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Abstract: This paper is concerned with a Stackelberg stochastic differential game on a finite

horizon in feedback information pattern. A system of parabolic partial differential equations is

obtained at the level of Hamiltonian to give the verification theorem of the feedback Stackel-

berg equilibrium. As an example, a linear quadratic Stackelberg stochastic differential game is

investigated. Riccati equations are introduced to express the feedback Stackelberg equilibrium,

analytical and numerical solutions to these Riccati equations are discussed in some special cases.
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1 Introduction

The Stackelberg solution concept was first introduced by Von Stackelberg in [8]. This solution

concept arises in two-person nonzero-sum static games with asymmetrical modes of play. One

of the players is called the leader, and the other is called the follower. The leader has the

ability to announce his policy first, leaving to the follower to react. The follower optimizes his

cost functional given the strategy that the leader has announced. Anticipating the follower’s

response, the leader choose the policy which will minimize his cost functional under the follower’s

rational response.

The equilibrium concept was first extended to open-loop Stackelberg equilibrium for dynamic

games. The leader announces the policy which he is going to take for the rest of the game.

And taking this policy as given, the follower choose his policy to minimize his cost functional.
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However, as we all know, this equilibrium can be time inconsistent. So the focus of research

shifted to finding feedback Stackelberg equilibrium which was first introduced by Simman and

Cruz in multi-period games in [9, 10]. In this kind of equilibrium, the leader merely has a

stagewise first-mover advantage over the follower. The players’ feedback strategies depend on

the observed pair (date, state), such that at any (date, state) pair, the continuation of optimal

strategy remains optimal for the players.

The feedback Stackelberg equilibrium was originally defined by Başar and Hauire in [1].

The leader has a first-mover advantage over the follower at every stage of the game, which

means that the leader has an instantaneous advantage at every point in time. As shown in

[1], the continuous-time problem can be regarded as the limit of a series of discrete-time games

which is the set of pointwise Stackelberg solutions to coupled Hamilton-Jacobi-Bellman (HJB, in

short) equations. To compute the feedback Stackelberg equilibrium, the follower’s pointwise best

response to the leader’s policy is computed firstly. Secondly, according to the follower’s pointwise

best response, the leader solves his optimization problem. Applying backward induction, we need

to substitute the follower’s instantaneous reaction function into the leader’s HJB equation and

find the leader’s optimal feedback strategy by maximizing the right-hand side of the equation.

For this equilibrium, there is no need to assume any responsibility over the entire time horizon,

only a periodic first-mover advantage. This equilibrium is subgame perfect and time consistent.

On the other hand, if the leader announces his policy for the rest of the game at the initial

time, the follower minimizes his cost functional under this strategy. The leader has global

advantage over the follower. Derivation of global Stackelberg solution is still an active area of

research (Mart́ın-Herrán and Rubio [13]). See Başar and Olsder [2] for more types of Stackelberg

solutions and their connections, and see He et al. [6], Chen and Shen [4], Shi et al. [7], Zheng

and Shi [12] for some recent progress in Stackelberg stochastic differential games.

[1] derives a coupled system of HJB equations which are parabolic partial differential equa-

tions (PDEs, in short), to characterize the feedback Stackelberg equilibrium. As a special case,

they consider a linear-quadratic (LQ, in short) game, deduce the associated Riccati equation,

and give the existence of the solution to it within a sufficiently small horizon. The uncertainty

in [1] comes from a finite-state stochastic jump process. In contrast to [1], Bensoussan, Chen

and Sethi in [3] consider an infinite-horizon Stackelberg stochastic differential game in which

the uncertainty comes from a standard Brownian motion. They obtain a sufficient condition for

the feedback Stackelberg equilibrium and apply it to the LQ case. Due to the infinite horizon

nature, the HJB equations in this case are elliptic PDEs.

In this paper, we consider a finite-horizon Stackelberg stochastic differential game involving

a Brownian motion. Different from [3], both the drift term and the diffusion term of the state

equation in this paper contain the leader’s and the follower’s control variables. A verification

theorem in feedback information pattern is first obtained. We use a system of parabolic PDEs

obtained from the Stackelberg game at the level of Hamiltonian to get the sufficient condition
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for the feedback Stackelberg equilibrium. Compared with [3], the Hamiltonian functions of the

leader and the follower in our case become more complex. And we apply the verification theorem

to the special LQ case. In this case, the state equation is as follows:















dx(s) =
[

A(s)x(s) +B1(s)u(s) +B2(s)v(s) + b(s)
]

ds

+
[

C(s)x(s) +D1(s)u(s) +D2(s)v(s) + λ(s)
]

dW (s), s ∈ [t, T ],

x(t) = x,

where (t, x) is the initial time and state pair, A(·), B1(·), B2(·), C(·),D1(·),D2(·), b(·), λ(·) are

given matrix-valued deterministic functions, and W (·) is a one-dimensional Brownian motion.

And the cost functionals are:

Ji(t, x;u(·), v(·)) =
1

2
E

{

∫ T

t







〈







Qi(s) Mi1(s)
⊤ Mi2(s)

⊤

Mi1(s) Ri11(s) Ri12(s)

Mi2(s) Ri21(s) Ri22(s)













x(s)

u(s)

v(s)






,







x(s)

u(s)

v(s)







〉

+ 2

〈







qi(s)

ρi1(s)

ρi2(s)






,







x(s)

u(s)

v(s)







〉






ds+ 〈Lix(T ), x(T )〉+ 2〈Ni, x(T )〉

}

,

where Qi(·),Mi1(·),Mi2(·), Ri11(·), Ri12(·), Ri21(·), Ri22(·), qi(·), ρi1(·), ρi2(·) are given matrix-

valued deterministic functions, Li is an n× n symmetric matrix and Ni ∈ R
n, for i = 1, 2.

Noting that the diffusion term of the state equation contains the leader’s and the follower’s

control variables, and the form of cost functionals of the leader and the follower are very general.

We derive the corresponding system of HJB equations in the verification theorem. We then con-

sider two special LQ cases to get the corresponding representations of the feedback Stackelberg

equilibrium, via some Riccati equations. The solvability of them is discussed as well.

The rest of this paper is organized as follows. Section 2 gives the formulation of the Stack-

elberg stochastic differential game and give the definition of feedback Stackelberg equilibrium.

Section 3 is devoted to the verification theorem of the feedback Stackelberg equilibrium. In Sec-

tion 4, an LQ case is researched. We use Riccati equations to express the feedback Stackelberg

equilibrium, and discuss the analytical and numerical solutions to them in some special cases.

Finally, in Section 5, some concluding remarks are given.

2 Problem Formulation

For given T > 0 and initial data (t, x) ∈ [0, T ] × R
n, a Stackelberg stochastic differential game

is considered. The state equation is

{

dx(s) = f(s, x(s), u(s), v(s))ds + σ(s, x(s), u(s), v(s))dW (s), 0 ≤ t ≤ s ≤ T,

x(t) = x,
(2.1)
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where (Ω,F , {Ft}t≥0,P) is a filtered probability space, and W (·) is a d-dimensional standard

Brownian motion defined on it. f : [t, T ]×R
n×R

m1×R
m2 → R

n and σ : [t, T ]×R
n×R

m1×R
m2 →

R
n×d are measurable functions. There exists a constant C > 0 such that

|f(s, x, u, v)− f(s, x′, u′, v′)|+ |σ(s, x, u, v) − σ(s, x′, u′, v′)| ≤ C[|x− x′|+ |u− u′|+ |v − v′|],

∀s ∈ [t, T ], x, x′ ∈ R
n, u, u′ ∈ R

m1 , v, v′ ∈ R
m2 .

And for some p ∈ [2,∞),
(

∫ T

t
|f(s, 0, 0, 0)|ds

)p

+
(

∫ T

t
|σ(s, 0, 0, 0)|2ds

)
p

2

<∞.

u(·) and v(·) are control processes of two players: the leader (player 1) and the follower

(player 2), respectively. The cost functionals for the leader and the follower are of the form:

J1(t, x;u(·), v(·)) = E

[
∫ T

t

g1(s, x(s), u(s), v(s))ds + h1(x(T ))

]

, (2.2)

J2(t, x;u(·), v(·)) = E

[∫ T

t

g2(s, x(s), u(s), v(s))ds + h2(x(T ))

]

, (2.3)

where gi : [t, T ] × R
n × R

m1 × R
m2 → R and hi : R

n → R (i = 1, 2) are measurable functions

which satisfy the following polynomial growth conditions: For i = 1, 2,

|gi(s, x, u, v)| ≤ C(1 + |x|p + |u|p + |v|p), |hi(x)| ≤ C(1 + |x|p),

∀(s, x, u, v) ∈ [t, T ]× R
n × R

m1 × R
m2 ,

for some positive constants C and p mentioned above.

In our Stackelberg stochastic differential game in feedback information pattern, the leader

determines his instantaneous strategy of the form u(s, x(·)), s ∈ [t, T ]. And according to the

observed state x(·) and the leader’s instantaneous strategy as the game progress, the follower

makes his instantaneous decision v(s, x(·), u(s, x(·))), s ∈ [t, T ]. So the admissible strategy spaces

for the leader and the follower are as follows:

U [0, T ] =
{

u(·, ·) ∈ Lp
F (t, T ;R

m1)
∣

∣u : [t, T ]× R
n → U, u(s, x) is Lipschitz continuous in (s, x)

}

,

V[0, T ] =
{

v(·, ·, ·) ∈ Lp
F (t, T ;R

m2)
∣

∣v : [t, T ]× R
n × U → V, v(s, x, u) is Lipschitz continuous

in (s, x, u)
}

,

where U and V are given subsets in R
m1 and R

m2 , respectively. And Lp
F (t, T ;R

k) are the set of

all {Ft}t≥0- adapted R
k-valued processes X(·) such that E

∫ T

t
|X(s)|pds <∞, k = m1,m2.

For a pair of strategies (u(·, ·), v(·, ·, u(·, ·))) ∈ U [0, T ]×V[0, T ], we use xt,x(·;u, v) to denote

the solution to the parameterized state equation














dx(s) = f
(

s, x(s), u(s, x(s)), v(s, x(s), u(s, x(s)))
)

ds

+ σ
(

s, x(s), u(s, x(s)), v(s, x(s), u(s, x(s)))
)

dW (s), 0 ≤ t ≤ s ≤ T,

x(t) = x.

(2.4)
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And for i = 1, 2, we use J t,x
i (u(·, ·), v(·, ·, u(·, ·))) to represent the corresponding cost functional

of player i:

J t,x
i (u(·, ·), v(·, ·, u(·, ·)))

= E

{
∫ T

t

gi
(

s, xt,x(s;u, v), u(s, xt,x(s;u, v)), v(s, xt,x(s;u, v), u(s, xt,x(s;u, v)))
)

ds

+ hi(x
t,x(T ;u, v))

}

. (2.5)

Definition 2.1. If the following holds:



























J t,x
1

(u∗(·, ·), v∗(·, ·, u∗(·, ·))) ≤ J t,x
1

(u(·, ·), v∗(·, ·, u(·, ·))),

∀u(·, ·) ∈ U [0, T ], ∀(t, x) ∈ [0, T ]× R
n,

J t,x
2

(u∗(·, ·), v∗(·, ·, u∗(·, ·))) ≤ J t,x
2

(u∗(·, ·), v(·, ·, u∗(·, ·))),

∀v(·, ·, ·) ∈ V[0, T ], ∀(t, x) ∈ [0, T ]× R
n,

(2.6)

we call the pair of strategies (u∗(·, ·), v∗(·, ·, u∗(·, ·))) ∈ U [0, T ]×V[0, T ] is a feedback Stackelberg

equilibrium.

Remark 2.1. This definition seems very similar to the definition of the feedback Nash equilib-

rium. In fact, they are different. Because in the feedback Stackelberg equilibrium, the strategy

of the follower is influenced by the leader’s strategy. However, in the feedback Nash equilibrium,

each player has equal roles and status. On the other hand, in the feedback Stackelberg equi-

librium, the leader merely has an instantaneous advantage over the follower at every point in

time, and players’ feedback strategies depend on the observed time and state. Therefore, there is

no need to assume any responsibility over the entire time horizon. This equilibrium is subgame

perfect and time consistent. See more detail in [3].

3 Verification Theorem

In this section, we will give a verification theorem, which provides a sufficient condition for

the feedback Stackelberg equilibrium. Let Sn denote the set of symmetric n × n matrices

A = (Aij), i, j = 1, · · · , n. Let a = σσ⊤ and tr[aA] =
n
∑

i,j=1

aijAij . We introduce the Hamiltonian

functions for the leader and the follower as follows:

H1(s, x, µ, ν, p1, A
′) := 〈p1, f(s, x, µ, ν)〉+

1

2
tr[a(s, x, µ, ν)A′] + g1(s, x, µ, ν),

H2(s, x, µ, ν, p2, A
′′) := 〈p2, f(s, x, µ, ν)〉+

1

2
tr[a(s, x, µ, ν)A′′] + g2(s, x, µ, ν),

where Hi : [t, T ]× R
n × R

m1 × R
m2 × R

n × Sn → R, for i = 1, 2.
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For every (s, x, µ, p2, A
′′), suppose H2 is strictly convex in ν. Therefore, the follower has a

unique optimal response function for the leader’s each policy µ ∈ U :

T2(s, x, µ, p2, A
′′) := argmin

ν∈V

H2(s, x, µ, ν, p2, A
′′).

Under the follower’s optimal response T2, the leader should take a strategy to minimize his

Hamiltonian functional H1(s, x, µ, T2(s, x, µ, p2, A
′′), p1, A

′). We further assume that it is also

strictly convex in µ, for every (s, x, p1, p2, A
′, A′′). So the leader’s optimal action is

T1(s, x, p1, p2, A
′, A′′) := argmin

µ∈U

H1(s, x, µ, T2(s, x, µ, p2, A
′′), p1, A

′).

Then we obtain a feedback Stackelberg equilibrium

(

T1(s, x, p1, p2, A
′, A′′), T2(s, x, T1(s, x, p1, p2, A

′, A′′), p2, A
′′)
)

.

Let Cp([t, T ]×R
n) denote the set of all continuous functions Φ(s, x) on [t, T ]×R

n satisfying

a polynomial growth condition

|Φ(s, x)| ≤ C(1 + |x|p)

for some positive constant C and p mentioned above. Let C1,2([t, T ]×R
n) denote the set of all

continuous functions Φ(s, x) on [t, T ] × R
n with continuous partial derivative in s and 2-order

continuous derivative in x.

With these notations, we have the following verification theorem.

Theorem 3.1. Suppose V1(s, x), V2(s, x) both lie in C1,2([t, T ]×R
n)∩Cp([t, T ]×R

n) and solve

the system of parabolic PDEs



















































































































∂V1
∂s

(s, x) +

〈

∂V1
∂x

(s, x), f

(

s, x, T1

(

s, x,
∂V1
∂x

,
∂V2
∂x

,
∂2V1
∂x2

,
∂2V2
∂x2

)

,

T2

(

s, x, T1

(

s, x,
∂V1
∂x

,
∂V2
∂x

,
∂2V1
∂x2

,
∂2V2
∂x2

)

,
∂V2
∂x

,
∂2V2
∂x2

)

)〉

+
1

2

n
∑

i,j=1

[

aij

(

s, x, T1

(

s, x,
∂V1
∂x

,
∂V2
∂x

,
∂2V1
∂x2

,
∂2V2
∂x2

)

,

T2

(

s, x, T1

(

s, x,
∂V1
∂x

,
∂V2
∂x

,
∂2V1
∂x2

,
∂2V2
∂x2

)

,
∂V2
∂x

,
∂2V2
∂x2

)

)

·
∂2V1
∂xi∂xj

(s, x)

]

+ g1

(

s, x, T1

(

s, x,
∂V1
∂x

,
∂V2
∂x

,
∂2V1
∂x2

,
∂2V2
∂x2

)

,

T2

(

s, x, T1

(

s, x,
∂V1
∂x

,
∂V2
∂x

,
∂2V1
∂x2

,
∂2V2
∂x2

)

,
∂V2
∂x

,
∂2V2
∂x2

)

)

= 0, s ∈ [t, T ],

V1(T, x) = h1(x),

(3.1)
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∂V2
∂s

(s, x) +

〈

∂V2
∂x

(s, x), f

(

s, x, T1

(

s, x,
∂V1
∂x

,
∂V2
∂x

,
∂2V1
∂x2

,
∂2V2
∂x2

)

,

T2

(

s, x, T1

(

s, x,
∂V1
∂x

,
∂V2
∂x

,
∂2V1
∂x2

,
∂2V2
∂x2

)

,
∂V2
∂x

,
∂2V2
∂x2

)

)〉

+
1

2

n
∑

i,j=1

[

aij

(

s, x, T1

(

s, x,
∂V1
∂x

,
∂V2
∂x

,
∂2V1
∂x2

,
∂2V2
∂x2

)

,

T2

(

s, x, T1

(

s, x,
∂V1
∂x

,
∂V2
∂x

,
∂2V1
∂x2

,
∂2V2
∂x2

)

,
∂V2
∂x

,
∂2V2
∂x2

)

)

·
∂2V2
∂xi∂xj

(s, x)

]

+ g2

(

s, x, T1

(

s, x,
∂V1
∂x

,
∂V2
∂x

,
∂2V1
∂x2

,
∂2V2
∂x2

)

,

T2

(

s, x, T1

(

s, x,
∂V1
∂x

,
∂V2
∂x

,
∂2V1
∂x2

,
∂2V2
∂x2

)

,
∂V2
∂x

,
∂2V2
∂x2

)

)

= 0, s ∈ [t, T ],

V2(T, x) = h2(x),

(3.2)

where aij :=
d
∑

k=1

σikσjk. If we set

u∗(s, x) := T1

(

s, x,
∂V1
∂x

,
∂V2
∂x

,
∂2V1
∂x2

,
∂2V2
∂x2

)

and v∗(s, x, µ) := T2

(

s, x, µ,
∂V2
∂x

,
∂2V2
∂x2

)

,

then (u∗(·, ·), v∗(·, ·, u∗(·, ·))) is a feedback Stackelberg equilibrium.

Proof. Suppose the leader adopts the strategy u∗(·, ·) and the follower chooses an arbitrary

strategy v(·, ·, ·) ∈ V[0, T ]. Let Bn(x) denotes the open ball of radius n, centered at x, i.e.,

Bn(x) :=







y ∈ R
n|

√

√

√

√

n
∑

i=1

|xi − yi|2 < n







,

and let τn be the first exit time of xt,x(·;u∗, v) from Bn(x), i.e.,

τn := inf
{

s|xt,x(s;u∗, v) /∈ Bn(x), t ≤ s ≤ T
}

.

If xt,x(s;u∗, v) ∈ Bn(x) for all s ∈ [t, T ], then τn = T .

Applying Itô’s formula to V2(·, x
t,x(·;u∗, v)), integrating from t to τn, and taking expectation,
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we obtain

V2(t, x) = E
[

V2(τn, x
t,x(τn;u

∗, v))
]

− E

{

∫ τn

t

[

∂V2
∂s

(s, xt,x(s;u∗, v)) +

〈

∂V2
∂x

(s, xt,x(s;u∗, v)), f
(

s, xt,x(s;u∗, v),

u∗(s, xt,x(s;u∗, v)), v(s, xt,x(s;u∗, v), u∗(s, xt,x(s;u∗, v)))
)

〉

+
1

2

n
∑

i,j=1

[

aij
(

s, xt,x(s;u∗, v), u∗(s, xt,x(s;u∗, v)),

v(s, xt,x(s;u∗, v), u∗(s, xt,x(s;u∗, v)))
)

·
∂2V2
∂xi∂xj

(s, xt,x(s;u∗, v))
]

+ g2
(

s, xt,x(s;u∗, v), u∗(s, xt,x(s;u∗, v)), v(s, xt,x(s;u∗, v), u∗(s, xt,x(s;u∗, v)))
)

]

ds

}

+ E

∫ τn

t

g2
(

s, xt,x(s;u∗, v), u∗(s, xt,x(s;u∗, v)), v(s, xt,x(s;u∗, v), u∗(s, xt,x(s;u∗, v)))
)

ds.

Let n→ ∞ and noting τn → T almost surely, we get

V2(t, x) = E
[

V2(T, x
t,x(T ;u∗, v))

]

+ E

∫ T

t

g2
(

s, xt,x(s;u∗, v), u∗(s, xt,x(s;u∗, v)), v(s, xt,x(s;u∗, v), u∗(s, xt,x(s;u∗, v)))
)

ds

− E

{

∫ T

t

[

∂V2
∂s

(s, xt,x(s;u∗, v)) +

〈

∂V2
∂x

(s, xt,x(s;u∗, v)), f
(

s, xt,x(s;u∗, v),

u∗(s, xt,x(s;u∗, v)), v(s, xt,x(s;u∗, v), u∗(s, xt,x(s;u∗, v)))
)

〉

+
1

2

n
∑

i,j=1

[

aij
(

s, xt,x(s;u∗, v), u∗(s, xt,x(s;u∗, v)),

v(s, xt,x(s;u∗, v), u∗(s, xt,x(s;u∗, v)))
)

·
∂2V2
∂xi∂xj

(s, xt,x(s;u∗, v))
]

+ g2
(

s, xt,x(s;u∗, v), u∗(s, xt,x(s;u∗, v)), v(s, xt,x(s;u∗, v), u∗(s, xt,x(s;u∗, v)))
)

]

ds

}

≤ J t,x
2

(u∗(·, ·), v(·, ·, u∗(·, ·))) − E

∫ T

t

[

∂V2
∂s

(s, xt,x(s;u∗, v))

+ min
ν∈V

{〈

∂V2
∂x

(s, xt,x(s;u∗, v)), f(s, xt,x(s;u∗, v), u∗(s, xt,x(s;u∗, v)), ν)

〉

+
1

2

n
∑

i,j=1

[

aij(s, x
t,x(s;u∗, v), u∗(s, xt,x(s;u∗, v)), ν) ·

∂2V2
∂xi∂xj

(s, xt,x(s;u∗, v))
]

+ g2(s, x
t,x(s;u∗, v), u∗(s, xt,x(s;u∗, v)), ν)

}]

ds
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= J t,x
2

(u∗(·, ·), v(·, ·, u∗(·, ·))). (3.3)

Similarly, if we apply Itô’s formula to V2(·, x
t,x(·;u∗, v∗)) and follow the above procedure, then

from the definition of u∗(·, ·) and v∗(·, ·, ·), we get

V2(t, x) = J t,x
2

(u∗(·, ·), v∗(·, ·, u∗(·, ·))). (3.4)

From (3.3) and (3.4), we obtain

J t,x
2

(u∗(·, ·), v∗(·, ·, u∗(·, ·))) ≤ J t,x
2

(u∗(·, ·), v(·, ·, u∗(·, ·))),

∀v(·, ·, ·) ∈ V[0, T ], ∀(t, x) ∈ [0, T ]× R
n.

(3.5)

Applying Itô’s formula to V1(·, x
t,x(·;u, v∗)) and applying analogous limiting argument, we can

also obtain

V1(t, x) = E
[

V1(T, x
t,x(T ;u, v∗))

]

+ E

∫ T

t

g1
(

s, xt,x(s;u, v∗), u(s, xt,x(s;u, v∗)), v∗(s, xt,x(s;u, v∗), u(s, xt,x(s;u, v∗)))
)

ds

− E

∫ T

t

[

∂V1
∂s

(s, xt,x(s;u, v∗)) +

〈

∂V1
∂x

(s, xt,x(s;u, v∗)), f
(

s, xt,x(s;u, v∗),

u(s, xt,x(s;u, v∗)), v∗(s, xt,x(s;u, v∗), u(s, xt,x(s;u, v∗)))
)

〉

+
1

2

n
∑

i,j=1

[

aij
(

s, xt,x(s;u, v∗), u(s, xt,x(s;u, v∗)),

v∗(s, xt,x(s;u, v∗), u(s, xt,x(s;u, v∗)))
)

·
∂2V1
∂xi∂xj

(s, xt,x(s;u, v∗))
]

+ g1
(

s, xt,x(s;u, v∗), u(s, xt,x(s;u, v∗)), v∗(s, xt,x(s;u, v∗), u(s, xt,x(s;u, v∗)))
)

]

ds

≤ J t,x
1

(u(·, ·), v∗(·, ·, u(·, ·))) − E

∫ T

t

[

∂V1
∂s

(s, xt,x(s;u, v∗))

+ min
µ∈U

{〈

∂V1
∂x

(s, xt,x(s;u, v∗)), f
(

s, xt,x(s;u, v∗), µ, v∗(s, xt,x(s;u, v∗), µ)
)

〉

+
1

2

n
∑

i,j=1

[

aij
(

s, xt,x(s;u, v∗), µ, v∗(s, xt,x(s;u, v∗), µ)
)

·
∂2V1
∂xi∂xj

(s, xt,x(s;u, v∗))
]

+ g1
(

s, xt,x(s;u, v∗), µ, v∗(s, xt,x(s;u, v∗), µ)
)

}]

ds

= J t,x
1

(u(·, ·), v∗(·, ·, u(·, ·))).

Analogously, applying Itô’s formula to V1(·, x
t,x(·;u∗, v∗)) and proceeding as above, we obtain

V1(t, x) = J t,x
1

(u∗(·, ·), v∗(·, ·, u∗(·, ·))), (3.6)
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which implies that

J t,x
1

(u∗(·, ·), v∗(·, ·, u∗(·, ·))) ≤ J t,x
1

(u(·, ·), v∗(·, ·, u(·, ·))),

∀u(·, ·) ∈ U [0, T ], ∀(t, x) ∈ [0, T ]× R
n.

(3.7)

So we conclude from (3.5) and (3.7), that (u∗(·, ·), v∗(·, ·, u∗(·, ·))) is a feedback Stackelberg

equilibrium. The proof is complete.

4 Linear Quadratic Case

In this section, an LQ feedback Stackelberg stochastic differential game is researched. We use

Riccati equations to represent the feedback Stackelberg equilibrium. The state equation is















dx(s) =
[

A(s)x(s) +B1(s)u(s) +B2(s)v(s) + b(s)
]

ds

+
[

C(s)x(s) +D1(s)u(s) +D2(s)v(s) + λ(s)
]

dW (s), s ∈ [t, T ],

x(t) = x,

(4.1)

where A(·), B1(·), B2(·), C(·),D1(·),D2(·), b(·), λ(·) are given matrix-valued deterministic func-

tions, andW (·) is one-dimensional for notational simplicity. The coefficients of the state equation

satisfy the following:

{

A(·), C(·) ∈ L∞(t, T ;Rn×n), B1(·),D1(·) ∈ L
∞(t, T ;Rn×m1),

B2(·),D2(·) ∈ L∞(t, T ;Rn×m2), b(·), λ(·) ∈ L2(t, T ;Rn).

Next, for i = 1, 2, we introduce the following cost functionals:

Ji(t, x;u(·), v(·)) =
1

2
E

{

∫ T

t







〈







Qi(s) Mi1(s)
⊤ Mi2(s)

⊤

Mi1(s) Ri11(s) Ri12(s)

Mi2(s) Ri21(s) Ri22(s)













x(s)

u(s)

v(s)






,







x(s)

u(s)

v(s)







〉

+ 2

〈







qi(s)

ρi1(s)

ρi2(s)






,







x(s)

u(s)

v(s)







〉






ds+ 〈Lix(T ), x(T )〉+ 2〈Ni, x(T )〉

}

,

(4.2)

where Qi(·),Mi1(·),Mi2(·), Ri11(·), Ri12(·), Ri21(·), Ri22(·), qi(·), ρi1(·), ρi2(·) are given matrix

-valued deterministic functions, Li is a n × n symmetric matrix and Ni ∈ R
n. The weighting

functions in the cost functionals satisfy the following:















Qi(·) ∈ L∞(t, T ;Sn), Mi1(·) ∈ L
∞(t, T ;Rm1×n), Mi2(·) ∈ L∞(t, T ;Rm2×n),

Ri11(·) ∈ L∞(t, T ;Sm1), Ri12(·) = Ri21(·)
⊤ ∈ L∞(t, T ;Rm1×m2), Ri22(·) ∈ L∞(t, T ;Sm2),

qi(·) ∈ L∞(t, T ;Rn), ρi1(·) ∈ L∞(t, T ;Rm1), ρi2(·) ∈ L∞(t, T ;Rm2).
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First of all, for the leader’s every action µ ∈ U, we compute the follower’s unique optimal

response function:

T2(s, x, µ, p2, A
′′) := argmin

ν∈V

H2(s, x, µ, ν, p2, A
′′)

:= argmin
ν∈V

{

〈p2, A(s)x+B1(s)µ +B2(s)ν + b(s)〉+
1

2
tr
[

σ(s, x, µ, ν)σ(s, x, µ, ν)⊤A′′
]

+ g2(s, x, µ, ν)
}

:= argmin
ν∈V

{

〈p2, A(s)x+B1(s)µ +B2(s)ν + b(s)〉+
1

2
〈A′′σ(s, x, µ, ν), σ(s, x, µ, ν)〉

+ g2(s, x, µ, ν)
}

, s ∈ [t, T ].

Using completion of squares, we get

H2(s, x, µ, ν, p2, A
′′)

=
1

2

∣

∣R̂2(s)
1

2 [ν +Ψ(s)x+Φ(s)µ+ ψ(s)]
∣

∣

2

+
1

2
〈(C(s)⊤A′′C(s) +Q2(s)−Ψ(s)⊤R̂2(s)Ψ(s))x, x〉

+ 〈A(s)⊤p2 + C(s)⊤A′′D1(s)µ+ C(s)⊤A′′λ(s) +M21(s)
⊤µ+ q2(s)−Ψ(s)⊤R̂2(s)Φ(s)µ

−Ψ(s)⊤R̂2(s)ψ(s), x〉 +
1

2
〈(D1(s)

⊤A′′D1(s) +R211(s)−Φ(s)⊤R̂2(s)Φ(s))µ, µ〉

+ 〈B1(s)
⊤p2 +D1(s)

⊤A′′λ(s) + ρ21(s)− Φ(s)⊤R̂2(s)ψ(s), µ〉

+ p2
⊤b(s) +

1

2
λ(s)⊤A′′λ(s)−

1

2
ψ(s)⊤R̂2(s)ψ(s), s ∈ [t, T ],

where


























R̂2(s) := D2(s)
⊤A′′D2(s) +R222(s),

Ψ(s) := R̂2(s)
−1(D2(s)

⊤A′′C(s) +M22(s)),

Φ(s) := R̂2(s)
−1(D2(s)

⊤A′′D1(s) +R212(s)
⊤),

ψ(s) := R̂2(s)
−1(B2(s)

⊤p2 +D2(s)
⊤A′′λ(s) + ρ22(s)), s ∈ [t, T ].

Thus, by assuming R̂2(s) > 0, s ∈ [t, T ], we obtain from the above that

T2(s, x, µ, p2, A
′′) = −Ψ(s)x− Φ(s)µ− ψ(s), s ∈ [t, T ]. (4.3)
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Next, the leader’s optimal action is:

T1(s, x, p1, p2, A
′, A′′) := argmin

µ∈U

H1(s, x, µ, T2(s, x, µ, p2, A
′′), p1, A

′)

:= argmin
µ∈U

{

〈p1, A(s)x+B1(s)µ+B2(s)(−Ψ(s)x− Φ(s)µ− ψ(s)) + b(s)〉

+
1

2
tr
[

σ(s, x, µ,−Ψ(s)x− Φ(s)µ− ψ(s))σ(s, x, µ,−Ψ(s)x − Φ(s)µ− ψ(s))⊤A′
]

+ g1(s, x, µ,−Ψ(s)x− Φ(s)µ− ψ(s))
}

:= argmin
µ∈U

{

〈p1, A(s)x+B1(s)µ+B2(s)(−Ψ(s)x− Φ(s)µ− ψ(s)) + b(s)〉

+
1

2
〈A′σ(s, x, µ,−Ψ(s)x− Φ(s)µ− ψ(s)), σ(s, x, µ,−Ψ(s)x − Φ(s)µ− ψ(s))〉

+ g1(s, x, µ,−Ψ(s)x− Φ(s)µ− ψ(s))
}

, s ∈ [t, T ].

In order to get T1(s, x, p1, p2, A
′, A′′), we calculate

H1(s, x, µ, T2(s, x, µ, p2, A
′′), p1, A

′)

= µ⊤
[1

2
D1(s)

⊤A′D1(s)−Φ(s)⊤D2(s)
⊤A′D1(s) +

1

2
Φ(s)⊤D2(s)

⊤A′D2(s)Φ(s)+

1

2
R111(s)− Φ(s)⊤R112(s)

⊤ +
1

2
Φ(s)⊤R122(s)Φ(s)

]

µ

+
[

p⊤
1
B1(s)− p⊤

1
B2(s)Φ(s) + x⊤C(s)⊤A′D1(s)− x⊤C(s)⊤A′D2(s)Φ(s)

− x⊤Ψ(s)⊤D2(s)
⊤A′D1(s)− ψ(s)⊤D2(s)

⊤A′D1(s) + λ(s)⊤A′D1(s)

+ x⊤Ψ(s)⊤D2(s)
⊤A′D2(s)Φ(s) + ψ(s)⊤D2(s)

⊤A′D2(s)Φ(s)− λ(s)⊤A′D2(s)Φ(s)

+ x⊤M11(s)
⊤ − x⊤M12(s)

⊤Φ(s)− x⊤Ψ(s)⊤R112(s)
⊤ − ψ(s)⊤R112(s)

⊤

+ x⊤Ψ(s)⊤R122(s)Φ(s) + ψ(s)⊤R122(s)Φ(s) + ρ11(s)
⊤ − ρ12(s)

⊤Φ(s)
]

µ

+ x⊤
[1

2
C(s)⊤A′C(s)− C(s)⊤A′D2(s)Ψ(s) +

1

2
Ψ(s)⊤D2(s)

⊤A′D2(s)Ψ(s) +
1

2
Q1(s)

−Ψ(s)⊤M12(s) +
1

2
Ψ(s)⊤R122(s)Ψ(s)

]

x

+
[

p⊤1 A(s)− p⊤1 B2(s)Ψ(s)− ψ(s)⊤D2(s)
⊤A′C(s) + λ(s)⊤A′C(s)

+ ψ(s)⊤D2(s)
⊤A′D2(s)Ψ(s)− λ(s)⊤A′D2(s)Ψ(s)− ψ(s)⊤M12(s)

+ ψ(s)⊤R122(s)Ψ(s) + q1(s)
⊤ − ρ12(s)

⊤Ψ(s)
]

x

− p⊤1 B2(s)ψ(s) + p⊤1 b(s) +
1

2
ψ(s)⊤D2(s)

⊤A′D2(s)ψ(s)− ψ(s)⊤D2(s)
⊤A′λ(s)

+
1

2
λ(s)⊤A′λ(s) +

1

2
ψ(s)⊤R122(s)ψ(s) − ρ12(s)

⊤ψ(s), s ∈ [t, T ].

Then

∂H1(s, x, µ, T2(s, x, µ, p2, A
′′), p1, A

′)

∂µ
=
R̂1(s) + R̂1(s)

⊤

2
µ+ Y (s)⊤, s ∈ [t, T ],

12



∂2H1(s, x, µ, T2(s, x, µ, p2, A
′′), p1, A

′)

∂µ2
=
R̂1(s) + R̂1(s)

⊤

2
, s ∈ [t, T ],

where

R̂1(s) := D1(s)
⊤A′D1(s)− 2Φ(s)⊤D2(s)

⊤A′D1(s) + Φ(s)⊤D2(s)
⊤A′D2(s)Φ(s)

+R111(s)− 2Φ(s)⊤R112(s)
⊤ +Φ(s)⊤R122(s)Φ(s),

Y (s) := p⊤1 B1(s)− p⊤1 B2(s)Φ(s) + x⊤C(s)⊤A′D1(s)− x⊤C(s)⊤A′D2(s)Φ(s)

− x⊤Ψ(s)⊤D2(s)
⊤A′D1(s)− ψ(s)⊤D2(s)

⊤A′D1(s) + λ(s)⊤A′D1(s)

+ x⊤Ψ(s)⊤D2(s)
⊤A′D2(s)Φ(s) + ψ(s)⊤D2(s)

⊤A′D2(s)Φ(s)− λ(s)⊤A′D2(s)Φ(s)

+ x⊤M11(s)
⊤ − x⊤M12(s)

⊤Φ(s)− x⊤Ψ(s)⊤R112(s)
⊤ − ψ(s)⊤R112(s)

⊤

+ x⊤Ψ(s)⊤R122(s)Φ(s) + ψ(s)⊤R122(s)Φ(s) + ρ11(s)
⊤ − ρ12(s)

⊤Φ(s).

Thus, by assuming










R̂1(s) + R̂1(s)
⊤

2
µ0 + Y (s)⊤ = 0,

R̂1(s) + R̂1(s)
⊤

2
> 0,

µ0 ∈ U [0, T ], s ∈ [t, T ],

we get

T1(s, x, p1, p2, A
′, A′′) = µ0 = −2(R̂1(s) + R̂1(s)

⊤)−1Y (s)⊤, s ∈ [t, T ]. (4.4)

Substituting (4.3) and (4.4) into (3.1) and (3.2), when

p1 =
∂V1
∂x

, p2 =
∂V2
∂x

, A′ =
∂2V1

∂x2
, A′′ =

∂2V2

∂x2
,

we define
¯̂
R2(s) := R̂2(s)

∣

∣

∣

∣

p1=
∂V1
∂x

, p2=
∂V2
∂x

, A′=
∂2V1
∂x2

, A′′=
∂2V2
∂x2

= D2(s)
⊤ ∂

2V2

∂x2
D2(s) +R222(s),

Ψ̄(s) := Ψ(s)

∣

∣

∣

∣

p1=
∂V1
∂x

, p2=
∂V2
∂x

, A′=
∂2V1
∂x2

, A′′=
∂2V2
∂x2

=
¯̂
R2(s)

−1

(

D2(s)
⊤ ∂

2V2

∂x2
C(s) +M22(s)

)

,

Φ̄(s) := Φ(s)

∣

∣

∣

∣

p1=
∂V1
∂x

, p2=
∂V2
∂x

, A′=
∂2V1
∂x2

, A′′=
∂2V2
∂x2

=
¯̂
R2(s)

−1

(

D2(s)
⊤ ∂

2V2

∂x2
D1(s) +R212(s)

⊤

)

,

ψ̄(s) := ψ(s)

∣

∣

∣

∣

p1=
∂V1
∂x

, p2=
∂V2
∂x

, A′=
∂2V1
∂x2

, A′′=
∂2V2
∂x2

=
¯̂
R2(s)

−1

(

B2(s)
⊤ ∂V2
∂x

+D2(s)
⊤∂

2V2

∂x2
λ(s) + ρ22(s)

)

,
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µ̄0 := µ0

∣

∣

∣

∣

p1=
∂V1
∂x

, p2=
∂V2
∂x

, A′=
∂2V1
∂x2

, A′′=
∂2V2
∂x2

=

[(

D1(s)
⊤∂

2V1

∂x2
− Φ̄(s)⊤D2(s)

⊤ ∂
2V1

∂x2

)

(D2(s)Φ̄(s)−D1(s))

+ Φ̄(s)⊤
(

R112(s)
⊤ −R122(s)Φ̄(s)

)

−R111(s) +R112(s)Φ̄(s)

]−1

×

[

∂V1
∂x

⊤
(

B1(s)−B2(s)Φ̄(s)
)

+

(

− x⊤C(s)⊤
∂2V1

∂x2
+ x⊤Ψ̄(s)

⊤
D2(s)

⊤∂
2V1

∂x2

+ ψ̄(s)⊤D2(s)
⊤∂

2V1

∂x2
− λ(s)⊤

∂2V1

∂x2

)

(

D2(s)Φ̄(s)−D1(s)
)

+ x⊤M11(s)
⊤ − x⊤M12(s)

⊤Φ̄(s) +
(

x⊤Ψ̄(s)
⊤
+ ψ̄(s)⊤

)

×
(

R122(s)Φ̄(s)−R112(s)
⊤
)

+ ρ11(s)
⊤ − ρ12(s)

⊤Φ̄(s)

]⊤

, s ∈ [t, T ].

Then we get the resulting PDEs system in the LQ problem:

∂V1
∂s

(s, x) + µ̄⊤
0

[

1

2
D1(s)

⊤ ∂
2V1

∂x2
D1(s)− Φ̄(s)⊤D2(s)

⊤∂
2V1

∂x2
D1(s)

+
1

2
Φ̄(s)⊤D2(s)

⊤∂
2V1

∂x2
D2(s)Φ̄(s) +

1

2
R111(s)− Φ̄(s)⊤R112(s)

⊤ +
1

2
Φ̄(s)⊤R122(s)Φ̄(s)

]

µ̄0

+

[

∂V1
∂x

⊤
(

B1(s)−B2(s)Φ̄(s)
)

+

(

− x⊤C(s)⊤
∂2V1

∂x2
+ x⊤Ψ̄(s)

⊤
D2(s)

⊤∂
2V1

∂x2

+ ψ̄(s)⊤D2(s)
⊤ ∂

2V1

∂x2
− λ(s)⊤

∂2V1

∂x2

)

(D2(s)Φ̄(s)−D1(s)) + x⊤M11(s)
⊤

− x⊤M12(s)
⊤Φ̄(s) + (x⊤Ψ̄(s)

⊤
+ ψ̄(s)⊤)(R122(s)Φ̄(s)−R112(s)

⊤)

+ ρ11(s)
⊤ − ρ12(s)

⊤Φ̄(s)

]

µ̄0

+ x⊤
(

1

2
C(s)⊤

∂2V1

∂x2
C(s)− C(s)⊤

∂2V1

∂x2
D2(s)Ψ̄(s) +

1

2
Ψ̄(s)⊤D2(s)

⊤∂
2V1

∂x2
D2(s)Ψ̄(s)

+
1

2
Q1(s)− Ψ̄(s)⊤M12(s) +

1

2
Ψ̄(s)⊤R122(s)Ψ̄(s)

)

x

+

[

∂V1
∂x

⊤
(

A(s)−B2(s)Ψ̄(s)
)

+ ψ̄(s)⊤D2(s)
⊤∂

2V1

∂x2
(

D2(s)Ψ̄(s)− C(s)
)

+ λ(s)⊤
∂2V1

∂x2
(

C(s)−D2(s)Ψ̄(s)
)

+ ψ̄(s)⊤
(

R122(s)Ψ̄(s)−M12(s)
)

+ q1(s)
⊤ − ρ12(s)

⊤Ψ̄(s)

]

x

+
∂V1
∂x

⊤
(

b(s)−B2(s)ψ̄(s)
)

+
1

2
ψ̄(s)⊤D2(s)

⊤∂
2V1

∂x2
D2(s)ψ̄(s)− ψ̄(s)⊤D2(s)

⊤∂
2V1

∂x2
λ(s)

+
1

2
λ(s)⊤

∂2V1

∂x2
λ(s) +

1

2
ψ̄(s)⊤R122(s)ψ̄(s)− ρ12(s)

⊤ψ̄(s) = 0, s ∈ [t, T ],

(4.5)
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with V1(T, x) =
1

2
〈L1x, x〉+ 〈N1, x〉;

∂V2
∂s

(s, x) +
1

2
x⊤

[

C(s)⊤
∂2V2

∂x2
C(s) +Q2(s)− Ψ̄(s)⊤

¯̂
R2(s)Ψ̄(s)

]

x

+

[

∂V2
∂x

⊤

A(s) + µ̄⊤0 D1(s)
⊤∂

2V2

∂x2
C(s) + λ(s)⊤

∂2V2

∂x2
C(s)

+ µ̄⊤0 M21(s) + q2(s)
⊤ − µ̄⊤0 Φ̄(s)

⊤ ¯̂
R2(s)Ψ̄(s)− ψ̄(s)⊤

¯̂
R2(s)Ψ̄(s)

]

x

+
1

2
µ̄⊤0

[

D1(s)
⊤∂

2V2

∂x2
D1(s) +R211(s)− Φ̄(s)⊤

¯̂
R2(s)Φ̄(s)

]

µ̄0

+

[

∂V2
∂x

⊤

B1(s) + λ(s)⊤
∂2V2

∂x2
D1(s) + ρ21(s)

⊤ − ψ̄(s)⊤
¯̂
R2(s)Φ̄(s)

]

µ̄0

+
∂V2
∂x

⊤

b(s) +
1

2
λ(s)⊤

∂2V2

∂x2
λ(s)−

1

2
ψ̄(s)⊤

¯̂
R2(s)ψ̄(s) = 0, s ∈ [t, T ],

(4.6)

with V2(T, x) =
1

2
〈L2x, x〉+ 〈N2, x〉.

In general, since the two PDEs in the above system are coupled and have complex structure,

it is very difficult to solve this system explicitly to obtain its solution V1 and V2. In the following

two subsections, we consider some special cases.

4.1 Case 1

Let b(·) = 0,D1(·) = 0,D2(·) = 0, λ(·) = 0,M11(·) = 0,M12(·) = 0,M21(·) = 0,M22(·) =

0, R122(·) = 0, R211(·) = 0, q1(·) = 0, ρ11(·) = 0, ρ12(·) = 0, q2(·) = 0, ρ21(·) = 0, ρ22(·) = 0, N1 =

0, N2 = 0 in (4.1) and (4.2). Therefore, the state equation and cost functionals are of the

following form:

{

dx(s) = (A(s)x(s) +B1(s)u(s) +B2(s)v(s))ds + C(s)x(s)dW (s), s ∈ [t, T ],

x(t) = x,
(4.7)

and

J1(t, x;u(·), v(·)) =
1

2
E

{∫ T

t

[

x(s)⊤Q1(s)x(s) + u(s)⊤R111(s)u(s) + 2u(s)⊤R112(s)v(s)
]

ds

+ 〈L1x(T ), x(T )〉

}

,

J2(t, x;u(·), v(·)) =
1

2
E

{∫ T

t

[

x(s)⊤Q2(s)x(s) + v(s)⊤R222(s)v(s) + 2u(s)⊤R212(s)v(s)
]

ds

+ 〈L2x(T ), x(T )〉

}

.

(4.8)
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Moreover, we can get

¯̂
R2(s) = R222(s), Ψ̄(s) = 0,

Φ̄(s) = R222(s)
−1R212(s)

⊤, ψ̄(s) = R222(s)
−1B2(s)

⊤∂V2
∂x

, s ∈ [t, T ].

By assuming

{

R222(s) > 0,

R111(s)−R212(s)R222(s)
−1R112(s)

⊤ −R112(s)R222(s)
−1R212(s)

⊤ > 0, s ∈ [t, T ],

we obtain

µ̄0 =

[

R212(s)R222(s)
−1R112(s)

⊤ +R112(s)R222(s)
−1R212(s)

⊤ −R111(s)

]−1

×

[

(B1(s)
⊤ −R212(s)R222(s)

−1B2(s)
⊤)
∂V1
∂x

−R112(s)R222(s)
−1B2(s)

⊤∂V2
∂x

]

, s ∈ [t, T ].

In this case, (4.5) becomes

∂V1
∂s

(s, x) +

[

(B1(s)
⊤ −R212(s)R222(s)

−1B2(s)
⊤)
∂V1
∂x

−R112(s)R222(s)
−1B2(s)

⊤∂V2
∂x

]⊤

×

[

R212(s)R222(s)
−1R112(s)

⊤ +R112(s)R222(s)
−1R212(s)

⊤ −R111(s)

]−1

×

[

1

2
R111(s)−R212(s)R222(s)

−1R112(s)
⊤

]

×

[

R212(s)R222(s)
−1R112(s)

⊤ +R112(s)R222(s)
−1R212(s)

⊤ −R111(s)

]−1

×

[

(B1(s)
⊤ −R212(s)R222(s)

−1B2(s)
⊤)
∂V1
∂x

−R112(s)R222(s)
−1B2(s)

⊤∂V2
∂x

]

+

[

(

B1(s)
⊤ −R212(s)R222(s)

−1B2(s)
⊤
)∂V1
∂x

−R112(s)R222(s)
−1B2(s)

⊤∂V2
∂x

]⊤

×

[

R212(s)R222(s)
−1R112(s)

⊤ +R112(s)R222(s)
−1R212(s)

⊤ −R111(s)

]−1

×

[

(

B1(s)
⊤ −R212(s)R222(s)

−1B2(s)
⊤
)∂V1
∂x

−R112(s)R222(s)
−1B2(s)

⊤∂V2
∂x

]

+
1

2
x⊤

[

C(s)⊤
∂2V1

∂x2
C(s) +Q1(s)

]

x

+
∂V1
∂x

⊤

A(s)x−
∂V1
∂x

⊤

B2(s)R222(s)
−1B2(s)

⊤ ∂V2
∂x

= 0, s ∈ [t, T ],

(4.9)
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with V1(T, x) =
1

2
〈L1x, x〉; and (4.6) becomes

∂V2
∂s

(s, x)−
1

2

[

(B1(s)
⊤ −R212(s)R222(s)

−1B2(s)
⊤)
∂V1
∂x

−R112(s)R222(s)
−1B2(s)

⊤∂V2
∂x

]⊤

×

[

R212(s)R222(s)
−1R112(s)

⊤ +R112(s)R222(s)
−1R212(s)

⊤ −R111(s)

]−1

×R212(s)R222(s)
−1R212(s)

⊤

×

[

R212(s)R222(s)
−1R112(s)

⊤ +R112(s)R222(s)
−1R212(s)

⊤ −R111(s)

]−1

×

[

(B1(s)
⊤ −R212(s)R222(s)

−1B2(s)
⊤)
∂V1
∂x

−R112(s)R222(s)
−1B2(s)

⊤∂V2
∂x

]

+

[

(

B1(s)
⊤ −R212(s)R222(s)

−1B2(s)
⊤
)∂V2
∂x

]⊤

×

[

R212(s)R222(s)
−1R112(s)

⊤ +R112(s)R222(s)
−1R212(s)

⊤ −R111(s)

]−1

×

[

(

B1(s)
⊤ −R212(s)R222(s)

−1B2(s)
⊤
)∂V1
∂x

−R112(s)R222(s)
−1B2(s)

⊤ ∂V2
∂x

]

+
1

2
x⊤

[

C(s)⊤
∂2V2

∂x2
C(s) +Q2(s)

]

x

+
∂V2
∂x

⊤

A(s)x−
1

2

∂V2
∂x

⊤

B2(s)R222(s)
−1B2(s)

⊤∂V2
∂x

= 0, s ∈ [t, T ],

(4.10)

with V2(T, x) =
1

2
〈L2x, x〉.

We conjecture solutions of the following quadratic form:

V1(s, x) =
1

2
〈P1(s)x, x〉,

V2(s, x) =
1

2
〈P2(s)x, x〉,

(4.11)

for some suitable P1(·) and P2(·) (where P1(·) and P2(·) are n× n symmetric matrices) with

P1(T ) = L1, P2(T ) = L2.

Substituting (4.11) into (4.9) and (4.10), and comparing the quadratic terms in x, we get the
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following system of Riccati equations:

Ṗ1(s) +

[

(

B1(s)
⊤ −R212(s)R222(s)

−1B2(s)
⊤
)

P1(s)−R112(s)R222(s)
−1B2(s)

⊤P2(s)

]⊤

×

[

R212(s)R222(s)
−1R112(s)

⊤ +R112(s)R222(s)
−1R212(s)

⊤ −R111(s)

]−1

×

[

(

B1(s)
⊤ −R212(s)R222(s)

−1B2(s)
⊤
)

P1(s)−R112(s)R222(s)
−1B2(s)

⊤P2(s)

]

+ C(s)⊤P1(s)C(s) +Q1(s) + P1(s)A(s) +A(s)⊤P1(s)

− P1(s)B2(s)R222(s)
−1B2(s)

⊤P2(s)− P2(s)B2(s)R222(s)
−1B2(s)

⊤P1(s) = 0, s ∈ [t, T ],

(4.12)

with P1(T ) = L1; and

Ṗ2(s)−

[

(

B1(s)
⊤ −R212(s)R222(s)

−1B2(s)
⊤
)

P1(s)−R112(s)R222(s)
−1B2(s)

⊤P2(s)

]⊤

×

[

R212(s)R222(s)
−1R112(s)

⊤ +R112(s)R222(s)
−1R212(s)

⊤ −R111(s)

]−1

×R212(s)R222(s)
−1R212(s)

⊤

×

[

R212(s)R222(s)
−1R112(s)

⊤ +R112(s)R222(s)
−1R212(s)

⊤ −R111(s)

]−1

×

[

(

B1(s)
⊤ −R212(s)R222(s)

−1B2(s)
⊤
)

P1(s)−R112(s)R222(s)
−1B2(s)

⊤P2(s)

]

+ P2(s)

[

B1(s)
⊤ −R212(s)R222(s)

−1B2(s)
⊤

]⊤

×

[

R212(s)R222(s)
−1R112(s)

⊤ +R112(s)R222(s)
−1R212(s)

⊤ −R111(s)

]−1

×

[

(

B1(s)
⊤ −R212(s)R222(s)

−1B2(s)
⊤
)

P1(s)−R112(s)R222(s)
−1B2(s)

⊤P2(s)

]

+

[

(

B1(s)
⊤ −R212(s)R222(s)

−1B2(s)
⊤
)

P1(s)−R112(s)R222(s)
−1B2(s)

⊤P2(s)

]⊤

×

[

R212(s)R222(s)
−1R112(s)

⊤ +R112(s)R222(s)
−1R212(s)

⊤ −R111(s)

]−1

×

[

B1(s)
⊤ −R212(s)R222(s)

−1B2(s)
⊤

]

P2(s) + C(s)⊤P2(s)C(s) +Q2(s)

+ P2(s)A(s) +A(s)⊤P2(s)− P2(s)B2(s)R222(s)
−1B2(s)

⊤P2(s) = 0, s ∈ [t, T ],

(4.13)

with P2(T ) = L2.
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Finally, the feedback Stackelberg equilibrium in this case is

u∗(s, x) = T1(s, x, P1(s)x, P2(s)x, P1(s), P2(s))

=

[

R212(s)R222(s)
−1R112(s)

⊤ +R112(s)R222(s)
−1R212(s)

⊤ −R111(s)

]−1

×

[

B1(s)
⊤P1(s)−R212(s)R222(s)

−1B2(s)
⊤P1(s)−R112(s)R222(s)

−1B2(s)
⊤P2(s)

]

x,

v∗(s, x, u∗(s, x)) = T2(s, x, u
∗(s, x), P2(s)x, P2(s))

= −R222(s)
−1R212(s)

⊤u∗(s, x)−R222(s)
−1B2(s)

⊤P2(s)x

= −R222(s)
−1R212(s)

⊤

[

R212(s)R222(s)
−1R112(s)

⊤ +R112(s)R222(s)
−1R212(s)

⊤

−R111(s)

]−1
[

B1(s)
⊤P1(s)−R212(s)R222(s)

−1B2(s)
⊤P1(s)

−R112(s)R222(s)
−1B2(s)

⊤P2(s)

]

x−R222(s)
−1B2(s)

⊤P2(s)x, s ∈ [t, T ].

So far, we have not been able to obtain the solvability of Riccati equations (4.12) and (4.13).

However, a special case can be solved. Taking B1(·) = 0, R212(·) = 0 in (4.7) and (4.8). In this

case, there is only follower’s control v(·) in the drift term of (4.7). And there is a cross term in

the leader’s cost functional (In this situation feedback Nash equilibria and feedback Stackelberg

equilibria are different, see [1]). The two Riccati equations (4.12) and (4.13) are reduced to:







































Ṗ1(s) + C(s)⊤P1(s)C(s) +Q1(s) + P1(s)A(s) +A(s)⊤P1(s)

− P1(s)B2(s)R222(s)
−1B2(s)

⊤P2(s)− P2(s)B2(s)R222(s)
−1B2(s)

⊤P1(s),

− P2(s)B2(s)R222(s)
−1R112(s)

⊤R111(s)
−1R112(s)R222(s)

−1B2(s)
⊤P2(s) = 0,

R111(s) > 0, s ∈ [t, T ],

P1(T ) = L1,

(4.14)



























Ṗ2(s) + C(s)⊤P2(s)C(s) +Q2(s) + P2(s)A(s) +A(s)⊤P2(s)

− P2(s)B2(s)R222(s)
−1B2(s)

⊤P2(s) = 0,

R222(s) > 0, s ∈ [t, T ],

P2(T ) = L2.

(4.15)

According to Theorem 7.2, Chapter 6 of Yong and Zhou [11], we know that if R222(s) ≫

0, Q2(s) ≥ 0, s ∈ [t, T ], L2 ≥ 0 and R222 ∈ C([t, T ];Sm2), then the Riccati equation (4.15)

admits a unique solution over [t, T ]. And R222(s) ≫ 0 means R222(s) ≥ δI, a.e.s ∈ [t, T ] for

some δ > 0. Let R111(s) > 0, s ∈ [t, T ], and (4.15) admits a unique solution P2(·) ∈ C([t, T ];Sn).

Since (4.14) is a linear ordinary differential equation (ODE, in short) with bounded coefficients,

it follows that it has a unique solution P1(·).
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Remark 4.1. Since the analytical solutions to the two Riccati equations (4.12) and (4.13) are

difficult to discuss in general, we further discuss their numerical solutions with the certain par-

ticular coefficients. We are only considering one dimensional case here.

Let A(s) = 1, B1(s) = 1, B2(s) = 0.001, C(s) = 1, Q1(s) = 1, Q2(s) = 1, R111(s) =

1, R112(s) = 1, R212(s) = 0.001, R222(s) = 1, for s ∈ [t, T ], L1 = 1, L2 = 2, and t = 0, T = 1.

Then (4.12) and (4.13) become















Ṗ1(s) = 0.998−1
(

0.999999P1(s)− 0.001P2(s)
)

2
+ 2× 10−6P1(s)P2(s)

− 3P1(s)− 1, s ∈ [0, 1],

P1(1) = 1,

(4.16)



























Ṗ2(s) = 0.998−2 × 10−6(0.999999P1(s)− 0.001P2(s))
2

+ 2× 0.999999 × 0.998−1P2(s)(0.999999P1(s)− 0.001P2(s))

+ 10−6P2(s)
2 − 3P2(s)− 1, s ∈ [0, 1],

P2(1) = 2,

(4.17)

respectively. By making the time reversing transformation

r = 1− s, s ∈ [0, 1],

(4.16) and (4.17) are equivalent to















Ṗ1(r) = −
[

0.998−1(0.999999P1(r)− 0.001P2(r))
2 + 2× 10−6P1(r)P2(r)

− 3P1(r)− 1
]

, r ∈ [0, 1],

P1(0) = 1,

(4.18)



























Ṗ2(r) = −
[

0.998−2 × 10−6
(

0.999999P1(r)− 0.001P2(r)
)

2

+ 2× 0.999999 × 0.998−1P2(r)
(

0.999999P1(r)− 0.001P2(r)
)

+ 10−6P2(r)
2 − 3P2(r)− 1

]

, r ∈ [0, 1],

P2(0) = 2,

(4.19)

respectively. We give some numerical simulation and plot a figure.
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Figure 1: the numerical solutions to Riccati equations (4.18) and (4.19)

4.2 Case 2

Let b(·) = 0, B2(·) = 0, C(·) = 0,D1(·) = 0, λ(·) = 0,M11(·) = 0,M12(·) = 0,M21(·) =

0,M22(·) = 0, R122(·) = 0, R211(·) = 0, R212(·) = 0, q1(·) = 0, ρ11(·) = 0, ρ12(·) = 0, q2(·) =

0, ρ21(·) = 0, ρ22(·) = 0, N1 = 0, N2 = 0 in (4.1) and (4.2). Therefore, the state equation and

cost functionals are of the following form:
{

dx(s) =
[

A(s)x(s) +B1(s)u(s)
]

ds+D2(s)v(s)dW (s), s ∈ [t, T ],

x(t) = x,
(4.20)

and

J1(t, x;u(·), v(·)) =
1

2
E

{∫ T

t

[

x(s)⊤Q1(s)x(s) + u(s)⊤R111(s)u(s) + 2u(s)⊤R112(s)v(s)
]

ds

+ 〈L1x(T ), x(T )〉

}

,

J2(t, x;u(·), v(·)) =
1

2
E

{∫ T

t

[

x(s)⊤Q2(s)x(s) + v(s)⊤R222(s)v(s)
]

ds+ 〈L2x(T ), x(T )〉

}

.

(4.21)

Following the calculation steps as in Case 4.1, by assuming
{

R111(s) > 0,

D2(s)
⊤P2(s)D2(s) +R222(s) > 0, s ∈ [t, T ],
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we obtain the corresponding Riccati equations:















Ṗ1(s) + P1(s)A(s) +A(s)⊤P1(s) +Q1(s)

− P1(s)B1(s)R111(s)
−1B1(s)

⊤P1(s) = 0, s ∈ [t, T ],

P1(T ) = L1,

(4.22)















Ṗ2(s) + P2(s)A(s) +A(s)⊤P2(s) +Q2(s)− P2(s)B1(s)R111(s)
−1B1(s)

⊤P1(s)

− P1(s)B1(s)R111(s)
−1B1(s)

⊤P2(s) = 0, s ∈ [t, T ],

P2(T ) = L2.

(4.23)

According again Theorem 7.2, Chapter 6 of [11], we know that if R111(s) ≫ 0, Q1(s) ≥ 0, s ∈

[t, T ], L1 ≥ 0 and R111 ∈ C([t, T ];Sm1), then the Riccati equation (4.22) admits a unique

solution over [t, T ]. In the same way, if D2 ∈ C([t, T ];Rn×m2), R222 ∈ C([t, T ];Sm2), R222(s) ≫

0, Q2(s) ≥ 0, s ∈ [t, T ], L2 ≥ 0 and (4.22) admits a unique solution P1(·) ∈ C([t, T ];Sn), then

the Riccati equation (4.23) admits a unique solution over [t, T ].

Finally, the feedback Stackelberg equilibrium in this case is

u∗(s, x) = T1(s, x, P1(s)x, P2(s)x, P1(s), P2(s))

= −R111(s)
−1B1(s)

TP1(s)x,

v∗(s, x, u∗(s, x)) = T2(s, x, u
∗(s, x), P2(s)x, P2(s)) = 0, s ∈ [t, T ].

5 Concluding Remarks

Different from [3], we consider a finite-horizon Stackelberg stochastic differential game where

both the drift term and diffusion term of the state equation contain the leader’s and the follower’s

control variables. Due to the finite horizon feature, the verification theorem of the feedback

Stackelberg equilibrium consists of parabolic PDEs. An LQ problem is further researched. We

obtained the representation of the feedback Stackelberg equilibrium in two special cases, via

related Riccati equations. We discuss the analytical and numerical solutions to the Riccati

equations in some special cases. The general solvability of the corresponding Riccati equations

requires systematic study. We will consider this topic in the future research.
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[1] T. Başar, A. Haurie, Feedback equilibria in differential games with structural and modal

uncertainties, In: Advances in Large Scale Systems, J. B. Cruz Jr. (ed.), 1, 163-201, JAE

Press Inc., Connecticut, 1984.
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