1

from SU(2) isospin symmetry. Two such symmetry groups were suggested recently to be

the SL(5, C) group in the Regge string scattering limit [17, 18] and the SL(4, C) group in

the Non-relativistic string scattering limit [17, 18]. Moreover, it was shown that the ratios in

Eq.(29) can be extracted from the Regge SSA [17, 18]. With the discovery of the LSSA, we

now understand that the ratios in Eq.(29) are associated with the exact SL(K+3, C) group

[2]. Finally, For the cases of higher point (n ≥ 5) functions in Eq.(10), it is conjectured that

there exist hard scattering regimes for which the linear relations persist and the ratios can

be solved accordingly.
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VII. CONCLUSION

xWe conclude the discussion in this letter with the following analogy of fundamental

symmetries between field theory and string theory

SU(2) symmetry =⇒ Yang-Mills field theory, (30)

Bosonic open string theory =⇒ SL(K + 3, C) symmetry, (31)

SU(2) slavnov-Taylor identities ⇐⇒ SL(K + 3, C) recurrence relations. (32)
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