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Abstract

We review recent progress in the study of line defects in three-dimensional Chern-

Simons-matter superconformal field theories, notably the ABJM theory. The first

part is focused on kinematical defects supporting a topological sector of the theory.

After reviewing the construction of this sector, we concentrate on the evaluation

of topological correlators from the partition function of the mass-deformed ABJM

theory and provide evidence on the existence of a topological quantum mechanics

living on the line. In the second part, we consider dynamical defects realized as

latitude BPS Wilson loops for which an exact evaluation is available in terms of a

latitude Matrix Model. We discuss the fundamental relation between these oper-

ators, the defect superconformal field theory and bulk physical quantities like the

Bremsstrahlung function. This relation assigns a privileged role to BPS Wilson

operators, which become the meeting point for three exact approaches, localization,

integrability and conformal bootstrap.
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1 Introduction

The study of Quantum Field Theories with defects is of crucial importance, not only

because they can be used to describe real physical systems which exhibit lower dimensional

interplays or doping defects, but also because defect theories have proved to be an efficient

tool for investigating physical properties of the bulk system itself. This becomes even more

efficient when (super)conformal invariance is at work.

Superconformal line defects can be of two types. The first kind of defects are trivial

lines viewed as boundary conditions for the functional integral of the theory, or equiva-

lently as lower dimensional manifolds supporting subsectors of bulk operators. I will refer

to them as “kinematical defects”. The second kind of defects are extended operators,
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notably Wilson loops, described by exponentials of integrated defect Lagrangians. I will

refer to them as “Dynamical defects”.

In the recent years, a boost in the study of superconformal theories (SCFT) with de-

fects has been achieved, thanks to the use of innovative theoretical tools like the AdS/CFT

correspondence, integrability, supersymmetric localization, the topological twist and the

superconformal bootstrap. We refer to [1] for an introduction to theories with boundaries

and defects.

In this review I will focus on one-dimensional kinematical and dynamical defects in

three-dimensional SCFTs that allow for a Lagrangian description in terms of a quiver

Chern-Simons theory coupled to a suitable matter sector. Though we can have in general

0 ≤ N ≤ 8 supersymmetry, according to the particular matter content and the particular

value of the couplings, we will consider as a benchmark the N = 6 U(N)k × U(N)−k

ABJM theory [2].

Beyond the genuine interest in three-dimensional SCFTs which arises from the fact

that they describe realistic condensed matter systems around quantum critical points,

these theories play a central role in formulating the AdS4/CFT3 correspondence, providing

in principle a field theory dual formulation of four dimensional quantum gravity. Though

the AdS4/CFT3 version of the correspondence shares many important features with the

more common AdS5/CFT4 one - it involves supersymmetry, it has an underlying integrable

structure - it also has peculiar differences which make the two formulations not a simple

replica. The study of three-dimensional SCFTs with or without defects is then of great

interest.

After a brief reminder about the ABJM theory, its field content and its symmetries,

given in section 2, the first part of this review will be devoted to the construction of

the topological sector of the theory, made by local operators projected on a line which

belong to the cohomology of a twisted nilpotent supercharge. In section 3 we will focus

on topological correlation functions and present some evidence about their connection

with the derivatives of the partition function of the mass-deformed ABJM theory in its

matrix representation. This leads to the emergence of a topological quantum mechanics

supported by the kinematic defect. Its potential implications for the solvability of the bulk

theory, that is for determining its CFT data (scaling dimensions and OPE coeffiecients),

are briefly addressed.

In section 4 we move to consider dynamical defects realized as latitude Wilson loops.

These are BPS operators corresponding to generalized connections which include paramet-

ric (latitude) couplings to the bosonic and fermionic matter sectors of the theory. These
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operators play a fundamental role in the development of new exact methods in Quantum

Field Theory. First of all, (latitude) Wilson loops are amenable of exact evaluation via

localization. On the other hand, as we will review, derivatives of latitude Wilson loops de-

termine the Bremsstrahlung function, which in turn can be evaluated using integrability.

At the same time, derivatives of latitude Wilson loops give rise to correlation functions

of the one-dimensional defect theory, which can be also approached using SCFT tech-

niques, notably Ward identities and the conformal bootstrap. To complete the picture,

for some Wilson loops the dual description in terms of fundamental strings ending on the

Wilson contour at the boundary is known. Therefore, BPS Wilson loops are the best

playground where testing the consistency among different exact methods - localization,

integrability, conformal bootstrap - and where performing precision tests of the AdS/CFT

correspondence. Complementarily, the interplay between SCFT techniques, localization,

integrability and holographic techniques makes the study of defect SCFTs very promising.

Section 5 is devoted to some conclusions. A list of interesting open problems that need

further investigation is also reported there.

2 The ABJM theory

We begin with a short summary of the field description of the ABJ(M) theories [2, 3].

This is a class of three-dimensional U(N1)k×U(N2)−k quiver theories whose field content

is given by two Chern-Simons gauge vectors, Aµ and Âµ, minimally coupled to SU(4)

complex scalars CI , C̄
I and the corresponding fermions ψ̄I , ψI , I = 1, . . . , 4, all belonging

to the (anti)bifundamental representation of the gauge group. The total action is given

by

S = SCS + Smat + Sbos
pot + Sferm

pot (2.1)

where

SCS =
k

4πi

∫
d3x εµνρ

{
Tr

(
Aµ∂νAρ +

2

3
iAµAνAρ

)
−Tr

(
Âµ∂νÂρ +

2

3
iÂµÂνÂρ

)}

Smat =

∫
d3xTr

[
DµCID

µC̄I − iΨ̄IγµDµΨI

]
(2.2)

k being the Chern-Simons level and Dµ the covariant derivatives1. Matter fields are sub-

ject to a non-trivial potential, (Sbos
pot +Sferm

pot ) in (2.1). More precisely, Sbos
pot is a pure scalar

1We use conventions of [4], where DµCI = ∂µCI + iAµCI − iCIÂµ , DµC̄
I = ∂µC̄

I − iC̄IAµ + iÂµC̄
I

and similarly for fermions.
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sextic potential, whereas Sferm
pot contains quartic couplings between scalars and fermions.

The interested reader can find their explicit expressions for instance in [5].

We will primarily focus on the ABJM model with equal gauge ranks, N1 = N2, though

most of the discussion that follows has a simple generalisation (with some slight differ-

ences) to the more general ABJ theory (N1 6= N2).

For a particular choice of the couplings in the potential terms the theory possesses N =

6 superconformal symmetry. The superconformal algebra is osp(6|4), which includes the

su(4) R-symmetry generators. It can be studied perturbatively in the coupling constant

λ = N/k for N ≪ k. In the opposite regime, for N ≫ k5 the model is dual to M–theory

on AdS4 × S7/Zk, whereas in the range k ≪ N ≪ k5 it corresponds to Type IIA string

theory on AdS4 × CP
3.

More general quiver Chern-Simons-matter theories have been constructed, which pos-

sess N = 2, 3, 4, 5 superconformal symmetry [6, 7, 8, 9, 5, 10, 11, 12].

Exact results for the 3D, N ≥ 2 Chern-Simons-matter theories have been obtained

using supersymmetric localization [13, 14], which allows to trade the functional integral

computing the partition function with a standard matrix integral2. For the ABJM theory

compactified on the S3 sphere the partition function is known to be [16]

Z =

∫ N∏

a=1

dλa e
iπkλ2

a

N∏

b=1

dµb e
−iπkµ2

b ×

N∏

a<b

sinh2 π(λa − λb)

N∏

a<b

sinh2 π(µa − µb)

N∏

a=1

N∏

b=1

cosh2 π(λa − µb)

(2.3)

Here the integrals are on the two sets of eigenvalues {λa}, {µa} of the Cartan subalgebras

of the two U(N) gauge groups. Correlation functions of gauge invariant operators which

2For a nice introduction to localization see for instance [15]. Briefly, this technique consists in de-

forming the original functional integral which evaluates the partition function by shifting S → S+ tQV ,

where Q is an odd symmetry generator satisfying Q2 = δ, δ being a bosonic symmetry, V is a positive

semi-definite fermionic functional and t a positive number. As long as δV = 0, it is easy to see that the

functional integral does not depend on t. Therefore, it can be computed at t → +∞, where it localizes

on the zero locus of QV . In a non-abelian gauge theory these are matrices, so that the original functional

integration is traded for a finite dimensional matrix integral. In this limit the saddle point approximation

becomes exact and the integrand is simply given by the exponential of the classical action evaluated at the

saddle points times the one-loop determinant resulting from the integration on the quadratic fluctuations

of the fields around their saddle values. The whole procedure requires compactifying the theory on the

sphere in order to avoid IR divergences, but if we are dealing with a SCFT this is not an issue.
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preserve the localizing supercharge can in principle be computed exactly from (2.3) with

suitable insertions.

The matrix integral (2.3) can be checked at weak coupling (N/k ≪ 1) by matching a

genuine perturbative calculation [16], while its expansion at strong coupling reproduces

the string holographic prediction [17, 18] and provides a non-trivial test of the AdS/CFT

correspondence.

The Matrix Models computing partition functions have been also obtained for the

mass deformed ABJM theory [19, 20, 21, 22, 23] and for the theory compactified on the

squashed sphere [24, 25]. We refer to the literature for their explicit expressions.

3 Kinematical defects in the ABJM theory

Solving the ABJM theory amounts to classify all the quantum - local and non-local -

gauge invariant observables in irreducible representations of the superconformal algebra

and compute all their correlation functions. In principle, this can be done by using exact

methods like supersymmetric localization and bootstrap approach, however in practise

computational difficulties can make the program quite challenging. A way to circumvent

technical obstacles is to start from investigating suitable subsectors of the theory where

correlators are easier to evaluate, but at the same time can provide some information on

the whole spectrum of the theory.

Remarkable examples are topological sectors made up by local operators restricted

on lower dimensional subspaces, whose correlation functions are space-time independent.

These sectors can be constructed whenever the theory, once reduced to the given subspace,

possesses enough supersymmetry to allow for a topological twist, as originally introduced

by Witten [13]. The original Lorentz group on the lower dimensional subspace is traded

for a twisted Lorentz group, whose generators are given by linear combinations of the

original Lorentz and R-symmetry ones. The new generators turn out to be Q-exact in the

cohomology of a spin-zero comohological supercharge Q given by a linear combination of

the original supersymmetry and superconformal charges. As a consequence, correlators

of local operators in the Q-cohomology are independent of the metric and the space-time

coordinates. Representatives of the Q-cohomology classes are then dubbed topological

operators.

Here we review how this procedure can be applied to construct a one-dimensional

topological subsector of the ABJM theory [26].
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3.1 The topological line of ABJM

The topological sector of the ABJM theory is constructed from local gauge-invariant

operators restricted to live on a kinematic defect, that is a trivial straight line. For the

scope of constructing it explicitly, in the Euclidean three-dimensional space we consider

a line parallel to the x3-direction, parametrized as xµ(s) = (0, 0, s), with s ∈ (−∞,+∞)

being its proper time.

Fixing this kinematic defect breaks the originalN = 6 superconformal algebra osp(6|4)
to su(1, 1|3)⊕ u(1)b, whose generators are given by3

1D conformal algebra sl(2) : (P,K,D)

R− symmetry su(3) : R b
a a, b = 1, 2, 3

Super(conformal) charges : Qa, Q̄a, S
a, S̄a a, b = 1, 2, 3

u(1)m : M = 3iM12 − 2J 1
1

u(1)b : B =M12 + 2iJ 1
1 (3.1)

Here P is the translation operator along the line, while K and D generate special confor-

mal transformations and dilatations, respectively. The super(conformal) charges satisfy

the hermitian conjugation rules (Sa)† = Q̄a, (S̄a)
† = Qa.

Unitary irreducible representations (UIR) of the su(1, 1|3) algebra are labelled by

four quantum numbers, [∆, m, j1, j2], where ∆ is the conformal weight, m the u(1)m

charge, while j1, j2 are the eigenvalues of the two su(3) Cartan matrices. An exhaustive

classification of UIRs can be found in [27] (see also [28, 26]).

The elementary matter fields listed in section 2 can be reorganized according to SU(3)

representations as

CI = (Z, Ya) C̄I = (Z̄, Ȳ a) ψI = (ψ, χa) ψ̄I = (ψ̄, χ̄a) a = 1, 2, 3 (3.2)

where Ya(Ȳ
a), χa(χ̄

a) belong to the 3(3̄) of SU(3), while Z, Z̄, ψ, ψ̄ are SU(3)-singlets.

They provide the building blocks for the field realization of UIRs in terms of local, gauge

invariant operators.

The topological twist. In order to perform the topological twist, inside the complexified

su(3)C R-symmetry algebra we select the su(1, 1)(≃ sl(2)) subalgebra generated by
(
iR3

1, iR1
3,
R1

1 − R3
3

2

)
≡ (R+,R−,R0) (3.3)

3We use notations and conventions in [26]. In particular, the two superalgebras and their irreducible

representations are spelled there, in Appendices B and C.
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With respect to this subalgebra, the supercharges in (3.1) split into two doublets (Q1, Q3)

and (S1, S3), and their hermitian conjugates (Q̄1, Q̄3), (S̄1, S̄3), which transform in the

fundamental of su(1, 1) and have u(1) charges 1/6 and −1/6, respectively. The remaining

supercharges Q2, S2 (Q̄2, S̄2) are instead singlets with U(1) charges −1/3 (1/3).

The topological twist is now performed by taking a suitable diagonal sum of the

original spacetime conformal algebra defined in (3.1) with the su(1, 1) given in (3.3). The

new generators

L̂+ = P +R+ L̂− = K +R− L̂0 = D +R0 (3.4)

satisfy a ŝu(1, 1) conformal algebra, the “twisted” algebra, which together with the two

nilpotent supercharges

Q± =
1√
2

(
Q3 + iS1 ± (S̄3 + iQ̄1)

)
, Q2

+ = Q2
− = 0 (3.5)

form a superalgebra with central extension Z = 1
4
{Q−,Q+}.

The remarkable fact is that the ŝu(1, 1) generators are Q±-exact. In fact, it is easy to

check that

L̂+ =
{
Q+, Q̃+

}
=
{
Q−, Q̃−

}
L̂− =

{
Q+, S̃+

}
=
{
Q−, S̃−

}

L̂0 =
1

2

{
Q+,Q†

+

}
=

1

2

{
Q−,Q†

−

}
(3.6)

where Q̃± = 1√
2
(Q̄3 ∓ iQ1) and S̃± = 1√

2
(−iS̄1 ± S3).

The cohomology. The cohomology of the Q± charges is built by the set of local, gauge

invariant operators O(s) living on the line and satisfying4

[Q,O(s)]± = 0 , O(s) 6= [Q,O′(s)]∓ (3.7)

We can solve the cohomological equations at the origin (s = 0) and then move the operator

along the line by acting with the twisted translation operator L̂+, according to

O(s) ≡ e−sL̂+ O(0) esL̂+ (3.8)

In fact, since L̂+ is Q-exact (see eq. (3.6)), translating the operator away from the origin

does not affect the cohomology.

4Since the construction is the same for Q+ and Q−, we will use the generic symbol Q to indicate one

of the two supercharges.
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Similarly, since L̂0 and Z generators are Q-exact, they act trivially within each coho-

mological class. Therefore, representatives of the Q-classes belong necessarily to the zero

eigenspaces of L̂0 and Z [29]. Viceversa, in a unitary representation any element of the

kernel of L̂0 must be annihilated by Q. Now, observing that the highest weight of an ir-

riducible representation of the su(1, 1|3) superalgebra with quantum numbers [∆, m, j1, j2]

is an eigenvector of L̂0 and Z with eigenvalues l̂0 = ∆− j2+j1
2

and z = 1
3

(
m− j2−j1

2

)
re-

spectively, it follows that the Q-cohomology classes are in one-to-one correspondence with

[∆, m, j1, j2] representations satisfying

∆ =
j2 + j1

2
, m =

j2 − j1
2

(3.9)

Scanning all the irreducible representations of su(1, 1|3) [28, 27] we find that constraints

(3.9) are always satisfied by the superconformal primaries of the following short multiplets5

B
1

6
, 1
6

j2−j1
2

;j1,j2
, B

1

6
,0

j2−j1
2

;j1,j2
, B0, 1

6
j2−j1

2
;j1,j2

(3.10)

for generic values of j1, j2. For j1 = 0 and/or j2 = 0 the multiplets become shorter and

enhance their degree of supersymmetry.

The field realization. Knowing the Lagrangian description of the ABJM theory, we can

realize topological operators as composite operators built out of the fundamental matter

fields restricted to live on the one-dimensional kinematical defect. Taking into account

their explicit quantum numbers assignment (see for instance tables 2 and 3 of [26]) it is

easy to see that the operator

On(0) = Tr(Y1Ȳ
3)n (3.11)

defined at the origin satisfies the cohomological constraints (3.7, 3.9) with [∆, m, j1, j2] =

[n, 0, n, n]. It is the superconformal primary of the B
1

6
, 1
6

0;n,n short multiplet. Therefore, it is

1/6 BPS on the line.

For simplicity we will focus on O1(0) = Tr(Y1Ȳ
3) that we rename O. Applying twisted

translation (3.8), from direct inspection we obtain the operator at position (0, 0, s) on the

line

O(s) = Tr(Ya(s)Ȳ
b(s)) ūa(s) vb(s) , with ūa(s)=(1, 0, is) va(s)=(−is, 0, 1)

(3.12)

5We use the notation B
1

N
, 1

M

m;j1,j2
to label a short irreducible representation whose superconformal primary

is annihilated by 1
N

and 1
M

fractions of Q and Q̄ supercharges in (3.1), respectively.
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or more explicitly

O(s) = Tr(Y1Ȳ
3)− isTr(Y1Ȳ

1) + isTr(Y3Ȳ
3) + s2Tr(Y3Ȳ

1) (3.13)

We note that the operator is given by a position-dependent linear combination of super-

conformal primaries. This is reminiscent of what happens in 4D N = 4 SYM theory [30]

and in N = 4, 8 three dimensional theories [31].

It is important to stress that the twisted translation leads to (3.12) when we use

indifferently either the Q+ or the Q− cohomology. One could be tempted to conclude

that things should work nicely also by considering the cohomology of an arbitrary linear

combination (a+Q+ + a−Q−) with complex numbers a±. Actually, this is not true in

general. As explained in [32], good cohomological charges are only the ones corresponding

to linear combinations of the form

Qβ =
1√
2

(
Q3 + iS1 + eiβ(S̄3 + iQ̄1)

)
, β ∈ R (3.14)

all satisfying Q2
β = 0. In conclusion, we have a one-parameter family of cohomological

supercharges that can be used to perform the topological twist on the line.

3.2 The 1D topological correlators

We are interested in evaluating correlation functions of the topological operators de-

fined in the previous section. Focusing on O, we study the generic n-point function

〈O(s1) · · ·O(sn)〉 ≡
∫

O(s1) · · ·O(sn) e
−S (3.15)

As anticipated in the previous discussion, these correlators are expected to be in general

non-vanishing and position independent. In fact, since from (3.8) it follows that ∂sO(s) =

−[L̂+,O(s)] and L̂+ is Q-exact, we obtain

∂sj〈O(s1) · · ·O(sj) · · ·O(sn)〉 = 〈
{
Q,O(s1) · · · [Q̃,O(sj)] · · ·O(sn)

}
〉 = 0 , ∀ j = 1, · · · , n

(3.16)

Moreover, since O(s) is 1/6 BPS, we expect these correlators to acquire at most finite

quantum corrections.

An important observation is now in order. What makesO special inside the class (3.11)

of topological operators is that it coincides with one of the scalar chiral superprimaries

(in SU(4) notation)

O J
I (~x) = Tr(CI(~x)C̄

J(~x))− 1

4
δ J
I Tr(CK(~x)C̄

K(~x)) (3.17)

9



which seat in the stress-energy tensor multiplet. In fact, using decomposition (3.2), it

is easy to see that O is nothing but O 4
2 in (3.17) localized on the line at the origin.

Therefore, we expect its correlation functions (3.15) to carry some information about the

correlation functions of the stress-energy tensor itself. In particular, its two-point function

can be used to evaluate the central charge cT of the ABJM theory. In fact, if we project

the general identity

〈O J
I (~x)O L

K (~0)〉 = cT
16

(
δLI δ

J
K − 1

4
δJI δ

L
K

)
1

16π2~x 2
(3.18)

on the line by setting ~x = (0, 0, s) and multiplying by the polarization vectors Ūa(s) =

(0, ūa(s)), Va(s) = (0, va(s)) obtained by promoting the ones in (3.12) to SU(4) notation,

we obtain

cT = −256 π2 〈O(s)O(0)〉 (3.19)

This is an example on how we can extract information on the bulk theory from the

kinematical defect.

The perturbative result. The perturbative evaluation of correlation functions relies

on the expansion of the Euclidean path integral (3.15) in powers of the ABJM coupling

constant N/k.

As anticipated, we expect the correlators to be constant, at most depending on the

order of the operators along the line. At tree level this happens since the worldline

dependence at the denominator encoded in the propagators is canceled by an analogous

numerator coming from the contraction of the polarization vectors [26]. The evaluation of

loop contributions reveals that there are no one-loop corrections, whereas the two-point

function at two loops reads [26]

〈O(s)O(0)〉(2) = − N2

(4π)2

(
1− π2

3k2
(N2 − 1)

)
(3.20)

From this result, exploiting (3.19) we can read the two-loop result for the central charge

of ABJM theory

cT = 16N2
(
1− π2

3k2
(N2 − 1) + O

(
1

k3

))
(3.21)

Higher order contributions are in principle computable, but the evaluation of Feynman

integrals becomes more and more challenging. It is then convenient to rely on different

approaches for computing the two-point function, as we now describe.
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The correlators from the Matrix Model. As already mentioned, the partition func-

tion on S3 for the ABJM theory is known exactly from localization (see eq. (2.3)).

In principle, the same technique can be applied to compute correlators (3.15). Un-

der compactification on the three sphere the infinite line in R3 gets mapped to the

great circle S1 ⊂ S3. Accordingly, the topological operator (3.12) get mapped into its

spherical version O(ϕ), which is nothing but the operator evaluated on the great circle

parametrized by 0 ≤ ϕ ≤ 2π, contracted with the polarization vectors on the sphere,

ūaS = (cos ϕ
2
, 0, sin ϕ

2
), vS a = (− sin ϕ

2
, 0, cos ϕ

2
) [26]. Superconformal invariance ensures

that

〈O(s1) · · ·O(sn)〉R3 = 〈O(ϕ1) · · ·O(ϕn)〉S3 (3.22)

It is important to stress that the topological operator O is no longer invariant under

the action of the localizing supercharge used in [16] to obtain the Matrix Model (2.3).

The only possible supercharges that can be used in the localization procedure are the

cohomological supercharges Qβ , eq. (3.14), which are symmetries of the theory and kill

the topological operators. Redoing localization with these supercharge requires to first

bring the cohomological charge off-shell, finding a convenient Q-exact term to deform the

action and then localize the integrand.

The problem has been first attacked in [33] for the case of N = 4 SCFTs described

by Yang-Mills vector multiplets suitably coupled to hypermultiplets. Using the nilpotent

supercharge Q which features the one-dimensional topological sector of the Higgs branch,

one obtains a different, but equivalent Matrix Model for the N = 4 partition function

Z[S3], which can be interpreted as coming from the gauge sector minimally coupled to

a one-dimensional Gaussian model localized on the great circle S1 6. Remarkably, this

one-dimensional factor coincides exactly with the contribution from the one-dimensional

topological sector defined by the Q-cohomology. In fact, it is described by the action

Sσ = −4πr

∫ π

−π

dϕ J̄a(∂ϕ + σ)J a (3.23)

where J a are dimension-1 topological operators7, σ is the scalar in the three dimensional

vector multiplet and r is the radius of the sphere. It follows that correlators can be

computed with the ordinary prescription

〈J a1(s1) · · · J an(sn)〉 ∼
∫

[DJDJ̄ ] e−Sσ J a1(s1) · · · J an(sn) (3.24)

6This construction can be extended to Coulomb branch operators [34], complicated by the presence

of monopole operators, and to more general manifolds [35].
7These operators can be constructed from the lowest component of some flavor symmetry multiplet,

therefore the a index runs from 1 to the dimension of the flavor symmetry algebra.

11



for a one-dimensional quantum mechanics.

A few comments are now in order. First of all, if we remove the operator insertions

the Matrix Model reduces to the one in eq. (2.3) evaluating the partition function [33],

consistently with the fact that the result for the partition function must be independent

of the choice of the localizing supercharge. Second, it can be proved that the SYM action

is Q-exact respect to the cohomological supercharge. Therefore, in three dimensional

N = 4 SCFT theories with a Yang-Mills-type action, correlators (3.24) are expected to

be independent of the coupling constant.

This results can be easily generalized to non-conformal theories obtained by deforming

the original SCFT with mass parameters ma. The Matrix Model computing the parti-

tion function of the mass deformed theory on S3 is known in the large N limit [22, 23]

and exactly [36]. On the other hand, in the alternative derivation described above this

deformation is equivalent to add mass terms of the form −4πr2ma
∫ π

−π
dτ J a(τ) to the

one-dimensional Gaussian model (3.23) [33]. It follows that taking derivatives of the Ma-

trix Model on S3 respect to the mass parameters ma is equivalent to bring down factors

−4πr2
∫ π

−π
dτ J a(τ) inside the Gaussian one-dimensional functional, so obtaining inte-

grated correlation functions of topologically twisted operators living on the great circle.

Precisely, the following remarkable identity holds [37, 38],

〈∫ π

−π

dτ1 . . .

∫ π

−π

dτn J a1(τ1) . . .J an(τn)
〉
=

1

(4πr2)n
1

Z
∂n

∂ma1 . . . ∂man
Z[S3, ma]

∣∣∣
ma=0

(3.25)

In particular, since the topological correlators are position independent, the integrals on

the l.h.s. can be trivially performed leading to a constant factor (2π)n times the correlator.

Therefore, identity (3.25) provides an exact prescription for computing correlators in the

one-dimensional topological sector in terms of the derivatives of the deformed Matrix

Model of the three-dimensional theory. Read in the opposite direction, this allows to

reconstruct the exact partition function of the three-dimensional theory on the sphere

once we have solved the one-dimensional topological theory, i.e. we know exactly all its

correlators.

This procedure can be generalized to N = 8 SCFTs [37], being these theories special

cases of N = 4 SCFTs with an extra so(4) flavor symmetry. In this case, the topological

sector is constructed from the three-dimensional operators in (3.17) which belong to the

N = 8 stress-energy tensor multiplet. Ward identities then relate topological correlators

to the ones of the stress-energy tensor in a particular kinematic configuration. In particu-

lar, the topological two-point function is related to the central charge as in (3.19). On the
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other hand, the topological two-point function can be computed using prescription (3.25).

Putting everything together it then follows that cT is related to the second derivative of

the mass-deformed partition function, according to

cT = −64

π2

d2

dm2
logZ[S3, m]

∣∣∣
m=0

(3.26)

This coincides with the relation found in [39] for N ≥ 2 SCFTs using an alternative

approach. This is a non-trivial check of identity (3.25) for the N = 8 case.

For N = 8 and N = 4 SCFTs the topological sector has played a notable role in

performing a precision study of the theories through conformal bootstrap, allowing to

compute exactly some OPE data and constraining ”islands” in the parameter space [31,

37, 40, 41]. At the same time, it has been instrumental in fixing contributions to the

scattering amplitudes of super-gravitons in M-theory in eleven dimensions [42].

For N = 6 ABJ(M) theory the topological sector has been considered in connection

with string theory amplitudes in AdS4×CP3 [38]. However, for this case a direct derivation

of identity (3.25) is not available, since the absence of a N = 4 SYM mirror theory

and the presence of Chern-Simons terms somehow preclude a direct derivation of a one-

dimensional action for the topological sector. It is then necessary to provide indirect

evidence of identity (3.25) through the use of alternative approaches.

A first piece of evidence has been recently given in [26] by a perturbative evaluation

of identity (3.26) for the ABJM theory. In fact, referring to the topological operator O in

3.12, it has been shown there that the two-loop result (3.21) for the central charge coming

from a genuine two-loop evaluation of 〈O(s)O(0)〉 matches exactly the second derivative

of the mass-deformed Matrix Model of ABJ(M) on S3 [19, 21, 20]

Z =
1

(N !)2

∫
dλ dµ

eiπk
∑

i(λ2
i−µ2

i )
∏

i<j 16 sinh
2 [π (λi − λj)] sinh

2 [π (µi − µj)]∏
i,j 4 cosh

[
π(λi − µj) +

πm+

2

]
cosh

[
π(λi − µj) +

πm
−

2

] (3.27)

respect tom+ or equivalently m−, where m± are the mass assignments of the fundamental

scalars (Z, Ya) → (m+,−m+, m−,−m−) in the mass-deformed ABJM theory.

As a last observation, we note that in N = 6, 8 Chern-Simons-matter theories, the

Chern-Simons Lagrangian is not Q-exact, no matter is the Q supercharge that we use

to localize the functional integral that computes correlators. Therefore, topological cor-

relators are expected to depend in general on the coupling constant of the theory. The

perturbative result given in eq. (3.20) confirms this expectation.
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4 Dynamical defects: BPS Wilson loops

A notable class of dynamical one-dimensional defects in U(N)× U(N) ABJM theory

is made by the supersymmetric/BPS Wilson loops. These are non-local, gauge invariant

operators of the form

W = TrPe−i
∫
Γ
L Ŵ = TrPe−i

∫
Γ
L̂ (4.1)

where L, L̂ are generalized connections for the two gauge groups respectively, whose struc-

ture will be detailed below, and Γ is an open or closed one-dimensional contour8.

For a suitable choice of L, L̂ and the shape of Γ, these operators may preserve a

fraction of the supersymmetry charges of the theory. This protects them from acquiring

divergent contributions at quantum level. Nevertheless, their vacuum expectation value

is in general a (finite) non-trivial function of the coupling constant which interpolates

between the weak and the strong regimes. Therefore, they represent a powerful tool

for proving the AdS/CFT correspondence and a natural playground where testing non-

perturbative methods.

A one-dimensional defect SCFT can be defined on a Wilson line/loop by restricting

subsets of ABJM local operators to live on the Wilson line. The one-dimensional ob-

servables are correlation functions of these local operators computed on the non-trivial

vacuum dressed with the Wilson line. Precisely, for a generic operator O on the infinite

straight line we define correlators as

〈〈TrO(sn)O(sn−1) · · ·O(s1)〉〉 =
〈TrWsn,+∞O(sn)Wsn−1,snO(sn−1) · · ·Ws1,s2O(s1)W−∞,s1〉

〈TrW−∞,+∞〉
(4.2)

where we have used the notation Wa,b ≡ Pe−i
∫ b
a
L.

An efficient way to insert local operators along the Wilson loop is by applying a broken

symmetry generator to the operator itself [44]. For instance, applying the generators of the

transverse translations we obtain correlators of operators belonging to the displacement

multiplet [45]. Alternatively, along the lines described above for the topological line, one

can consider the Matrix Model computing the vacuum expectation value of parametric

Wilson operators and take derivatives respect to the parameters. We will comment further

on this point in section 4.5. For the time being, we focus on the classification and the

quantum properties of the Wilson loops in the ABJM theory, and their relation with other

important physical quantities.

8For a comprehensive review on Wilson loops in three-dimensional Chern-Simons-matter theories we

refer the reader to [43].
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4.1 The general classification

Ordinary gauge invariant Wilson operators W = TrPe−i
∫
Γ
dxµAµ, Ŵ = TrPe−i

∫
Γ
dxµÂµ

break all the supersymmetries of the ABJM theory. However, generalizing the connec-

tions Aµ, Âµ to include also couplings with the matter sector may enhance a fraction

of supersymmetry. Based on dimensional and group representation arguments it is easy

to see that in three dimensions we can in principle include couplings to bilinear scalars

(dimension-one operators in the adjoint of the gauge group) and fermions (dimension-one

fields in the (anti)bifundamental).

“Bosonic” Wilson operators that include only couplings to scalar matter has been

originally proposed in [7] and further elaborated in [46, 47, 48]. They correspond to

generalized connections for the two U(N) gauge groups, of the form

LB = Aµẋ
µ − 2πi

k
|ẋ|M I

JCIC̄
J , L̂B = Âµẋ

µ − 2πi

k
|ẋ|M I

J C̄
JCI (4.3)

whereM is a constant matrix featuring the coupling to scalars. ForM = diag(1, 1,−1,−1)

and choosing the contour to be the infinite straight line or the great circle the two Wilson

operators WB, ŴB become 1/6 BPS. These operators have a dual description in terms of

fundamental type IIA strings ending on the Wilson contour at the AdS4 boundary and

smeared along a CP
1 inside CP

3 [47, 48, 49, 50, 51].

As proposed in [52], enhancement of supersymmetry can be obtained by promoting the

generalized connection to be an even supermatrix belonging to the U(N |N) supergroup,

which includes also fermionic couplings in the off-diagonal blocks. Precisely, it has the

form

LF =


 A −i

√
2π
k
|ẋ|ηIψ̄I

−i
√

2π
k
|ẋ|ψI η̄

I Â


 with





A ≡ Aµẋ
µ − 2πi

k
|ẋ|M̃ I

J CIC̄
J

Â ≡ Âµẋ
µ − 2πi

k
|ẋ|M̃ I

J C̄JCI

(4.4)

where ηI , η̄
I are commuting spinors which drive the coupling to fermions. Choosing the

contour to be the straight line or the great circle, M̃ = diag(−1, 1, 1, 1) and suitably

fixing the couplings to fermions this operator turns out to be 1/2 BPS [52]. It is dual to

the 1/2 BPS fundamental string ending on the Wilson contour at the AdS4 boundary and

localized in CP
3. Because of the inclusion of fermions it is sometimes called “fermionic”

Wilson operator, here WF . According to the general prescription introduced in [53, 54],

its expression can be derived by Higgsing the U(N + 1)× U(N + 1) ABJM theory down
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to U(N) × U(N) via the assignment of a non-vanishing vacuum expectation value (vev)

to one of the scalars [55].

More general fermionic operators can be defined by allowing the couplings to the

matter sector to depend on some arbitrary parameter [56]. According to the general

classification given in [57] (see also [58] for a short summary), there exist four classes of

fermionic 1/6 BPS Wilson operators W I
F ,W

II
F ,W III

F ,W IV
F , which differ for the specific

couplings to scalars and fermions and include the 1/2 BPS operator WF for a special

choice of the couplings. They all preserve the same spectrum of supercharges and are

cohomologically equivalent to a bosonic 1/6 BPS Wilson loop Wbos corresponding to the

superconnection

Lbos =

(
LB 0

0 L̂B

)
(4.5)

with LB, L̂B given in (4.3). In other words,

W I,II,III,IV
F = Wbos +Q−exact term (4.6)

where Q is a linear combination of supercharges preserved by all the operators. For a

particular choice of the parameters, this states the cohomological equivalence between the

1/2 BPS operator WF and the 1/6 BPS Wbos first discovered in [52].

4.2 The “latitude” Wilson loops

Another set of bosonic and fermionic Wilson operators have been introduced in [59, 60].

These are obtained from the original operators (4.3) and (4.4) evaluated on the great circle

by rotating the internal scalar couplings by an angle α and/or deforming the contour to

a latitude circle on S3 featured by a latitude angle θ 9. Though the two deformations are

in principle independent, the general expression of the latitude Wilson loops turns out to

depend only on the effective parameter ν = sin 2α cos θ [60].

The general structure of the latitude bosonic connections are still as in (4.3), but with

modified coupling given by

M I
J (ν, τ) =




−ν e−iτ
√
1− ν2 0 0

eiτ
√
1− ν2 ν 0 0

0 0 −1 0

0 0 0 1




(4.7)

9The great circle corresponds to θ = 0.
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For generic values of ν ∈ [0, 1] these operators are 1/12 BPS, that is they preserve two

independent linear combinations of the original N = 6 supercharges, Q1(ν) and Q2(ν),

whose coefficients depend explicitly on ν [60]. For the special value ν = 1 the matrix M
reduces to diag(L, L̂), with L, L̂ given in (4.3), and the supersymmetry is enhanced to

1/6 BPS, as discussed in the previous subsection.

Similarly, the latitude fermionic operator is still given in (4.4), but with the more

general couplings

M̃ J
I (ν, τ)=




−ν e−iτ
√
1− ν2 0 0

eiτ
√
1− ν2 ν 0 0

0 0 1 0

0 0 0 1



, ηαI (ν, τ) =

e
iντ
2√
2




√
1 + ν

−
√
1− νeiτ

0

0



I

(1,−ie−iτ )α

η̄Iα = i(ηαI )
† (4.8)

For generic ν this operator is 1/6 BPS, while for ν = 1 it enhances to the 1/2 BPS

described by superconnection (4.4) 10.

Both the operators have a smooth limit for ν → 0 where they given rise to Zarembo-

like Wilson loops [61].

Fermionic latitude operators are dual to 1/6 BPS string configurations in AdS4×CP
3

with the endpoints describing a circle inside CP3 [62]. The latitude parameter corresponds

to a constant boundary condition for one of the CP3 angular variables. Instead, an explicit

string solution dual to the bosonic latitude Wilson loop is not known yet. A preliminary

discussion can be found in [62] and steps towards the solution of the problem appeared

in [63].

As discussed in [60], classically the latitude fermionic WL is cohomologically equivalent

to a linear combination of bosonic latitudes. In fact, one can show that

WF (ν) =
e−

iπν
2 WB(ν)− e

iπν
2 ŴB(ν)

e−
iπν
2 − e

iπν
2

+ Q(ν)−exact term (4.9)

whereQ(ν) is a linear combination of superpoincaré and superconformal charges preserved

by all the operators [60]. We note that for ν = 1 it reduces to WF = 1
2
(WB + ŴB), up to

Q-exact terms [52].

If this equivalence survives at quantum level, taking the vacuum expectation value

of both sides of (4.9) we can determine 〈WF (ν)〉 as a linear combination of the bosonic

10The fermionic couplings correctly reduce to the ones on the great circle on S3 as given in [52].
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〈WB(ν)〉, 〈ŴB(ν)〉. However, in three dimensions the evaluation of Wilson loop vev is

affected by framing ambiguities [64]11. Therefore, the problem of understanding how

the classical cohomological equivalence gets implemented at quantum level is strictly

interconnected with the problem of understanding framing.

This problem has been extensively discussed in [68, 69, 70], where it has been shown

that the cohomological equivalence gets enhanced at quantum level in exactly the same

form (4.9) if the vev is computed at framing ν, where ν is the latitude12. Precisely, if

perturbatively we define (λ = N/k)

〈WB(ν)〉ν ≡ eiΦB(ν,λ) 〈WB(ν)〉0 +O(k−3) , 〈ŴB(ν)〉ν ≡ eiΦ̂B(ν,λ) 〈ŴB(ν)〉0 +O(k−3)

〈WF (ν)〉ν ≡ 〈ŴF (ν)〉0 +O(k−3) (4.10)

where 〈·〉0 stands for expectation values computed in ordinary perturbation theory with

dimensional regularization and ΦB, Φ̂B are the framing functions, the quantum cohomo-

logical equivalence has been conjectured to be [60]

〈WF (ν)〉ν =
e−

iπν
2 〈WB(ν)〉ν − e

iπν
2 〈ŴB(ν)〉ν

e−
iπν
2 − e

iπν
2

(4.11)

This identity has been checked perturbatively, up to two loops for ν = 1 in [71, 72, 73],

whereas for generic ν it has been successively tested in [60]. At this order the framing

function is given by ΦB(ν, λ) = −Φ̂B(ν, λ) = πνλ+O(λ3).

A direct perturbative evaluation of 〈WB(ν)〉ν at framing ν has been done up to three

loops, at finite N [4]. Suitably normalizing the operator, the following result has been

obtained

〈WB(ν)〉ν = 1 + iπν
N

k
+

π2

6k2
(
2N2 + 1

)
+
iπ3N

6k3
[
ν3
(
N2 + 1

)
+ 3ν

]
+O

(
k−4
)

(4.12)

whereas ŴB is simply the hermitian conjugate. Assuming the cohomological identity

(4.11) to be true, one can easily infer the three loop result also for 〈WF (ν)〉ν .
As discussed in [4], framing seems to have a quite different origin in the undeformed

(ν = 1) and deformed (ν 6= 1) cases.

11These are finite regularization ambiguities associated to singularities arising when two fields running

on the same closed contour clash. In perturbation theory, this phenomenon is ascribable to the use of

point–splitting regularization to define propagators at coincident points [65, 66, 67].
12Though in topological Chern-Simons theories framing is an integer [64], in non-topological theories

it generalizes to a non-integer number [60]. Therefore, it can no longer be ascribable to ambiguities

associated to point-splitting regularization in perturbation theory.
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For the ν = 1 Wilson operator, the three-loop result reveals that all the framing

effects are encoded into a phase, being the imaginary terms at odd orders associated only

to framing dependent Feynman diagrams [68]. Therefore, in this case eqs. (4.10) hold

with no need of O(k−3) corrections.

For the latitude instead, an imaginary contribution to 〈WB(ν)〉ν arises at three loops,

which is framing independent [4]. Therefore, in the general case the phase in (4.10) is

not entirely due to framing. We should also expect that not all the framing effects are

encoded into a phase, as it happens already at this order for multi-winding Wilson loops

[70]. In order to describe the most general situation, it is then convenient to replace eqs.

(4.10) with

〈WB(ν)〉ν ≡ eiΦB(ν,λ) |〈WB(ν)〉| , 〈ŴB(ν)〉ν ≡ eiΦ̂B(ν,λ) |〈ŴB(ν)〉|
〈WF (ν)〉ν ≡ |〈ŴF (ν)〉| (4.13)

with the understanding that in the no-latitude case the modulus coincides with the vev

evaluated at framing zero and ΦB, Φ̂B are the genuine framing functions, whereas for the

latitude this is true only up to two loops.

We note that modding out the framing-zero two-loop result obtained by using ordi-

nary dimensional regularization [60], from result (4.10) we can infer the expansion of the

framing function at this order. In the large N limit it reads

ΦB(ν, λ) = −Φ̂B(ν, λ) = πνλ− π3

6
(ν3 + 2ν)λ3 +O(λ5) (4.14)

Notably, this expression coincides with the one conjectured in [74] using the relation be-

tween circular Wilson loops, Bremsstrahlung functions and the cusp anomalous dimension

[45, 51, 60, 28, 62, 75].

4.3 The Matrix Model for BPS Wilson loops

As reported in section 2, correlation functions for gauge invariant, BPS operators can

be computed using localization techniques. In particular, this turns out to be true for BPS

Wilson loops evaluated on closed paths on S3, as long as they preserve the supercharge

used for localizing the functional integral.

The Matrix Models computing the vev of the bosonic 1/6 BPS Wilson loops corre-

sponding to connections (4.3) and evaluated on the great circle has been proposed in [16].
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They are simply given by the matrix representation of the partition function Z in (2.3)

with the following insertions

WB :
1

N

N∑

a=1

e2π λa ŴB :
1

N

N∑

a=1

e2π µa (4.15)

and normalized with the partition function itself. It is important to stress that the

Matrix Model always computes the vevs at framing one, since the only point-splitting

regularization which does not break supersymmetry on S3 corresponds to taking the

original path and the framed one to belong to a Hopf fibration of the sphere.

In principle, prescription (4.15) provides an exact result for the bosonic operators,

which turn out to be complex functions of the coupling, thus expressible as in (4.13), with

the framing function given by an odd power series in the coupling.

Since the Matrix Model is invariant under the supercharge that drives the cohomolog-

ical equivalence between WB, ŴB and WF , we immediately obtain

〈WF 〉1 =
〈WB〉1 + 〈ŴB〉1

2
(4.16)

where the subscript indicates that the results are at framing one. This result turns out

to be real, in agreement with (4.13).

The Matrix Model can be expanded at small coupling λ [16, 17, 18] leading to a

prediction which can be tested against a genuine perturbative calculation. Indeed, up

to three loops it matches the perturbative result (4.12) evaluated at ν = 1. The Matrix

Model has been also computed at strong coupling using a Fermi gas approach [76, 77].

The leading contribution of 〈WF 〉1 at strong coupling matches the exponential behavior

predicted from the largeN dual description [54]. Matching has been found also for the first

subleading correction in [78], where the problem of fixing ambiguities in the normalization

of the string path integral has been reconsidered and a universal normalization has been

proposed.

Generalizing the Matrix Model construction to the evaluation of the latitude Wilson

loops is not an easy task, due to the fact that these operators preserve supercharges which

differ from the one used in [16] to localize the path integral and cannot be embedded in

the N = 2 superspace formalism easily. However, in [4] a ν-dependent Matrix Model

computing 〈WB(ν)〉ν has been proposed, which is a slight deformation of the known one

in (4.15) [16]. The vevs are computed as

〈WB(ν)〉ν =

〈
1

N

N∑

a=1

e2π
√
ν λa

〉
〈ŴB(ν)〉ν =

〈
1

N

N∑

a=1

e2π
√
ν µa

〉
(4.17)
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where now the average is evaluated and normalized with the following partition function

Z(ν) =

∫ N∏

a=1

dλa e
iπkλ2

a

N∏

b=1

dµb e
−iπkµ2

b (4.18)

×

N∏

a<b

sinh
√
νπ(λa − λb) sinh

π(λa − λb)√
ν

N∏

a<b

sinh
√
νπ(µa − µb) sinh

π(µa − µb)√
ν

N∏

a=1

N∏

b=1

cosh
√
νπ(λa − µb) cosh

π(λa − µb)√
ν

As before, the integral is over a set of (λa, µa) eigenvalues of the Cartan matrices of

U(N)× U(N).

This Matrix Model is expected to be the result of localizing the vevs by using the

ν-dependent supercharges preserved by WB(ν). However, in the absence of a localization

procedure that leads directly to (4.17, 4.18), a number of strong consistency checks are

available:

1) First of all, for ν = 1 it reduces to the known Matrix Model (4.15, 2.3).

2) A first non-trivial check concerns the partition function (4.18). Since its value should

be independent of the localizing supercharge that we use to infer the Matrix Model, (4.18)

should provide the ordinary ν-independent partition function of the ABJMmodel. Indeed,

this has been successfully checked in [4] where it has been shown that expression (4.18)

can be rearranged in such a way that the ν dependence disappears completely and it

ends up coinciding with the ABJM partition function (2.3). Since such manipulations no

longer work when we insert the WL exponentials (4.17), we correctly expect a non-trivial

ν-dependence in the Wilson loop vevs.

3) Important checks come from comparing the Matrix Model results at weak and strong

couplings with alternative calculations. At weak coupling, its expansion perfectly matches

the perturbative result (4.12). This confirms the intuition that localization should com-

pute Wilson loops at framing ν.

4) Expressions (4.17) have been computed at large N in the strong coupling limit, using

the Fermi gas approach [4]. Applying a genus expansion in powers of the string coupling

gs =
2πi
k
, and introducing the new variable κ through the identity

λ =
log2 κ

2π2
+

1

24
+O

(
κ−2
)

(4.19)

the genus-zero terms (that is the leading order in 1/k) read

〈WB(ν)〉ν
∣∣
g=0

=
−κν Γ

(
ν−1
2

)
Γ
(
ν+1
2

)
+ i π κ

(
1 + i tan πν

2

)
Γ(ν + 1)

4π Γ(ν + 1)
(4.20)
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with 〈ŴB(ν)〉 given simply by the hermitian conjugate. Using the cohomological equiv-

alence in (4.9) the strong coupling expansion for the fermionic latitude Wilson loop can

be easily inferred

〈WF (ν)〉ν
∣∣
g=0

= −i 2
−ν−2 κν Γ

(
−ν

2

)
√
π Γ
(
3
2
− ν

2

) (4.21)

Remarkably, its leading behavior at strong coupling

〈WF (ν)〉 ∼ eπν
√
2λ (4.22)

reproduces the holographic prediction found in [62]. Moreover, in [79, 80] the ratio
〈WF (1)〉
〈WF (ν)〉

∣∣∣
g=0

has been computed holographically at strong coupling, at the next-to-leading

order, and the result perfectly matches the Matrix Model prediction (4.21).

Very recently the hard task of proving that the Matrix Model is the result of applying

a localization procedure driven by a ν-dependent supercharge has been taken on [81].

Though the authors did not manage to solve directly the very difficult problem of bringing

the latitude supercharges off-shell as required to make localization work, they managed to

show that Matrix Model (4.18) emerges as the result of applying the Källén approach [82]

(generalized to Chern-Simons theories with matter in [83]) under the assumption that

also for the latitude supersymmetry algebra there exists kind of topologically twisted

Lagrangian as the one considered there, which is on-shell equivalent to the ABJM one.

Before closing this section, we note that the expectation values (4.17) satisfy the

functional identity

∂ν log
(
〈WB(ν)〉ν + 〈ŴB(ν)〉ν

)
= 0 (4.23)

In other words, the real part of the average 〈WB(ν)〉ν is independent of ν. This non-trivial
property is going to be useful for the discussion on the Bremsstrahlung function in the

next section.

4.4 The Bremsstrahlung function

In SCFTs circular Wilson loops have remarkable connections with other physical quan-

tities like the Bremsstrahlung function and the cusp anomalous dimension. In this section

we review the main results regarding latitude Wilson loops in the ABJM theory. We will

address how this connections have far reaching consequences, primarily because they ex-

tend to other physical quantities the possibility of an exact evaluation via localization.

Moreover, they assign a privileged role to Wilson operators, which become the meeting

point for localization, integrability and conformal bootstrap.
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The definition of B. The physical definition of the Bremsstrahlung function B is

encoded in the expression for the energy ∆E lost by a massive quark slowly moving in a

gauge background with velocity v,

∆E = 2π B

∫
dt v̇2 , with |v| ≪ 1 (4.24)

In general B is a non-trivial function of the coupling constant of the theory.

In CFTs it is also related to the cusp anomalous dimension Γcusp(φ). This is the quan-

tity that weights the singular part of a Wilson operator evaluated on a cusped contour,

that is a contour made by two semi-infinite straight lines that meet at a point forming an

angle φ. Close to the cusp short distance singularities appear, which exponentiate as

〈W∠〉φ ∼ e−Γcusp(φ) log
L
ǫ (4.25)

Here L is the length of the two straight lines (the IR regulator) and ǫ the UV regulator.

For small angles, φ ≪ 1, the cusp anomalous dimension behaves as Γcusp(φ) ∼ −B φ2

[45], where B is the Bremsstrahlung function defined in (4.24).

In ABJM theory, since there are both bosonic and fermionic Wilson operators we can

define different types of cusped operators and consequently different types of Bremsstrahlung

functions [51, 84].

First, if we compute UV divergent contributions to the fermionic, 1/2 BPS operator

WF close to a cusp we obtain

〈W∠

F (θ)〉φ ∼ e−Γ
1/2
cusp(φ,θ) log

L
ǫ , Γ1/2

cusp(φ, θ) ∼
φ,θ≪1

B1/2 (θ
2 − φ2) (4.26)

where θ is an internal angle that describes possible relative rotations of the matter cou-

plings in the Wilson loops defined on the two edges of the cusp (encoded in the parameter

ν = cos θ of section 4.2). The particular θ, φ dependence that appears at small angles in

(4.26) is dictated by the fact that for θ2 = φ2 the cusped operator becomes BPS - thus

finite - and the cusp anomalous dimension has to vanish.

Second, if we study the short distance behaviour of a 1/6 BPS bosonic operator WB

near a cusp, no BPS enhancement occurs in this case and the small angle behavior of the

cusp anomalous dimension is given in terms of two different Bremsstrahlung functions as

〈W∠

B (θ)〉φ ∼ e−Γ
1/6
cusp(φ,θ) log

L
ǫ , Γ1/6

cusp(φ, θ) ∼
φ,θ≪1

Bθ
1/6 θ

2 −Bφ
1/6 φ

2 (4.27)

Beyond being related to the cusp anomalous dimension, the B functions have also

remarkable relations with two-point correlation functions of the one-dimensional defect
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SCFT defined on a Wilson line. Focusing for instance on the evaluation of B1/2, from

(4.26) where we set φ = 0 (infinite straight line) it is easy to see that [45, 28]

B1/2 = −1

2

∂2

∂θ2
log 〈WF (θ)〉

∣∣∣
θ=0

=
1

2N

(
4π2

k2
(cs + ĉs)−

π

k
cf

)
(4.28)

where cs, ĉs and cf are the coefficients appearing in the two-point functions on the Wilson

line (see definition (4.2)) for dimension-one operators in the displacement multiplet built

up from the fundamental ABJM fields in (3.2)13

〈〈(YaZ̄)(s1) (ZȲ b)(s2)〉〉 = δba
cs

(s1 − s2)2
, 〈〈(Z̄Ya)(s1) (Ȳ bZ)(s2)〉〉 = δba

ĉs
(s1 − s2)2

〈〈χ+
a (s1) χ̄

b
+(s2)〉〉 = iδba cf

(s1 − s2)

|s1 − s2|3
(4.29)

These results simply follow from the fact that in the Wilson line the θ (alias ν) parameter

appears inside the couplings to the matter fields. Therefore, deriving respect to the

parameter brings down operators in the matter sector.

The exact prescription for computing B. All the B’s are in general functions of the

coupling constant λ = N/k of the ABJM theory and require specific determination. Al-

though in principle they could be computed directly from the cusp anomalous dimension,

this is in general obstructed by the fact that the perturbative evaluation of Γcusp is not

an easy task, already at low orders. A more successful approach could arise if we were

able to relate these quantities to physical observables that are exactly computable via

localization. The striking result found in [45] by exploiting the line-to-circle mapping in

CFTs, provides an exact prescription for computing B in four-dimensional N = 4 SYM in

terms of the 1/2 BPS circular Wilson loop which is amenable of Matrix Model evaluation.

For the ABJM theory, this problem has been originally addressed in [51], where the

following prescription for computing Bφ
1/6 in (4.27) in terms am-winding circular 1/6 BPS

bosonic WL was proposed

Bφ
1/6 =

1

4π2
∂m log | 〈Wm

B 〉 |
∣∣∣
m=1

(4.30)

A similar prescription has been later proposed for computing B1/2 in (4.26) [60] and

Bθ
1/6 in (4.27) [62] in terms of fermionic (4.4) and bosonic (4.3) latitude Wilson loops,

respectively

B1/2 =
1

4π2
∂ν log | 〈WF (ν)〉 |

∣∣∣
ν=1

, Bθ
1/6 =

1

4π2
∂ν log | 〈WB(ν)〉 |

∣∣∣
ν=1

(4.31)

13Here the plus components of the fermions are defined as χ+ = 1
√

2
(χ1 + χ2), and χ̄+ = 1

√

2
(χ̄1 + χ̄2).
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These identities have been proved in [28] and [62] respectively, by exploiting the relation

between the Bremsstrahlung functions and correlation functions in one-dimensional defect

CFTs defined on the circular Wilson loops (the analogues of eqs. (4.28, 4.29 on the circle).

Moreover, the interesting relation

Bθ
1/6 =

1

2
Bφ

1/6 (4.32)

has been guessed in [85, 86] from a four-loop calculation and finally proved in [74] using a

superconformal defect approach. We note that according to identities (4.30) and (4.31),

this implies a non-trivial relation between the ν-derivative of the latitude WB(ν) and the

m-derivative of the m-winding Wilson loop.

Expanding the Matrix Models at weak coupling, from (4.31) we can read the first few

orders in the perturbative expansion of the Bremsstrahlung functions

B1/2 =
λ≪1

λ

8
− π2

48
λ3 +O(k−5)

Bφ
1/6 = 2Bθ

1/6 =
λ≪1

λ2

4
− π2

4
λ4 +O(k−6)

Similarly, expanding the Matrix Models at strong coupling we obtain

B1/2 =
λ≫1

√
2λ

4π
− 1

4π2
− 1

96π

1√
2λ

Bφ
1/6 = 2Bθ

1/6 =
λ≫1

√
2λ

4π
− 1

4π2
− 1

96π

1√
2λ

+

(
1

4π3
− 5

96π

)
1√
2λ

(4.33)

Perturbative checks up to two loops for Bφ
1/6 and B1/2 can be found in [84, 60], whereas

a similar check for Bθ
1/6 is given in [60]. A three-loop calculation of Γcusp [87] provides

a non-trivial check for B1/2 at this order. At strong coupling, B1/2 matches the string

prediction at next-to-leading order [88, 75].

The B and the framing. The exact prescriptions in (4.31) for computing the Bremsstrahlung

functions in terms of latitude Wilson loops lead to a new remarkable interpretation of

framing in three-dimensional Chern-Simons-matter theories [60, 87, 74].

To elaborate on this point, we begin by considering the identity in (4.31) for B1/2. We

first substitute 〈WF (ν)〉 there with its expression (4.11) sustained by the cohomological

equivalence and write the bosonic BPS Wilson loops as in (4.13) in terms of their moduli

and phases. Finally, taking the ν-derivative under condition (4.23) and evaluating the

result at ν = 1, we find

B1/2 = − i

8π

〈WB〉 − 〈ŴB〉
〈WB〉+ 〈ŴB〉

=
1

8π
tanΦB (4.34)
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where WB, ŴB are the underformed bosonic 1/6 BPS WLs corresponding to connections

(4.3) and ΦB their framing function (4.13), evaluated at ν = 1. As already discussed,

for ν = 1 this phase contains all and only framing contributions. Therefore, result (4.34)

suggests that framing, which in topological Chern-Simons theories corresponds to integer

topological invariants and represents a controllable regularization scheme dependence,

in non-topological Chern-Simons-matter theories is no longer a number, rather it is the

function which sources the Bremsstrahlung function.

A similar interpretation holds also for the bosonic Bθ
1/6. In fact, if we elaborate

prescription (4.31) exploiting identity (4.23) we easily obtain

Bθ
1/6 =

1

4π2
tanΦB(ν) ∂νΦB(ν)

∣∣∣
ν=1

(4.35)

where now ΦB(ν) is the generic bosonic phase function at latitude ν defined in (4.13). In

this case, as already mentioned, it contains all but not only framing contributions. This

identity has been exploited to perform non-trivial checks of the whole construction. In

fact, the four-loop calculation of [85, 86] for Γ
1/6
cusp allows to determine Bθ

1/6 up to this

order. Using equation (4.35) this in turn provides a prediction for the expansion of ΦB(ν)

up to λ3 [74]. Merging this result with the two-loop calculation of |〈WB(ν)〉| [60] one
obtains a three-loop expansion for 〈WB(ν)〉ν which coincides with result (4.12) obtained

by a genuine three-loop calculation of 〈WB(ν)〉 done at framing ν [4], and is marvellously

reproduced by the Matrix Model average (4.15) expanded at weak coupling.

Finally, exploiting identity (4.32), we can write the following chain of equalities [74]

Bθ
1/6 =

1

2
Bφ

1/6 =
2

π
B1/2 ∂νΦ(ν)

∣∣∣
ν=1

(4.36)

which relates all the Bremsstrahlung functions of the ABJM theory. Eventually they are

all determined by the same Φ(ν) phase.

Connection with integrability. The link between the Bremsstrahlung functions and

the circular BPS Wilson loops - eventually the Matrix Models - opens a window on the

study of the connection between two different exact techniques in quantum field theory,

localization and integrability. This is already evident in four dimensions. In fact, in

the planar limit of the N = 4 SU(N) SYM theory the Bremsstrahlung function has

been obtained solving a boundary TBA system of integral equations [89, 90, 91, 92].

Therefore, exact results obtained using integrability can be matched with the analogues

obtained using localization.
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The ABJM theory is also known to be integrable in the planar limit [93, 94, 95, 96,

97, 98, 99]. A system of TBA equations has been proposed, which however involve a still

unknown function h(λ) mastering the dispersion relation of a single magnon moving on a

spin chain [100, 94, 101]. Although expansions of h(λ) have been found at weak [102, 103]

and strong [104] coupling, a prescription for determining it exactly is still unknown. A

conjecture for its exact expression has been provided in [105] by exploiting its relation with

another observable, the slope function describing the small spin limit of SL(2) operators,

which is amenable of exact evaluation via localization techniques. At weak coupling this

conjecture has been tested up to order λ3 [102, 106]. At strong coupling, it has been

tested up to two loops in the string sigma model [104, 107, 108].

Alternatively, it should be possible to find a three dimensional analogue of the set of

TBA integral equations proposed in [89, 90] to determine the Bremsstrahlung functions.

Having in this calculation h(λ) as an input, a direct comparison with our proposal (4.31)

for B would provide, in principle, an all–order definition for h. Matching localization and

integrability results would then be crucial for an exact proof of the conjecture in [105].

Some preliminary steps in this direction involve the exact evaluation of the fermionic cusp

anomalous dimension in a suitable scaling limit [109].

4.5 One-dimensional SCFT on the Wilson line

In general, extended operators break (super)symmetries of the bulk theory. However,

as already discussed, a BPS Wilson loop preserves a fraction of superconformal charges.

This operator then supports a one-dimensional SCFT whose excitations are local operators

living on the Wilson contour. In other words, a BPS Wilson loop defines a superconformal

defect, which is entirely specified by the spectrum of local operators and their correlation

functions as defined in (4.2). Superconformal invariance and broken symmetries constrain

the correlation functions to satisfy non-trivial Ward identities that can be used to sort out

their structure. In principle, the defect SCFT can be solved by applying the bootstrap

machinery [110, 111, 112] to determine the spectrum of scale dimensions and the Operator

Product Expansion coefficients.

In this section we give just a sketch of some recent progress in the application of SCFT

techniques to the study of Wilson defects in the ABJM theory.

First of all, given the rich spectrum of Wilson loops of the ABJM theory, we can classify

two main superconformal defects: The bosonic defect living on the 1/6 BPS bosonic

operatorWB and the fermionic defect living on the 1/2 BPS WF . They define a su(1, 1|1)
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and a su(1, 1|3) SCFT, respectively. The parametric family of 1/6 BPS Wilson loops

introduced in [56, 57] and reviewed in section 4.1 interpolate between 1/2 and 1/6 defect

SCFTs, and can be interpreted as exactly marginal deformations of the defect SCFT [63].

More general 1/6 and 1/12 superconformal defects are described by fermionic and bosonic

latitudes, respectively.

The Wilson defects have been investigated using standard algebraic approaches. Defect

supermultiplets associated to the broken currents, notably the displacement multiplet for

1/2 BPS defects and the displacement and the R-symmetry multiplets for the 1/6 BPS

defect, have been constructed and Ward identities constraining the structure of two- and

three-point functions have been derived [28, 74, 113].

Defect correlation functions have been investigated in different contexts and with

different purposes. In particular, their relation with the Matrix Model computing the

Wilson loop itself has been exploited. The main connection comes from the fact that

taking derivatives of the expectation value of parametric Wilson loops respect to the

parameters provides integrated correlation functions for local operators on the Wilson

contour, which are in principle computable exactly if a Matrix Model description of the

vev is available.

As already mentioned - see eqs. (4.28, 4.29) - integrated two-point functions of

dimension-one operators belonging to the displacement supermultiplet, inserted on the

fermionic latitude defect WF (ν) are related to derivatives of WF (ν) respect to ν. They

have been shown to be a key ingredient in the rigorous proof of identity (4.31) for B1/2

[28].

Integrated two-point functions of biscalar, dimension-one local operators inserted on

WB have been considered in [62] to prove identity (4.31) for Bθ
1/6 and in [74] to prove

relation (4.32). These are expectation values of dimension-one operators belonging to

the R-symmetry supermultiplet, arising from small deformations of the latitude bosonic

Wilson loop WB(ν) respect to the ν parameter. Contact terms that master the singular

behavior of these correlators at coincident points are responsible for the appearance of

an imaginary contribution at three loops [4]. This provides an explanation from the

defect perspective of the emergence of a framing independent, imaginary contribution to

〈WB(ν)〉 discussed in section 4.2. Relating defect correlators to derivatives of the latitude

Wilson loop allows to conclude that imaginary terms in the latitude deformation arise

from an anomalous behavior of the relevant two–point functions on the defect.

The deep connection between three-point functions of dimension-one scalar bilinears

and the Matrix Model computing 〈WB(ν)〉 has been extensively discussed in [114], for the
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U(N1) × U(N2) ABJ theory in the color limit N2 ≫ N1 ≫ 1 where a topological sector

seems to emerge.

For the fermionic 1/2 BPS defect, four-point functions of local operators belonging to

the displacement supermultiplet have been computed at strong coupling, up to the first

subleading correction, using the analytic bootstrap approach [113]. The insertions have

a dual description in terms of fluctuations of the dual fundamental string in AdS4 ×CP
3

ending on the Wilson contour at the boundary. The bootstrap solution has been shown

to be perfectly consistent with the result obtained in the dual theory via AdS2 Witten

diagrams [113].

Defect data have relevant implications also for bulk physical quantities, notably the

Bremsstrahlung function. In [51] it was conjectured that the Bremsstrahlung function Bφ,

which is related to the derivatives of BPS Wilson loops according to prescription (4.30),

has also a remarkable relation with the one-point function of the stress-energy tensor on

the superconformal defect, according to the famous relation Bφ = 2hω where hω is the

coefficient of the one-point function of Tµν . In [115] it has been argued that Bφ is also

related to one of the leading coefficients of the anomalous dimension of defect operators

at large transverse spin. Finally, Ward identities of the defect theory can be used to link

the two Bremsstrahlung functions Bφ and Bθ [74], as described in section 4.4.

5 Conclusions and perspectives

We have reviewed some recent progress in the study of line defects in the three-

dimensional N = 6 ABJM theory. In the first part we have considered kinematical

defects, that is trivial one-dimensional submanifolds which support a topological sector of

the theory. In the second part, we have focused on dynamical defects realized as latitude

bosonic and fermionic BPS Wilson operators.

The existence of one-dimensional topological sectors opens the possibility to determine

topological correlation functions exactly, being them related to the derivatives of the mass-

deformed Matrix Model computing the bulk partition function. At the same time, this

relation represents a promising way to reconstruct the bulk SCFT from the data of a

simpler subsector. While this relation has been proved for N = 4, 8 theories, a full

proof for the ABJM theory is not available yet. Nevertheless, some indirect evidence has

been already collected by computing topological correlators in the perturbative regime

and matching them with the conjectured expression from the Matrix Model expanded at
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weak couplings. These findings support the conjecture that also for the ABJM theory,

like for the N = 4, 8 cases, the mass-deformed partition function works as the generating

functional for (integrated) correlation functions on the line, and should be strictly linked

to the functional integral for a topological one-dimensional quantum mechanics governing

the topological correlation functions of the full theory. It would be crucial to prove that a

topological quantum mechanics could emerge directly from some localization procedure,

describing not only the full topological sector, including operators of arbitrary dimensions,

but possibly the monopole sector [34].

Generalizing this construction to dynamical defects, it would be interesting to inves-

tigate if a topological sector can be supported also by the 1/2 BPS Wilson line. This

requires understanding if and how a dynamical defect allows for the construction of a

non-trivial cohomology realized in terms of local operators of the defect theory. If possi-

ble, it would represent a direct tool to relate superconformal data of the bulk theory in

terms of the defect ones, and viceversa. This is presently under study [32].

We have reviewed a number of remarkable results obtained in the last few years on

generalized (latitude) Wilson loops. The main result concerns the proposal for a ν-latitude

Matrix Model that computes bosonic Wilson operator averages exactly, at framing ν.

Assuming cohomological equivalence to hold at quantum level at framing ν, this also

provides the exact result for the fermionic operators. These are new exact, interpolating

functions that allow to test the AdS4/CFT3 correspondence in the large N limit. In

particular, the strong coupling expansion of the bosonic latitude constitutes a brand new

prediction, begging for a string theory confirmation.

The exact mastery of latitude Wilson operators has remarkable follows-up for other

physical quantities, primarily the Bremsstrahlung functions and the correlation functions

of the defect theory. Since the Bremsstrahlung functions could be alternatively computed

by exploiting the exact solvability of the model, matching localization and integrability re-

sults would provide a crucial check of the conjecture in [105] for the interpolating function

h(λ) of the ABJM theory.

Integrated correlation functions of defect operators of the form mI
J(τ)CI(τ)C̄

J(τ) can

be extracted in principle from derivatives of the bosonic latitude Wilson loop with respect

to the ν parameter. Knowing the explicit expression of these correlators from the Matrix

Model would provide information on the OPE data of the defect SCFT. This is definitively

something which would deserve a deeper investigation, along the lines of what have been

done already in four dimensions [116].

Beyond that, there are still quite a lot of important issues that need to be addressed.

30



First of all, an important question is to understand the relation between the defect

theories defined on WB(ν) and WF (ν). For instance, we should expect the cohomological

equivalence in (4.9) to play a prominent role in relating SCFT data of the two defect

theories. It might turn out that one can reconstruct entirely the defect theory on the

fermionic Wilson line from the bosonic one.

As reviewed above, the Matrix Model has a non-trivial dependence on framing, which

ultimately equals the deformation parameter ν. Understanding the meaning of framing

from the point of view of the defect theory is definitively an interesting question. Moreover,

when computing derivatives of the Matrix Model respect to ν, framing contributions

will appear, which may affect the evaluation of correlation functions. It would be then

interesting to understand how to disentangle framing effects from the defect correlators.

For reasons of clearness, we have focused on the ABJM theory. However, most of the

results can be easily generalized to the case of the U(N1)k × U(N2)−k ABJ theory [3].

In particular, the expressions for the latitude Wilson loops are basically the same except

for the overall normalizing factors that will be functions of N1 and N2. A more general

Matrix Model has been proposed also for this theory [4]. A difference between the two

Matrix Models emerges in the evaluation of the partition function, which in the ABJ

case maintains a non–trivial ν-dependence in its phase [4]. The appearance of this phase

could be ascribed to a Chern–Simons framing anomaly discussed in [39, 117] and leads

to the conclusion that the deformation affects the partition function only in its somehow

unphysical part, whereas its modulus is ν-independent. However, this point is still not

totally clear and would deserve further investigation.

Finally, it would be very interesting to generalize the present investigation to dy-

namical defects in less supersymmetric theories, notably N ≥ 2 quiver Chern-Simons-

matter theories, where more general classes of latitude Wilson loops have been constructed

[58, 118, 119]. A first proposal for a Matrix Model computing these operators in N = 4

quiver theories can be found in [119].

Acknowledgements

I am grateful to my senior and young collaborators, Marco S. Bianchi, Gaston Giribet,

Nicola Gorini, Luca Griguolo, Luigi Guerrini, Matias Leoni, Andrea Mauri, Hao Ouyang,

Michelangelo Preti, Domenico Seminara, Paolo Soresina, Jun-Bao Wu and Jiaju Zhang,

who contributed substantially to achieve some of the results presented in this review. A

special thanks is devoted to Norma Sanchez for her kind invitation to contribute with this

31



review article to the Open Access Special Issue “Women Physicists in Astrophysics, Cos-

mology and Particle Physics”, to be published in [Universe] (ISSN 2218-1997, IF 1.752).

This work has been partially supported by Università degli studi di Milano-Bicocca, by
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