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Fully Distributed Nash Equilibrium Seeking for High-order Players

with Bounded Controls and Directed Graphs

Maojiao Ye, Lei Ding, Shengyuan Xu

Abstract—This paper explores distributed Nash equilibrium
seeking problems for games in which the players have limited
knowledge on other players’ actions. In particular, the involved
players are considered to be high-order integrators with their
control inputs constrained within a pre-specified region. A linear
transformation for the players’ dynamics is firstly utilized to
facilitate the design of bounded control inputs incorporating
multiple saturation functions. By introducing consensus protocols
with adaptive and time-varying gains, the unknown actions for
players are distributively estimated. Then, a fully distributed
Nash equilibrium seeking strategy is exploited, showcasing its
remarkable properties: i) ensuring the boundedness of control
inputs; ii) avoiding any global information/parameters; and iii)
allowing the graph to be directed. Based on Lyapunov stability
analysis, it is theoretically proved that the proposed distributed
control strategy can lead all the players’ actions to the Nash
equilibrium. Finally, an illustrative example is given to validate
effectiveness of the proposed method.

Index Terms—Nash equilibrium; actuator limitation; directed
networks; games.

I. INTRODUCTION

As a fundamental and key issue to be addressed for game

theoretical applications to large-scale distributed systems,

Nash equilibrium seeking in neighboring-communication envi-

ronment has attracted remarkable attention in the past several

years from researchers in the control community [1]– [14].

For practical control engineering problems, communication

structure (i.e., undirected or directed), system dynamics and

actuator limitations are all critical factors that may seriously

influence control design and implementation. In this regard,

to promote the penetration of game theoretical approaches for

distributed control systems, it is essential to develop distributed

Nash equilibrium seeking strategies taking these factors into

full consideration. In spirit of broadening the applicable fields

of distributed games, some efforts have been made to deal

with high-order players, e.g., see [4]–[6]. However, for games

with high-order players, there have been few works regarding

actuator limitations and fully distributed designs under directed

graphs.

It is well recognized that, due to hard physical constraints, it

is inevitable for players to suffer from the limitation of control

inputs/actuation in practical distributed game applications,

which probably causes degradation or even damage of control
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performance. In order to address this issue, [7] constructed

bounded controls for first- and second-order integrator-type

systems to find the Nash equilibrium. Moreover, high-order

players were considered in [10]. Backstepping techniques

were employed for the control design and the “explosion

of terms” induced by backstepping was addressed through

a fixed-time sliding mode observer. However, the seeking

strategies [7], [10] contain centralized control gains whose

explicit quantifications require the knowledge on the network

structure, the size of the game as well as the players’ objective

functions.

As centralized information can hardly be obtained by every

engaged player in practical situations, the tuning of control

gains is in fact a matter of trial and error. In particular,

when communication structures change or there is any player

joining/leaving the game [3], the control gains for the designed

strategies may need to be re-quantified, which implies the

loss of plug and play property. To address this problem, [3],

[8], [9] found some ways out by proposing adaptive designs

for control gains and thus developed fully distributed control

laws for games in neighboring communication environment.

Different from the two-hop communication based algorithms

constructed in [8], [9], only one-hop communication is needed

in [3]. However, it should be pointed out that the adaptive

designs in [3], [8], [9] is only applicable for undirected graphs

and cannot be directly extended to deal with directed graphs.

To the best of the authors’ knowledge, how to achieve fully

distributed Nash equilibrium seeking under directed graphs is

still an open and challenging issue. Furthermore, it is noted

that, practical actuator limitations introduce high nonlinearity

and bring some difficulties in distributed control design for

games, but they are not taken into account in [3], [8], [9].

Therefore, it is a non-trivial and challenging task to establish

Nash equilibrium seeking strategies under bounded controls

in a fully distributed manner, especially when communication

topologies are directed.

Motivated by the above observations, this paper aims to

develop fully distributed control laws for high-order players,

which can accommodate actuator limitations and directed

communication structures. Highlighting the improvements for

the existing works, the contributions and novelties of this paper

are stated as follows.

i) This paper solves games with high-order players whose

control inputs are required to bounded in a fully dis-

tributed fashion. By employing a linear transformation

to convert the players’ dynamics, the control inputs with

multiple saturation functions are constructed. Through a

synthesis of an optimization method, a consensus algo-

rithm and time-varying/adaptive gain designs, a fully dis-

tributed Nash equilibrium seeking strategy with bounded
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control inputs is established.

ii) As first- and second-order dynamics are special cases

of high-order ones, the presented methods provide al-

ternative approaches for the problem considered in [7],

while covering more general cases and removing the

requirements on any global information. In addition, the

presented methods can accommodate the heterogeneity on

the system order and require less computation expenditure

than that of [10], especially when the order of the system

is high.

iii) The proposed strategy is fully distributed in the sense that

no centralized control gains are involved and no knowl-

edge on any global information is required for the players.

In particular, compared with the adaptive designs under

undirected graphs in [3], [8], [9], the proposed strategy

allows the graph to be directed and only requires one-

hop communication, which is preferable for distributed

systems.

iv) The proposed methods are analytically studied and it is

theoretically proven that the Nash equilibrium is globally

asymptotically stable under the proposed methods. Sev-

eral special cases are discussed to provide more insights

on the connections with the existing works.

II. PROBLEM STATEMENT

This paper considers a network of high-order integrator-type

players with labels from 1 to N, successively, where N > 1
is an integer. The state of player i, denoted as xi ∈ R

mi , is

generated by

ẋi = Aixi +Biui, yi = Cixi,

where Ai =

[

0mi−1 Imi−1

0 0T
mi−1

]

∈ R
mi×mi , Bi =

[

0 · · · 0 1
]T

∈ R
mi×1, Ci =

[

1 0 · · · 0 0
]

∈
R

1×mi and mi > 1 is a positive integer. Moreover, ui ∈ R

and yi ∈ R are the control input and output/action of

player i, respectively. Assume that each player has a local

objective function defined as fi(y) = fi(yi,y−i), where y =
[y1, y2, · · · , yN ]T , y−i = [y1, · · · , yi−1, yi+1, · · · , yN ]T , and

each player aims at minimizing fi(yi,y−i) through adjusting

its own action yi, i.e.,

minyi
fi(yi,y−i). (1)

Suppose that each player cannot directly access all other

players’ actions and

|ui| ≤ Ui (2)

where Ui is a positive constant denoting the actuator limitation

of player i.
The paper aims to design fully distributed ui that satisfies

(2) to drive the players’ actions y to the Nash equilibrium y∗,

whose definition is given below.

Definition 1: An action profile y∗ = (y∗i ,y
∗
−i) is a Nash

equilibrium if for all yi ∈ R, i ∈ V ,

fi(y
∗
i ,y

∗
−i) ≤ fi(yi,y

∗
−i), (3)

where V is the player set given as V = {1, 2, · · · , N}.

Remark 1: It is worth mentioning that in the paper xi ∈
R

mi , where mi for i ∈ V can be different from each other,

indicating that the heterogeneity on the order of the players’

dynamics is allowed.

For notational clarity, define [χi]vec as a column vector

whose ith entry is χi. Moreover, let [χij ]vec (diag{χij})

for i, j ∈ V be a column vector (diagonal matrix) whose

entries are χ11, χ12, · · · , χ1N , χ21, · · · , χNN , respectively. In

addition, [χij ] is a matrix whose (i, j)th entry is χij .

The remaining sections are based on the assumptions below.

Assumption 1: The players’ objective functions fi(y) for

i ∈ V are continuously differentiable with their gradients

∇ifi(y) being globally Lipschitz, i.e., for y, z ∈ R
N ,

||∇ifi(y) −∇ifi(z)|| ≤ li||y − z||, ∀i ∈ V , (4)

for some positive constant li, where ∇ifi(y) = ∂fi(y)
∂yi

and

∇ifi(z) =
∂fi(y)
∂yi

|
y=z

.

Assumption 2: For y, z ∈ R
N ,

(y − z)T ([∇ifi(y)]vec − [∇ifi(z)]vec) ≥ ω||y − z||2, (5)

for some positive constant ω.

To design fully distributed control laws, it is assumed that

there is a directed communication graph among the players

described by G(V , E), where V and E ⊆ V × V stand for the

node set and edge set, respectively. Let (i, j) ∈ E and aji
be an edge from node i to j and its weight, respectively. If

(i, j) ∈ E , aji > 0, otherwise, aji = 0. In this paper, aii = 0.

A directed path is defined as a sequence of edges of the form

(i1, i2), (i2, i3), · · · . A directed graph is strongly connected

if for every pair of distinct nodes, there is a path. Define A =
[aij ] as the adjacency matrix of G. Then, L = D −A, where

D = diag{
∑N

j=1 aij}, is the Laplacian matrix of G [15]– [17].

Assumption 3: The directed graph G is strongly connected.

Remark 2: Assumptions 1-3 are commonly adopted and

mild conditions (see, e.g., [1], [2], [11] and many other ref-

erences therein). Assumption 2 is employed to characterize a

unique Nash equilibrium, which is globally exponentially sta-

ble under the gradient play for games with globally Lipschitz

gradients (Assumption 1) [1]. While existing fully distributed

Nash equilibrium seeking schemes [3], [8], [9] are established

for undirected communication topologies, Assumption 3 sug-

gests that asymmetric information exchange among the players

is sufficient for the developed methods.

III. MAIN RESULTS

This section develops a fully distributed Nash equilibrium

seeking strategy for the considered problem, under which the

associated convergence analysis is provided.

A. Strategy Design

To deal with the players’ dynamics, a transformation is

firstly conducted by defining xi = Tix̄i to convert (1) to

˙̄xi = Āix̄i + B̄iui, (6)



in which Āi =









0 θ
mi−1

i
θ
mi−2

i
··· θi

0 0 θ
mi−2

i
··· θi

0 0 0 ··· θi

...
...

...
. . .

...
0 0 0 ··· 0









and B̄i =

[

1 1 · · · 1
]T

, Ti = R(Ai, Bi)R(Āi, B̄i)
−1 is a non-

singular matrix , R(A,B) denotes the controllability matrix of

(A,B) and θi ∈ (0, 1) is a constant to be further determined

[20]. Based on the above transformation, the fully distributed

bounded control input ui is designed as

ui =−
∑mi−1

k=1
θki φi(x̄i(mi−k+1))

− θmi

i φi(x̄i1 +

mi−1
∏

k=1

θki

∫ t

0

∇ifi(zi(τ ))dτ ), (7)

in which zi = [zi1, zi2, · · · , ziN ]T and

żij =− (cij + ρij)(
∑N

k=1
aik(zij − zkj)

+ aij(zij +

∫ t

0

∇jfj(zj(τ ))dτ )),

ċij =ρij , (8)

ρij = (
∑N

k=1 aik(zij − zkj)+aij(zij +
∫ t

0 ∇jfj(zj(τ ))dτ ))
2,

and cij(0) > 0. Moreover, φi(·) is a saturation function

defined as φi(ς) = sign(ς)min{|ς |,∆i}, where ∆i is a

positive constant that can be adjusted according to the actuator

limitation.

Remark 3: The saturation function utilized in the control

design ensures the boundedness of the control inputs. More

specifically, given any positive constant Ui, one can choose

∆i such that

θi
1− θi

∆i < Ui, (9)

to ensure that |ui| ≤ Ui.

Remark 4: The adaptive design, inspired by [19], ensures

that ρij(t) is non-negative and cij(t) is monotonically increas-

ing as ċij(t) is non-negative. Moreover, θi can be determined

in a decentralized fashion. Therefore, all the control gains

are independent of any global information. In addition, the

update of the auxiliary variables zij depends only on local

information exchange. Hence, the control input in (7)-(8) is

fully distributed. Note that as the communication graph is

directed in this paper, the adaptive designs in [3], [8], [9]

cannot be applied.

Remark 5: It is worth mentioning that the linear transfor-

mation is not unique. For example, one can also choose a

non-singular matrix Ti to convert the players’ dynamics to

˙̂xi = Âix̂i + B̂iui, (10)

in which Âi =















0 θi θi · · · θi
0 0 θi · · · θi
0 0 0 · · · θi
...

...
...

. . .
...

0 0 0 · · · 0















and B̂i =

[

1 1 · · · 1
]T

. In the case, ui can be designed as

ui =−
∑mi−1

k=1
θiφi(x̂i(mi−k+1))

− θiφi(x̂i1 + θmi−1
i

∫ t

0

∇ifi(zi(τ ))dτ ), (11)

for which the convergence analysis follows that of (7)-(8).

B. Convergence Analysis

In this section, the method in (7)-(8) is analytically inves-

tigated. Before proceeding to the convergence analysis, the

following supportive lemmas are given.

Lemma 1: For each θi ∈ (0, 1
2 ), there exists a constant

T (θi) ≥ 0 such that for all i ∈ V ,

|x̄ik(t)| ≤ ∆i, ∀t ≥ T, k ∈ {2, · · · ,mi}. (12)

Proof: See Section VII-A for the proof. �

Remark 6: Lemma 1 demonstrates that there exists a non-

negative constant T such that for t ≥ T, |x̄ik(t)| for all

k = 2, · · · ,mi− 1,mi can evolve into the unsaturated region,

indicating that the effects of the saturation function on |x̄ik(t)|
for k = 2, · · · ,mi − 1,mi vanish within finite time. Based

on this conclusion, the stability analysis for the closed-loop

system is largely simplified.

Now, we focus on the evolution of x̄i1(t) by considering a

reduced system as

˙̄xi1 = −θmi

i φi(x̄i1 +

mi−1
∏

k=1

θki

∫ t

0

∇ifi(zi(τ ))dτ ). (13)

Let x̃i1 = x̄i1 +
∏mi−1

k=1 θki
∫ t

0 ∇ifi(zi(τ))dτ . Then,

˙̃xi1 = −θmi

i φi(x̃i1) +
∏mi−1

k=1
θki∇ifi(zi(t)). (14)

Consequently, the subsequent result can be derived.

Lemma 2: Suppose that |∇ifi(zi(t))| ≤ ν1 for all t > 0
and there is a constant T̃ ≥ 0 such that for all t ≥ T̃ ,
∆i >

2
θ
mi
i

|
∏mi−1

k=1 θki∇ifi(zi(t))|. Then, the trajectory x̃i1(t)

generated by (14) stays bounded for all t > 0 and there exists

a β ∈ KL and a γ ∈ K such that for t ≥ T̃ ,

|x̃i1(t)| ≤β(|x̃i1(T̃ )|, t− T̃ ) + γ( sup
T̃<τ<t

|∇ifi(zi(τ ))|).

Proof: See Section VII-B for the proof. �

Lemma 2 demonstrates that with bounded ∇ifi(zi(t)), the

trajectory of x̃i1(t) will always stay bounded. In addition,

if |∇ifi(zi(t))| is decreasing to be sufficiently small and

stays therein thereafter, |x̃i1(t)| will be upper-bounded by

β(|x̃i1(T̃ )|, t − T̃ ) + γ(supT̃<τ<t |∇ifi(zi(τ ))|), indicating

that if |∇ifi(zi(t))| vanishes to zero as t → ∞,

lim
t→∞

|x̄i1(t) +

∫ t

0

mi−1
∏

k=1

θki∇ifi(zi(τ ))dτ | = 0. (15)

To this end, one needs to further consider the evolution of

∇ifi(zi(t)), which is investigated by considering the follow-

ing auxiliary system,

żij = −(cij + ρij)ξij , ċij = ρij . (16)



where ρij = ξ2ij , cij(0) > 0, ξij =
∑N

k=1 aik(zij − zkj) +

aij(zij +
∫ t

0
∇jfj(zj(τ ))dτ ). Let ξ = [ξij ]vec, z = [zij ]vec,

H = L ⊗ IN + A0, A0 = diag{aij}, c = diag{cij} and

ρ = diag{ρij}. Then, ξ = H(z+1N⊗[
∫ t

0 ∇ifi(zi(τ ))dτ ]vec),

and ξ̇ = H(−(c+ ρ)ξ + 1N ⊗∇ifi(zi(t))).
The following result can be obtained.

Lemma 3: Under Assumptions 1-3,

lim
t→∞

|| − [

∫ t

0

∇ifi(zi(τ ))dτ ]vec − y∗|| = 0,

lim
t→∞

||z(t) + 1N ⊗ [

∫ t

0

∇ifi(zi(τ ))dτ ]vec|| = 0. (17)

Moreover, cij for all i, j ∈ V converge to some finite values.

Proof: See Section VII-C for the proof. �

Based on the above results, the convergence result can be

established for the control design in (7).

Theorem 1: Under Assumptions 1-3 and the control input

in (7),

lim
t→∞

||y(t) − y∗|| = 0. (18)

In addition, all the other variables stay bounded and converge

to finite values.

Proof: See Section VII-D for the proof.

Theorem 1 illustrates that the Nash equilibrium is globally

asymptotically stable though the boundedness of the control

inputs is considered. Furthermore, all the other variables (i.e.,

xi(t), cij(t) and zij(t) for all i, j ∈ V) stay bounded and

converge to some finite values.

IV. DISCUSSIONS ON THE PRESENTED RESULTS

In this section, we provide some insights on the presented

results, in terms of first- and second- order players, undirected

graph and no actuator limitation. This helps to establish a link

between the presented results and the existing works.

A. First- and second-order integrator-type players

For mi = 1, the system (1) can be written as

ẋi1 = ui, yi = xi1. (19)

Then, one can design ui as

ui =− φi(xi1 +

∫ t

0

∇ifi(zi(τ ))dτ ), (20)

where the definitions of other variables follow those in (7)-

(8). Following Theorem 1, the subsequent corollary can be

obtained.

Corollary 1: Under Assumptions 1-3 and the control input

in (20)

lim
t→∞

||y(t) − y∗|| = 0, (21)

and all the other variables stay bounded and converge to some

finite values.

Proof: See Section VII-E for the proof. �

Moreover, for second-order players, the seeking strategy in

(7) is written as

ui =− θiφi(xi2) (22)

− θ2iφi(θixi1 + xi2 + θi

∫ t

0

∇ifi(zi(τ ))dτ ),

with other variables defined in (7).

Compared with bounded controls designed for first- and

second-order players in [7], the control inputs in (20) and

(22) provide alternative designs to achieve distributed Nash

equilibrium seeking with bounded controls. Moreover, the

presented methods have the following elegant features:

i) The presented methods are fully distributed while the

methods in [7] contain control gains depending on some

global information.

ii) It is shown that the Nash equilibrium is globally asymp-

totically stable under the proposed methods, while in

[7], only semi-global results were given for second-order

players.

iii) The requirement on the boundedness of
∂fi(y)
∂yi∂yj

for all

i, j ∈ V in [7] is removed from the paper.

B. Undirected communication graphs

In [3], adaptive approaches are proposed to achieve fully

distributed Nash equilibrium seeking for first-order players

under undirected communication graphs. For the case of undi-

rected communication graph, following the adaptive design in

[3], ui is designed as

ui =−
∑mi−1

k=1
θki φi(x̄i(mi−k+1)) (23)

− θmi

i φi(x̄i1 +

mi−1
∏

k=1

θki

∫ t

0

∇ifi(zi(τ ))dτ ),

żij =− cijξij , ċij = ξ2ij ,

Correspondingly, the following corollary can be obtained.

Corollary 2: Under Assumptions 1-2 and the control input

in (23),

lim
t→∞

||y(t) − y∗|| = 0, (24)

and all the other variables stay bounded given that the com-

munication graph is undirected and connected.

Proof: See Section VII-F for the proof. �

Corollary 2 indicates that under undirected communication

graphs, the adaptive law in [3] can be employed to establish

the control law for high-order players. However, the analysis

depends on symmetric information exchange among the play-

ers and hence, the adaptive designs therein fail to work for

directed communication graphs. Therefore, this paper has the

following advantages:

i) Unlike [3], [8], [9] that only consider undirected infor-

mation exchange, the presented design in this paper can

accommodate directed graphs.

ii) Different from [3] that only considered first-order play-

ers, players with multi-integrator type dynamics are ad-

dressed, which cover first-order ones as special cases.



1 2 3 

4 5 6 

Fig. 1: The strongly connected digraphs for the players.

iii) The control inputs in this paper are restricted within a

predefined domain, while in [3], [8], [9], the actuator

limitations were not addressed.

iv) Different from [8], [9] that required two-hop communi-

cations, only one-hop communication is needed, which is

desirable for distributed systems.

C. Without actuator limitation

If the system is without any actuator limitation, the satu-

ration function can be removed from the designed controls,

which gives the following control input

ui =−
∑mi−1

k=1
θki x̄i(mi−k+1)

− θmi

i (x̄i1 +

mi−1
∏

k=1

θki

∫ t

0

∇ifi(zi(τ ))dτ ), (25)

with other variables defined in (7)-(8).

In this case, the proposed method is still effective and the

following corollary can be obtained.

Corollary 3: Under Assumptions 1-3 and (25),

lim
t→∞

||y(t) − y∗|| = 0. (26)

In addition, all the other variables stay bounded and converge

to finite values.

Proof: The proof can be completed by following Steps 2-3 in

the proof of Theorem 1. �

From the above discussions, it is clear that the considered

problem covers the problem addressed in [7] as a special case.

Moreover, for undirected graphs, the adaptive design in [3] can

be employed in the control design to find the Nash equilibrium

in a fully distributed fashion.

V. NUMERICAL VERIFICATIONS

In this section, a numerical example with 6 players is

simulated. In the considered game, each player i’s objective

function is defined as

fi(y) =y2i + yi + (yi − yi+1)
2, i ∈ {1, 2, · · · , 5},

f6(y) =y26 + y6 + (y6 − y1)
2,

by which the Nash equilibrium is yi = −0.5, ∀i ∈
{1, 2, · · · , 6}. In the simulation, the communication graph G
is given in Fig. 1, which is directed and strongly connected. In

addition, θi =
1
3 , mi = 3, xi1(0) = i and the initial conditions

for all the other variables in (7)-(8) are set as 1.

In the simulation, it is supposed that ∆i = 1, which ensures

that |ui| ≤ 0.4815 for all i ∈ {1, 2, · · · , 6}. With the control
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Fig. 2: The players’ actions yi(t) and control signals ui

generated by (7)-(8).
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Fig. 3: The evolution of the auxiliary variables cij(t) and zij(t)
for i, j ∈ {1, 2, · · · , 6} generated by (7)-(8).

input design in (7)-(8), the evolution of the players’ actions and

control inputs are shown in Fig. 2, from which it is clear that

the players’ actions are convergent to the Nash equilibrium and

the control inputs are restricted within the required domain.

Moreover, the auxiliary variables cij(t) and zij(t) are plotted

in Fig. 3, from which it can be seen that they stay bounded

and converge to finite values. To this end, the convergence of

the developed algorithm has been numerically validated.

To further illustrate the functionality of the saturation

functions in the proposed method, they are removed and

correspondingly the method in (25) is simulated. With all the

settings kept the same as the case with saturation functions,

the players’ actions and control inputs generated by (25) are

plotted in Fig. 4. From this figure, it is clear that the players’

actions are still convergent to the Nash equilibrium but the

controls are sometimes out of [−0.4815, 0.4815]. Comparing

Fig. 2 with Fig. 4, it can be concluded that the saturation

functions are effective to restrict the controls within the

required domain.

VI. CONCLUSIONS

This paper contributes to finding the Nash equilibrium in

a fully distributed fashion for high-order players subject to

actuator limitations. A linear transformation is firstly applied
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Fig. 4: The players’ actions and control inputs generated by

(25).

to the players’ dynamics, based on which multiple saturation

functions are employed to develop the control inputs. With the

saturation functions, the control inputs can be restricted within

the required region. Moreover, the control gains are designed

to be adaptive, which allow asymmetric information exchange

among the players and lead to fully distributed schemes. It

is proven that, by the designed bounded control inputs, the

players’ actions are convergent to the Nash equilibrium.
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VII. APPENDIX

A. Proof of Lemma 1

By (6) and (7), it can be obtained that

˙̄ximi
=− θiφi(x̄imi

)−
∑mi−1

k=2
θki φi(x̄i(mi−k+1))

− θmi

i φi(x̄i +

mi−1
∏

k=1

θki

∫ t

0

∇ifi(zi(τ ))dτ )

≤− θiφi(x̄imi
) + θ2i∆i/(1− θi). (27)

Define Vimi
=

∫ x̄imi

0 φi(τ )dτ . Then, it can be easily

obtained that

Vimi
=

{

∆2
i /2 + (|ximi

| −∆i)∆i if |ximi
| > ∆i

x2
imi

/2 if |ximi
| ≤ ∆i.

Therefore, Vimi
is positive definite and radially unbounded.

By Lemma 4.3 in [18], there are K∞ functions α1 and α2

such that α1(|x̄imi
|) ≤ Vimi

≤ α2(|x̄imi
|). Taking the time

derivative of Vimi
gives

V̇imi
≤− θiφ

2
i (x̄imi

) + θ2i∆i|φi(x̄imi
)|/(1 − θi)

≤− σ1θiφ
2
i (x̄imi

), (28)

for |φi(x̄imi
)| > θi∆i/((1 − σ1)(1 − θi)), where σ1 ∈ (0, 1)

is a constant.

Case I: |φi(x̄imi
)| = ∆i. Let θ∗i be a positive constant such

that
θ∗i

(1−σ1)(1−θ∗
i
) = 1. Then, it is clear that V̇imi

< 0 is always

satisfied for θi ∈ (0, θ∗i ), indicating that if |x̄imi
(0)| > ∆i,

|x̄imi
(t)| is bounded and there exists a positive constant T̄1

such that |x̄imi
(t)| ≤ ∆i for t > T̄1.

Case II: |φi(x̄imi
)| = x̄imi

. In this case, V̇imi
≤

−σ1θiφ
2
i (x̄imi

), for all |x̄imi
| > θi∆i

(1−σ1)(1−θi)
. Note that as

Vimi
itself is a K∞ function, one can choose α1(|x̄imi

|) =
α2(|x̄imi

|) = Vimi
and hence, if θi < θ∗i ,

θi

(1−σ1)(1−θi)
< 1.

Then, there exists a class KL function β1 and for every

|x̄imi
(0)| < ∆i, there exists a constant T̃1 ≥ 0 such that

|x̄imi
(t)| ≤β1(|x̄imi

(0)|, t), ∀t < T̃1,

|x̄imi
(t)| <θi∆i/((1− σ1)(1 − θi)), ∀t ≥ T̃1, (29)



based on Theorem 4.19 in [18].

Summarizing the above two cases, one gets that for any

initial condition, |x̄imi
(t)| ≤ ∆i, ∀t ≥ T1, For some T1 ≥ 0.

Note that for each θi ∈ (0, 1
2 ),

θi

(1−σ1)(1−θi)
< 1 is satisfied

and hence, the above conclusion holds for all θ ∈ (0, 1
2 ).

Recalling that

˙̄xi(mi−1) =θix̄imi
+ ui,

it can be easily obtained that there is no finite escape time for

xi(mi−1)(t) based on the boundedness of x̄imi
and the control

inputs. Therefore, xi(mi−1)(t) would stay bounded for t < T1.

Moreover, for t ≥ T1, one has

˙̄xi(mi−1) = θix̄imi
+ ui

=− θ2iφi(x̄i(mi−1))−
∑mi−1

k=3
θki φi(x̄i(mi−k+1))

− θmi

i φi(x̄i +

mi−1
∏

k=1

θki

∫ t

0

∇ifi(zi(τ ))dτ ). (30)

Define Vi(mi−1) =
∫ x̄i(mi−1)

0 φi(τ )dτ . Then, it can be easily

obtained that

V̇i(mi−1) ≤ −θ2iφ
2
i (x̄i(mi−1)) + θ3i∆i|φi(x̄i(mi−1))|/(1− θi).

By similar analysis to that for x̄imi
, one gets that there

exists a positive constant T2 ≥ T1 such that |x̄i(mi−1)(t)| ≤
∆i, ∀t < T2, given that θi ∈ (0, θ∗i ). Repeating the above

process, it can be obtained that there exists a constant T ≥ 0
such that if t ≥ T, |x̄ik(t)| ≤ ∆i, for all k = 2, · · · ,mi.

B. Proof of Lemma 2

As |∇ifi(zi(t))| < ν1 for all t ≥ 0, one gets that

|x̃i1(t)− x̃i1(0)| ≤ θmi

i ∆it+
∏mi−1

k=1
θki ν1t, (31)

from (14) by utilizing the Comparison Lemma in [18]. There-

fore, for any bounded t, x̃i1(t) is bounded and the system in

(14) cannot have finite escape time.

The following analysis is conducted for t ≥ T̃ . Define Vi1 =
∫ x̃i1

T̃
φi(τ )dτ . Then, for t ≥ T̃ ,

V̇i1 =φi(x̃i1)(−θmi

i φi(x̃i1) +
∏mi−1

k=1
θki∇ifi(zi(t)))

≤− θmi

i φ2
i (x̃i1)/2, (32)

for all |φi(x̃i1)| >
2

θ
mi
i

|
∏mi−1

k=1 θki∇ifi(zi(t))|.

Case I: |φi(x̃i1)| = ∆i. If this is the case, V̇i1 ≤
− 1

2θ
mi

i φ2
i (x̃i1), is always satisfied as for t ≥ T̃ , ∆i >

2
θ
mi
i

|
∏mi−1

k=1 θki∇ifi(zi(t))|, indicating that for all |x̃i1(T̃ )| >

∆i, |x̃i1(t)| will evolve into the unsaturated region after some

finite time.

Case II: φi(x̃i1) = x̃i1. In this case, V̇i1 ≤ − 1
2θ

mi

i φ2
i (x̃i1),

for all |x̃i1| > 2
θ
mi
i

|
∏mi−1

k=1 θki∇ifi(zi(t))|. Therefore, by

Theorem 4.18 in [18], one gets that for t ≥ T̃

|x̃i1(t)| ≤ β(|x̃i1(T̃ )|, t− T̃ )

+ α−1
1 (α2(supT̃<τ<t 2|

∏mi−1

k=1
θki∇ifi(zi(τ ))|/θ

mi

i ))

≤β(|x̃i1(T̃ )|, t− T̃ ) + γ(supT̃<τ<t |∇ifi(zi(τ ))|),

where γ(·) is a K∞ function as α1(·) and α2(·) are K∞ func-

tions (defined in the proof of Lemma 1) for all |x̃i1(T̃ )| < ∆i.

To this end, the conclusions have been obtained.

C. Proof of Lemma 3

To show the convergence property of (16), let V = V1 +
V2 + V3 in which

V1 =
1

2
||[−

∫ t

0

∇ifi(zi(τ ))dτ ]vec − y∗||2,

V2 =ǫ
∑N

i=1

∑N

j=1
pij(cij + ρij/2)ρij ,

V3 =ǫ
∑N

i=1

∑N

j=1
pij(cij − c∗)2/2, (33)

where P = diag{pij} satisfies PH + HTP = Q, Q is a

symmetric positive definite matrix as the communication graph

is strongly connected, ǫ and c∗ are positive constants to be

further quantified. Then,

V̇2 =ǫ

N
∑

i=1

N
∑

j=1

pij(cij +
ρij
2
)ρ̇ij + ǫ

N
∑

i=1

N
∑

j=1

pij(ċij +
ρ̇ij
2
+)ρij

=ǫ
N
∑

i=1

N
∑

j=1

pij(cij + ρij)ρ̇ij + ǫ
N
∑

i=1

N
∑

j=1

pijρ
2
ij . (34)

In addition,

V̇3 =ǫ
∑N

i=1

∑N

j=1
pij(cij − c∗)ρij . (35)

Combining (34)-(35), one can derive that V̇2 + V̇3 =
ǫ
∑N

i=1

∑N

j=1 pij(cij +ρij)ρ̇ij + ǫ
∑N

i=1

∑N

j=1 pij(ρij + cij −
c∗)ρij , in which

ǫ
∑N

i=1

∑N

j=1
pij(cij + ρij)ρ̇ij

=2ǫ
∑N

i=1

∑N

j=1
pij(cij + ρij)ξij ξ̇ij

=− ǫξT (c+ ρ)(PH +HTP )(c+ ρ)ξ

+ 2ǫξT (c+ ρ)PH(1N ⊗ [∇ifi(zi(t))]vec)

≤− ǫλξT (c+ ρ)(c+ ρ)ξ

+ 2ǫξT (c+ ρ)PH(1N ⊗ [∇ifi(zi(t))]vec), (36)

where λ is the minimum eigenvalue of Q.
Note that 2ǫξT (c + ρ)PH(1N ⊗ [∇ifi(zi(t))]vec) ≤

2ǫ||ξT (c + ρ)||||PH1N ⊗ [∇ifi(zi) −
∇ifi([−

∫ t

0 ∇ifi(zi(τ ))dτ ]vec)]vec|| + 2ǫ||ξT (c +

ρ)||||PH1N ⊗ [∇ifi([−
∫ t

0 ∇ifi(zi(τ ))dτ ]vec) −

∇ifi(y
∗)]vec|| ≤ ǫλ

4 ξT (c + ρ)(c + ρ)ξ + ǫ1
ǫ2λ

4 ξT (c +

ρ)(c + ρ)ξ +
4ǫN max{pij}

2||H||2 max{li}
2||H−1||2||ξ||2

λ
+

4N2 max{pij}
2||H||2 max{li}

2||[−
∫

t

0
∇ifi(zi(τ))dτ ]vec−y

∗||2

λǫ1
.

Moreover, ǫ
∑N

i=1

∑N

j=1 pij(ρij + cij − c∗)ρij ≤
ǫλ

4 ξT (ρ+

c)(ρ + c)ξ − (ǫmin{pij}c
∗ −

max{p2
ij}ǫ

λ
)||ξ||2. Summarizing

the above inequalities, one can derive that

V̇2 + V̇3 ≤ −(ǫλ/2− ǫ2ǫ1λ/4)ξ
T (c+ ρ)(c+ ρ)ξ

+ p1||[−

∫ t

0

∇ifi(zi(τ ))dτ ]vec − y∗||2 − p2||ξ||
2, (37)



where p1 = 4N2max{pij}
2||H ||2 max{li}

2/(λǫ1)
and p2 = ǫmin{pij}c

∗ − max{p2ij}ǫ/λ −
4ǫN max{pij}

2||H ||2 max{li}
2||H−1||2/λ. Furthermore,

V̇1 = −rT [∇ifi(zi)]vec

= −rT [∇ifi([−

∫ t

0

∇ifi(zi(τ ))dτ ]vec)]vec

− rT [∇ifi(zi)−∇ifi([−

∫ t

0

∇ifi(zi(τ ))dτ ]vec)]vec ≤

− ω||r||2 +max{li}||z+ 1N ⊗ [

∫ t

0

∇ifi(zi(τ ))dτ ]vec||||r||

≤ −ω||r||2 +max{li}||H
−1||||ξ||||r||

≤ −(ω −
max{li}||H

−1||

2ǫ1
)||r||2 +

max{li}||H
−1||ǫ1

2
||ξ||2,

where r = [−
∫ t

0
∇ifi(zi(τ ))dτ ]vec − y∗ is defined for

notational convenience. Therefore,

V̇ ≤ −(ǫλ/2− ǫ2ǫ1λ/4)ξ
T (c+ ρ)(c+ ρ)ξ

− (ǫmin{pij}c
∗ −max{p2ij}ǫ/λ−max{li}||H

−1||ǫ1/2−

4ǫN max{pij}
2||H ||2 max{li}

2||H−1||2/λ)||ξ||2 − p3||r||
2,

where p3 = ω −
4N2 max{pij}

2||H||2 max{li}
2

λǫ1
− max{li}||H

−1||
2ǫ1

.

Choose ǫ1 such that ǫ1 > max{li}||H
−1||

2ω +
4N2 max{pij}

2||H||2 max{li}
2

λω
, and ǫ < 2

ǫ1
. In

addition, c∗ >
max{p2

ij}ǫ

λǫmin{pij}
+ max{li}||H

−1||ǫ1
2ǫmin{pij}

+
4ǫN max{pij}

2||H||2 max{li}
2||H−1||2

λǫmin{pij}
. Then, V̇ ≤ 0 and

V is bounded so as [−
∫ t

0
∇ifi(zi(τ ))dτ ]vec, ξij

and cij . In addition, for V̇ = 0, ||ξ|| = 0, and

|| − [
∫ t

0
∇ifi(zi(τ ))dτ ]vec − y∗|| = 0. By further recalling

the definition of cij , one can obtain that it is monotonically

increasing, and hence it converges to some finite value as it

is bounded.

D. Proof of Theorem 1

The proof can be completed by several steps.

Step 1: Analyze the evolution of the system for t ≤ T
and t > T , respectively. According to Lemmas 1-3, there is

no finite escape time for x̄ik , zij and cij where i, j ∈ V and

k ∈ {1, 2, · · · ,mi}, indicating that for t < T , x̄ik(t), zij(t)
and cij(t) are all bounded. Moreover, by Lemma 1, it can be

obtained that for t > T ,

˙̄xi1 =− θmi

i φi(x̄i1 +

mi−1
∏

k=1

θki

∫ t

0

∇ifi(zi(τ ))dτ ),

żij =− (cij + ρij)ξij , ċij = ρij , (38)

where ρij = ξ2ij .
Step 2: Analyze the evolution of x̃i1 for t → ∞.

By Lemma 3, limt→∞ || − [
∫ t

0 ∇jfj(zj(τ ))dτ ]vec − y∗|| =
0, and hence, by Barbarlat’s Lemma [18], one gets that

limt→∞ ∇jfj(zj(t)) = 0, indicating that there exists a posi-

tive constant T1 > T such that for all t > T1,

|x̃i1(t)| ≤ β(|x̃i1(T1)|, t− T1) + γ( sup
T1<τ<t

|∇ifi(zi(τ ))|),

by Lemma 3. Recalling that limt→∞ ∇jfj(zj(t)) = 0, it is

clear that limt→∞ |x̃i1(t)| = 0.
Step 3: Analyze the steady state of x̄ik for k ∈

{2, · · · ,mi}. Recalling the dynamics in (6), it can be obtained

that for t > T ,

˙̄xi2 = −θmi−1
i x̄i2 − θmi

i φi(x̃i1). (39)

Regard vimi
= θmi

i φi(x̃i1) as a virtual control input. Then,

it can be easily obtained that the system in (39) is input-to-

state stable by defining a Laypunov candidate function as V̄ =
1
2 x̄

2
i2. As for t → ∞, |vimi

(t)| vanishes to zero, one gets that

limt→∞ |x̄i2(t)| = 0. Moreover, for t > T,

˙̄xi3 = −θmi−2
i x̄i3 − θmi−1

i x̄i2 − θmi

i φi(x̃i1). (40)

Let vi(mi−1) = −θmi−1
i x̄i2−θmi

i φi(x̃i1) be the virtual control

input, then, it can be easily obtained that (40) is input-to-state

stable. Noticing that limt→∞ |vi(mi−1)(t)| = 0, one gets that

limt→∞ |x̄i3(t)| = 0.
Repeating the above process, one gets that

lim
t→∞

|x̄ik(t)| = 0, ∀k ∈ {2, · · · ,mi}.

Step 4: Analyze the steady state of y(t). Recalling that

xi = T−1
i x̄i, and yi = xi1, one can obtain that

yi = x̄i1/(
∏mi−1

k=1
θki ) +

∑mi

k=2
gk(θi)x̄ik, (41)

where gk(θi) denotes some function of θi.
Note that by Lemma 3, limt→∞ ||−[

∫ t

0
∇ifi(zi(τ ))dτ ]vec−

y∗|| = 0, and limt→∞ ||z(t)+1N⊗[
∫ t

0 ∇ifi(zi(τ ))dτ ]vec|| =
0, then it is clear that limt→∞ ||y(t) − y∗|| = 0, by fur-

ther noticing that limt→∞ yi(t) = x̄i1(t)/(
∏mi−1

k=1 θki ), and

limt→∞ x̄i1(t) =
∏mi−1

k=1 θki y
∗
i for all i ∈ V . To this end, the

conclusions are apparent.

E. Proof of Corollary 1

In this case,

ẋi1 =− φi(xi1 +

∫ t

0

∇ifi(zi(τ ))dτ ),

żij =− (cij + ρij)ξij , ċij = ρij , (42)

where ρij = ξ2ij . Following Step 2 in the proof of The-

orem 1, limt→∞ |x̃i1(t)| = 0, in which x̃i1(t) = xi1 +
∫ t

0 ∇ifi(zi(τ ))dτ in this case. Moreover, by Lemma 3,

limt→∞ ||[−
∫ t

0
∇ifi(zi(τ ))dτ ]vec − y∗|| = 0, and hence

limt→∞ ||y(t) − y∗|| = 0, from which the conclusions can

be easily obtained and thus, the rest of the proof is omitted.

F. Proof of Corollary 2

To prove the result, define an auxiliary system as

żij = −cijξij ċij = ξ2ij . (43)

Define V = 1
2 || − [

∫ t

0 ∇jfj(zj(τ ))dτ ]vec − y∗||2 +

(z + 1N ⊗ [
∫ t

0 ∇jfj(zj(τ ))dτ ]vec)
TH(z + 1N ⊗

[
∫ t

0
∇jfj(zj(τ ))dτ ]vec) +

∑N

i=1

∑N

j=1(cij − c∗ij)
2. Then,

following the proof of Lemma 3 and [3], one gets that

limt→∞ || − [
∫ t

0 ∇jfj(zj(τ ))dτ ]vec − y∗|| = 0, and

limt→∞ ||z+1N ⊗ [
∫ t

0 ∇jfj(zj(τ ))dτ ]vec|| = 0 for (43). The

rest of the proof follows those in Theorem 1 and is omitted.
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