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Abstract

We revisit the class of column competent matrices and study some matrix

theoretic properties of this class. The local w-uniqueness of the solutions to

the linear complementarity problem can be identified by the column competent

matrices. We establish some new results on w-uniqueness properties in con-

nection with column competent matrices. These results are significant in the

context of matrix theory as well as algorithms in operations research. We prove

some results in connection with locally w-uniqueness property of column com-

petent matrices. Finally we establish a connection between column competent

matrices and column adequate matrices with the help of degree theory.

keywords: Linear complementarity problem Column competent matrices W -

uniqueness Column adequate matrices.

1 Introduction

The w-uniqueness property is important in the context of dynamical systems under
smooth unilateral constraints. Xu [18] introduced the column competent matrices.
On uniqueness, quite a large number of results are available in the literature of oper-
ations research. The study of uniqueness property of the solution is important in the
context of the theory of the complementarity system as well as the method applied
for finding the solution. For details see ([15], [11], [3], [10]). Ingleton [6] studied the
w-uniqueness solutions to linear complementarity problem in the context of adequate
matrices.

The linear complementarity problem can be stated as follows: For A ∈ Rn×n and
a vector q ∈ Rn, the linear complementarity problem denoted as LCP(q, A) finds the
solution w ∈ Rn and z ∈ Rn to the following systems

w − Az = q ; z ≥ 0 ;w ≥ 0 (1.1)
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wTz = 0 (1.2)

or show that there does not exist any z ∈ Rn and w ∈ Rn satisfying the system of
linear inequalities (1.1) and complementary condition (1.2).

Pang [14] studied local z-uniqueness of solutions of a linear complementarity prob-
lem. The LCP(q, A) has unique z-solution for all q ∈ Rn iff A is a P -matrix [1]. The
w-uniqueness property is identified by a condition on A related to the notion of sign-
reversing. Motivated by the w-uniqueness results, we consider column competent
matrices in the context of LCP(q, A). The sufficient matrices capture many proper-
ties of positive semi definite matrices. The aim of this article is to study some matrix
theoretic properties of this class and establish some new results which are useful to
the solution of the LCP(q, A).

The paper is organised as follows. In section 2, we include few related notations
and results. Section 3 presents some new results related to column competent ma-
trices. We develop several matrix theoretic results of column competent matrices
which are related to solution of linear complementarity problem. Section 4 provides
a conclusion about the article.

2 Preliminaries

Here any vector z ∈ Rn is a column vector and zT is the row transpose of z. We
write z = z+ − z− where z+i = max(0, zi) and z

−
i = max(0,−zi) for any index i. If A

is a matrix of order n, α ⊆ {1, 2, · · · , n} and β ⊆ {1, 2, · · · , n} \ α then Aαβ is the
submatrix with the rows and columns of A whose indices are in α and β respectively.
A principal submatrix and a principal minor of A are denoted by Aαα and detAαα

respectively. For A ∈ Rn×n and q ∈ Rn, the feasible set of LCP(q, A) is defined by
FEA(q, A) = {z ∈ Rn : z ≥ 0, q + Az ≥ 0} and the solution set is also defined by
SOL(q, A) = {z ∈ FEA(q, A) : zT (q + Az) = 0}. A z-solution, z̃ is called locally
unique if ∃ a neighborhood of z̃ within which z̃ is the only z-solution. A w-solution,
w̃ = Az̃ + q, is called locally unique if ∃ a neighborhood of w̃ in which w̃ is the
only w-solution. Let ψ : Rn → Rn and the kernel of the function ψ is defined by
ker ψ = {z ∈ Rn : ψ(z) = 0}. The kernel of a matrix A ∈ Rn×n is defined by ker
A= {z ∈ Rn : Az = 0}. Now we define the column competent matrix.

Definition 2.1. [18] The matrix A is said to be column competent if zi(Az)i =
0, i = 1, 2, · · · , n =⇒ Az = 0.

Column competent matrices can be singular or nonsingular matrices. Note that all

singular matrices need not be column competent matrices. Consider A =

[

1 0
1 0

]

which is a singular matrix. For any z =

[

0
k

]

, k ∈ R, zi(Az)i = 0, i = 1, 2

implies that Az = 0. Consider another A =

[

1 1
0 0

]

. It is easy to show that

zi(Az)i = 0, i = 1, 2 does not imply Az = 0. Hence A is not a column compe-
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tent matrix. Let A =





1 4 3
2 1 5
3 2 0



 , for z =





0
0
1



 zi(Az)i = 0, i = 1, 2, 3 but

Az =





3
5
0



 6= 0. Here A is a nonsingular matrix but not a column competent matrix.

Now we define ψ : Rn → Rn where ψ(z) = z ∗ (Az) and z ∗ (Az) is the Hadamard
product defined by (z ∗ (Az))i = zi ∗ (Az)i, ∀ i. Note that the product is associative,
distributive and commutative.

Definition 2.2. [18] In view of Hadamard product, a matrix A is said to be column
competent if ker ψ = ker A.

Column adequate matrices are related to column competent matrices. We start
with definition of column adequate matrices.

Definition 2.3. [1] The matrix A is said to be column adequate if zi(Az)i ≤ 0, i =
1, 2, · · · , n =⇒ Az = 0.

We state the following lemma and theorems which are useful for the subsequent
sections.

Lemma 2.1. [18] The matrix A is said to be non-degenerate if and only if ker ψ = {0}.

Theorem 2.1. [18] The following statements are equivalent.

(i) A is column competent.

(ii) For all vector q, the LCP(q, A) has a finite number (possibly zero) of w-solutions.

(iii) For all vector q, any w-solution of the LCP(q, A), if it exists, must be locally
w-unique.

Theorem 2.2. [18] The following statements are equivalent.

(i) (a) A is column competent.
(b) A is a P0-matrix.

(ii) A is column adequate.

Theorem 2.3. [1] Let A ∈ Rn×n be a E0-matrix. Then the following statements are
equivalent.

(i) A ∈ R0.

(ii) A ∈ R.

3



We say that A ∈ Rn×n is a
− Q-matrix if for every q ∈ Rn, LCP(q, A) has a solution.
− Q0-matrix if for any q ∈ Rn, feasibility implies solvability.
− P -matrix if for each vector z 6= 0 there exists an index i such that max(zi 6=0) zi(Az)i >
0.
− P0-matrix if for each vector z 6= 0 there exists an index i such that max(zi 6=0) zi(Az)i ≥
0.
− R0-matrix if LCP(0, A) has unique solution.
− principally non-degenerate if it has no principal submatrix which has determinant
zero.
For further details about the matrix classes in linear complementarity problem see
([4],[9], [13], [7], [8]).

The principal pivot transform (PPT) has an important role in the study of matrix
classes and linear complementarity problem. The principal pivot transform of A ∈
Rn×n with real entries, with respect to α ⊆ {1, 2, . . . , n} is defined as the matrix given
by

A′ =

[

A
′

αα A
′

αᾱ

A
′

ᾱα A
′

ᾱᾱ

]

where A
′

αα = (Aαα)
−1, A

′

αᾱ=−(Aαα)
−1Aαᾱ, A

′

ᾱα = Aᾱα(Aαα)
−1 and A

′

ᾱᾱ = Aᾱᾱ −
Aᾱα(Aαα)

−1Aαᾱ.
Here PPT is only identified with respect to those α for which detAαα 6= 0. When

α = ∅, by convention detAαα = 1 and A′ = A. Here A
′

ᾱᾱ is said to be Schur comple-
ment of A. We denote the PPT of A as A

′

= Pα(A). The schur complement of Aαα in

A =

[

Aαα Aαᾱ

Aᾱα Aᾱᾱ

]

is a principal submatrix of the principal pivot transform A′. For

details of PPT see ([11], [12], [2]).
We establish a connection between competent matrices and adequate matrices

using degree theoretic approach. We provide a brief details about degree theory in
the subsequent section.

2.1 Degree theory

Let fA : Rn → Rn be a piecewise linear mapping for a given matrix A ∈ Rn×n defined
as fA(ei) = ei and fA(−ei) = −Aei ∀ i. We write for any z ∈ Rn,

fA(z) = z+ −Az−.

For details see [10]. It is clear that LCP(q, A) is equivalent to find a vector z ∈ Rn such
that fA(z) = q. If z belongs to the interior of some orthants of Rn and detAαα 6= 0
where α = {i : zi < 0}, then the index of fA(z) at z is well defined and can be written
as

indfA(q, z) = sgn(detAαα).

Note that the cardinality of f−1
A (q) denotes the number of solutions of LCP(q, A).

Particularly, if q is non-degenerate with respect to A, each index of fA is well defined
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and we can define local degree of A at q. It can be denoted as degA(q). For details
see ([1], chapter 6). We state the following theorem from [10], which will be required
to prove one of our result.

Theorem 2.4. Let A ∈Rn×n. Let K(A) denote the union of all the facets of the
complementary cones of (I, −A). Consider q ∈ Rn \ k(A) where q is non-degenerate
with respect to A. Let β ⊆ {1, 2, · · · , n} be such that detAββ 6= 0. Suppose A′ is a
PPT of A with respect to β. Then degA′(q′) = sgn(detAββ) · degA(q).

3 Results on Column Competent Matrices

Hadamard product is important to characterize the complementary condition. Here
we show that the property of column competent matrix is related to Hadamard prod-
uct.

Theorem 3.1. Suppose A is a column competent matrix and the function ψ : Rn →
Rn defined by ψ(z) = z ∗ (Az) where z ∗ (Az) is the Hadamard product. Then ker ψ =
kerA.

Proof. Let A be a column competent matrix. Then for a vector z ∈ Rn, zi(Az)i =
0, i = 1, 2, · · · , n =⇒ Az = 0. Hence z ∈ ker ψ implies z ∈ kerA. So we write
ker ψ ⊆ kerA. Again by definition kerA ⊆ ker ψ. Therefore ker ψ = kerA.

The following result provides a characterization of non-degenerate column com-
petent matrices.

Theorem 3.2. Let A ∈ Rn×n be a non-degenerate column competent matrix. Then
A ∈ R0.

Proof. Let A be a non-degenerate column competent matrix. By Lemma 2.1, ker ψ =
{0} where ψ(z) = z ∗ Az. By Theorem 3.1, we can write ker ψ = ker A = {0}. Let
z be the solution of LCP(0, A). Then zi(Az)i = 0, i = 1, 2, · · · , n. This implies that
Az = 0. Hence z = 0. Therefore, LCP(0, A) has only one solution zero. Hence A is a
R0- matrix.

Note that column competent matrix need not be a P0- matrix in general. Consider

the matrix A =

[

2 1
1 −1

]

. We show that A is a column competent matrix but not

a P0-matrix. Now we establish the following result.

Theorem 3.3. Suppose A is a column competent matrix with A ∈ P0. Then for
0 6= z ≥ 0, (z, 0) is the solution of LCP(0, A).

Proof. Let A ∈ Rn×n be a column competent matrix with A ∈ P0. Then for each
0 6= z, maxi zi(Az)i ≥ 0, zi 6= 0. If zi(Az)i = 0, i = 1, 2, · · · , n implies that Az = 0.
Then (z, 0), z ≥ 0 is the solution of LCP(0, A).
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Now we consider the matrix A =

[

2 −1
−4 2

]

is column competent as well as P0

and (

[

1
2

]

,

[

0
0

]

) is a solution of LCP(0, A). Note that this can be explained using

the Theorem 3.3.

Theorem 3.4. Let A be a column competent matrix. Suppose z ≥ 0 and zi(Az)i =
0, i = 1, 2, · · · , n. Then LCP(0, A) has the solution (z, 0).

Proof. Since A is a column competent matrix, then for z ≥ 0 and zi(Az)i = 0, i =
1, 2, · · · , n. This implies that Az = 0. Therefore (z, 0) is the solution of LCP(0, A).

Xu [18] showed that if A is a column competent matrix then DADT is a column
competent matrix where D is a diagonal matrix. In the next theorem, we prove that
column competent matrices with some additional assumptions are invariant under
principal rearrangement. For any principal submatrix Aαα of A,it is possible to re-
arrange principally the rows and columns of A in such a way that Aαα becomes a
leading principal submatrix in the rearranged matrix PAP T .

Theorem 3.5. Suppose A is a column competent matrix. If for any z ∈ Rn, either
zi(Az)i ≥ 0 or zi(Az)i ≤ 0 for all i, then PAP T is also column competent where P
is a permutation matrix.

Proof. Let for any z ∈ Rn, y = Pz. Consider yi(PAP
Ty)i = 0 for all i. This implies

that (Pz)i(PAP
TPz)i = 0 for all i. We know that

zTP TPAP TPz =
∑n

i=1(Pz)i(PAP
TPz)i = 0.

Hence zTAz = 0 as P TP = I. We write
∑n

i=1 zi(Az)i = 0. It means zi(Az)i = 0, i =
1, 2, · · · , n. As A is a column competent matrix, Az = 0. Therefore AP TPz = 0.
Hence (PAP T )(Pz) = 0. Hence PAP T is column competent.

Theorem 3.6. Let A be a Z- matrix. Suppose zi(Az)i = 0 for all i, A|z| ≥ 0 and
Az ≤ 0. Then A is a column competent matrix.

Proof. Suppose A is a Z- matrix. Consider zi(Az)i = 0 for all i, A|z| ≥ 0 and Az ≤ 0.
As A is a Z- matrix, Az ≥ A|z| ≥ 0. Now this implies that Az = 0. Therefore A is a
column competent matrix.

Consider A =





1 1 4
2 2 5
3 4 1



 . Note that A is a R0-matrix. Now for z =





1
−1
0



 ,

zi(Az)i = 0, i = 1, 2, 3 but Az 6= 0. Hence A is not a column competent matrix.
The class of non-degenerate matrices play an important role to characterize certain
uniqueness properties of the solutions of LCP(q, A). We prove the following theorem
to establish the relation between principally non-degenerate matrices and column
competent matrices.

Theorem 3.7. Let A be a principally nondegenerate matrix. Then A is column
competent.
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Proof. Let A be a principally non-degenerate matrix. Assume that A is not a column
competent matrix. Hence ∃ a 0 6= z ∈ Rn such that zi(Az)i = 0, i = 1, 2, · · · , n but

Az 6= 0. Without loss of generality, consider z =

[

zα
zβ

]

6= 0 where zα 6= 0, zβ = 0

and A =

[

Aαα Aαβ

Aβα Aββ

]

. Then we consider the following cases:

case1: Let α = {1, 2, · · · , n} and β = ∅. Then z = zα and zi(Az)i = 0, i ∈ α. It
implies Az = 0, contradicts the fact that Az 6= 0.

case2: Let α ⊂ {1, 2, · · · , n} and β = {1, 2, · · · , n} \α. Consider (zα)i(Aααzα)i =
0, i ∈ α. This implies Aααzα = 0. As zα 6= 0, Aαα is a singular matrix. It contradicts
that the matrix A is a principally non-degenerate matrix.

Therefore A is a column competent matrix.

Here we consider A =





3 −2 0
−2 1 1
−3 2 0



 . For z =





2k
3k
k



 , k ∈ R, zi(Az)i = 0, i =

1, 2, 3 implies that Az = 0. Hence A is a column competent matrix. However A is
neither an adequate matrix nor a sufficient matrix. For details of sufficient matrices
see ([17], [16], [5]).

Now we develop a necessary and sufficient condition for column competent matri-
ces.

Theorem 3.8. Let A ∈ Rn×n. The following two statements are equivalent:

(a) A is column competent.

(b) For 0 6= z =

[

zα
zβ

]

≥ 0 with zβ = 0 and the submatrix Aαα is singular with

Aααzα = 0 where α ∪ β = {1, 2, · · · , n} and α ∩ β = ∅, the system

[

Aαα Aαβ

Aβα Aββ

] [

zα
zβ

]

6= 0 (3.1)

has no solution.

Proof. (a) =⇒ (b). Suppose A is column competent and Equation 3.1 is consistent.

Let

[

zα
zβ

]

satisfies the Equation 3.1 where zβ = 0 and the submatrix Aαα is singular

with Aααzα = 0 where α ∪ β = {1, 2, · · · , n} and α ∩ β = ∅. Here (zα)i(Aααzα)i = 0

and (zβ)i(Aβαzα)i = 0. But

[

zα
zβ

]

satisfies 3.1 which contradicts that A is column

competent.
(b) =⇒ (a). Conversely, let x ∈ Rn be a vector such that xi(Ax)i = 0 for all i.

Consider A is not a column competent matrix. Suppose xα = zα and xβ = zβ with
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0 6= z =

[

zα
zβ

]

≥ 0, zβ = 0 and the submatrix Aαα is singular with Aααzα = 0 where

α ∪ β = {1, 2, · · · , n} and α ∩ β = ∅. But the system 3.1 has no solution, i.e. x does
not satisfy Equation 3.1. Therefore A is column competent.

Now we prove the following sufficient condition related to the PPT of column
competent matrices.

Theorem 3.9. Let Aαα and the Schur complement A/Aαα be nonsingular of the

square matrix A =

[

Aαα Aαβ

Aβα Aββ

]

where α ∪ β = {1, 2, · · · , n} and α ∩ β = ∅. If A is

column competent, then A′ = Pα(A) is column competent.

Proof. Let w = A′z and z ∗ w = 0 where ∗ is the Hadamard product. Thus we write

[

wα

wβ

]

=

[

A′
αα A′

αβ

A′
βα A′

ββ

] [

zα
zβ

]

. (3.2)

The condition z∗w = 0 means

[

zα
zβ

]

∗

[

wα

wβ

]

=

[

wα ∗ zα
wβ ∗ zβ

]

= 0. Since A′ = Pα(A),

we have
[

zα
wβ

]

=

[

Aαα Aαβ

Aβα Aββ

] [

wα

zβ

]

. (3.3)

The matrix A is column competent implies that

[

Aαα Aαβ

Aβα Aββ

] [

wα

zβ

]

= 0. It follows

that

[

zα
wβ

]

= 0. From 3.2, we get A′
βαzα + A′

ββzβ = 0. Hence A′
ββzβ = 0 implies

that zβ = 0 as A′
ββ = A/Aαα is nonsingular. Clearly, wα = 0. Hence

[

wα

wβ

]

=
[

A′
αα A′

αβ

A′
βα A′

ββ

] [

zα
zβ

]

= 0. Therefore A′ is column competent.

Theorem 3.10. Let A be a column competent matrix where Aαα and the Schur com-

plement A/Aαα be nonsingular of the square matrix A =

[

Aαα Aαβ

Aβα Aββ

]

. If A ∈

E0 ∩R0, then A is column adequate.

Proof. Suppose A is not a column adequate matrix but is column competent. By
Theorem 2.2, A is not a P0- matrix. Then there exists β ⊆ {1, 2, · · · , n} such that
detAββ < 0. Let A ∈ E0 ∩ R0. It follows from the Theorem 2.3 that A ∈ R. Then
degA(q) = 1 for any q. Let A′ be a principal pivot transform of A. Then A′ ∈ R.
Hence degA′(q′) = 1. By Theorem 2.4, degA′(q′) = degA(q).sgn(detAββ). It implies
that degA′(q′) = −1. This contradicts that A is not a P0-matrix. Therefore A is
column adequate matrix.
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3.1 Solution of Linear Complementarity Problem with Col-

umn Competent Matrices

We begin with some examples of w-uniqueness of the solution. Consider the col-

umn competent matrix A =

[

−1 3
2 −6

]

, q =

[

1
−2

]

. This LCP(q, A) has solution

z =

[

4
1

]

and w =

[

0
0

]

. In the neighbourhood of z there is another solution

z′ =

[

4.0100
1.0033

]

and w′ = w =

[

0
0

]

.

We consider another matrix A =





−2 1 3
4 −2 −6
1 −1 −1



 , q =





1
−2
1



 . For z =





2k
k
k



 ,

k ∈ R, zi(Az)i = 0, i = 1, 2, · · · , n implies that Az = 0. So A is a column competent

matrix. This LCP(q, A) has solution z =





4
4
1



 and w =





0
0
0



 . In the neighbour-

hood of z there is another solution z′ =





4.02
4.01
1.01



 and w′ = w =





0
0
0



 .

Now we prove the following two results in connection with locally w-uniqueness
property of the column competent matrices. The following two results state the
necessary and sufficient condition that A is a column competent matrix in the system
of linear complementarity problem.

Theorem 3.11. Suppose (w∗, z∗) is the solution of LCP(q, A) such that w∗ = q+Az∗.
Let α = {i : wi

∗ > 0}, β = {i : wi
∗ = 0} be the index set. Further consider that the

submatrix Aαα is nonsingular. If A =

[

Aαα Aαβ

Aβα Aββ

]

is a column competent matrix,

then (wα, zβ) = (0, 0) is the only solution of the system:

zα = A′
ααwα + A′

αβzβ = 0

wβ = A′
βαwα + A′

ββzβ = 0

wα > 0

zβ > 0,

(3.4)

where A′
αα = (Aαα)

−1, A′
αβ = −(Aαα)

−1Aαβ , A
′
βα = Aβα(Aαα)

−1 and A′
ββ = Aββ −

Aβα(Aαα)
−1Aαβ .

Proof. Let A be a column competent matrix. Then by Theorem 2.1, it is locally
w-unique. Suppose w∗ is locally unique solution of LCP(q, A) such that w∗ = q+Az∗

and the system (3.4) has a nonzero solution (w̄α, z̄β).

Now

[

z̄α
w̄β

]

=

[

A′
αα A′

αβ

A′
βα A′

ββ

] [

w̄α

z̄β

]

= 0 implies that

[

w̄α

w̄β

]

=

[

Aαα Aαβ

Aβα Aββ

] [

z̄α
z̄β

]

.

Clearly, w̄ = Az̄ and (w∗)T z̄ = 0, (w̄)T z∗ = 0. Hence (w∗ + λw̄, z∗ + λz̄) solves
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LCP(q, A) for all λ ≥ 0. This contradicts the local uniqueness of w∗. Therefore,
(wα, zβ) = (0, 0) is the only solution of the system (3.4).

Theorem 3.12. Suppose (w∗, z∗) is the solution of LCP(q, A) such that w∗ = q +

Az∗ where α = {i : wi
∗ > 0} and β = {i : wi

∗ = 0}. Further suppose

[

zα
wβ

]

=
[

A′
αα A′

αβ

A′
βα A′

ββ

] [

wα

zβ

]

= 0, wα > 0, zβ > 0. If (zα, zβ) = (0, 0) is the only solution of

wβ = Aβαzα + Aββzβ = 0 then A =

[

Aαα Aαβ

Aβα Aββ

]

is column competent.

Proof. Suppose the matrix A is not column competent. So w∗ is not locally unique.

Now

[

zα
wβ

]

=

[

A′
αα A′

αβ

A′
βα A′

ββ

] [

wα

zβ

]

= 0 implies that

[

wα

wβ

]

=

[

Aαα Aαβ

Aβα Aββ

] [

zα
zβ

]

and (w∗)T z = 0, (w)T z∗ = 0. Hence (w∗+λw, z∗+λz) solves LCP(q, A) for all λ ≥ 0.
Hence ∃ a sequence of vectors {w̄k} converging to w∗ such that each (w̄k, z̄k) =
(w∗ + λkw, z∗ + λkz) is a solution of LCP(q, A) with w̄k = q + Az̄k. Since w̄k → w∗

and z̄k → z∗, it follows that w̄k
α > 0, z̄kβ > 0. By complementarity z̄kα = 0, w̄k

β = 0.

Consider vk = w̄k − w∗ and uk = z̄k − z∗. The normalized sequence {vk/‖vk‖} is
bounded and converges to v∗ 6= 0 as k → ∞. Similarly, the normalized sequence
{uk/‖uk‖} is bounded and converges to u∗ 6= 0 as k → ∞. Now for all large k, we
have w̄k

β − w∗
β = λkwβ = 0 = Aβαu

k
α + Aββu

k
β. Thus dividing by ‖uk‖ and k → ∞,

we have Aβαuα
∗ + Aββuβ

∗ = 0. Therefore, u∗ =

[

uα
∗

uβ
∗

]

6= 0 is the nonzero solution

of system wβ = Aβαzα + Aββzβ = 0. It contradicts that (zα, zβ) = (0, 0) is the only
solution of the system wβ = Aβαzα + Aββzβ = 0. Hence A is column competent.

4 Conclusion

The complementary condition is an important issue in operations research. The con-
cept of matrix theoretic approach helps to develop many theory of linear complemen-
tary problem. In this study we consider column competent matrix in the context of
local w-uniqueness property which is important both for the theory as well as solution
method of complementarity problrm. The results based on w-uniqueness and column
competent matrix class motivate future study and application in matrix theory.
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