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Abstract In this article, we utilise the non-relativistic

potential model to calculate the mass-spectra of all

bottom [bb][b̄b̄] and heavy-light bottom [bq][b̄q̄] (q=u,d)

tetraquark states in diquark-antidiquark approximation.
The four-body problem is reduced into two-body prob-

lems by numerically solving the Schrödinger equation

using a cornell-inspired potential along with relativistic

correction term. The splitting structure of the tetraquark

spectrum is described using spin-dependent terms (spin-
spin, spin-orbit, and tensor). We have successfully cal-

culated and predicted the masses of bottom mesons,

diquarks and tetraquarks. The masses of S and P-wave

tetraquark states [bb][b̄b̄] and [bq][b̄q̄], respectively, are
found to be between 18.7-19.4 GeV and 10.4-11.3 GeV,

in which the masses of S-wave [bb][b̄b̄] states are less

than the 2ηb, ηbΥ , and 2Υ threshold. Additionally, we

investigated the Zb(10610) and Zb(10650) states in the

current model and found that they are 150 MeV below
the BB∗ and B∗B∗ thresholds.
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1 Introduction

In the past two decades, many exotic hadrons were ex-

perimentally found and theoretically predicted, which

increase the interest in non-conventional hadron spec-

troscopy among researchers [1–4]. Exotic hadrons are
those which have quark combinations other than the

conventional baryons (qqq) and mesons (qq̄) [5,6]. Some

of these exotic states have quark contents such as qqq̄q̄,

qq̄qq̄, and qqqqq̄ etc., which are explained as multi-

quarks or loosely bound molecules [4]. In 2003, the
observation of the exotic state X(3872) aka χc1(3872)

in the decay process of B± → K±π+π−J/ψ, renewed

interest in exotic states, and as a consequence, many

other exotic states are still being observed experimen-
tally to this day [7–9]. Among all the discovered non-

conventional states some of the expected to have tetraquark

structure [10–14].

All the heavy tetraquarks QQQ̄Q̄, which often con-
tain a charm or bottom quarks, are of great interest to

tetraquark researchers. Among the heavy tetraquarks,

the recent discovery of all-charm tetraquarks X(6900)

and the study of all-bottom tetraquarks [bb][b̄b̄] have
been important in understanding quark confinement

inside the tetraquarks [15, 16]. In 2017, the CMS col-

laboration discovered Υ (1S) pair formation in pp col-

lisions at
√
s = 8 TeV and an excess at 18.4 GeV in

the Υ (1S)l−l+ decay channel was proposed in a sub-
sequent preliminary study [17, 18] and whereas RHIC

reported similar observation at 18.2 GeV in Cu+Au

collisions [19]. However, the LHCb collaboration hasn’t

found any evidence in the Υ (1S) µ− µ+ invariant mass
spectrum [16]. Hence, fully bottom tetraquark searches

required intensive efforts at the experimental frontier.

http://arxiv.org/abs/2108.06521v2
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While the double-heavy tetraquark sector sought the

observation of di-mesonic structure with ingredients bbūd̄

in 1988 [20]. In Refs. [21,22], a narrow tetraquark struc-

ture bbūd̄ was predicted with spin-parity JP = 1+ and

mass 10389 ± 12 MeV.

The Belle collaboration reported two charged bottomonium-

like resonancesZb(10610) and Zb(10650),(hence referred

to as Zb and Z ′
b) in the invariant mass distributions

e+e− → Υ (nS)π+π−, n = 1, 2, 3 and e+e− → hb(mP )π
+π−,

m = 1, 2 [23]. Both Zb and Z
′
b were predicted in the de-

cays of vector bottomonium Υ (10860) and afterwards

verified in the elastic B∗B̄∗ channels [24]. The decays

of the bottomonium-like tetraquarks (bound diquarks–
antidiquarks) into conventional bottomonium states and

a pion indicate that these resonances have a minimum

quark content of four quarks [25–29]. The study of dou-

ble bottom tetraquark states have been attempted in
various theoretical approaches like a quark model for-

malism [30], relativistic quark model [31], and quark co-

alescence model [32]. The study of all bottom tetraquark

states have been attempted in various approaches like

non-relativistic effective field theory [33], QCD sum rule
[34], the diquark-antiquark formalism [35], diffusion Monte

Carlo approach [36], an effective potential model [37]

etc. and predicted mass in the range of 18-18.8 GeV

[38].

Morover, the antiparticle of tetraquark b̄b̄ud with the

same quantum number JP = 1+, which has a mass of

10476 ± 24 ± 10 MeV and is stable against its decay

process as determined by Lattice QCD [39]. Other stud-
ies using the same methodology [40,41] also support the

existence of this firmly confined tetraquark states.

Indeed, under the diquark approximation the
bbūd̄ and bb̄ud̄ systems are equivalent but they

vary significantly when considered on a full color

basis, in which the bbūd̄ state is deeply bound,

while the bb̄ud̄ state is clearly unbound [30,42].

The focus of this paper is on the all-bottom tetraquak

[bb][b̄b̄], which we shall refer to as T4b, and the dou-

ble bottom tetraquark [bq][b̄q̄], (q=u,d) in a diquark-

antidiquark configuration. We have utilized the non rel-
ativistic model to obtain the mass-spectra of T4b and

bqb̄q̄ tetraquark states, by configuring four quark sys-

tem (QQQ̄Q̄) in two diquark [QQ]-antidiquark [Q̄Q̄]

system. The diquark [QQ] and antidiquark [Q̄Q̄] are

made up of two quarks (antiquarks) in antitriplet (triplet)
color states. After producing the mass-spectra of heavy-

heavy and heavy-light bottom mesons, the optimal set

of parameters for tetra-quarks was fitted. The Schrödinger

equation has been solved numerically using a Cornell-

like potential model and the relativistic correction term

O( 1
m
). Additionally, we included spin-dependent terms

(spin-spin, spin-orbit, and tensor) in order to analyse

the splitting of orbital and radial excitations.

The following is the structure of the current work: The

theoretical model and fitting procedures are presented

in Sec. II, followed by an introduction. Sec. III con-
tains mass spectra of mesons and tetraquarks, as well

as comparisons and discussions based on our model. We

concluded our work in Section IV.

2 Theoretical Model

We begin by introducing a non-relativistic model [37]

for spectroscopic analysis of hadronic bound states com-

prised of heavy-heavy and heavy-light quarks in the
diquark-antidiquark model [43]. We first describe the

four body system QQQ̄Q̄ as two-body diquark [QQ]

and antidiquark [Q̄Q̄] system. The mass-spectra of T4b
and bqb̄q̄ tetraquarks states have been calculated by
solving the Schrödinger equation numerically using code

originally developed by W. Lucha et al. [44] which is

based on the fourth-order Runge-Kutta (RK4) method.

The suitable method is to work in the center-of-mass

frame while solving two-body problems which are in-
cluded in the central potential [45]. To separate the an-

gular term and radial term of a wave function spherical

harmonics can be used. In the case of quarkonium and

tetraquarks, the kinetic energy of states may be repre-
sented in terms of the reduced mass µ = m1m2

m1+m2
, where

m1 and m2 are the masses of constituents.

In the spectroscopic study, of heavy quark system the

kinetic energy is comparatively lower than the rest mass
energy of the constituent quarks, hence the reasonable

approximation could be using of static potentials in

a non-relativistic model [2]. The spin-dependent terms

are incorporated perturbatively in the potential model.
This methodology generates four free optimal set of pa-

rameters which are fitted to mesons-spectra, later it

can be used in diquarks and tetraquarks. The Hamil-

tonian may be represented with an unperturbed one-

gluon exchange (OGE) potential [4] and the relativis-
tic mass-correction term V 1(rij). The simple two body

hamiltonian in the center of mass frame of mesons and

tetraquarks given as;

H =

2
∑

i=1

(mi +
p2i
2mi

)− TCM +

2
∑

j>i=1

V (rij) (1)
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Here mi is the constituent mass and pi is the relative

momentum of the system, while V (rij) is the interac-

tion potential. TCM is the kinetic energy of the center-

of-mass motion.

The time-independent radial Schrödinger [46,47] equa-
tion for two body problem can be expressed as;

[

− 1

2µ

(

d2

d(rij)2
+

2

rij

d

d(rij)
− L(L+ 1)

r2ij

)

+ V (rij)

]

×

ψ(rij) = Eψ(rij) (2)

where, L and E are the orbital quantum number and
energy eigenvalue respectively. By substituting ψ(rij) =

r−1
ij φ(rij) in Eq.(1) modifies to;

[

− 1

2µ

(

d2

dr2ij
+
L(L+ 1)

r2ij

)

+ V (rij)

]

φ(rij) = Eφ(rij)

(3)

The reliable and widely used potential model in the

spectroscopic study of heavy-quarkonium system is a
zeroth-order V (rij) Cornell-like potential [48]. The po-

tential VC+L(rij) represents a gluonic interaction term

between two (anti)quarks and (anti) di-quarks, referred

to as the coulomb term, as well as a linear term respon-

sible for quark confinement.

VC+L(rij) =
ksαs

rij
+ brij (4)

where, αs is known as the QCD running coupling con-

stant, ks is a color factor, b is string tension. We have in-

corporated the relativistic mass correction term V 1(rij)

initially developed by Y. Coma et al. [49], in the central
potential. The final form of central potential is given by;

V (rij) = VC+L(rij) +V 1(rij)

(

1

m1
+

1

m2

)

+O
(

1

m2

)

(5)

The non-perturbative form of relativistic mass correc-

tion term V 1(rij) is not yet known, but leading order

perturbation theory yields [49],

V 1(rij) = −CFCA

4

α2
s

(rij)2
(6)

where CF = 4
3 and CA = 3 are the Casimir charges of

the fundamental and the adjoint representation respec-

tively [49]. The relativistic mass correction is found to

be similar to the coulombic term of the static potential
when applied to the charmonium and to be one-fourth

of the coulombic term for bottomonium. Along with

the central interaction potential V (rij), we have also

incorporated spin-dependent interactions. These spin-

dependent terms are included perturbatively.

The non-relativistic form of kinetic energy is

given by KENR = p2/2m while semi-relativistic
form is KESR =

√

p2 +m2−m [50,51]. In our previ-

ous studies [51–57], we looked at the effect of relativistic

correction of the kinetic energy portion for heavy-light

mesons and di-mesonic molecule systems, and found
that the contribution of higher order terms contributes

less than 1% to the net strength of the kinetic energy

part. The proposed systems in this paper are consid-

erably heavier, thus we think that higher order kinetic

energy contribution should be extremely little and ig-
nored in our calculations. However, in Ref. [50], a

complete numerical study of the effects of rela-

tivistic corrections on the kinetic energy opera-

tor for QQq̄q̄ and QQQ̄Q̄ are presented.

2.1 Spin-dependent Terms

The contribution of spin-dependent potentials, i.e. a

spin-spin VSS(rij), spin-orbit VLS(rij), and tensor VT (rij),

that makes significant contributions particularly for ex-

cited states, is necessary to better understand the split-
ting between orbital and radial excitations of different

combinations of quantum numbers of T4b and bqb̄q̄. All

three spin-dependent terms are driven by the Breit-

Fermi Hamiltonian for one-gluon exchange [58,59], and
yields;

VSS(rij) = CSS(rij)S1 · S2, (7)

VLS(rij) = CLS(rij)L · S, (8)

VT (rij) = CT (rij)S12, (9)

The matrix element S1 · S2 acts on the wave function,

and generates a constant factor, but the VSS(rij) re-

mains a function of only rij , and the expectation values
of 〈S1 · S2〉 are available through a quantum-mechanical

formula [60].

〈S1 · S2〉 =
〈

1

2
(S2 − S2

1 − S2
2)

〉

(10)

where, S1 and S2 denote the spins of constituent quarks
for quarkonium and diquarks for tetraquarks, respec-

tively. CSS(rij) may be defined as follows:

CSS(rij) =
2

3m2
∇2VV (rij) = −8ksαsπ

3m2
δ3(rij), (11)
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A fair agreement may be achieved by adding spin-spin

interactions in a zero-order potentials using the Schrödinger

equation in heavy quarkonium spectroscopy by includ-

ing the spin-spin interaction using the artefact provid-

ing a new parameter σ instead of the Dirac delta. So
now VSS(rij) can be redefined as;

VSS(rij) = −8πksαs

3m2
(
σ√
π
)3 exp−σ2(rij)

2

S1 · S2, (12)

The expectation value of operator 〈L · S〉 is mainly de-
pendent on the total angular momentum J which is

calculated using the formula J = L+ S ;

〈L · S〉 =
〈

1

2
(J2 − L2 − S2)

〉

(13)

where, L denotes the total orbital angular momentum of

quarks and diquarks, respectively, in the case of quarko-

nium and tetraquark. The following equation may be

used to compute CLS(rij) ;

CLS(rij) = −3ksαsπ

2m2

1

(rij)2
− b

2m2

1

(rij)
(14)

The second component in the spin-orbit interaction is

called Thomas Precession, and it is proportional to the
scalar term. It is thought that confining interaction

originates from the Lorentz scalar structure. In higher

excited states, the contribution of the spin-tensor be-

comes quite important, which requires a little algebra

and may be calculated by;

VT (rij) = CT (rij)

(

(S1 · (rij))(S2 · (rij))
(rij)2

− 1

3
(S1 · S2)

)

(15)

where;

CT (rij) = −12ksαsπ

4m2

1

(rij)3
(16)

The results of (S1 · S2) may be obtained by solving

the diagonal matrix elements for the spin- 12 and spin-1

particles, as detailed in the following references [43,45].
To solve the tensor interaction, the simpler formulation

may be used ;

S12 = 12

(

(S1 · (rij))(S2 · (rij))
(rij)2

− 1

3
(S1 · S2)

)

(17)

and which can be redefined as ;

S12 = 4
[

3(S1 · ˆ(rij))(S2 · ˆ(rij))− (S1 · S2)
]

(18)

Pauli matrices and spherical harmonics with their cor-

responding eigenvalues may be used to achieve the re-

sults of the S12 term. The following conclusions are

valid for bottomonium and diquarks [61, 62] ;

〈S12〉 1
2⊗

1
2→S=1,l 6=0 = − 2l

2l+ 3
, forJ = l+ 1, (19)

= −2(l+ 1)

(2l− 1)
, forJ = l − 1, and (20)

= +2, forJ = l (21)

When l = 0 and S = 0 the 〈S12〉 always vanishes, but
it yields a non-zero value for excited states in mesons:

〈S12〉 = − 2
5 ,+2,−4 for J = 2, 1, 0, respectively. These

value are valid only for bottomonium and diquarks that

are specifically spin-half particles, but in the case of

tetraquarks when spin-1 diquarks are involved, it needs
a laborious algebra, which is not discussed in depth

here, rather one can refer Refs. [61,62] for detailed dis-

cussion. The results for tensor interaction of T4b will

obtained by the same formula which is used in case
of bottomonium except that the wavefunction obtained

here will be of spin 1 (anti)diquark.

Sd−d̄ = 12

(

(Sd · (rij))(Sd̄ · (rij))
(rij)2

− 1

3
(Sd · Sd̄)

)

(22)

= S14 + S13 + S24 + S23 (23)

where Sd is the total spin of the diquark, Sd̄ is the to-

tal spin of the antidiquark. When the two-body prob-

lem is solved to obtain the masses of the tetraquarks,
the interaction between the two (anti) quarks inside

the (anti) diquark is identical; because (anti) diquarks

are only considered in the S-wave state, only the spin-

spin interaction is relevant; the spin-orbit and tensor

are both identically zero. Because the tetraquark radial
wavefunction is obtained by treating the diquark and

antidiquark as two body problem, it is reasonable to as-

sume that the radial-dependence of the tensor term is

the same for these four [qq̄] interactions and can be ob-
tained using the radial wavefunction with Eq (14). The

following functional form for spin 1
2 particles does not

use any specific relation or eigenvalues, instead relying

on general angular momentum elementary theory [63].

Within this approximation, generalization of tensor op-
erator can be consider a sum of four tensor interac-

tion between four quark-antiquark pair as illustrated

in [62]. A thorough discussion on tensor interaction can

be found in Ref. [62].

2.2 Fitting Parameters

We have obtained the mass-spectra of mesons and tetra-

quarks for three set of fitting parameters. In the present
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Table 1 The fitting parameters for obtaining the mass spec-
tra of bbb̄b̄ and bqb̄q̄. The quark masses mb = 4.783 GeV, and
mq = 0.323 GeV have been taken from PDG [13].

Data Set αs σ (GeV) b (GeV 2)

I 0.3841 1.50 0.1708
II 0.70 0.3049 0.0946
III 0.3714 1.50 0.1445

work there are four fitting parameters (m, αs, b, σ) for

which the model mass (mf
i ) of the particular tetraquark

states have been calculated.

The best fitting parameters minimizes the difference

between an experimental mass (mexp
i ) and mass (mf

i )
obtained from model, which we will call discrepancy

and denoted as ∆ = [mexp
i −mf

i ]. The set of parameters

[13, 60] are varied in the range of ;

0.05 ≤ αs ≤ 0.70

0.01 GeV 2 ≤ b ≤ 0.40 GeV 2

0.05 GeV ≤ σ ≤ 1.50 GeV
4.00 GeV ≤ mb ≤ 5.00 GeV

0.3 GeV ≤ mq ≤ 0.350 GeV

From the above range, the fitted parameters are tab-

ulated in Table 1 to obtain the mass-spectra of mesons,

diquarks and tetraquarks. The mass-spectra of bottomo-
nium mesons (bb̄) and bottom (anti)diquark have been

obtained from data set I. Similarly, the mass-spectra of

B-mesons (bq̄) and heavy-light (anti)diquark obtained

from data set II. The mass-spectra of tetraquarks are
computed using data set III. Indeed the mass-spectra of

all bottom tetraquarks (T4b) are calculated using data

set I as well data set III.

3 Results and Discussion

3.1 Bottomonium/ B-mesons

To calculate the mass-spectra of diquarks and tetra-

quarks, first, we estimate the mass-spectra of bottomo-

nium states [bb̄] and B-mesons, whose results are tabu-

lated in Table 2 and Table 3 , respectively. The model’s
reliability and consistency have been tested by obtain-

ing the mass-spectra of heavy and heavy-light bottom

mesons. The SU(3) color symmetry allows only color-

less quark combination |QQ̄〉 to form any color singlet

state [60, 62], as in our case [bb̄] and [bq̄] are mesons
and exhibits |QQ̄〉 : 3⊗ 3̄ = 1⊕ 8 representation which

leads to carry a color factor ks = − 4
3 [43]. The masses of

the particular [bb̄] and [bq̄] states are obtained namely

M(bb̄) = 2mb + Ebb̄ + 〈V 1(rij)〉 (24)

and

M(bq̄) = mb +mq̄ + Ebq̄ + 〈V 1(rij)〉 (25)

The final masses obtained from the above expression
constitute the contributions from different spin-dependent

terms (spin-spin, spin-orbital and tensor) have tabu-

lated in Table 2 and Table 3. The mass-spectra of the

mesons produced in this study are compatible with the
experimental data available in the most recent updated

PDG [13]. Additionally, the current work’s findings are

consistent with those in Ref. [45], where the author

computed the mass-spectra of all-charm [ccc̄c̄], all-bottom

[bbb̄b̄], and heavy-light tetraquarks [QqQ̄q̄] (Q = b, c
and q = u, d).

There are a total of 15 bottomonium mesons (bb̄) pro-

duced from the model, all of which have masses fairly
closed to those predicted experimentally. In the case

of bottomonium S-wave states the discrepancy (∆) is

around 30MeV. Particularly, in vector states 13S1 where

spin-spin interaction contributes repulsive strength which
maximizes∆. Similarly, there are B-mesons whose masses

have also good agreement with experimentally predicted

data and have discrepancy (∆) nearly 30 MeV. At high

energy scale, discrepancy nearly 30 MeV’s between the

model’s mass and experimental data can be tolerated
and the fitting parameters are assumed as best fit.

Spin-dependent interactions are crucial in heavy quarko-

nium study specially in bottomonium and charmonium
because they allow for the consideration of QCD dy-

namics in the heavy quark scenario, which lies between

the perturbative and non-perturbative regimes [62]. The

spin-spin interaction’s involvement in orbitally excited

states is particularly intriguing.We notice that the masses
of P-wave states are more precise than those of S-wave

states owing to spin-orbit and tensor contributions (see

Table 2 and Table 3). The slighter contribution of the

relativistic term, which is greater for lighter quarks, al-
ters the spectrum by a few MeV’s.

3.1.1 Diquarks

A (anti)diquark is a pair of (anti)quarks that interact

with one another through gluonic exchange and can

form a bound state (qq) [64]. It’s important to remem-

ber that while constructing a diquark is a composite
(qq) system not a point-like object. The form factor,

which can be represented as the overlap integral of di-

quark wave functions, does indeed smear its interaction

with gluons. The Pauli principle should also be con-
sidered, which results in the following ground state di-

quark limitations. To comply the Pauli exclusion prin-

ciple, which states that diquarks with the same flavour
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Table 2 The mass-spectra of (1S-5S, 1P-3P and 1D-wave) bottomonium states [bb̄], obtained from Data Set I. (mexp
i )

corresponds to recent PDG [13].

N2S+1LJ JPC 〈E〉 〈VV 〉 〈VS〉 〈VSS〉 〈VLS〉 〈VT 〉 〈V (1)(rij)〉 〈K.E.〉 m
f
i m

exp
i Meson

11S0 0−+ -133.0 -757.8 165.5 -23.4 0 0 -2.2 482.3 9409 9398.7±2.0 ηb(1S)
13S1 1−− -132.9 -757.8 165.5 7.6 0 0 -2.3 451.6 9440 9460.30±0.26 Υ (1S)
21S0 0−+ 428.3 -352.1 404.5 -6.5 0 0 -1.1 382.5 9987 ... ...
23S1 1−− 429.6 -352.1 404.5 2.1 0 0 -0.9 374.4 9997 10023.26±0.31 Υ (2S)
31S0 0−+ 764.1 -258.2 596.3 -4.2 0 0 -0.7 430.4 10325 ... ...
33S1 1−− 764.1 -258.2 596.3 1.4 0 0 -0.7 425.1 10331 10355.2±0.5 Υ (3S)
41S0 0−+ 1034.1 -213.1 761.0 -3.2 0 0 -0.5 489.5 10596 ... ...
43S1 1−− 1034.1 -213.1 761.0 1.0 0 0 -0.5 485.4 10601 10579.4±1.2 Υ (4S)
51S0 0−+ 1270.4 -185.4 909.1 -2.7 0 0 -0.4 549.4 10833 ... ...
53S1 1−− 1270.4 -185.4 909.1 0.9 0 0 -0.4 546.1 10837 ... ...
13P0 0++ 335.3 -313.6 329.1 0.8 -28.0 -10.8 -1.2 319.2 9863 9859.44±0.42 χb0(1P )
13P1 1++ 335.3 -313.6 329.1 0.8 -14.0 5.4 -1.2 319.2 9893 9892.78±0.26 χb1(1P )
11P1 1+− 335.3 -313.6 329.1 -2.5 0 0 -1.2 322.7 9898 9899.3±0.8 hb(1P )
13P2 2++ 335.3 -313.6 329.1 0.8 14.0 -1.0 -1.2 319.2 9915 9912.21±0.26 χb2(1P )
23P0 0++ 679.2 -227.2 529.5 0.7 -23.3 -8.7 -0.7 376.4 10213 10232.5±0.4 χb0(2P )
23P1 1++ 679.2 -227.2 529.5 0.7 -11.6 -8.7 -0.7 377.1 10239 10255.46±0.22 χb1(2P )
21P1 1+− 679.2 -227.2 529.5 -2.3 0 0 -0.7 380.2 10243 - -
23P2 2++ 679.2 -227.2 529.5 0.7 11.6 -0.8 -0.7 377.1 10257 10268.65±0.22 χb2(2P )
33P0 0++ 955.3 -187.1 699.7 0.6 -21.4 -8.0 -0.5 442.4 10492 ... ...
33P1 1++ 955.3 -187.1 699.7 0.6 -10.7 4.0 -0.5 442.4 10515 10513.42±0.41 χb1(3P )
31P1 1+− 955.3 -187.1 699.7 -2.0 0 0 -0.5 445.4 10519 ... ...
33P2 2++ 955.3 -187.1 699.7 0.6 10.7 -0.8 -0.5 442.4 10532 10524.02±0.57 χb2(3P )
13D1 1−− 576.4 -213.0 455.2 0.09 -6.2 -1.2 -0.9 333.7 10135 - -
13D2 2−− 576.4 -213.0 455.2 0.09 -2.0 1.2 -0.9 333.7 10141 10163.7±1.4 Υ2(1D)
11D2 2−+ 576.4 -213.0 455.2 -0.2 0 0 -0.9 333.7 10142 - -
13D3 3−− 576.4 -213.0 455.2 0.09 -4.2 -0.3 -0.9 333.7 10146 - -

Table 3 The mass-spectra of (1S-3S, 1P-3P and 1D-wave) B-mesons [bq̄], obtained from Data Set II. (mexp
i ) corresponds to

recent PDG [13].

N2S+1LJ JPC 〈E〉 〈VV 〉 〈VS〉 〈VSS〉 〈VLS〉 〈VT 〉 〈V (1)(rij)〉 〈K.E.〉 m
f
i m

exp
i Meson

11S0 0−+ 207.3 -427.8 286.0 -9.2 0 0 -7.1 358.4 5304 5279.65±0.12 B±

13S1 1−− 207.3 -427.8 286.0 3.0 0 0 -6.9 346.6 5317 5324.70±0.21 B∗

21S0 0−+ 774.4 -241.3 599.6 -3.0 0 0 -4.3 416.5 5877 - -
23S1 1−− 771.4 -241.3 599.6 1.0 0 0 -4.0 415.0 5881 - -
31S0 0−+ 1173.2 -185.4 846.3 -2.0 0 0 -2.9 513.9 6277 - -
33S1 1−− 1173.2 -185.4 846.3 0.7 0 0 -2.6 512.3 6281 - -
13P0 0++ 626.3 -210.5 489.1 1.1 -28.0 -14.1 -4.7 346.4 5691 - -

13P1 1++ 623.7 -210.5 489.1 1.1 -14.0 6.9 -4.7 344.2 5723 5725.9+2.5
−2.7 B1(5721)+

11P1 1+− 623.7 -210.5 489.1 -3.3 0 0 -4.7 348.7 5726 5726.1±1.3 B1(5721)0

13P2 2++ 623.7 -210.5 489.1 1.1 14.0 -1.0 -4.7 344.1 5743 5739.5±0.7 B∗
2 (5747)

0

23P0 0++ 1040.0 -160.2 750.4 0.7 -27.3 -12.6 -3.4 449.3 6107 - -
23P1 1++ 1042.1 -160.2 750.4 0.7 -13.6 -6.3 -3.4 451.2 6141 - -
21P1 1+− 1042.1 -160.2 750.4 -2.1 0 0 -3.4 454.2 6146 - -
23P2 2++ 1042.1 -160.2 750.4 0.7 13.6 -1.2 -3.4 451.3 6161 - -
33P0 0++ 1391.2 -134.5 974.0 0.5 -27.1 -12 -2.4 551.3 6458 - -
33P1 1++ 1391.2 -134.5 974.0 0.5 -13.5 -6.0 -2.4 551.2 6490 - -
31P1 1+− 1391.2 -134.5 974.0 -1.6 0 0 -2.4 553.2 6495 - -
33P2 2++ 1391.2 -134.5 974.0 0.5 13.5 -1.2 -2.4 551.2 6510 - -
13D1 1−− 894.2 -150.5 649.2 0.3 -1.9 -1.8 -4.0 395.2 5996 - -
13D2 2−− 894.2 -150.5 649.2 0.3 -0.6 1.8 -4.0 395.2 6002 - -
11D2 2−+ 894.2 -150.5 649.2 -1.1 -1.9 -1.8 -4.0 397.0 5999 - -
13D3 3−− 894.2 -150.5 649.2 0.3 1.2 -0.5 -4.0 395.2 6001 - -
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Table 4 The masses vector (anti)diquarks and energy eigenvalue from present work and comparison with other prior works.
Units are in (MeV).

Diquark 〈E0〉 Ours [45] [68] [69, 70] [71, 72] [73, 74]

bb 78.3 9641 9643 9845 9718 9850 8670±690
bq 235.7 5331 5339 5465 5381 5130±110 5080±40

quark should have a spin of 1, the diquark’s wavefunc-

tion must be antisymmetric [60]. The (qq’) diquark,
which is made of quarks of various flavours, may have

spins S = 0,1 (scalar [qq’], axial vector {qq′} diquarks),

while the {qq} diquark, which is composed of quarks of

the same flavour, can only have spin S = 1. Because of
the stronger attraction owing to the spin–spin interac-

tion, the scalar S diquark is frequently referred to as a

“good” diquark, while the heavier axial vector diquark

is referred to as a “bad” diquark [2].

To produce the most compact diquark, we will utilise

the ground state (13S1) axial vector diquarks {bb} or

{bq}, which have no orbital or radial excitations. Ev-

erything done for quark-quark interactions is assumed
to be identical to antiquark-antiquark interactions, with

the exception that colors are replaced by anticolors. We

utilised the same methodology as in the case of the bot-

tom mesons to get the mass-spectra of (anti)diquarks.

According to QCD color symmetry, two quarks are com-
bined in the fundamental (3) representation to obtain

the diquark, presented by 3⊗ 3 = 3̄⊕ 6. Moreover, an-

tiquarks are combined in the 3̄ representation and can

be presented as 3̄⊗ 3̄ = 3⊕ 6̄ [43, 60]. The diquark-
antidiquark approximation is significant because

it reduces a complex four-body problem to a

simple two-body problem [65, 66]. The hamilto-

nian, on the other hand, ceases replicating the

meson spectra when doing the full four-body
basis treatment [67]. The explanation for this

is simple: the 3 ⊗ 3̄ color coupling can be trans-

formed into a 1⊗1 state, and also a 8⊗8 state. The

QCD color symmetry produces a color factor ks = − 2
3

in antitriplet state and makes the short distance part

( 1
rij

) of the interaction attractive [60].

We compared the diquark masses acquired in this work

to those obtained in the other prior investigations men-
tioned in Table 4. The diquark masses are investigated

in Ref. [68] using the so-called Schwinger-Dyson and

Bethe-Salpeter approach, which account for kinetic en-

ergy as well as splittings in the spin-spin, spin-orbit,
and tensor interactions. The masses of diquarks calcu-

lated in this research are consistent with [45] and are

less than those reported in Ref. [68]. Relativistic mod-

els, such as those presented in Refs. [69–71], all predict

larger diquark masses, whereas models based on QCD

sum rules, such as those presented in Refs. [72–74] all
predict smaller diquark masses. The discrepancies may

be due to the addition of new and updated data in this

study.

3.2 Tetraquark

Tetraquarks are color singlet states made up of a di-

quark and an antidiquark in color antitriplet 3̄ and

triplet 3 configurations respectively, that are held to-

gether by color forces [70]. The four-body non-relativistic
calculation is simplified to a two-body calculation using

this approximation [43,45,70]. A T4b and bqb̄q̄ are color

singlet states and yield a color factor ks = − 4
3 . The

13S1 diquark-antidiquark are combined to form color
singlet tetraquark [62], and that can be represented as;

|QQ|3 ⊗ |Q̄Q̄|3̄〉 = 1⊕ 8. The mass-spectra of all bot-

tom (T4b) and heavy-light bottom tetraquarks (bqb̄q̄)

have been obtained with the same formulation as in

the case of mesons, namely;

M(T4b) = mbb +mb̄b̄ + E[bb][b̄b̄] + 〈V 1(rij)〉 (26)

and

Mbqb̄q̄ = mbq +mb̄q̄ + E[bq][b̄q̄] + 〈V 1(rij)〉 (27)

The masses of T4b and bqb̄q̄ arise mostly from the cornell

potential and the relativistic correction term 〈V 1(r)〉.
All spin-dependent terms have been computed for spin-

1 diquarks and antiquarks that combine to produce a

color singlet tetraquark with spin ST = 0,1,2. The mass-

spectra of radial and orbital excitations are obtained by

coupling the total spin ST with the total orbital angu-
lar momentum LT , which results in the total angular

momentum JT . To get the tetraquark’s total spin ST

and quantum number JPC , we shall utilise notations

for the spins of a diquark Sd and an antidiquark Sd̄.
The interaction of ST with the orbital angular momen-

tum LT results in the formation of a color singlet state

ST ⊗ LT .

|T4Q〉 = |Sd, Sd̄, ST , LT 〉JT
(28)

To find out the quantum numbers (JPC) of the tetra-

quark states, one can use the following formula; PT =
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Table 5 The mass-spectra of S and P-wave T4b tetraquark states, obtained from Data Set I whereas mth corresponds to
mass of two meson threshold.

N2S+1LJ JPC 〈E〉 〈VV 〉 〈VS〉 〈VSS〉 〈VLS〉 〈VT 〉 〈V (1)(rij)〉 〈K.E.〉 m
f
i mth Threshold

11S0 0++ -532.8 -1344 95.4 -30.1 0 0 -2.7 745.3 18719 18798 ηb(1S)ηb(1S)
13S1 1+− -532.8 -1344 95.4 -15.1 0 0 -2.7 730.4 18734 18859 ηb(1S)Υ (1S)
15S2 2++ -532.8 -1344 95.4 15.2 0 0 -2.7 701.0 18764 18920 Υ (1S)Υ (1S)
21S0 0++ 164.2 -589.5 277.1 -5.2 0 0 -1.0 481.5 19441 19998 ηb(2S)ηb(2S)
23S1 1+− 164.2 -589.5 277.1 -2.6 0 0 -1.0 478.5 19443 ... ...
25S2 2++ 164.2 -589.5 277.1 2.6 0 0 -1.0 473.1 19448 ... ...
31S0 0++ 480.1 -427.4 435.3 -3.1 0 0 -0.6 475.3 19759 ... ...
33S1 1+− 480.1 -427.4 435.3 -1.5 0 0 -0.6 473.7 19760 ... ...
35S2 2++ 480.1 -427.4 435.3 1.5 0 0 -0.6 470.6 19764 ... ...
11P1 1−− 105.1 -464.4 225.5 -5.8 0 0 -1.2 350.0 19381 ... ...
13P0 0−+ 105.1 -464.4 225.5 -2.9 -25.6 -18.1 -1.2 391.0 19340 19258 ηb(1S)χb0(1P )
13P1 1−+ 105.1 -464.4 225.5 -2.9 -12.8 9.0 -1.2 350.7 19380 19292 ηb(1S)χb1(1P )
13P2 2−+ 105.1 -464.4 225.5 -2.9 12.8 -1.8 -1.2 336.0 19395 19311 ηb(1S)χb2(1P )
15P1 1−− 105.1 -464.4 225.5 2.9 -38.4 -12.7 -1.2 392.0 19338 19298 ηb(1S)hb(1P )
15P2 2−− 105.1 -464.4 225.5 2.9 -12.8 12.7 -1.2 341.0 19390 19353 Υ (1S)χb1(1P )
15P3 3−− 105.1 -464.4 225.5 2.9 25.6 3.6 -1.2 319.0 19412 19372 Υ (1S)χb2(1P )

Table 6 The mass-spectra of S and P-wave tetraquark states T4b, obtained from Data Set I+III whereas mth corresponds
to mass of two meson threshold.

N2S+1LJ JPC 〈E〉 〈VV 〉 〈VS〉 〈VSS〉 〈VLS〉 〈VT 〉 〈V (1)(rij)〉 〈K.E.〉 m
f
i mth Threshold

11S0 0++ -503.4 -1252.3 83.4 -28.3 0 0 -2.3 693.2 18749 18798 ηb(1S)ηb(1S)
13S1 1+− -503.4 -1252.3 83.4 -14.1 0 0 -2.0 679.3 18764 18859 ηb(1S)Υ (1S)
15S2 2++ -503.4 -1252.3 83.4 14.0 0 0 -2.3 651.2 18792 18920 Υ (1S)Υ (1S)
21S0 0++ 136.1 -531.0 245.1 -4.7 0 0 -0.8 427.5 19414 19998 ηb(2S)ηb(2S)
23S1 1+− 136.1 -531.0 245.1 -2.3 0 0 -0.8 425.6 19416 ... ...
25S2 2++ 136.1 -531.0 245.1 2.3 0 0 -0.8 420.2 19421 ... ...
31S0 0++ 422.4 -379.4 387.3 -2.8 0 0 -0.5 417.5 19701 ... ...
33S1 1+− 422.4 -379.4 387.3 -1.4 0 0 -0.5 416.5 19703 ... ...
35S2 2++ 422.4 -379.4 387.3 1.4 0 0 -0.5 417.5 19706 ... ...
11P1 1−− 84.2 -428.2 200.0 -5.0 0 0 -0.9 318.0 19361 ... ...
13P0 0−+ 84.2 -428.2 200.0 -2.5 -21.5 -15.2 -0.9 316.2 19327 19258 ηb(1S)χb0(1P )
13P1 1−+ 84.2 -428.2 200.0 -2.5 -10.4 7.7 -0.9 316.0 19361 19292 ηb(1S)χb1(1P )
13P2 2−+ 84.2 -428.2 200.0 -2.5 10.5 -1.5 -0.9 316.0 19373 19311 ηb(1S)χb2(1P )
15P1 1−− 84.2 -428.2 200.0 2.5 -32.4 -11.1 -0.9 311.0 19325 19298 ηb(1S)hb(1P )
15P2 2−− 84.2 -428.2 200.0 2.5 -11.2 11.0 -0.9 311.2 19369 19353 Υ (1S)χb1(1P )
15P3 3−− 84.2 -428.2 200.0 2.5 21.7 -3.0 -0.9 311.0 19388 19372 Υ (1S)χb2(1P )

Table 7 The mass-spectra of S and P-wave bqb̄q̄ tetraquark states, obtained from Data Set II+III, whereas mth corresponds
to mass of two meson threshold.

N2S+1LJ JPC 〈E〉 〈V
(0)
V 〉 〈V

(0)
S 〉 〈V

(1)
SS 〉 〈V

(1)
LS 〉 〈V

(1)
T 〉 V (1)(r) m

f
i mth Threshold

11S0 0++ -181.1 -764.0 135.0 -50.0 0 0 -2.0 10429 10558 B±B±

13S1 1+− -181.1 -764.0 135.0 -25.5 0 0 -2.0 10454 10603 B±B∗

15S2 2++ -181.1 -764.0 135.0 25.4 0 0 -2.0 10505 10648 B∗B∗

21S0 0++ 339.1 -340.0 341.0 -13.3 0 0 -0.9 10987 ... ...
23S1 1+− 339.1 -340.0 341.0 -6.6 0 0 -0.8 10995 ... ...
25S2 2++ 339.1 -340.0 341.0 6.6 0 0 -0.9 11009 ... ...
31S0 0++ 637.4 -247.2 507.0 -8.4 0 0 -0.6 11290 ... ...
33S1 1+− 637.4 -247.2 507.0 -4.2 0 0 -0.6 11295 ... ...
35S2 2++ 637.4 -247.2 507.0 4.2 0 0 -0.6 11303 ... ...
11P1 1−− 262.0 -305.0 277.0 -5.5 0 0 -0.8 10918 ... ...
13P0 0−+ 262.0 -305.0 277.0 -2.7 -23.0 -17.4 -0.8 10881 11006 B±B1(5721)+

13P1 1−+ 262.0 -305.0 277.0 -2.7 -11.5 8.7 -0.8 10918 ... ...
13P2 2−+ 262.0 -305.0 277.0 -2.7 11.5 1.7 -1.0 10931 ... ...
15P1 1−− 262.0 -305.0 277.0 2.7 -34.4 -12.2 -0.8 10880 ... ...
15P2 2−− 262.0 -305.0 277.0 2.7 -11.5 -12.2 -1.0 10928 ... ...
15P3 3−− 262.0 -305.0 277.0 -5.5 23.0 -3.4 -0.8 10946 ... ...



9

Table 8 Comparison of the tetraquarks masses from the present work with others

bbb̄b̄ State JPC Ours [45] [75] [76] [77] [78] [79] [80] [81] [82] [83]

11S0 0++ 18719 18723 18754 19322 18826±25 ... 19329 19255 19122-19344 18748 19178
13S1 1+− 18734 18738 18808 19329 ..... 19247 19373 19251 19184-19354 18828 19226
15S2 2++ 18764 18768 18916 19341 18956±25 19249 19387 19262 19236-19374 18900 19236
11P1 1−− 19361 ... ... ... ... ... ... ... ... 19281 ...
13P0 0−+ 19327 ... ... ... ... ... ... ... ... 19288 ...
13P1 1−+ 19361 ... ... ... ... ... ... ... ... ... ...
13P2 2−+ 19373 ... ... ... ... ... ... ... ... ... ...
15P1 1−− 19325 ... ... ... ... ... ... ... ... ... ...
15P2 2−− 19369 ... ... ... ... ... ... ... ... ... ...
15P3 3−− 19388 ... ... ... ... ... ... ... ... ... ...

bqb̄q̄ State JPC Ours [26] [45] [70] [84] [85] [86] [87]

11S0 0++ 10429 ... 10445 10473 10469 10462 10471 10143
13S1 1+− 10454 ... 10472 10494 10453 ... 10492 10233
15S2 2++ 10505 10520 10523 10534 .... ... 10534 10413
11P1 1−− 10918 10900 10936 10807 ... 10819 10807 ...
13P0 0−+ 10881 ... ... ... ... ... 10836 ...
13P1 1−+ 10918 ... ... 10939 ... ... 10847 ...
13P2 2−+ 10931 ... ... ... ... ... 10854 ...
15P1 1−− 10880 ... ... 10944 ... ... 10827 ...
15P2 2−− 10928 ... ... ... ... ... 10856 ...
15P3 3−− 10946 ... ... ... ... ... 10858 ...

(−1)LT and CT = (−1)LT+ST .

The masses of low-lying S-wave T4b and bqb̄q̄ states are

anticipated to be in the range of 18-20 GeV and 10-11

GeV, respectively [88], in the current study, the masses
are also found to be in this range. As shown in Table 5,

Table 6, and Table 7, the compactness of the 1S-states is

mostly due to the coulomb interaction. This indicates

that one-gluon exchange is the dominant mechanism
behind the strong interaction between diquarks and an-

tidiquarks, which results in a negative energy eigenvalue

E. The contribution of the confinement term increases

with the increase in radial and orbital states.

Within the specific tetraquark mass-spectrum, the at-

tractive strength of the spin-spin interaction decreases

as the number of radial and orbital excited states in-

creases. In this instance, we must bear in mind that
the factors originating from S1 and S2 are greater for

the coupling of two spin-1 particles than for the cou-

pling of two spin- 12 particles. It is worth noting that,

despite the fact that the spin-dependent terms have

been suppressed by a factor 1
m2

qq
, one would anticipate

them to be less than the equivalent terms in qq̄ mesons.

The color interaction brings diquark and antidiquark so
close together that the suppression caused by this com-

ponent 1
m2

qq
, is swamped by the massive suppression at

the system’s origin. On the other hand, spin-orbital and

the tensor interactions becomes more important when

radial or orbital excitations are involved. When the rel-

ativistic term V 1(rij) is incorporated in the central po-

tential, the mass spectrum shifts by a few MeVs.

The masses of 1S-wave all-bottom tetraquarks (T4b) ob-

tained from data Sets I and I+III are 100-200 MeV be-
low the two-meson threshold, implying that these states

may be accounted by the two meson thresholds stated

in Tables 5 and 6. Initial predictions for bbb̄b̄ below the

2Υ threshold were made in Ref. [89], and these were
confirmed by subsequent works [33, 34, 88].

In Ref. [90], the authors used a first-principles

lattice non relativistic QCD method to exam-

ine a bbb̄b̄ tetraquark bound state and found no
evidence for the mass below the lowest non-

interacting bottomonium-pair threshold in the

0++, 1+−, and 2++ channels. Additionally, in Ref.

[14], the author employs a model with only chro-
momagnetic interactions and finds an unbound

tetraquark and the same conclusion was drawn

within non-relativistic [91] and semi-relativistic

quark-model studies [50]. The existence of all-

bottom four-quark states is not ruled out by
these result, but it draw attention to the gap

between the diquark approximation and a com-

pletes treatment of the color basis. The author

of Ref. [75], finds that 0++, 1+−, and 2++ tetraquarks
are confined by 44, 51, and 5 MeV, respectively,

utilising a phenomenologically motivated non con-
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fining potential between the pointlike diquark

and antidiquark. A tetraquark candidate has been

identified about 300 MeV below the experimen-

tal 2ηb threshold in the QCD sum-rules frame-

work [92]. Gang Yang et al., in Ref. [93], predicted
that the mass of the 0++ tetraquark bbb̄b̄ state would

be lower than the 2ηb threshold whereas in Ref. [34], a

tetraquark candidate has been found between the ex-

perimental 2ηb and 2Υ thresholds.

Other S-wave candidates include ηbΥ and 2Υ for 1+−

and 2++, respectively, which have a mass discrepancies

∆ of less than 200 MeV with a two-meson threshold.
The lowest and greatest discrepancies for 1S-wave be-

tween the model’s mass and the two-meson threshold

are 49 MeV and 156 MeV, respectively, for data sets

I and III. The discrepancy (∆) is lower in the mass-
spectra obtained by data set III as compared to data

set I which shows the fitting parameters from data set

III are accurately fitted. Thus, the authors find that

the T4b tetraquark state may be either below or be-

tween the 2ηb and 2Υ thresholds (where the thresholds
were established using experimental meson masses in

both instances).

Similarly, the P-wave masses match fairly well to the
model’s mass and two-meson threshold. As shown in

Table 8, due to the scarcity of orbitally excited data,

this research, in conjunction with others, seems to be

helpful for studying orbitally excited states. In the P-

wave states, where the contribution of spin-orbit and
tensor terms is produced, the difference (∆) between

two-meson thresholds and the model’s mass falls to

less than 100 MeV. The two meson ηbχb1 threshold,

which contains the quantum number (1−+), and the
Υχb2 threshold, which contains the quantum number

(3−−), have the greatest and smallest deviations from

the two-meson threshold, respectively, of 88 MeV and

16 MeV.

The masses of S-wave heavy-light bottom tetraquark

states bqb̄q̄, are in good agreement with B±B±, B±B∗,

and B∗B∗ meson thresholds, with a difference of less

than 200 MeV between the two meson thresholds (mth)
and the model’s mass (mf

i ). The two most discussed

bottom resonances,Zb(10610) and Zb(10650), both with

(1+−), may be recognised as possible candidates for

bqb̄q̄ states [25], which have a mass variation of 150

MeV from the model’s mass (mf
i ).

4 Conclusion

In the present work we have calculated the mass-spectra

of all-bottom [bb][b̄b̄] and heavy-light bottom [bq][b̄q̄]

tetraquarks, in a non-relativistic framework that in-
cludes the cornell like potential along with the relativis-

tic correction term to the potential and spin-dependent

interactions. Tetraquarks have been considered to be

comprised of axial-vector diquarks and antidiquarks in

a color antitriplet-triplet (3̄c − 3c) configuration. We
first estimated the masses of bottom mesons to fit the

model’s free parameters, and then calculated the masses

of axial diquarks to get the mass spectra of correspond-

ing tetraquarks without violating the Pauli exclusion
principle.

In this way we predict the masses of diquarks and tetra-

quarks which have atleast one bottom quark in the sub-

structure. The doubly hidden-bottom tetraquark states
have a considerably greater energy than ordinary bot-

tomonium mesons and they may be differentiated ex-

perimentally from ordinary qq̄ states. We explored the

two most discussed Zb(10610) and Zb(10650) states with
quantum numbers (1+−), which are predicted as tetra-

quark [27] and as molecule [25]. In the present study,

the mass of the tetraquark state bqb̄q̄ (1+−) is about 150

MeV distant from the experimental mass of these Zb

states. When compared to the BB∗ and B∗B∗ states,
the Zb(10610) and Zb(10650) states are just a few MeV

above the two-meson threshold, indicating that these

states should have a tetraquark structure above the

threshold. To get a definite conclusion about the sub-
structure of these Z ′

bs states, one must investigate their

decay properties, which will be the subject of future ex-

tension work to this study.

Due to the fact that fully bottom tetraquark states bbb̄b̄
are heavier than heavy-light tetraquark states (bqb̄q̄),

and they are likely to be recognised below two meson

thresholds, namely 2ηb, 2Υ or ηbΥ with masses ranging

from 18.7 GeV to 19 GeV. Our findings are in excel-
lent accord with other non-relativistic models and other

studies cited in the literature [45, 75, 82, 83, 86].

The production of the (QQQ̄Q̄), states is very challeng-

ing since it necessitates the creation of two heavy quark
pairs. However, new observations of the J/ψΥ [94], pair

and simultaneous ΥΥ [17] events have given some in-

sight on how these doubly hidden-charm/bottom tetra-

quarks are produced. As a result, the 2ηb, ηbΥ and 2Υ
channels may be excellent candidates for searching for

the doubly hidden-bottom states bbb̄b̄, and LHCb, D0,

and CMS could be suitable platforms.
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