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Abstract

In this article, we introduce a new homotopy function to trace the trajectory
by applying modified homotopy continuation method for finding the solution
of the linear complementarity problem. Earlier several authors attempted to
propose homotopy functions based on original problems. We propose the homo-
topy function based on the Karush-Kuhn-Tucker condition of the corresponding
quadratic programming problem. The proposed approach extends the process-
ability of the larger class of linear complementarity problem and overcomes
the limitations of other existing homotopy approaches. We show that the ho-
motopy path approaching the solution is smooth and bounded with positive
tangent direction of the homotopy path. Various classes of numerical examples
are illustrated to show the effectiveness of the proposed algorithm and the su-
periority of the algorithm among other existing iterative methods.

Keywords: Linear complementarity problem, homotopy method, interior point
method, strictly feasible point.

AMS subject classifications: 90C33, 15A39, 15B99, 14F35.

1 Introduction
Eaves and Saigal [12] formed an important class of globally convergent methods for
solving systems of non-linear equations, which is known as homotopy method. Such
methods have been used to constructively prove the existence of solutions to many
economic and engineering problems. Let X, Y be two topologocal spaces and f, g :
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X → Y be continuous maps. A homotopy from f to g is a continuous function
H : X × [0, 1]→ Y satisfying H(x, 0) = f(x), H(x, 1) = g(x) ∀x ∈ X. If such a
homotopy exists, then f is homotopic to g and it is denoted by f ' g. Let f, g :
R → R any two continuous, real functions, then f ' g. Now we define a function
H : R × [0, 1] → R by H(x, t) = (1 − t)f(x) + tg(x). Clearly H is continuous and
H(x, 0) = f(x), H(x, 1) = g(x). Thus H is a homotopy between f and g. Let X, Y
be two topological spaces and Map(X, Y ) be the set of all continuous maps from X
to Y. Homotopy is an equivalence relation on Map(X, Y ).

The fundamental idea of the homotopy continuation method is to solve a problem
by tracing a certain continuous path that leads to a solution to the problem. Thus,
defining a homotopy mapping that yields a finite continuation path plays an essen-
tial role in a homotopy continuation method. The homotopy method [46] is itself
an important class of globally convergent methods. Many homotopy methods are
proposed for constructive proof of the existence of solutions to systems of nonlinear
equations, nonlinear optimization problems, Brouwer fixed point problems, nonlinear
programming, game problem and complementarity problems [47]. Chen et al. [2]
proposed a homotopy algorithm for computing complex eigenpairs of a tensor in a
tensor complementarity problem. Han [17] proposed a homotopy method for finding
the unique positive solution to a multilinear system with a nonsingular M -tensor and
a positive right side vector.

The linear complementarity problem is well studied in the literature on mathe-
matical programming and arises in a number of applications in operations research,
control theory, mathematical economics, geometry and engineering. For recent works
on this problem and applications see [8], [31], [39] and [40] and references therein.
In complementarity theory several matrix classes are considered due to the study of
theoretical properties, applications and its solution methods. For details see [19],
[22], [27], [26], [38] and [33] and references cited therein. The problem of computing
the value vector and optimal stationary strategies for structured stochastic games
is formulated as a linear complementary problem for discounted and undiscounded
zero-sum games. For details see [30], [42] and [32]. The complementarity problem
establishes an important connections with multiobjective programming problem for
KKT point and the solution point [28]. The complementarity problems are considered
with respect to principal pivot transforms and pivotal method to its solution point of
view. For details see [7], [41] and [34].

We are interested in solving the complementarity problem, mainly the linear com-
plementarity problem. The linear complementarity problem is identified as an im-
portant mathematical programming problem and provides a unifying framework for
several optimization problems like linear programming, linear fractional program-
ming, convex quadratic programming and the bimatrix game problem. The linear
complementarity problem arising from a free boundary problem can be reformulated
as a fixed-point equation. Zhang [52] presented a modified modulus-based multigrid
method to solve this fixed-point equation. The concept of complementarity is syn-
onymous with the notion of system equilibrium. Among the many facets of research
in linear complementarity problems, the area that has received thorough attention in
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recent years is the development of robust and efficient algorithms for solving various
kinds of linear complementarity problems. Kojima et al. showed that the interior
point method for linear programming problem was a kind of path-following method.
This polynomial time-bound method is widely used to solve LCP(q, A), but some
matrices are not processable by this method as well as by Lemke’s algorithm. For
details see [20] Modulus based algorithm is one of the proposed iterative method to
solve linear complementarity problem. Van Bokhoven proved that the modulus al-
gorithm works when the matrix involved is a symmetric P-matrix. Kappel et al.[23]
extended van Bokhoven’s results by showing that the modulus algorithm can be ap-
plied to a class of non-symmetric P-matrices. Schafer[44] showed the convergency of
the modulus algorithm for three subclasses of P -matrices. Hadjidimos et al. [16], [15]
proposed a new method, the scaled extrapolated block modulus algorithm, as well as
an improved version of the very recently introduced modulus-based matrix splitting
modified AOR iteration method to find the solution of thelinear complementarity
problem with H+-matrix. Zheng et al. [55],[56], [54] showed that for the large sparse
linear complementarity problem, established a relaxation modulus-based matrix split-
ting iteration method, a class of accelerated modulus-based matrix splitting iteration
methods by reformulating it as a general implicit fixed-point equation, which covers
the known modulus-based matrix splitting iteration methods and presented the con-
vergence conditions when the matrix involved is either a positive definite matrix or an
H+-matrix. Dai et al.[6] proposed a preconditioned two-step modulus-based matrix
splitting iteration method for linear complementarity problems associated with an
M -matrix. For further details see [1], [5], [9], [25], [2], [37] and [21].

In the literature it was proved that the homotopy method converges globally to
the solution of LCP(q, A), where A is a positive semidefinite matrix [51], a P -matrix
[50], an N -matrix [53] or a P∗-matrix [45] with respect to different type of homotopy
functions. Han[17], [18] introduced a Kojima–Megiddo–Mizuno type continuation
method for solving tensor complementarity problems. He showed that there exists
a bounded continuation trajectory when the tensor is strictly semi-positive and any
limit point tracing the trajectory gives a solution of the tensor complementarity prob-
lem. Moreover, when the tensor is strong strictly semi-positive, tracing the trajectory
will converge to the unique solution. In this paper, we attempt to introduce another
homotopy function and condition for global convergence of the homotopy method to
solve LCP(q, A), where A belongs to various matrix classes.

The paper is organized as follows. Section 2 presents some basic notations and
results. In section 3, we propose a new homotopy function to find the solution of
LCP(q, A). We construct a smooth and bounded homotopy path under some con-
ditions to find the solution of the linear complementarity problem as the homotopy
parameter λ tends to 0. We prove an if and only if condition to get the solution of
LCP(q, A) from the solution of the homotopy equation. We also find the sign of the
positive tangent direction of the homotopy path. We use a modified interior-point
bounded homotopy path algorithm for solving the linear complementarity problem
in section 4. Finally, in section 4, we consider various matrix classes namely, PSD,
N , almost C0, singular Q0, Q, E0

s, almost N̄ -matrix, N0-matrix of exact order 2 and
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N̄ -matrix of exact order 2. Many of these classes are not processable by Lemke’s al-
gorithm, existing homotopy methods and modulus based method. We consider these
classes to show the effectiveness of the homotopy function.

2 Preliminaries
We denote the n dimensional real space by Rn where Rn

+ and Rn
++ denote the non-

negative and positive orthant of Rn. We consider vectors and matrices with real
entries. Any vector x ∈ Rn is a column vector and xt denotes the row transpose of
x. e denotes the vector of all 1. If A is a matrix of order n, α ⊆ {1, 2, · · · , n} and
ᾱ ⊆ {1, 2, · · · , n}\α then Aαᾱ denotes the submatrix of A consisting of only the rows
and columns of A whose indices are in α and ᾱ respectively. Aαα is called a principal
submatrix of A and det(Aαα) is called a principal minor of A. We define F = {x ∈
Rn : x > 0, Ax + q > 0}, F̄ = {x ∈ Rn : x ≥ 0, Ax + q ≥ 0},F1 = F × Rn

++ × Rn
++

and F̄1 = F̄ ×Rn
+ ×Rn

+. ∂F1 denotes the boundary of F̄1.
The linear complementarity problem [34] is defined as follows:
Given square matrix A ∈ Rn×n and a vector q ∈ Rn, the linear complementarity

problem is to find w ∈ Rn and x ∈ Rn such that

w − Ax = q, w ≥ 0, x ≥ 0, (2.1)

xtw = 0. (2.2)
This problem is denoted as LCP(q, A). Several applications of linear complementarity
problems are reported in operations research [43], multiple objective programming
problems [24], mathematical economics and engineering. For details see [14], [26],
[35], [19] and [22].

A matrix A ∈ Rn×n is said to be a/an
− positive semidefinite (PSD) matrix if xtAx ≥ 0, ∀ x ∈ Rn.
− P0(P )-matrix if all its principal minors are nonnegative(positive).
− N -matrix if all its principal minors are negative.
− P∗-matrix if ∃ a constant τ > 0 such that for any x ∈ Rn,

(1 + τ)
∑

i∈I+(x)
xi(Mx)i +

∑
i∈I−(x)

xi(Mx)i ≥ 0

where I+(x) = {i ∈ N : xi(Mx)i > 0} and I−(x) = {i ∈ N : xi(Mx)i ≤ 0}.
− Z-matrix if off-diagonal elements are all non-positive and K (K0)-matrix if it is a
Z-matrix as well as P (P0)-matrix. (K-matrix is also known as M -matrix).
− copositive (C0) matrix if xtAx ≥ 0, ∀ x ≥ 0.
− almost C0-matrix if it is copositive of up to order n− 1 but not of order n.
− N0-matrix if detAαα ≤ 0(< 0) ∀ α ⊆ {1, 2, · · · , n}.
− almost N0(N)-matrix if detAαα ≤ 0(< 0) ∀ α ⊂ {1, 2, · · · , n} and detA > 0.
− N0-matrix of exact order k (1 ≤ k ≤ n) if every principal submatrix of order (n−k)
is an N0-matrix and every principal minor of order r, (n− k) < r ≤ n is positive.
− N̄ -matrix [29] if there exists a sequence {A(k)} where A(k) = [a(k)

ij ] are N -matrices
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such that a(k)
ij → aij for all i, j ∈ {1, 2, · · ·n}.

− Q-matrix if for every q ∈ Rn, LCP(q, A) has a solution.
− Q0-matrix if for any q ∈ Rn, (1.1) has a solution implies that LCP(q, A) has a
solution.
− E0

s-matrix if xTAx = 0, Ax ≥ 0, x ≥ 0 =⇒ ATx ≤ 0.
− nondegenerate matrix if all principal minors of the matrix A are nonzero.
For further details about matrix classes see [29], [34], [33], [11], [10], [32], [36].

The basic idea of homotopy methods can be explained as to construct a homotopy
from the auxiliary mapping g to the object mapping p. The original problem can be
solved by following the homotopy path from the zero set of the auxiliary mapping g to
the zero set of the object mapping p. The difficulty of finding a strictly feasible initial
point for the interior point algorithm can be avoided by combining the interior point
with the homotopy method. Furthermore, the global convergence of the homotopy
methods can guarantee the global convergence for the combined homotopy interior
point methods. Suppose the given problem is to find a root of the non-linear equation
p(x) = 0 and suppose g(x) = 0 is auxiliary function with an unique solution x0. Then
the homotopy equation can be written as H(x, λ) = λg(x) + (1− λ)p(x), 0 ≤ λ ≤ 1.
Then we consider H(x, λ) = 0. The value of λ will start from 1 and goes to 0. In this
way one can find the solution of the given equation p(x) = 0 from the solution of
g(x) = 0.

The key idea to solve LCP(q, A) by the homotopy method is to solve a system of
equations of the form H(x, λ) = 0, where H : Rn × [0, 1] → Rn, x ∈ Rn, λ ∈ [0, 1] is
called homotopy parameter. The homotopy method aims to trace out entire path of
equilibria in H−1 = {(x, λ) : H(x, λ) = 0} by varrying both x and λ. Now we define
a parametric path as a set of functions (x(s), λ(s)) ∈ H−1. When we move along the
homotopy path, the auxiliary variable s either decreases or increases monotonically.
Differentiating H(x(s), λ(s)) = 0 with respect to s we get ∂H

∂x
x′(s) + ∂H

∂λ
λ′(s) = 0,

where ∂H
∂x

and ∂H
∂λ

are n×n jacobian matrix of H and n×1 column vector respectively.
So this is a system of n differential equations in n+ 1 unknowns xi′(s) ∀ i and λ′(s).
this system of differential equations has many solutions, which differ by monotone
transformation of the auxiliary variable s.

Now we state some results which will be required in the next section.

Lemma 2.1: [4] Let M be a P0-matrix. Then for each vector z 6= 0, there exists an
index i such that zi 6= 0 and zi(Mz)i ≥ 0.

Lemma 2.2: [4] If M is a P0 matrix, then M t is also P0.

Lemma 2.3: [3] Let U ⊂ Rn be an open set and f : Rn → Rp be smooth. We say
y ∈ Rp is a regular value for f if RangeDf(x) = Rp ∀x ∈ f−1(y), where Df(x)
denotes the n× p matrix of partial derivatives of f(x).

Lemma 2.4: [45] Let V ⊂ Rn, U ⊂ Rm be open sets, and let φ : V × U → Rk be a
Cα mapping, where α > max{0,m − k}. If 0 ∈ Rk is a regular value of φ, then for
almost all a ∈ V, 0 is a regular value of φa = φ(a, .).
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Lemma 2.5: [45] Let φ : U ⊂ Rn → Rp be Cα mapping, where α > max{0, n − p}.
Then φ−1(0) consists of some (n− p) dimensional Cα manifolds.

Lemma 2.6: [53] One-dimensional smooth manifold is diffeomorphic to a unit circle
or a unit interval.

3 Main results
We first discuss some existing homotopy functions.Watson [48] illustrated an outline
of homotopy approach for complementarity problem. Chow et al. [3] developed
sufficiently powerful theoretical tools for homotopy methods. In 2006, Yu et al. [51]
proposed the following homotopy function to solve the LCP(q, A) where A is a positive
semidefinite matrix,

H(w,w(0), λ) =
[

(1− λ)[Ax+ q − y] + λ(x− x(0))
XY e− λe

]
= 0. (3.1)

Zhao et al. [53] proposed the following homotopy function in 2010 to solve
LCP(q, A) where A is an N -matrix,

H(w,w(0), λ) =
[

(1− λ)[y − Ax− q] + λ(x− x(0))
Xy − λX(0)y(0)

]
= 0. (3.2)

Later Xu et al. [50] developed another homotopy function for finding the solution
of LCP(q, A) where A is a P -matrix,

H(w,w(0), λ) =
[

(1− λ)[y − Ax− q]− λ(x− x(0))
Xy − λX(0)y(0)

]
= 0. (3.3)

Wang et al. [49] showed that linear complementarity problem with P∗-matrix can
be solved using the homotopy function

H(w,w(0), λ) =
[

(1− λ)[Ax+ q]− y + λy(0)

Xy − λX(0)y(0)

]
= 0. (3.4)

We propose a new homotopy function to solve LCP(q, A) based on the KKT con-
dition.

H(y, y(0), λ) =


(1− λ)[(A+ At)x+ q − z1 − Atz2] + λ(x− x(0))

Z1x− λZ(0)
1 x(0)

Z2(Ax+ q)− λZ(0)
2 (Ax(0) + q)

 = 0 (3.5)

where Z1 = diag(z1), Z2 = diag(z2), Z(0)
1 = diag(z(0)

1 ), Z(0)
2 = diag(z(0)

2 ), y =
(x, z1, z2) ∈ Rn

+ × Rn
+ × Rn

+, y
(0) = (x(0), z1

(0), z2
(0)) ∈ F1, and λ ∈ (0, 1]. We de-

note Γ(0)
y = {(y, λ) ∈ R3n × (0, 1] : H(y, y(0), λ) = 0} ⊂ F1 × (0, 1]}.
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Here λ varies from 1 to 0, and starting from λ = 1 to λ → 0 if we get a smooth
bounded curve, then we will get a finite solution of the homotopy equation 3.5 at
λ → 0. At λ → 1, the homotopy equation 3.5 gives the solution (y(0), 1), and at
λ → 0, the homotopy equation 3.5 gives the solution of the system of following
equations:

(A+ At)x+ q − z1 − Atz2 = 0
Z1x = 0

Z2(Ax+ q) = 0

where Z1 = diag(z1) and Z2 = diag(z2).
Let z1I1 = 0 and xI2 = 0, where I1 ∪ I2 = {n}. Let z2J1 = 0 and (Ax + q)J2 = 0,

where J1 ∪ J2 = {n}. If the solution of the homotopy function 3.5, y = (x, z1, z2)
gives the solution of LCP(q, A) which is x, then xI2c 6= 0 =⇒ (Ax+ q)I2c = 0. This
implies that I2

c ⊆ J2 and (Ax+ q)J2c 6= 0 =⇒ xJ2c = 0, which implies that J2
c ⊆ I2.

I2
c = J2, J2

c = I2 give the nondegenerate solution of LCP(q, A) and I2
c ⊂ J2, J2

c ⊂ I2
give the degenerate solution of LCP(q, A). When I1∩I2 = ∅ and J1∩J2 = ∅, it implies
I1 = I2

c = J2 and J1 = J2
c = I2, then x = z2 and Ax + q = z1 will give the solution

of LCP(q, A), otherwise we get nontrivial solution of LCP(q, A) which is not same as
z1. Therefore the homotopy solution y can not give the LCP solution x when I2

c * J2
and J2

c * I2, that is I2
c ⊆ J1 and J2

c ⊆ I1.
First we show that the smooth curve exists for the homotopy function3.5.

Theorem 3.1: Let initial point y(0) ∈ F1. Then 0 is a regular value of the homotopy
function H : R3n × (0, 1] → R3n and the zero point set H−1

y(0)(0) = {(y, λ) ∈ F1 :
Hy(0)(y, λ) = 0} contains a smooth curve Γ(0)

y starting from (y(0), 1).

Proof. The Jacobian matrix of the above homotopy function H(y, y(0), λ) is denoted
by DH(y, y(0), λ) and we have DH(y, y(0), λ) =

[
∂H(y,y(0),λ)

∂y
∂H(y,y(0),λ)

∂y(0)
∂H(y,y(0),λ)

∂λ

]
.

For all y(0) ∈ F1 and λ ∈ (0, 1], we have ∂H(y,y(0),λ)
∂y(0) =


−λI 0 0
−λZ(0)

1 −λX(0) 0
−λZ(0)

2 A 0 −λW (0)

 ,
where W (0) = diag(Ax(0) + q), X(0) = diag(x(0)), w(0) = Ax(0) + q and det( ∂H

∂y(0) )=
(−1)3nλ3n ∏n

i=1 x
(0)
i w

(0)
i 6= 0 for λ ∈ (0, 1]. Thus DH(y, y(0), λ) is of full row rank.

Therefore, 0 is a regular value of H(y, y(0), λ) by the Lemma 2.3. By Lemmata 2.4
and 2.5, for almost all y(0) ∈ F1, 0 is a regular value of Hy(0)(y, λ) and H−1

y(0)(0) consists
of some smooth curves and Hy(0)(y(0), 1) = 0. Hence there must be a smooth curve
Γ(0)
y starting from (y(0), 1).

Hence by implicit function theorem for every λ sufficiently close to 1, the homo-
topy function has a unique solution (y, 1) of 3.5, which is smooth in the parameter λ,
in a neighbourhood of (y(0), 1).

Now we show that the smooth curve Γ(0)
y for the homotopy function 3.5 is bounded

and converges and establish conditions for global convergence of the homotopy method
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with the homotopy function 3.5. We show that if the x and z2-components of the
point (x, z1, z2, λ) are bounded, then the homotopy curve Γ(0)

y is bounded.

Theorem 3.2: Let F be a non-empty set and A ∈ Rn×n. Assume that there exists
a sequence of points {uk} ⊂ Γ(0)

y ⊂ F1 × (0, 1], where uk = (xk, zk1 , zk2 , λk) such that
‖xk‖ < ∞ as k → ∞ and ‖zk2‖ < ∞ as k → ∞ and for a given y(0) ∈ F1, 0 is a
regular value of H(y, y(0), λ). Then Γ(0)

y is a bounded curve in F1 × (0, 1].

Proof. Note that 0 is a regular value of H(y, y(0), λ) by Theorem 3.1. Now we assume
that Γ(0)

y ⊂ F1× (0, 1] is an unbounded curve. Then there exists a sequence of points
{uk}, where uk = (yk, λk) ⊂ Γ(0)

y such that ‖(yk, λk)‖ → ∞. As (0, 1] is a bounded set
and x component and z2 component of Γ(0)

y is bounded, there exists a subsequence of
points {uk} = {(yk, λk)} = {xk, zk1 , zk2 , λk} such that xk → x̄, z2

k → z̄2, λ
k → λ̄ ∈

[0, 1] and ‖zk‖ → ∞ as k →∞, where zk =
[
zk1
zk2

]
. Since Γ(0)

y ⊂ H−1
y(0)(0), we have

(1− λk)[(A+ At)xk + q − zk1 − Atzk2 ] + λk(xk − x(0)) = 0 (3.6)

Zk
1x

k − λkZ(0)
1 x(0) = 0 (3.7)

Zk
2 (Axk + q)− λkZ(0)

2 (Ax(0) + q) = 0 (3.8)
where Zk

1 = diag(zk1 ) and Zk
2 = diag(zk2 ). Let λ̄ ∈ [0, 1], ‖zk1‖ = ∞ and ‖zk2‖ < ∞

as k → ∞. Then ∃ i ∈ {1, 2, · · · , n} such that zk1i → ∞ as k → ∞. Let I1z =
{i ∈ {1, 2, · · ·n} : lim

k→∞
zk1i = ∞}. When λ̄ ∈ [0, 1), for i ∈ I1z we can get from

Equation 3.6, (1 − λk)[((A + At)xk)i + qi − zk1i − (Atzk2 )i] + λk(xki − x
(0)
i ) = 0 =⇒

(1 − λk)zk1i = (1 − λk)[((A + At)xk)i + qi − (Atzk2 )i] + λk(xki − x
(0)
i ) =⇒ zk1i =

[((A+At)xk)i+qi−(Atzk2 )i]+ λk

(1−λk)(x
k
i −x

(0)
i ). As k →∞ right hand side is bounded,

but left hand side is unbounded. It contradicts that ‖zk1‖ = ∞. When λ̄ = 1, then
from Equation 3.7, we get, xki = λkz

(0)
1i x

(0)
i

zk
1i

for i ∈ I1z. As k →∞, xki → 0. Again from
Equation 3.6, we obtain x(0)

i = (1−λk)
λk [((A+At)xk)i+qi−zk1i−(Atzk2 )i]+xki for i ∈ I1z.

As k →∞, we have x(0)
i = − lim

k→∞
(1−λk)
λk zk1i ≤ 0. It contradicts that ‖zk1‖ =∞.

So Γ(0)
y is a bounded curve in F1 × (0, 1].

Now we show the condition to get bounded curve for nonsingular matrix A.

Corollary 3.1: Let F be a non-empty set and A ∈ Rn×n be a nonsingular matrix.
Assume that there exists a sequence of points {uk} ⊂ Γ(0)

y ⊂ F1 × (0, 1], where
uk = (xk, zk1 , zk2 , λk) such that ‖xk‖ < ∞ as k → ∞. Further suppose for λk → 1,
‖zk2‖ < ∞ as k → ∞. Suppose that for a given y(0) ∈ F1, 0 is a regular value of
H(y, y(0), λ). Then Γ(0)

y is a bounded curve in F1 × (0, 1].

Proof. By theorem 3.1, 0 is a regular value of H(y, y(0), λ). Now we assume that
Γ(0)
y ⊂ F1 × (0, 1] is an unbounded curve. Then there exists a sequence of points
{uk}, where uk = (yk, λk) ⊂ Γ(0)

y such that ‖(yk, λk)‖ → ∞. (0, 1] is a bounded set
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and x component of Γ(0)
y is bounded. There exists a subsequence of points {uk} =

{(yk, λk)} = {xk, zk1 , zk2 , λk} such that xk → x̄, and suppose for λk → 1, ‖zk2‖ <
∞ as k →∞. Then two cases will arise.
Case 1: λ̄ ∈ [0, 1], ‖zk1‖ <∞, ‖zk2‖ =∞.
Let ‖zk2‖ =∞. Then ∃ j ∈ {1, 2, · · ·n} such that zk2j →∞ as k →∞. Let I2z = {j ∈
{1, 2, · · ·n} : lim

k→∞
zk2j = ∞}. When λ̄ ∈ [0, 1), for j ∈ I2z we can get from Equation

3.6, zk2j = (A−t(A+At)xk)j + (A−tq)j − (A−tzk1 )j + λk

1−λk (xkj − x
(0)
j ). As k →∞, right

hand side is bounded, but left hand side is not. This also contradicts that ‖zk2‖ =∞.
So with our assumption for λk → 1, ‖zk2‖ < ∞ as k → ∞, λ̄ ∈ [0, 1], the homotopy
curve is bounded.
Case 2: λ̄ ∈ [0, 1], ‖zk1‖ =∞, ‖zk2‖ =∞.
Let ‖zk1‖ =∞, ‖zk2‖ =∞. Then either ∃ i ∈ {1, 2, · · ·n} such that zk1i →∞, zk2i →∞
as k → ∞ or ∃ i, j ∈ {1, 2, · · ·n}, i 6= j such that zk1i → ∞ and zk2j → ∞ as k → ∞.
When zk1i → ∞, zk2i → ∞ as k → ∞ and λ̄ ∈ [0, 1), we have, zk1i + (Atzk2 )i =
((A + At)xk)i + qi + λk

(1−λk)(x
k
i − x

(0)
i ). Now as k → ∞, right hand side is bounded,

but left hand side is not, which is impossible. When λ̄ = 1, then our assumption
‖zk2‖ <∞ as k →∞ and the argument of the previous theorem 3.2 contradicts that
zk1i → ∞, zk2i → ∞ as k → ∞. As k → ∞, when zk1i → ∞, zk2j → ∞ for i 6= j as
k →∞ then considering the ith and jth component and using same argument similar
to the previous theorem 3.2 and case 1, we will get a contradiction.

Thus Γ(0)
y is a bounded curve in F1 × (0, 1].

Now we show the necessary condition of the homotopy curve Γ(0)
y to be bounded.

Theorem 3.3: Suppose the solution set Γ(0)
y of the homotopy function H(y, y(0), λ) =

0 is unbounded. Then there exists (ξ, η, ζ) ∈ R3n
+ such that etξ = 1, ξtAξ ≤ 0.

Proof. Assume that the solution set Γ(0)
y is unbounded. Then there exists a sequence of

points {uk} ⊂ Γ(0)
y ⊂ F1 × (0, 1], where uk = (xk, zk1 , zk2 , λk) such that limk→∞ λ

k = λ̄
and either ‖zk2‖ < ∞ as k → ∞ with two cases (i) limk→∞ e

txk = ∞ and (ii)
limk→∞(1 − λk)etxk = ∞ or limk→∞ e

tzk2 = ∞ with two cases (i) limk→∞ e
txk = ∞

and (ii) limk→∞(1− λk)etxk =∞.
First we consider that ‖zk2‖ <∞ as k →∞.
Case (i) Let limk→∞

xk

etxk = ξ ≥ 0 and limk→∞
zk

1
etxk = η ≥ 0. So it is clear that etξ = 1.

Then dividing by etxk and taking limit k →∞ from equations 3.6,3.7,3.8 we get

(1− λ̄)[(A+ At)ξ − η] + λ̄ξ = 0 (3.9)
ξiηi = 0 ∀ i (3.10)

From equations 3.9 and 3.10 we get η = (A + At)ξ + λ̄
(1−λ̄)ξ =⇒ 0 = ξtη =

ξt[(A+At)ξ + λ̄
(1−λ̄)ξ] for λ̄ ∈ [0, 1). This implies that ξt(A+At)ξ = − λ̄

(1−λ̄)ξ ≤ 0 i.e.
ξtAξ ≤ 0. Specifically for λ̄ = 0, ξtAξ = 0 and for λ̄ ∈ (0, 1), ξtAξ < 0. For λ̄ = 1
ξ = 0, contradicts that etξ = 1.
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Case (ii) Let limk→∞
(1−λk)xk

(1−λk)etxk = ξ′ ≥ 0. Then etξ′ = 1. Let limk→∞
zk

1
(1−λk)etxk = η′ ≥

0. Then multiplying the equation 3.6 with (1−λk) and dividing by (1−λk)etxk, mul-
tiplying the equation 3.7 with (1−λk) and dividing by ((1−λk)etxk)2 and multiplying
the equation 3.8 with (1 − λk) dividing by ((1 − λk)etxk)2 and taking limit k → ∞,
we get

(1− λ̄)[(A+ At)ξ′ − (1− λ̄)η′] + λ̄ξ′ = 0 (3.11)
ξ′iη
′
i = 0 ∀ i (3.12)

Multiplying (ξ′)t in both sides of equation 3.11, we get (ξ′)tAξ′ ≤ 0 for λ̄ ∈ [0, 1).
Specifically for λ̄ = 0, (ξ′)tAξ′ = 0 and for λ̄ ∈ (0, 1), (ξ′)tAξ′ < 0. For λ̄ = 1, ξ′ = 0,
contradicts that etξ′ = 1.
Later we consider that limk→∞ e

tzk2 =∞.
Case (i) Let limk→∞

xk

etxk = ξ ≥ 0, limk→∞
zk

1
etxk = η ≥ 0 and limk→∞

zk
2

etxk = ζ ≥ 0. It
is clear that etξ = 1. Then dividing by etxk and taking limit k → ∞ from equation
3.6, dividing by (etxk)2 and taking limit k →∞ from equation 3.7, 3.8, we get

(1− λ̄)[(A+ At)ξ − η − Atζ] + λ̄ξ = 0 (3.13)
ξiηi = 0 ∀ i (3.14)

ζi(Aξ)i = 0 ∀ i (3.15)

From equation 3.13 we get η+Atζ = (A+At)ξ+ λ̄
1−λ̄ξ for λ̄ ∈ [0, 1). Now multiplying

ξt in both sides we get ξt(A + At)ξ + λ̄
1−λ̄ξ

tξ = 0. Hence ξt(A + At)ξ = − λ̄
1−λ̄ξ

tξ ≤ 0
for λ̄ ∈ [0, 1). Specifically for λ̄ = 0, ξtAξ = 0 and for λ̄ ∈ (0, 1), ξtAξ < 0. For λ̄ = 1,
ξ = 0, contradicts that etξ = 1.
Case(ii) Let limk→∞

(1−λk)xk

(1−λk)etxk = ξ′ ≥ 0. Then etξ′ = 1. Let limk→∞
zk

1
(1−λk)etxk =

η′ ≥ 0 and limk→∞
zk

2
(1−λk)etxk = ζ ′ ≥ 0 Then multiplying the equation 3.6 with

(1−λk) and dividing by (1−λk)etxk, multiplying the equation 3.7 with (1−λk) and
dividing by ((1 − λk)etxk)2 and multiplying the equation 3.8 with (1 − λk) dividing
by ((1− λk)etxk)2 and taking limit k →∞, we get

(1− λ̄)(A+ At)ξ′ − (1− λ̄)2η′ − (1− λ̄)2Atζ ′ + λ̄ξ′ = 0 (3.16)
ξ′iη
′
i = 0 ∀ i (3.17)

ζ ′i(Aξ′)i = 0 ∀ i (3.18)

Multiplying (ξ′)t in both side of equation 3.16 we get (ξ′)t(A+At)ξ′− (1− λ̄)(ξ′)tη′−
(1− λ̄)(ξ′)tAtζ ′ = − λ̄

(1−λ̄)(ξ
′)tξ′ ≤ 0 for λ̄ ∈ [0, 1). Specifically for λ̄ = 0, (ξ′)tAξ′ = 0

and for λ̄ ∈ (0, 1), (ξ′)tAξ′ < 0. For λ̄ = 1, ξ′ = 0, contradicts that etξ′ = 1.

Remark 3.1: Therefore in the neighbouhood of λ̄ = 1 the homotopy curve is bounded
and for the parameter λ = 0, (ξ)tAξ = 0 and for λ ∈ (0, 1), (ξ)tAξ < 0, where ξ ≥ 0,
etξ = 1.
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Corollary 3.2: Suppose A ∈ Rn×n is a nonsingular matrix and assume that there
exists a sequence of points {uk} ⊂ Γ(0)

y ⊂ F1 × (0, 1], where uk = (xk, zk1 , zk2 , λk) and
‖xk‖ <∞ as k →∞. For a given y(0) ∈ F1, 0 is a regular value of H(y, y(0), λ). Then
Γ(0)
y is a bounded curve in F1 × (0, 1].

Theorem 3.4: Let A ∈ Rn×n and the set F1 be nonempty. For a given y(0) ∈ F1,
0 is a regular value of H(y, y(0), λ). Then the homotopy path Γ(0)

y ⊂ F1 × (0, 1] is
bounded.

Proof. Suppose A ∈ Rn×n is a matrix and there exists a sequence of points {uk} ⊂
Γ(0)
y ⊂ F1× (0, 1], where uk = (xk, zk1 , zk2 , λk). Hence by the definition of F1 x

k, zk1 , z
k
2 ,

Axk + q > 0. From remark 3.1 the homotopy curve is bounded in the neighbourhood
of λ = 1. Assume that the homotopy curve Γ(0)

y ⊂ F1 × (0, 1) is unbounded. Then
from theorem 3.3 , (ξ)tAξ < 0 for λ ∈ (0, 1). But Axk + q > 0 implies that Aξ ≥ 0,
where ξ =limk→∞

xk

etxk ≥ 0, when limk→∞ e
txk = ∞ or ξ =limk→∞

(1−λk)xk

(1−λk)etxk ≥ 0,
when limk→∞ (1− λk)etxk =∞. Hence ξ, Aξ ≥ 0 imply that ξtAξ ≥ 0 for λ ∈ (0, 1),
which contradicts that the homotopy path is unbounded for λ ∈ (0, 1). Therefore the
homotopy curve Γ(0)

y ⊂ F1 × (0, 1] is bounded.

Hence it is proved that the homotopy curve Γ(0)
y is bounded for any matrix A.

Theorem 3.5: For y(0) = (x(0), z
(0)
1 , z

(0)
2 ) ∈ F1, the homotopy equation finds a

bounded smooth curve Γ(0)
y ⊂ F1 × (0, 1] which starts from (y(0), 1) and approaches

the hyperplane at λ = 0. As λ → 0, the limit set L × {0} ⊂ F̄1 × {0} of Γ(0)
y is

nonempty and every point in L is a solution of the following system:

(A+ At)x+ q − z1 − Atz2 = 0
Z1x = 0

Z2(Ax+ q) = 0.
(3.19)

Proof. Note that Γ(0)
y is diffeomorphic to a unit circle or a unit interval (0, 1] in view

of Lemma 2.6. As ∂H(y,y(0),1)
∂y(0) is nonsingular, Γ(0)

y is diffeomorphic to a unit interval
(0, 1]. Again Γ(0)

y is a bounded smooth curve by the Theorem 3.4. Let (ȳ, λ̄) be a limit
point of Γ(0)

y . We consider four cases:

Case 1: (ȳ, λ̄) ∈ F1 × {1}.

Case 2: (ȳ, λ̄) ∈ ∂F1 × {1}.

Case 3: (ȳ, λ̄) ∈ ∂F1 × (0, 1).

Case 4: (ȳ, λ̄) ∈ F̄1 × {0}.

As the equation Hy(0)(y, 1) = 0 has only one solution y(0) ∈ F1, the case 1 is
impossible. In case 2 and 3, there exists a subsequence of (yk, λk) ∈ Γ(0)

y such that
xki → 0 or (Axk + q)i → 0 for i ⊆ {1, 2, · · ·n}. From the last two equalities of
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the homotopy function 3.5, we have zk1 → ∞ or zk2 → ∞. Hence it contradicts the
boundedness of the homotopy path by the Theorem 3.4. Therefore case 4 is the only
possible option. Hence ȳ = (x̄, z̄1, z̄2) is a solution of the system (A+At)x+ q− z1−
Atz2 = 0, Z1x = 0, Z2(Ax+ q) = 0.

Remark 3.2: From the homotopy function 3.5, we obtain z̄1ix̄i = 0 and z̄2i(Ax̄+q)i =
0 ∀i ∈ {1, 2, · · ·n}. Now z̄1 and z̄2 can be decomposed as z̄1 = w̄ −∆w̄ ≥ 0 and z̄2 =
x̄−∆x̄ ≥ 0, where w̄ = Ax̄+q. It is clear that w̄ix̄i = ∆w̄ix̄i = ∆x̄iw̄i ∀i ∈ {1, 2, · · ·n}.

We demonstrate the condition under which the homotopy functions will give the
solution of LCP(q, A).

Theorem 3.6: The component x̄ of (x̄, z̄1, z̄2, 0) ∈ L × {0} gives the solution of
LCP(q, A) if and only if ∆x̄i∆w̄i = 0 or z̄1i + z̄2i > 0 ∀i.

Proof. Suppose x̄ ≥ 0 and w̄ = Ax̄ + q ≥ 0 are the solution of LCP(q, A). Then
x̄iw̄i = 0 ∀i. This implies that x̄i = 0 or w̄i = 0 ∀i. We consider the following three
cases:
Case 1: For at least one i ∈ {1, 2, · · ·n}, let w̄i > 0, x̄i = 0. In view of Remark 3.2,
this implies that ∆x̄i = 0 =⇒ ∆x̄i∆w̄i = 0.
Case 2: For at least one i ∈ {1, 2, · · ·n}, let x̄i > 0, w̄i = 0. In view of 3.2, this
implies that ∆w̄i = 0 =⇒ ∆x̄i∆w̄i = 0.
Case 3: For at least one i ∈ {1, 2, · · ·n}, let w̄i = 0, x̄i = 0. This implies that either
∆w̄i∆x̄i = 0 or z̄1i + z̄2i > 0.

For the converse part, consider ∆x̄i∆w̄i = 0 or z̄1i + z̄2i > 0 ∀i ∈ {1, 2, · · ·n}.
Let ∀i ∈ {1, 2, · · ·n}, ∆x̄i∆w̄i = 0 implies either ∆x̄i = 0 or ∆w̄i = 0. This implies
that w̄ix̄i = 0 ∀i ∈ {1, 2, · · ·n}. Therefore w̄ and x̄ are the solution of the LCP(q, A).
Consider z̄1i + z̄2i > 0 ∀i ∈ {1, 2, · · ·n}. Then following three cases will arise.
Case 1: Let z̄1i > 0, z̄2i = 0 for at least one i ∈ {1, 2, · · ·n}. This implies that x̄i = 0
and w̄i ≥ 0.
Case 2: Let z̄1i = 0, z̄2i > 0 for at least one i ∈ {1, 2, · · ·n}. This implies that x̄i ≥ 0
and w̄i = 0.
Case 3: Let z̄1i > 0, z̄2i > 0 for at least one i ∈ {1, 2, · · ·n}. This implies that x̄i = 0
and w̄i = 0.

Considering the above three cases x̄, w̄ solve the LCP(q, A).

Theorem 3.7: If A is a P0 matrix, then the component x̄ of (x̄, z̄1, z̄2, 0) ∈ L × {0}
gives the solution of LCP(q, A).

Proof. Let A be a P0 matrix. Assume that the component x̄ of (x̄, z̄1, z̄2, 0) ∈ L×{0}
does not give the solution of LCP(q, A). Hence ∆x̄i∆w̄i 6= 0 and z̄1i + z̄2i = 0 for
atleast one i. Then ∆x̄i 6= 0,∆w̄i 6= 0, z̄1i = 0, z̄2i = 0. Now z̄1i = w̄i − ∆w̄i = 0
and ∆x̄i∆w̄i 6= 0 =⇒ w̄i = ∆w̄i > 0. In similar way z̄2i = x̄i − ∆x̄i = 0 and
∆x̄i∆w̄i 6= 0 =⇒ x̄i = ∆x̄i > 0. From Equation 3.19, ∆w̄i + (At∆x̄)i = 0. This
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implies that (At∆x̄)i < 0 and also (x̄)i(At∆x̄)i < 0. This contradicts that A is a
P0-matrix. Therefore the component x̄ of (x̄, z̄1, z̄2, 0) ∈ L×{0} gives the solution of
LCP(q, A).
Theorem 3.8: Suppose the matrix (W̄ + X̄At) is nonsingular, where W̄ = diag(w̄),
X̄ = diag(x̄). Then x̄ solves the LCP(q, A).
Proof. Let the matrix (W̄ +X̄At) be nonsingular. By Equation 3.19, ∆w̄+At∆x̄ = 0
and X̄∆w̄ = W̄∆x̄, where W̄ =diag(w̄) =diag(Ax̄ + q). Now X̄∆w̄ + X̄At∆x̄ =
0 implies that W̄∆x̄ + X̄At∆x̄ = 0. It implies that ∆x̄ = 0. Then x̄ solves the
LCP(q, A).

Now we establish a sufficient condition of homotopy method for finding the solu-
tion of LCP(q, A).
Theorem 3.9: If the matrixA is nondegenerate, then the component x̄ of (x̄, z̄1, z̄2, 0) ∈
L× {0} solves LCP(q, A).
Proof. Consider that the matrixA associated with LCP(q, A) is nondegenerate. There-
fore every principal minor of A is nonzero. By theorem 3.8, if the matrix (W̄ + X̄At)
is nonsingular, then x̄ solves the LCP(q, A), where W̄ = diag(w̄), X̄ = diag(x̄). Let

Ã =
[

W̄ X̄
−At I

]
. Then det(Ã) = det(W̄ + X̄At). Assume that the component x̄

of (x̄, z̄1, z̄2, 0) ∈ L × {0} is not the solution of LCP(q, A). Then there exists atleast
one i, such that x̄iw̄i > 0. Without loss of generality w̄ and x̄ can be represented

as w̄ =

 w̄p
w̄q
ōr

, x̄ =

 ōp
x̄q
x̄r

, where w̄p ∈ Rp
++, w̄q, x̄q ∈ Rq

++, x̄r ∈ Rr
++, ōr ∈

Rr, ōp ∈ Rp and ōr = 0, ōp = 0. Here (w̄q)i(x̄q)i > 0 and W̄ = diag(w̄), X̄ = diag(x̄).

Now we can rewrite
[

W̄ X̄
−At I

]
=



W̄p Ōq Ōr Ōp Ōq Ōr

Ōp W̄q Ōr Ōp X̄q Ōr

Ōp Ōq Ōr Ōp Ōq X̄r

M B C Ip Ōq Ōr

D E F Ōp Iq Ōr

G H K Ōp Ōq Ir


, where −At =

 M B C
D E F
G H K

, W̄ =

 W̄p Ōq Ōr

Ōp W̄q Ōr

Ōp Ōq Ōr

, X̄ =

 Ōp Ōq Ōr

Ōp X̄q Ōr

Ōp Ōq X̄r

, X̄q = diag(x̄q),

X̄r = diag(x̄r), W̄q = diag(w̄q), W̄p = diag(w̄p), Ōp = diag(ōp), Ōq = diag(ōq)
Ōr = diag(ōr), M,D,G, Ip ∈ Rp×p, B,E,H, Iq ∈ Rq×q, C,F,K, Ir ∈ Rr×r and
Ip, Iq, Ir are identity matrices. By elementary row operations we can get

B̃ =



I Ōq Ōr Ōp Ōq Ōr

Ōp I Ōr Ōp X̄qW̄
−1
q Ōr

Ōp Ōq Ōr Ōp Ōq I
M B C I Ōq Ōr

D E F Ōp I Ōr

G H K Ōp Ōq I


.
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By interchanging rows this matrix reduces to

C̃ =



I Ōq Ōr Ōp Ōq Ōr

Ōp I Ōr Ōp X̄qW̄
−1
q Ōr

−G −H −K Ōp Ōq Ōr

M B C I Ōq Ōr

D E F Ōp I Ōr

G H K Ōp Ōq I


.

Hence det(Ã) = det(C̃) = (−1)r det(K) 6= 0. Therefore by theorem 3.8, x̄ solves
LCP(q, A). This contradicts the assumption. Hence the component x̄ of (x̄, z̄1, z̄2, 0) ∈
L× {0} is the solution of LCP(q, A).

Hence for the P0 and nondegenerate matrix classes the homotopy function 3.5
gives the solution of LCP(q, A).

Remark 3.3: We trace the homotopy path Γ(0)
y ⊂ F1 × (0, 1] from the initial point

(y(0), 1) as λ→ 0. To find the solution of the given LCP(q, A) we consider homotopy
path along with other assumptions. Let s denote the arc length of Γ(0)

y . We parame-
terize the homotopy path Γ(0)

y with respect to s in the following form

Hy(0)(y(s), λ(s)) = 0, y(0) = y(0), λ(0) = 1. (3.20)
Differentiating 3.20 with respect to s, we obtain the following system of ordinary
differential equations with given initial values

H ′y(0)(y(s), λ(s))
[

dy
ds
dλ
ds

]
= 0, ‖(dy

ds
,
dλ

ds
)‖ = 1, y(0) = y(0), λ(0) = 1, dλ

ds
(0) < 0,

(3.21)
and the y-component of (y(s̄), λ(s̄)) gives the solution of LCP(q, A) for λ(s̄) = 0. For
details, see [13].

Note that the parameter λ is updated from the Moore-Penrose inverse of the
Jacobian matrix for tracing the homotopy path. However, this approach does not
ensure that the updated value of the parameter λ is in (0, 1]. Value of λ beyond (0, 1]
leads to a non-homotopy path. To eliminate deviation, we propose a modification
by introducing a method called ensuring feasibility by changing step length. In this
method it is necessary to check whether 0 < (λ̃i− λ̂i) < 1 and (ỹi− ŷi) ∈ F̄1 holds or
not. If any of the above-mentioned criteria fails, then the step length will be changed
appropriately using geometric series to trace the homotopy path Γ(0)

y . This guarantees
a homotopy continuation trajectory.

3.1 Algorithm
Step 0: Initialize (y(0), λ0). Set l0 ∈ (0, 1). Choose ε2 >> ε3 >> ε1 > 0 which are
very small positive quantity.

Step 1: τ (0) = ξ(0) = ( 1
n
)

[
s
−1

]
for i = 0, where n = ‖

[
s
−1

]
‖ and s =

(∂H
∂y

(y(0), λ0))−1(∂H
∂λ

(y(0), λ0)). If det(∂H
∂y

(y(i), λi)) > 0, τ (i) = ξ(i) else τ (i) = −ξ(i),
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i ≥ 1. Set l = 0.
Step 2: (Predictor point calculation) (ỹ(i), λ̃i) = (y(i), λi) + aτ (i), where a = l0

l.

Compute (ŷ(i), λ̂i) = H ′
y(0)(ỹ(i), λ̃i)+H(ỹ(i), λ̃i). If 0 < (λ̃i − λ̂i) < 1, go to Step 3.

Otherwise if m = min(a, ‖(ỹ(i), λ̃i) − (ŷ(i), λ̂i) − (y(i), λi)‖) > a0, update l by l + 1,
and recompute (λ̃i, λ̂i) else go to Step 4.

Step 3: (Corrector point calculation) (y(i+1), λi+1) = (ỹ(i), λ̃i)− (ŷ(i), λ̂i). Determine
the norm r = ‖H(y(i+1), λi+1)‖. If r ≤ 1 and y(i+1) > 0 go to Step 5, otherwise if
a > ε3, update l by l + 1 and go to Step 2 else go to Step 4.
Step 4: If |λi+1−λi| < ε2, then if |λi+1| < ε2, then stop with the solution (y(i+1), λi+1),
else terminate (unable to find solution) else i = i+ 1 and go to Step 1.
Step 5: If |λi+1| ≤ ε1, then stop with solution (y(i+1), λi+1), else i = i + 1 and go to
Step 1.

Note that in Step 2, H ′
y(0)(y, λ)+ = H ′

y(0)(y, λ)t(H ′
y(0)(y, λ)H ′

y(0)(y, λ)t)−1 is the
Moore-Penrose inverse of H ′

y(0)(y, λ). We prove the following result to obtain the
positive direction of the proposed algorithm.

Theorem 3.10: If the homotopy curve Γ(0)
y is smooth, then the positive predictor

direction τ (0) at the initial point y(0) satisfies det
[

∂H
∂y∂λ

(y(0), 1)
τ (0)t

]
< 0.

Proof. From the Equation 3.5, we consider the following homotopy function

H(y, y(0), λ) =


(1− λ)[(A+ At)x+ q − z1 − Atz2] + λ(x− x(0))

Z1x− λZ(0)
1 x(0)

Z2(Ax+ q)− λZ(0)
2 (Ax(0) + q)

 = 0. Now,

∂H
∂y∂λ

(y, λ) =


(1− λ)(A+ At) + λI −(1− λ)I −(1− λ)At P

Z1 X 0 −Z(0)
1 x(0)

Z2A 0 W −Z(0)
2 (Ax(0) + q)

 ,
where P = (x − x(0)) − [(A + At)x + q − z1 − Atz2] and W = diag(Ax + q). At the
initial point (y(0), 1)

∂H
∂y∂λ

(y(0), 1) =


I 0 0 −[(A+ At)x(0) + q − z(0)

1 − Atz
(0)
2 ]

Z
(0)
1 X(0) 0 −Z(0)

1 x(0)

Z
(0)
2 A 0 W (0) −Z(0)

2 (Ax(0) + q)

 .

Let positive predictor direction be τ (0) =
[
κ
−1

]
=

[
(R(0)

1 )(−1)R
(0)
2

−1

]
, where

R
(0)
1 =


I 0 0
Z

(0)
1 X(0) 0

Z
(0)
2 A 0 W (0)

 , R(0)
2 =


−[(A+ At)x(0) + q − z(0)

1 − Atz
(0)
2 ]

−Z(0)
1 x(0)

−Z(0)
2 (Ax(0) + q)


and κ is a n× 1 column vector.
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Hence, det
[

∂H
∂y∂λ

(y(0), 1)
τ (0)t

]

= det
[

R
(0)
1 R

(0)
2

(R(0)
2 )t(R(0)

1 )(−t) −1

]

= det
[
R

(0)
1 R

(0)
2

0 −1− (R(0)
2 )t(R(0)

1 )(−t)(R(0)
1 )(−1)R

(0)
2

]

= det(R(0)
1 ) det(−1− (R(0)

2 )t(R(0)
1 )(−t)(R(0)

1 )(−1)R
(0)
2 )

= − det(R(0)
1 ) det(1 + (R(0)

2 )t(R(0)
1 )(−t)(R(0)

1 )(−1)R
(0)
2 )

= −∏n
i=1 x

(0)
i y

(0)
i det(1 + (R(0)

2 )t(R(0)
1 )(−t)(R(0)

1 )(−1)R
(0)
2 ) < 0.

So the positive predictor direction τ (0) at the initial point y(0) satisfies

det
[

∂H
∂y∂λ

(y(0), 1)
τ (0)t

]
< 0.

Remark 3.4: We conclude from the Theorem 3.10 that the positive tangent direction
τ of the homotopy path Γ(0)

y at any point (y, λ) be negative and it depends on det(R1),

where R1 =

 (1− λ)(A+ At) + λI −(1− λ)I −(1− λ)At
Z1 X 0
Z2A 0 W

 .

4 Numerical Examples
In this section we consider some examples of LCP(q, A) based on P0 and nondegen-
erate matrices to demonstrate the effectiveness of our proposed algorithm. Note that
Example 4.3 - 4.10 are not processable by the algorithms given in Yu et al. [51], Xu
et al. [50], Zhao et al. [53]. Even these examples are not processable by Lemke’s
algorithm [8] except example 4.2 and 4.3. Example 4.4 - 4.10 are also not processable
by modulus based algorithm [44]. We show that the proposed algorithm can process
these examples to find the solution.

Example 4.1: Consider A =
[
−1 2
3 −1

]
and q =

[
1
−0.5

]
. Note that A is an

N -matrix. It is solvable by the homotopy method with the homotopy function 3.2,
proposed by Zhao et al. [53]. Now we show that the homotopy function 3.5 also
solves the linear complementarity problem with N -matrix. Now choose the initial

point x(0) =
[

0.4
0.1

]
, z1

(0) =
[

1
1

]
and z2

(0) =
[

1
1

]
. Using the proposed algorithm

we get the optimal solution of the homotopy function 3.5 after 20 iterations and the

solution is given by (ȳ, λ̄) = (1, 0, 0, 2.5, 1, 0, 0). Therefore x̄ =
[

1
0

]
solves LCP(q, A).

The homotopy path shown in Figure 1a illustrates the convergence with respect to
the solution vector x and λ.
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Example 4.2: Let A =
[

1 −1
−1 1

]
and q =

[
−0.5

2

]
. It is easy to show that A is

a PSD-matrix. It is solvable by the homotopy method with the homotopy function
3.1, proposed by Yu et al.[51] . Now we show that the homotopy function 3.5 also
solves the linear complementarity problem with PSD-matrix. Now choose the initial

point x(0) =
[

2
1

]
, z1

(0) =
[

1
1

]
and z2

(0) =
[

1
1

]
. Using the proposed algorithm we

obtain (ȳ, λ̄) = (0.5, 0, 0, 1.499, 0.499, 0, 0, 0) after 22 iterations. Note that x̄ =
[

0.5
0

]
is the solution of LCP(q, A). The homotopy path shown in Figure 1b illustrates the
convergence with respect to the solution vector x and λ.

Now we show that the homotopy function 3.5 can solve LCP(q, A) with singular
matrix A satisfying some conditions.

Example 4.3: Consider A =
[

1 1
0 0

]
and q =

[
−1
1

]
. Note that A is a singular Q0-

matrix. Now choose the initial point x(0) =
[

1
0.2

]
, z1

(0) =
[

1
1

]
and z2

(0) =
[

1
1

]
.

Using the proposed algorithm we get the optimal solution of the homotopy function
3.5 after 15 iterations and the solution is given by (ȳ, λ̄) = (1, 0, 0, 1, 1, 0, 0). Therefore

x̄ =
[

1
0

]
solves LCP(q, A). The homotopy path shown in Figure 1c illustrates the

convergence with respect to the solution vector x and λ.

Example 4.4: Let A =

 0 1 1
2 0 1
−4 −5 0

 and q =

 −4
−7
10

 . It is easy to show that A

is an E0
s-matrix. This is not processable by modulus based method. Now choose

the initial point x(0) =

 1
1
6

 , z1
(0) =

 1
1
1

 and z2
(0) =

 1
1
1

 . Using the proposed

algorithm we obtain (ȳ, λ̄) = (0, 2, 7, 5, 0, 0, 0, 2, 7, 0) after 14 iterations. Note that

x̄ =

 0
2
7

 is the solution of LCP(q, A). The convergence of the homotopy function

is shown in the Figure 1d. The first, second and third component of x is represented
by data1, data2 and data3 respectively.

Example 4.5: Let A =

 −1 2 1
1 −0.50 −0.25

−0.50 −1 −1

 and q =

 −0.25
−0.10

3

 . It is easy to

show that A is not an N -matrix. This matrix is not processable by using existing
homotopy functions as well as lemke’s algorithm. Now choose the initial point x(0) = 2.3

1
0.7

 , z1
(0) =

 1
1
1

 and z2
(0) =

 1
1
1

 . Using the proposed algorithm we obtain
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(ȳ, λ̄) = (1.8333, 0, 2.0833, 0, 1, 2125, 0, 1.8333, 0, 2.0833, 0) after 17 iterations. Note

that x̄ =

 1.8333
0

2.0833

 is the solution of LCP(q, A). The convergence of the homotopy

function is shown in the Figure 1e. The first, second and third component of x is
represented by data1, data2 and data3 respectively.

Example 4.6: Let A =

 1 −2 0
0 1 −2
−2 0 1

 and q =

 −1
1
7

 . It is easy to show that A

is an almost C0 matrix. This matrix is not processable by lemke’s algorithm as well as
modulus based algorithm. This matrix is also not processable by existing homotopy

methods. Now choose the initial point x(0) =

 3
0.5
0.5

 , z1
(0) =

 1
1
1

 and z2
(0) =

 1
1
1

 . Using the proposed algorithm we obtain is (ȳ, λ̄) = (1, 0, 0, 0, 1, 5, 1, 0, 0, 0)

after 24 iterations. Note that x̄ =

 1
0
0

 solves LCP(q, A), which is a degenerate

solution. The convergence of the homotopy function is shown in the Figure 1f. The
first, second and third component of x is represented by data1, data2 and data3
respectively.

Example 4.7: Let A =


−1 1 1 1
1 0 0 0
1 0 0 −1
1 0 −1 0

 and q =


−1
1
−1
1

 . A is a Q-matrix

by [33] and also almost N̄ -matrix. This matrix is not processable by lemke’s algo-

rithm. Now choose the initial point x(0) =


4
4
1
1

 , z1
(0) =


1
1
1
1

 and z2
(0) =


1
1
1
1

 .
We apply our proposed algorithm to this LCP(q, A) and after 17 iterations we get
the approximate optimal solution of the homotopy function 3.5, which is (ȳ, λ̄) =

(1, 0, 2, 0, 0, 2, 0, 0, 1, 0, 2, 0, 0). Note that x̄ =


1
0
2
0

 solves LCP(q, A), which gives a

degenerate solution. The convergence of the homotopy function is shown in the Fig-
ure 1g. Data1, data2, data3 and data4 represent the first, second, third and fourth
component of x respectively.
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Example 4.8: Let A =


−2 −2 −2 2
−2 −1 −3 3
−2 −3 −1 3
2 3 3 0

 and q =


−1001
−500
−500
−500

 . A is a almost N0-

matrix by [33] but not Q-matrix. This matrix is not processable by lemke’s algorithm
as well as modulus based algorithm. This matrix is also not processable by existing

homotopy methods. Now choose the initial point x(0) =


100
100
200
1000

 , z1
(0) =


1
1
1
1



and z2
(0) =


1
1
1
1

 . We apply our proposed algorithm to this LCP(q, A) and after

17 iterations we get the approximate optimal solution of the homotopy function 3.5,
which is (ȳ, λ̄) = (250, 0, 0, 750.50, 0, 1251.50, 1251.50, 0, 250, 0, 0, 750.50, 0). Note that

x̄ =


250
0
0

750.50

 solves LCP(q, A), which gives a degenerate solution. The convergence

of the homotopy function is shown in the Figure 1h. Data1, data2, data3 and data4
represent the first, second, third and fourth component of x respectively.

Example 4.9: Consider A =


0 0 0 1 2
0 0 −1 −1 2
0 −1 0 −1 1
1 −1 −1 0 0
2 1 0 0 0

 and q =


−2
−1
7
2
−1

 . A is an N0-

matrix of exact order 2. This matrix is not processable by lemke’s algorithm as well as
modulus based algorithm. This matrix is also not processable by existing homotopy

methods. Now choose the initial point x(0) =


3
1
1
1
3

 , z1
(0) =


1
1
1
1
1

 and z2
(0) =


1
1
1
1
1

 .
Using the proposed algorithm, we obtain the approximate optimal solution of the
homotopy function 3.5, (ȳ, λ̄) = (0.5, 0, 0, 0, 1, 0, 1, 8, 2.5, 0, 0.5, 0, 0, 0, 1, 0) after 27

iterations. Note that x̄ =


0.5
0
0
0
1

 solves LCP(q, A). The convergence of the homotopy

function is shown in the Figure 1i. Data1, data2, data3, data4 and data5 represent
the first, second, third, fourth and fifth component of x respectively. 0,-90,-80,-70,0,-
90,-2,-2,-2,2,-70,-2,-1,-3,3,-50,-2,-3,-0.8,3,0,2,3,3,0

19



Example 4.10: Consider A =


0 −90 −80 −70 0
−90 −2 −2 −2 2
−70 −2 −1 −3 3
−50 −2 −3 −0.8 3

0 2 3 3 0

 and q =


400
50
30
20
−10

 . A
is an N̄ -matrix of exact order 2. This matrix is not processable by lemke’s algorithm
as well as modulus based algorithm. This matrix is also not processable by existing

homotopy methods. Now choose the initial point x(0) =


0.1
0.1
0.1
5

100

 , z1
(0) =


1
1
1
1
1

 and

z2
(0) =


1
1
1
1
1

 . Using the proposed algorithm, we obtain the approximate optimal

solution of the homotopy function 3.5, (ȳ, λ̄) = (0.2403846, 0, 1.634615, 3.846154, 0,
0, 17.40385, 0, 0, 6.442308, 0.2403846, 0, 1.634615, 3.846154, 0, 0) after 1925 iterations.

Note that x̄ =


0.2403846

0
1.634615
3.846154

0

 solves LCP(q, A). The convergence of the homotopy

function is shown in the Figure 1j. Data1, data2, data3, data4 and data5 represent
the first, second, third, fourth and fifth component of x respectively.

20



(a) Example 4.1 (b) Example 4.2

(c) Example 4.3 (d) Example 4.4

(e) Example 4.5 (f) Example 4.6

(g) Example 4.7 (h) Example 4.8

(i) Example 4.9 (j) Example 4.10

Figure 1: Homotopy path for the LCP(q, A) to show the convergence
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5 Conclusion
In this study, we consider an interior point homotopy path to solve linear comple-
mentarity problem. We prove a necessary and sufficient condition for the solution
of LCP(q, A) based on newly introduced homotopy function. To ensure a homotopy
continuation trajectory we introduce a new scheme of choosing step length. Math-
ematically we find the positive tangent direction of the homotopy path. We show
that the smooth curve for the homotopy function is bounded and convergent. Several
numerical examples are presented to demonstrate the processability of larger classes
of LCP(q, A) based on P0 and nondegenerate matrices namely, Q-matrix, almost N̄ -
matrix, Q0-matrix, almost N0-matrix, almost C0-matrix, N0-matrix of exact order 2
and N̄ -matrix of exact order 2. Many of them are not processable by lemke’s algo-
ritm, existing homotopy method and modulus based method. However, the proposed
method is able to process all the cases to find solution.
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