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Abstract: We study operators with large internal charge in boundary conformal field the-

ories (BCFTs) with internal symmetries. Using the state-operator correspondence and the

existence of a macroscopic limit, we find a non-trivial relation between the scaling dimen-

sion of the lowest dimensional CFT and BCFT charged operators to leading order in the

charge. We also construct the superfluid effective field theory for theories with boundaries

and use it to systematically calculate the BCFT spectrum in a systematic expansion. We ver-

ify explicitly many of the predictions from the EFT analysis in concrete examples including

the classical conformal scalar field with a |φ|6 interaction in three dimensions and the O(2)

Wilson-Fisher model near four dimensions in the presence of boundaries. In the appendices

we additionally discuss a systematic background field approach towards Ward identities in

general boundary and defect conformal field theories, and clarify its relation with Noether’s

theorem in perturbative theories.
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1 Introduction and summary

Various quantum field theories that are strongly coupled sometimes acquire significant sim-

plification under an expansion in some controlling parameter. This is especially relevant in

the context of conformal field theories (CFTs), where recent studies have shown the existence

of such simplification in sectors that are characterized by large quantum numbers. Examples

include CFTs in the regimes of large spin [1–4], large scaling dimensions [5–8], and large

global charges [9–12]. In this paper we will focus on the third case, and consider conformal

field theories with an additional global symmetry, focusing mostly on a global U(1). We will

focus in particular on the implications of a boundary for the large charge sector of the theory.

Quantum field theories on manifolds with a boundary are known to have important

applications ranging from condensed matter physics to cosmology and string theory. The

study of conformal field theories in the presence of non-trivial boundaries has attracted much

attention in recent years (see e.g. [13–25] and references therein). In particular it has been

shown that BCFTs can be systematically studied within a conformal bootstrap approach

[26–29], similar to the one usually adopted in standard CFTs [30–32].

Starting from a local CFT in d dimensions with an internal symmetry group G, we obtain

a boundary conformal field theory (BCFT) by considering the CFT in the half-space xd > 0

coupled to a plane boundary at xd = 0 in such a way that the (d− 1)-dimensional conformal

group SO(d, 1) is preserved. The boundary in general also preserves a (possibly trivial)

subgroup of the internal symmetry H ⊂ G.1 In this work we are interested in correlation

functions of boundary operators with large quantum numbers under the unbroken group H.

The BCFT spectrum is given by the set of scaling dimensions of boundary operators,

and it can therefore be recovered simply from boundary correlators. From the bootstrap

viewpoint, correlation functions at the boundary obey all the standard axioms but for the

absence of a conserved boundary stress tensor [26]. This lack of locality might seem to provide

an obstacle towards applying the ideas of [9] in this setup. As in that work, the situation is

illuminated by the state-operator correspondence.

Let us first review the basic observation underlying the analysis of [9] for CFTs on the

plane with no boundaries. Consider a d-dimensional CFT with U(1) symmetry. By virtue

of the state-operator correspondence, the operator OQ with lowest scaling dimension ∆Q

for a fixed U(1)-charge Q generically corresponds to a state |Q〉 with homogeneous charge

density in the theory compactified on the cylinder with radius R. For Q � 1 the charge

density ρ ∼ Q/Rd−1 introduces a dimensionful parameter µ ∼ ρ1/(d−1) much larger than

the geometric scale 1/R. The large separation of scales indicates that the state |Q〉 and its

nearby excitation can be naturally associated with a condensed matter phase of the theory [33].

Dimensional analysis then generically2 dictates the relation ε ' αρ
d
d−1 between the energy

1It is also possible to consider boundaries with additional internal symmetries, under which only boundary

degrees of freedom are charged; we will comment on examples of this kind in section 5.
2This relation is sometimes violated in theories which obey a different macroscopic limit; this normally

happens in theories with flat directions, e.g. in free theories or in SCFTs [11, 12].
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and the charge density of the state, which translates into the result ∆Q ' αQ
d
d−1 for the

scaling dimension of the operator OQ for Q � 1. Under the additional assumption that

the theory is found in a superfluid phase, corrections to the result for ∆Q and other CFT

data can be studied within the framework of effective field theory (EFT). In the EFT, the

derivative expansion coincides with an expansion in inverse powers of the charge [9, 10]. The

EFT predictions have been verified in several weakly coupled models (see e.g. [34–37]), and

are compatible with the results of Monte-Carlo calculations of ∆Q in the critical O(2) and

O(4) models in three dimensions [38, 39].

A similar picture holds when considering the theory in the presence of a boundary. For

the case of BCFTs, Weyl invariance allows to map the theory from the half-plane to the strip

R×HSd−1 geometry, where HSd−1 denotes the (d−1)-dimensional hemisphere, in such a way

that the boundary is mapped to the θ = π
2 equator in (hyper-)spherical coordinates. As in the

usual plane-cylinder map, dilations on the plane are mapped to time translations on the strip.

Therefore the spectrum of boundary operator dimensions on the plane agrees with the energy

spectrum for the theory quantized on R×HSd−1. We will use this correspondence extensively

throughout the remainder of this paper. We expect that the lowest dimensional boundary

operator ÔQ with charge Q � 1 creates a state whose charge density is approximately

homogeneous, at least at distances ` � 1/µ away from the boundary, for the theory on the

strip R ×HSd−1. The energy density of the state obeys the same relation ε ' αρ
d
d−1 as in

the case without a boundary. Integrating this relation on the hemisphere, it follows that the

scaling dimension ∆̂Q of the boundary operator can be naturally related to that of a bulk

operator with charge 2Q:

∆̂Q '
1

2
∆2Q '

α

2
(2Q)

d
d−1 for Q� 1 . (1.1)

Throughout this paper, we will verify the above relation in the large Q regime in various

examples. Similarly, if the bulk operatorOQ corresponds to a superfluid state, the large charge

sector of the BCFT will also be in a superfluid phase, whose properties can be systematically

studied within EFT.

Note that the above discussion is independent of the nature of the boundary, which affects

only the subleading corrections to eq. (1.1). In this work we apply a systematic EFT approach

to boundary conditions in the superfluid effective theory to parametrize these corrections.

Perhaps surprisingly, we find that to leading order these always reduce to Neumann conditions

for the global symmetry current, with the first µ−1 correction controlled by a single Wilson

coefficient. Physically, this parameter controls the charge accumulation or decrease towards

the boundary. We demonstrate our ideas in the classical three-dimensional |φ|6 model in

sec. 2.2, where we construct the corresponding finite density EFT both for Neumann and

Dirichlet boundary conditions on the fundamental field φ. A similar EFT approach can be

applied to other phases of matter as well (such as those classified [33]), and we show this

explicitly for isotropic solids in the vicinity of a wall in sec. 6.
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In sec. 3 we then use the EFT to calculate the BCFT spectrum of large charge operators,

including excited states, and relate the results with the predictions for bulk operators of [9].

We show that the leading order quantum corrections contribute a universal logarithmic cor-

rection to the scaling dimensions of the lowest dimension boundary operators, and calculate

its coefficient for various numbers of spacetime dimensions. In sec. 4 we demonstrate the

validity of the predictions made from the superfluid boundary EFT analysis in the concrete

example of the O(2) model in 4− ε dimensions with both Neumann and Dirichlet boundary

conditions, working in the large charge double-scaling limit of [36]. In particular, comparing

with the previous results of [36], we find that the relation (1.1), and its subleading corrections

as discussed in sec. 3, are perfectly reproduced in the limit εQ � 1 (with all Wilson coeffi-

cients determined). In the opposite limit εQ� 1 our results instead perfectly agree with the

outcome of diagrammatic calculations.

The paper is organized as follows. In section 2 after a lightning review of BCFT, we

provide some physical intuition by studying the conformal complex scalar field model with a

sextic interaction in three dimensions in the half-plane. In section 3 we construct the super-

fluid effective field theory in the presence of a boundary and calculate the BCFT spectrum of

large charge operators. In section 4 we study the weakly coupled example of the O(2) BCFT

in 4 − ε dimensions, both with Neumann and Dirichlet boundary conditions. In section 5

we discuss some other large charge phases of BCFTs, including the free charged scalar with

an interacting boundary, free fermions, and theories with charged degrees of freedom only

at the boundary. In section 6 we comment on some additional applications including defect

CFTs, the thermodynamic limit in BCFTs and boundary conditions in the solid EFT. Some

technical details can be found in appendices C and D. Appendix A and B instead contain

general considerations regarding BCFTs and may be read independently from the rest of the

text. In particular appendix A describes a systematic background field approach towards

Ward-identities in boundary and defect CFTs. There we also clarify how the absence of a

boundary stress tensor or current is compatible with perturbation theory in theories with non-

trivial boundary conditions in weakly coupled BCFTs. In appendix B we comment on the

possibility of having dual boundary actions for mixed boundary conditions in scalar quantum

field theories.

2 Invitation

2.1 Lightning BCFT review

For future reference throughout the paper, we briefly review the basic properties of correlation

functions of local operators in BCFTs following [27]. Correlation functions of local boundary

operators are completely specified by the spectrum of boundary scale dimensions {∆̂i} and

three-point coefficients {λ̂ijk}, which specify the boundary OPE as in usual CFTs. Bulk

operators, besides obeying the usual bulk OPE, can be decomposed into boundary operators
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using the bulk-to-boundary OPE [19]

Oi(xa, xd) =
ai

|2xd|∆i
+
∑
k

bik

|2xd|∆i−∆̂k

D
[
xd, ∂b

]
Ôk(xa) , (2.1)

where we denoted boundary operators with a hat and xa denotes coordinates parallel to

the plane a = 1, . . . , d− 1. Notice that the conformal symmetry implies that only scalar

operators may have a non-zero one-point function ai 6= 0. We therefore conclude that the

set {∆i, ∆̂i, ai, bik, λ̂ijk} completely specifies the local observables of the theory.3 Notice that

this set does not include the bulk OPE coefficients.

The constraints of locality and conformal invariance on BCFTs were studied by several

authors (see e.g. [18, 21, 28]). In appendix A we provide a comprehensive review of the

relevant Ward identities and their derivation. Here we highlight some relevant results.

Generically, BCFTs do not admit a conserved boundary stress tensor. Indeed, this would

imply the existence of additional spacetime conserved charges besides those constructed from

the bulk stress tensor. Similarly, the BCFT does not have any conserved boundary current

in the absence of internal symmetries under which only boundary degrees of freedom are

charged. In turn the breaking of translations in the dth direction implies the existence of a

boundary scalar operator D̂ of dimension d. This is the unique scalar in the bulk to boundary

OPE of the stress tensor [18, 25]:

Tµν(xa, xd)
xd→0∼ d

d− 1

(
δµdδνd −

δµν
d

)
D̂(xa) + . . . . (2.2)

Similarly, when the boundary breaks an internal symmetry G to a subgroup H, the BCFT

contains rank(G)− rank(H) scalar boundary operators with dimension d− 1. These are the

unique scalars in the bulk to boundary OPE of the broken currents [23].

2.2 Superfluid on the half-plane

Before analyzing the EFT describing BCFT states on the strip, here we would like to provide

some physical insights on the role of boundary conditions in the superfluid theory. To this

aim, here we analyze a simple scale-invariant classical model consisting of a single complex

field in the three-dimensional half plane

S =

∫
y≥0

dtd2x

(
|∂φ|2 − g2

6
|φ|6

)
. (2.3)

We work in Lorentzian signature and the integration is restricted to y ≥ 0 in coordinates

xµ = (t, x, y). For the sake of simplicity, we consider boundary conditions at y = 0 linear in

the field. There are therefore two options of preserving scale (and U(1)) symmetry, namely

Neumann: ∂yφ|y=0 = 0 or Dirichlet: φ|y=0 = 0 . (2.4)

3More precisely this is true up to a finite set of central charges associated with operators whose normalization

is fixed by Ward identities, such as the stress tensor, internal currents and the displacement operator discussed

below.
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We want to consider the theory at finite charge density. By ensemble equivalence at

infinite volume, this just amounts at turning on a non-zero chemical potential µ. In this

regime, we expect the internal U(1) symmetry to be spontaneously broken [40] (together

with other spacetime symmetries [33]); therefore, the low the low energy description on scales

much larger than 1/µ consists of a single shift invariant Goldstone boson. In this section we

study the effect of boundary conditions on this low energy EFT, by classically integrating out

the radial mode.

It is convenient to decompose the field as φ = ρ√
2
eiπ. The action (2.3) in the presence of

a chemical potential then reads:

S =

∫
y≥0

dtd2x

[
1

2
(∂ρ)2 +

1

2
(∂χ)2ρ2 − g2

48
ρ6

]
, χ(x) = µt+ π(x) . (2.5)

We now analyze Neumann and Dirichlet boundary conditions separately. Consider first

the simpler case of Neumann boundary conditions. These can be written as:

∂yρ|y=0 = jy|y=0 = 0 , (2.6)

where jµ = ∂µχρ
2 is the U(1) current. In this case we can safely integrate out the field ρ

using the equations of motion everywhere. Just as in the absence of a boundary, to leading

order in derivatives this gives ρ ' 23/4√µ√
g ' 23/4

√
g (∂χ)1/2 (with the shorthand notation (∂χ) ≡√

gµν∂µχ∂νχ ) and the low energy EFT reads:

S
(Neu)
EFT =

2
√

2

3g

∫
y≥0

dtd2x(∂χ)3 + . . . . (2.7)

From the variation of SEFT we find the bulk equations of motions as well as the boundary

conditions for the field χ:

∂µj
µ = 0 with jy|y=0 = 0 , (2.8)

where jµ = 2
√

2
g ∂µχ(∂χ) in the EFT. Notice that the boundary condition jy|y=0 = 0 in the

EFT precisely matches that of the UV theory (2.6).

Consider now Dirichlet boundary conditions. In polar field coordinates these read:

ρ|y=0 = 0 =⇒ jµ|y=0 = 0 , (2.9)

implying that the current vanishes at the boundary. In this case a constant ρ is incompatible

with the boundary conditions, rather the classical background is obtained by solving the

equations of motion in terms of a profile ρ = ρ(y) which vanishes at y = 0 and goes to a

constant far from the boundary. The explicit solution reads:

ρ(y) =
25/4√µ
√
g

tanh(µy)√
3− tanh2(µy)

=
23/4√µ
√
g
×


√

2

3
µy − (µy)3

3
√

6
+O

(
(µy)5

)
for y � µ−1 ,

1− 3e−2µy +O
(
e−4µy

)
for y � µ−1 .

(2.10)
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Figure 1: The profile of the radial field ρ(y) given in (2.10) that satisfies Dirichlet boundary

conditions.

See fig. 1 for a plot of the profile. Note that the dimensionless product µy controls the behavior

of the solution. Sufficiently far from the boundary, y � 1/µ, ρ takes the same constant

value as for the case of Neumann boundary conditions up to exponentially small corrections;

therefore the bulk action of the low energy EFT is still given by (2.7), independently of the

boundary conditions, as expected from the locality of the theory.

How about the boundary condition on the Goldstone field π(x)? Clearly we cannot

impose the vanishing of all the components of the current as in the UV description (2.9),

since this would not allow for any non-trivial profile for π(x). Physically, the charge density

j0 ' µρ2(y) decays non-trivially only for y � 1/µ, while in the EFT we resolve the location

of the boundary only up to an O (1/µ) uncertainty; therefore we cannot match its value in

the EFT very close to the boundary. Instead, rather than requiring that the local value of j0
is the same in the UV description and in the EFT at the boundary, we should only match

the surface charge density in the x direction in a finite patch of length L� 1/µ:∫ L

0
dy j

(EFT )
0 (y)

!
=

∫ L

0
dy j

(UV )
0 (y) =

2
√

2

g

[
µ2L+

√
3

2
µ log

(
2−
√

3
)

+O
(
e−Lµ

)]
. (2.11)

The leading piece proportional to µ2L is reproduced by the constant charge density in the bulk.

The first correction ∼ µ is instead independent of the integration length L and can therefore

be effectively mimicked by a negative (notice log
(
2−
√

3
)
' −1.3) charge accumulation at the

boundary. This is achieved by adding to the action (2.7) the simplest conceivable boundary

term:

S
(Dir)
EFT =

2
√

2

3g

∫
y≥0

dtd2x(∂χ)3 +
b

2g

∫
y=0

dtdx(∂̂χ)2 + . . . ,

b =
√

6 log
(

2−
√

3
)
' −3.2 ,

(2.12)

where ∂̂a denotes the derivative along the directions parallel to the boundary xa = (t, x).
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Computing the charge density via the Noether procedure one finds:

j(EFT )
µ =

1

g

[
2
√

2(∂χ)∂µχ+ δ(y) bδaµ∂̂aχ
]
, (2.13)

whose integral matches precisely eq. (2.11) on the background. Notice that the exponentially

small corrections in eq. (2.11) instead are not reproduced in the EFT. Finally the boundary

condition on the Goldstone field is obtained from the variation of the action (2.12):

[
2
√

2(∂χ)∂yχ− b∂̂2χ
]
y=0

= 0 =⇒ ∂yπ|y=0 '
b

2
√

2

∂̂2π

µ

∣∣∣∣∣
y=0

= O
(
k2

µ

)
, (2.14)

where we expanded to leading order in field fluctuations in the last equation. This makes

it manifest that the boundary term in eq. (2.12) can be thought as an O
(
∂̂/µ

)
correction.

Therefore to leading order in derivatives the EFT describing the model eq. (2.3) in the presence

of a chemical potential is the same for both Neumann and Dirichlet, and more generally it is

independent of the UV boundary conditions.

As a non-trivial consistency check we can compute the phase shift induced by the bound-

ary on an incoming plane wave in the EFT and check that it correctly reproduces the UV

theory result. Namely, in the EFT we work at the linearized level and consider a plane-wave

solution of the form:

π(x) = e−iωkt−iky + e−iωkt+ikyeiδ , (2.15)

where we consider k > 0 and the dispersion relation gives ωk = k√
2
, corresponding to the

conformal speed of sound cs = 1/
√

2. The boundary condition (2.14) then determines the

phase shift δ as:

δ =
b k

2
√

2µ
+O

(
k2

µ2

)
. (2.16)

Since b < 0, this results correspond to a negative time delay dδ/dk = ∆t/cs < 0. Physically

this is because close to the boundary the charge density decreases and the wave approaches

the speed of light cs = 1.

We now compute the phase shift in the UV theory. We linearize the equations of motion

for the fields around their background values using the Ansatz inspired by (2.15): χ =

µt+ πω(y)e−iωt and ρ = ρ0(y) + ρ1(y)e−iωt with ρ0(y) given in (2.10). We can express

ρ1(y) = i/(2µω)
[
ρ0

(
ω2 + d2/dy2

)
πω + 2ρ′0π

′
ω

]
, (2.17)

and eliminate it from the problem at the expense of making the equation for πω(y) fourth

order in derivatives. This equation cannot be solved in terms of special functions, but its

solution can be approximated using matched asymptotic series expansions, as we summarize

below.
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In the far region, for yµ � 1, we can solve the equation in an expansion in e−2µy. To

leading order, ρ0 is a constant, and πω(y) is a pure exponential. Since we are solving a fourth

order equation, we get four branches of solutions, two are plane waves with k(ω) and −k(ω)

and two are exponentials with growth/decay constant c(ω). To set up the scattering problem,

we discard the exponentially growing piece, and write the solution in the far region:

πω(y) =e−iky
[
1 + a(k) e−2µy + . . .

]
+ eiδeiky

[
1 + a(−k) e−2µy + . . .

]
+Ae−cy [1 + . . .] ,

(2.18)

where the dispersion relation (expanded in ω/µ) is k(ω) =
√

2ω − ω3/(8
√

2µ2) + . . . and

c(ω) = 2µ + . . . , and in (2.18) we wrote out the terms that we included in our computation

explicitly.

Near the boundary, we introduce a rescaled coordinate Y ≡ µy and expand the resulting

equation in ω2/µ2. We solved the problem to subleading order in this expansion, πω(Y ) =

B+ω2/µ2 π̃(Y ) + . . . , where π̃(Y ) has a lengthy expression including polylogarithms. In the

near boundary expansion the general solution has four undetermined coefficients ci:

π̃(Y ) =
c1

Y
+ c2 + c3Y + c4Y

2 +O(Y 3) . (2.19)

The Dirichlet boundary condition on the full complex field gives the following two conditions

for its real and imaginary parts:

ρ1|y=0 = (ρ0 πω) |y=0 = 0 , (2.20)

which fixes c1 = c3 = 0.

The next step involves matching the far and near region solutions in their overlapping

region of validity. π̃(Y ) can be expanded for large Y and matched to (2.18) in a double

expansion in µ to O(1/µ2) and in Y to O(e−2Y ).4 The phase shift that we set out to compute

gets determined to leading order as δ = bω/(2µ) as in (2.16) with the value of b agrees with

(2.12). This provides a highly nontrivial consistency check on the EFT.

3 Large charge boundary operators from the superfluid EFT

3.1 The EFT with a boundary

Consider a BCFT in d > 2 dimensions with U(1) internal symmetry group. As emphasized

in the introduction, the simplest possibility is that operators with internal charge Q � 1

correspond to a superfluid phase of the theory on the strip M = R × HSd−1 with radius

R. The corresponding low energy EFT is written in terms of a single real Goldstone boson

4We have determined the solution in the far region (2.18) to O(e−6µy) and verified that all those extra

terms match to the solution in the near region that was completely fixed from the lower order computation.
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χ(x) = µt + π(x), and a U(1) shift invariant action. As illustrated in the previous section,

the action can be written in terms of a bulk and a boundary contribution:

S = Sbulk + Sbdry . (3.1)

Due to the locality of the theory, the bulk action does not depend on the boundary condition

and coincides with the one constructed in [9, 10]. Its form is fixed by U(1) and Weyl invariance

and up to second order in derivatives it reads:

Sbulk =

∫
M
ddx
√
g
{
c1(∂χ)d + c2

[
R(∂χ)d−2 + . . .

]
+c3(∂χ)d−4 [∂µχ∂νχRµν + . . .] +O

(
R2(∂χ)d−4

)}
,

(3.2)

where here and the rest of the paper we use the shorthand
√
g ≡

√
|det(gµν)| and the dots

stand for terms which vanish on the classical profile χ = µt. We are also assuming that the

bulk theory is parity invariant for simplicity; for discussion of the parity breaking theories

see [41]. The Wilson coefficients ci’s are the same as in the CFT without a boundary and

they are expected to be O(1) for strongly coupled theories, but may take parametrically large

values in weakly coupled models. As in the example of sec. 2.2, we parametrize the boundary

conditions by introducing the most general boundary action compatible with the symmetries.

In appendix C we show that Sbdry depends on a unique Wilson coefficient up to corrections

which are second order in derivatives:

Sbdry =

∫
∂M

dd−1x
√
ĝ
[
b1(∂̂χ)d−1 +O

(
R(∂χ)d−3

)]
, (3.3)

where ĝab is the induced metric on the boundary and (∂̂χ)2 = ĝab∂aχ∂bχ. As explained in

sec. 2.2 the boundary equations of motion which follow from eq. (3.1) can be thought as

perturbations of the Neumann condition nµjµ|∂M = 0, where nµ is the normal to ∂M.

3.2 The BCFT spectrum at large charge

We want to use the action (3.1) to compute the BCFT spectrum of large charge operators. To

this aim, it is useful to recall first the results for the theory on the cylinder (no boundary) [9,

10]. In this case, computing the Noether current from the bulk action on the classical profile

χ = µt, one finds the following relation between the total charge Q and the chemical potential:

Rµ =

(
Q

c1dΩd−1

) 1
d−1

+O
(
Q−

1
d−1

)
, (3.4)

where Ωd−1 = 2πd/2

Γ(d/2) is the volume of the (d− 1)-sphere. We then compute the energy of the

ground-state by integrating the expectation value of the energy-momentum tensor. Neglecting

momentarily quantum corrections, we find:

∆Q|classical = α1Q
d
d−1 + α2Q

d−2
d−1 + . . . ,

α1 =
c1(d− 1)Ωd−1

(c1dΩd−1)
d
d−1

, α2 =
c2(d− 2)(d− 1)Ωd−1

(c1dΩd−1)
d−2
d−1

,
(3.5)
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where the expansion runs in even powers of Rµ ∼ Q
1
d−1 due to parity invariance. Quantum

corrections provide a O
(
Q0
)

contribution to (3.5). To compute them, we notice that the

phonon fluctuation field π(x) = χ(x) − µt obeys the following linearized equation of motion

to leading order in derivatives

π̈ − 1

d− 1
∇2
Sd−1π = 0 . (3.6)

The wave-solutions e−iω`t/Rf(Ω) to the bulk equations have frequency

ω` =

√
`(`+ d− 2)

d− 1
, ` = 1, 2, . . . , (3.7)

and are given by the (hyper)spherical harmonics with angular momentum `. Therefore, at

a quantum level, the spectrum of charge Q operators can be organized as a Fock space in

terms of single particle states with angular momentum ` and energy ∆Q +ω`.
5 The one-loop

quantum correction to eq. (3.5) is given by the Casimir energy of the phonon and reads:

δ∆
(1−loop)
Q =

1

2

∑
`

n`ω` , (3.8)

where n` = (2`+d−2)Γ(`+d−2)
Γ(d−1)Γ(`+1) is the dimension of the spin `-representation of SO(d). Upon

regularizing the sum in eq. (3.8) compatibly with all the symmetries, e.g. in dimensional

regularization6 as in [43], we find that the result is qualitatively different between even and

odd-spacetime dimensions. This is because, as it can be seen from (3.5), the classical result

contains a Q0 contribution only for d =even. Thus for d =odd the Casimir energy cannot be

renormalized by any local counterterm; accordingly, it is finite (when properly regularized)

and the EFT predicts a theory-independent calculable O(Q0) contribution to ∆Q [9]. Instead

for even d the Casimir energy is divergent and the EFT predicts the existence of a Q0 logQ

term with universal coefficient [43]. Overall, eq. (3.8) leads to

δ∆
(1−loop)
Q =

{
cd for d = odd ,

γd logQ for d = even ,
(3.9)

where

cd =

{
−0.0937 . . . d = 3

−0.1079 . . . d = 5 ,
γd =

−
1

48
√

3
d = 4

− 1
60
√

5
d = 6 .

(3.10)

We may now proceed in the same way to extract the spectrum in the presence of a

boundary. In this case from the action (3.1) we extract the following relation between the

chemical potential and the total charge Q of the ground-state:

Rµ =

(
2Q

c1dΩd−1

) 1
d−1

− 2b1Ωd−2

c1dΩd−1
+O

(
Q−

1
d−1

)
. (3.11)

5The zero mode relates states with different charge [10].
6See also [42] for details on dimensional regularization in theories with spontaneously broken conformal

symmetry.
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Besides the factors of 2 arising from the reduced volume, the main difference with eq. (3.4) is

the second term. This arises from the boundary current in the EFT, and its sign depends on

whether the charge density increases or decreases close to the boundary. In theories in which

the current vanishes at the boundary,7 we naturally expect that the charge density decreases

close to the boundary, corresponding to b1 < 0 as in sec. 2.2. This is indeed be the case for

the O(2) model in the epsilon expansion with Dirichlet boundary conditions, as we will show

in sec. 4. In general however the sign of b1 cannot be inferred a priori ; for instance we will

show in the next section that quantum effects generate a coefficient b1 > 0 in the epsilon

expansion for the O(2) model with Neumann boundary conditions.8 We will see in a moment

that b1 controls the difference ∆̂Q − 1
2∆2Q.

As before, we compute the scaling dimension of the ground-state integrating the expec-

tation value of the energy-momentum tensor. Neglecting momentarily quantum corrections,

we find:

∆̂Q|classical = α̂1 (2Q)
d
d−1 + β̂1(2Q) + α̂2 (2Q)

d−2
d−1 + . . . , (3.13)

where the coefficients α̂i’s and β̂i’s depend on the Wilson coefficients in the action and can

be related to those appearing in eq. (3.5) as:

α̂1 =
1

2
α1 , β̂1 = − b1Ωd−2

c1dΩd−1
, α̂2 =

[
1

2
+

b21Ω2
d−2

c1c2d(d− 2)Ω2
d−1

]
α2 . (3.14)

The origin of the second term in α̂2 is the correction term in (3.11) in the relation between

µ and Q. As expected, the scaling dimension of the lowest dimensional boundary operator

is related to the one at the boundary as ∆̂Q ≈ 1
2∆2Q, where the equality holds up to O(Q)

corrections. In particular, the difference between ∆̂Q − 1
2∆2Q is controlled by the unique

Wilson coefficients b1 to leading order. Notice also that the expansion in eq. (3.13) contains

both even and odd powers of the cutoff µ ∼ Q
1
d−1 , since parity is explicitly broken by the

boundary.

We now quantize the system as before. In particular, the phonon field π(x) obeys the

same eq. (3.6) in the bulk. However now the Neumann boundary condition nµ∂µπ|∂M = 0

restricts the space of solutions only to the harmonics which are even under reflection across

7Technically this means that its bulk to boundary OPE (2.1) is not singular, i.e. it does not contain any

operator of dimension ∆̂ < d− 1.
8For an example of a classical model in which both signs occurs depending on the parameters, consider the

following model consisting of two complex fields φ and ψ, one of which only lives at the boundary:

S =

∫
z≥0

d4x

[
|∂φ|2 − λ

4
|φ|4

]
+

∫
z=0

d3x

[
|∂ψ|2 − g1|φ|2|ψ|2 −

g2

2

(
φ∗ 2ψ2 + c.c.

)
− λ̃2

6
|ψ|6

]
. (3.12)

The boundary conditions for φ are perturbations of Neumann. Coupling this theory to a chemical potential

µ, it is easy to show that the low energy EFT is a superfluid, and that the sign of the coefficient b1 in eq. (3.3)

is the same as that of g1 + |g2|. Physically, while the bulk charge density carried by φ decreases close to the

boundary, the field ψ stores some charge (precisely at z = 0). The amount of charge stored by ψ depends on

the parameters and determines the sign of b1 in the EFT.
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the equator. Their number in d dimensions is given by [44]:

n+
` =

Γ(d− 1 + `)

Γ(d− 1)Γ(`+ 1)
. (3.15)

The single particle states which form the Fock space have frequency ω` as before. However,

since the boundary breaks the rotation group to SO(d− 1), the angular momentum of these

states is found by decomposing the corresponding representation of SO(d) into irrep.s of

SO(d − 1). More precisely, the even states in the spin ` irrep of SO(d) decompose precisely

into the irreps m = `, ` − 2, . . . ,−` of SO(d − 1). Therefore there is a huge accidental

degeneracy between states with different quantum numbers. We expect that this degeneracy

will be partially lifted upon including 1/µ effects in the boundary conditions.

Finally the Casimir energy of the Fock states provides a one-loop contribution to the

ground-state energy (3.13):

δ∆̂
(1−loop)
Q =

1

2

∑
`

n+
` ω` . (3.16)

This correction provides a universal logQ correction to the boundary operator scaling di-

mension (3.13). Indeeed, differently from eq. (3.5), for large charge boundary operators in

all (integer) dimensions there is either a boundary or a bulk operator which contributes at

order Q0 in the expansion in eq. (3.13). Correspondingly the Casimir energy should contain

a logarithmic divergence generically. We indeed find such a divergence, and this leads to a

universal logQ term in the large charge expansion of the scaling dimension of the boundary

operator (in all integer dimensions d). To compute it, we regularize the calculation in a man-

ner compatible with all the symmetries in dimensional regularization as in [43] and we find

the result:9

δ∆̂
(1−loop)
Q = γ̂d logQ+O

(
Q−

1
d−1

)
, (3.17)

where the coefficient γ̂d depends on the number of spacetime dimensions:

γ̂d =



− 1

64
√

2
for d = 3 ,

− 1

96
√

3
for d = 4 ,

− 45

8192
for d = 5 ,

− 1

120
√

5
for d = 6 .

(3.18)

In d = 4 and d = 6 the coefficient γ̂d is half of that which appears in the analogous contribu-

tions in the bulk scaling dimension in eq. (3.10). This is because the operator renormalizing

9More physically, the logarithmic term can be extracted in any regularization scheme upon replacing the

renormalization scale with the chemical potential µ: for instance, in a cutoff scheme its coefficient agrees

with −1/(d − 1) times the coefficient of the log Λ term, where Λ is the energy cutoff, while in zeta-function

regularization it is −1/(d− 1) times the coefficient of ζ(1). (The −1/(d− 1) factor comes from the conversion

between Rµ and Q in (3.11).)
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the Casimir energy in even dimensions is a bulk operator, whose coefficient is not affected

by the presence of a boundary (the 1/2 is because the integration is over half-space in the

BCFT).

Finally we mention that, as explained in [10], the EFT also predicts correlation functions

of light operators in between two large charge states. For instance a scalar boundary operator

of scaling dimension δ and charge q can be matched in the EFT as:

Ôq,δ = C(∂̂χ)δeiqχ + . . . , (3.19)

where C is an unknown Wilson coefficient. Proceeding as in [10] we immediately find the

following prediction for the OPE coefficient:

λ̂q,δ = 〈Q+ q|Ôq,δ|Q〉 ∝
(

2Q

c1

) δ
d−1

. (3.20)

In particular we can also compute the OPE coefficient for the displacement operator in be-

tween two large charge operators. As explained in the introduction, this is obtained upon

taking the boundary limit of the bulk stress tensor. Working in hyperspherical coordinates,

this is given by:

λ̂D̂ = 〈Q|D̂|Q〉 = lim
θ→π

2

〈Q|Tθθ(θ)|Q〉 =
α1

(d− 1)Ωd−1
(2Q)

d
d−1 , (3.21)

where α1 is defined in eq. (3.5).

4 A weakly coupled example: the O(2) BCFT in the 4− ε expansion

In this section we focus on the O(2) model at the Wilson-Fisher fixed point in d = 4 − ε
dimensions on the half-plane xd ≥ 0. Two boundary conditions are consistent with conformal

invariance and also preserve the global U(1) symmetry:10

1. Neumann boundary condition: ∂dφ|xd=0 = 0 .

2. Dirichlet boundary condition: φ|xd=0 = 0 .

We study the scaling dimensions ∆̂Q of the lowest dimension operator of charge Q under the

global U(1) symmetry in the boundary theory for each of these boundary conditions. This

will allow us to verify explicitly many of the predictions discussed in the previous section.

4.1 General considerations

Consider the following (Euclidean) action in d = 4− ε dimensions in flat space:

S =

∫
ddx

(
|∂φ|2 +

λ0

4
|φ|4

)
, (4.1)

10A third boundary condition, which defines the so-called extra-ordinary transition point [45], is also com-

patible with conformal invariance, but breaks instead the U(1) symmetry.
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where φ is a complex scalar field, and λ0 is the bare coupling constant, which to one-loop

order is related to the physical one by the relation

λ0M
−ε = λ+

1

ε
δλ1 +

δλ2

ε2
+ . . . , δλ1 = 5

λ2

(4π)2
− 15

2

λ3

(4π)4
+O

(
λ4

(4π)6

)
. (4.2)

Here M is the sliding scale. The β-function of λ to two-loops order in perturbation theory is

given by [46]

βλ = M
dλ

dM
= λ

[
−ε+ 5

λ

(4π)2
− 15

λ2

(4π)4
+O(λ3)

]
. (4.3)

This has a fixed-point at
λ∗

(4π)2
=
ε

5
+

3ε2

25
+O(ε3). (4.4)

We will focus the theory (4.1) on the half-plane xd ≥ 0. We are primarily interested

in the scaling dimension of the lightest boundary operator of a given U(1) charge Q. As

emphasized in [36], the diagrammatic perturbative expansion breaks down for correlators of

charge Q operators with λ∗Q ∼ εQ & 1, due to the large combinatorial factors associated

with multi-legged amplitudes. Instead we will work in the double scaling limit ε → 0 with

εQ = fixed, for which the result takes the form:11

∆̂Q =
1

λ∗
∆̂−1(λ∗Q) + ∆̂0(λ∗Q) + . . . (4.5)

As we review below, the result in this limit is obtained expanding the path-integral around

the appropriate semiclassical trajectory sourced by the operators insertions. Unsurprisingly,

the saddle-point takes the form of a superfluid profile, and the parameter λ∗Q controls the

gap of the fluctuations of the radial mode. In the regime of small λ∗Q � (4π)2 the radial

mode is light, and the coefficients in eq. (4.5) match the results of standard diagrammatic

calculations in the vacuum.12 In the opposite regime λ∗Q� (4π)2 the radial mode becomes

heavy. Therefore it decouples, and we can compare ∆̂Q with the predictions discussed in

sec. 3.13

11A similar double scaling limit was analyzed in N = 2 superconfomal field theories [47–49] as well as in the

large N expansion [35, 50].
12For instance, in the O(N) model with no boundary the result of the semiclassical calculation in the double

scaling limit was succesfully compared with the outcome of a four loop diagrammatic calculation in [51].
13Note that there are weakly coupled theories in which the gap of the first excited state is controlled directly

by Q and thus the EFT applies for Q � 1 for any value of the coupling λ. For instance this is the case for

monopole operators carrying Q units of topological charge in U(1) gauge theories with a large number Nf of

matter fields: in the monopole background, the spectrum of matter modes is organized in Landau levels, whose

gap is controlled by the large magnetic field B ∼ Q directly, despite the existence of a small coupling constant

λ = 1/Nf . In these models the EFT is most naturally formulated in terms of the gauge field dual to the

Goldstone field χ. Computations of ∆Q in these theories were performed in the UV description in [34, 52–55].

– 15 –



For future reference, we quote here the result for the scaling dimension ∆Q of the bulk

operator φQ obtained in [36] for εQ� 1:

∆Q =
1

ε

(
2

5
εQ

) 4−ε
3−ε
[

15

8
+ ε

(
a1 +

3

8

)
+O

(
ε2
)]

+
1

ε

(
2

5
εQ

) 2−ε
3−ε
[

5

4
− ε

(
a2 −

1

4

)
+O

(
ε2
)]

+ . . . , (4.6)

where a1 and a2 are numerical constants:

a1 = −0.5753315(3) , a2 = −0.93715(9) . (4.7)

Comparing with eq. (3.5) and using eq. (4.4), we then infer that the Wilson coefficients c1

and c2 of the bulk effective action (3.2) read:

c1 =
1

λ∗

{
1 +

λ∗
(4π)2

[
5

2
(γE − 1 + log π)− 8a1

]
+O

(
λ2
∗

(4π)4

)}
,

c2 =
1

λ∗

{
1

3
+

λ∗
(4π)2

[
5

2
(γE + log π) +

17

6
− 4

3
(4a1 + 3a2)

]
+O

(
λ2
∗

(4π)4

)}
.

(4.8)

These expressions will be used to verify that the coefficients of the large λ∗Q expansion of

∆̂Q satisfy the relations (3.14) predicted by the EFT.

To compute the coefficients in eq. (4.5), we proceed as in [36]. Namely we consider the

theory on R×HSd−1. The action reads:∫
θ≤π/2

ddx
√
g

[
|∂φ|2 +m2

d|φ|2 +
λ0

4
|φ|4

]
, (4.9)

where md is the conformal mass given by md = d−2
2R and R is the sphere radius. Since it is

the lowest energy eigenvalue in the charge Q sector on the cylinder, the scaling dimension

∆̂Q can be extracted from the expectation value of the (Euclidean) evolution operator e−HT

in between an arbitrary charge Q state |ψQ〉 in the limit T →∞:

〈ψQ|e−HT |ψQ〉
T→∞

= N e−T ∆̂Q/R . (4.10)

A convenient choice of the state is given by:

|ψQ〉 =

∫
Dχ exp

[
i

Q

2Rd−1Ωd−1

∫
θ≤π

2

dΩχ

]
|f, χ〉 , (4.11)

where |ρ, χ〉 denotes a state with fixed values of the field (in Schrödinger picture) in the polar

parametrization φ = ρ√
2
eiχ. The choice of the value of f = f(θ) is in our hands and it will

be used to simplify the calculations. The path-integral corresponding to eq. (4.10) may then

be written as:

〈ψQ|e−HT |ψQ〉 = Z−1

∫ ρ=f(θ)

ρ=f(θ)
DχDρ e−Seff , (4.12)
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where Seff is given by:

Seff =

∫ T/2

−T/2
dτ

∫
θ≤π

2

dΩd−1

[
1

2
(∂ρ)2 +

1

2
ρ2(∂χ)2 +

m2
d

2
ρ2 +

λ0

16
ρ4 + i

Q

2Rd−1Ωd−1
χ̇

]
.

(4.13)

The factor Z ensures that the vacuum to vacuum amplitude is normalized to unity:

Z =

∫
DχDρ e−S . (4.14)

Performing the path integral in the saddle point approximation then yields the result (4.10).

In particular the leading order arises from evaluating the action (4.13) on the solution of the

equations of motion with boundary conditions specified by the trial wave function (4.11). We

choose f(θ) such that the saddle point configuration is stationary, i.e.

χ = −iµτ , ρ = f(θ) , (4.15)

where µ and f(θ) are solutions of the following equations

∂θ
[
sind−2 θ∂θf(θ)

]
R2 sind−2 θ

+
(
µ2 −m2

d

)
f(θ)− λ0

4
f3(θ) = 0 ,

Q = Rd−1

∫
θ≤π

2

dΩd−1 µf
2(θ) ,

(4.16)

supplemented by the condition ∂θf |θ=π
2

= 0 for Neumann boundary conditions and by

f |θ=π
2

= 0 for Dirichlet. Below we present the results for both cases.

4.2 Neumann boundary conditions

The Neumann boundary conditions are compatible with a constant profile for ρ. Therefore

the equations of motion (4.16) simplify:

µ2 −m2
d =

λ0

4
f2 , Q =

1

2
Ωd−1R

d−1µf2 , (4.17)

where Ωd−1 is the volume of the unit (d − 1)-sphere. To leading order, eqs. (4.17) can be

solved directly in four dimensions and yield the result:

1

λ∗
∆̂−1(λ∗Q) =

1

2λ∗
∆bulk
−1 (2λ∗Q) , (4.18)

where ∆bulk
−1 (λQ)/λ is the leading order result for the scaling dimension of the bulk operator

φQ obtained in [36]. We do not report the exact expression here, but we just display the

expansions for small and large λ∗Q:

1

λ∗
∆̂−1(λ∗Q) =


Q

[
1 +

λ∗Q

16π2
+O

(
(λ∗Q)2

(4π)4

)]
, for λ∗Q� (4π)2 ,

4π2

λ∗

[
3

4

(
λ∗Q

4π2

)4/3

+
1

2

(
λ∗Q

4π2

)2/3

+O (1)

]
, for λ∗Q� (4π)2.

(4.19)
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The result for small λ∗Q agrees with the diagrammatic result for the anomalous dimension

γ̂Q = ∆̂−Qd−2
2 of the operator φ̂Q, which to 1-loop is given by (see appendix D.1 for details):

γ̂Q =
λ∗

16π2

(
Q2 − 2Q

)
=
ε

5

(
Q2 − 2Q

)
. (4.20)

The large λ∗Q result instead takes the pattern expected from the superfluid EFT. As in the

example of sec. 2.2, integrating out ρ at the classical level does not lead to any boundary term

in the EFT in this case; correspondingly, this procedure does not produce any contribution

linear in Q in the large charge result and the relation (1.1) is exact to all orders in the charge.

This will not be true upon including quantum corrections, as it can already be seen from

eq. (4.20).

Let us now compute the one-loop correction to ∆̂Q in the double-scaling limit. This

correction arises from the Casimir energy of the Goldstone and the radial modes:14

R

2

∞∑
`=0

n+
` [ω+(`) + ω−(`)] , (4.21)

where n+
` is the number of even hyperspherical modes on the sphere Sd−1 given in eq. (3.15)

and the frequencies are given by:

ω2
±(`) = J2

` + 3µ2 −m2
d ±

√
4J2

` µ
2 + (3µ2 −m2

d)
2, J2

` =
`(`+ d− 2)

R2
. (4.22)

Using eq. (4.2) to renormalize the divergence, we obtain the expression:

∆̂0 =

{
lim
ε→0

[
R

2

∞∑
`=0

n+
` [ω+(`) + ω−(`)] +

5
(
µ2R2 − 1

)2
16ε

]}
λ0=λ∗

. (4.23)

Performing the divergent part of the sum in dimensional regularization, the final result takes

the form:

∆̂0(λ∗Q) = −15(µ∗R)4 + 30(µ∗R)2 − 13

32
+

1

2

∞∑
`=1

σ(`) +

√
3µ2
∗R

2 − 1√
2

(4.24)

where we defined

σ(`) =
1

2
(`+ 1)(`+ 2)R

[
ω∗+(`) + ω∗−(`)

]
− `3 − 4`2 − `

(
µ2
∗R

2 + 4
)
− 2µ2

∗R
2 +

5
(
µ2
∗R

2 − 1
)2

8`
.

(4.25)

Here ∗ stresses that all quantities are evaluated in d = 4 with λ0 equal to the fixed point

value λ∗ (which enters expressions through (4.17)). The sum over σ(`) cannot be evaluated

in closed form in general, but it is convergent since σ(`) ∼ 1/`3.

Let us now consider the result in the regime of small λ∗Q. In this case we can expand

σ(`) in powers of λ∗Q and then perform the sum in eq. (4.24) analytically order by order.

14The calculation in the rest of this subsection follows closely the general steps done in section 4 of [36] .
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Adding then the tree-level result (4.19) to the so evaluated one-loop contribution (4.24), and

using (4.4), we find the following anomalous dimension:

γ̂Q = ε

(
Q2

5
− 2Q

5

)
− ε2

[
2Q3

25
−
(

8

25
− 2π2

75

)
Q2

]
+O

(
ε3Q, ε3Q4

)
. (4.26)

This clearly agrees with the diagrammatic result in equation (4.20).

We can also evaluate the Casimir energy in the regime λ∗Q � (4π)2. One option is

to follow the methodology of [36], which led to the result quoted in (4.7). That procedure

involves obtaining terms that contain a log (λ∗Q) enhancement analytically, and then numer-

ically evaluating the remaining sum over σ(`) from (4.25), and determining coefficients in the

large λ∗Q expansion from fitting to these numerical values. In appendix D.2, we present an

improvement over this method that is analytic and hence does not involve fitting. It leads to

the final result:

∆̂0 =

[
5

48
log

(
λ∗Q

4π2

)
+ â1

](
λ∗Q

4π2

)4/3

+ d̂1

(
λ∗Q

4π2

)
+

[
− 5

72
log

(
λ∗Q

4π2

)
+ â2

](
λ∗Q

4π2

)2/3

+ d̂2

(
λ∗Q

4π2

)1/3

+O (1) . (4.27)

The coefficients âi, d̂i are determined by definite integrals as detailed in appendix D.2, e.g.

â1 =
5

32

[
2γE − 3− log

(
8

5

)]
+

1

2

∫ ∞
0

dk Σ̂1(k) , (4.28)

where Σ̂1(k) is given in (D.13) and (D.14). The coefficients can be easily evaluated numerically

to arbitrary precision:

â1 = −0.287665 , d̂1 = −0.530918 , â2 = −0.468560 , d̂2 = 0.173701 . (4.29)

The result is in agreement with the general structure (3.13). To see this, it is convenient to

add eq. (4.27) to the leading order (4.19) and write the result in the form:

∆̂Q =
1

ε

(
4

5
εQ

) d
d−1
[

15

16
+ ε

(
â1 +

3

16

)
+O

(
ε2
)]

+
1

ε

(
4

5
εQ

)[
0 + εd̂1 +O

(
ε2
)]

+
1

ε

(
4

5
εQ

) d−2
d−1
[

5

8
+ ε

(
â2 −

1

8

)
+O

(
ε2
)]

+
1

ε

(
4

5
εQ

) d−3
d−1 [

0 + εd̂2 +O
(
ε2
)]

+ . . .

(4.30)

We may now also use this expression to verify the relations (3.14). In particular, since b1 = 0

at tree-level (corresponding to O(1/ε)), the EFT demands that the coefficients of the Q
d
d−1

and Q
d−2
d−1 are precisely half of those in eq. (4.6) for the bulk scaling dimension. This implies

â1 = a1/2 and â2 = a2/2, in beautiful agreement with the values in eqs. (4.7) and (4.29).15

15With the improved technology of appendix D.2, we can give an analytic proof of these relations and also

determine the coefficients a1 and a2 with arbitrary precision.
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Furthermore, using the leading order value of c1 given in eq. (4.8), we find that the coefficient

b1 of the boundary action (3.3) is given by:

b1 = − d̂1

2π
+O

(
λ∗

(4π)2

)
. (4.31)

Therefore a positive coefficient b1 is generated at the quantum level (at O(ε0)), corresponding

to an increase in the charge density close to the boundary.

4.3 Dirichlet boundary conditions

The Dirichlet boundary conditions are clearly not compatible with a non-trivial constant

profile. Instead below we solve the eqs. (4.16) for small and large values of λQ. We will only

work at leading order in the double scaling limit, therefore we can set d = 4 in the following.

For small λQ, the lowest dimension operator of charge Q corresponds to (∂dφ̂)Q, whose

anomalous dimension γ̂Q = ∆̂Q −Qd
2 is computed in appendix D.1 and reads:

γ̂Q =
λ∗

32π2

(
Q2 − 3Q

)
+O

(
λ2
∗Q

3

(4π)4

)
. (4.32)

We can reproduce the leading O
(
λ∗Q

2
)

term of this result with a semiclassical calculation.

To this aim we notice that for small λ∗Q/(4π)2 the non-linear term in eq. (4.16) can be

neglected to leading order. Treating it perturbatively, we found the solution up to order

O
(
(λ∗Q)6

)
. The leading orders read:

f(θ) =

√
2Q

πR
cos θ

[
1 +

2λ∗Q

384π2
− 2λ∗Q

48π2
cos2 θ +O

(
λ2
∗Q

2

(4π)4

)]
,

Rµ = 2 +
2λ∗Q

32π2
+O

(
λ2
∗Q

2

(4π)4

)
.

(4.33)

Using the classical profile (to higher order than displayed above) to evaluate the action (4.13),

we find the result:

1

λ∗
∆̂−1(λ∗Q) = Q

[
2 +

λ∗Q

2(4π)2
− λ2

∗Q
2

3(4π)4
+

31

72

λ3
∗Q

3

(4π)6
− 2491

3456

λ4
∗Q

4

(4π)8

+
57763

41472

λ5
∗Q

5

(4π)10
− 14686201

4976640

λ6
∗Q

6

(4π)12
+O

((
λ∗Q

(4π)2

)7
)]

,

(4.34)

whose first two terms clearly agree with eq. (4.32).

In the large λ∗Q regime we can use the method of matched asymptotic expansions in

solving the saddle point equations (4.16). Let us define the variable x ≡ cos θ, and as in

sec. 2.2 define the far region with x = O(1) and the near boundary region where the rescaled

coordinate X ≡ µRx = O(1) (and hence x→ 0 as µR →∞). The solution in the far region

can be found in an exp
(
−
√

2µRx
)

expansion (but exactly in µ):

f(x) =
2
√

(µR)2 − 1√
λ

[
1 +O

(
exp
(
−
√

2µRx
))]

(4.35)
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In the near region we solve the equation in the 1/(µR) expansion. From the condition of no

singularity at finite X as well as the Dirichlet boundary condition, we get a unique profile at

leading order in µR:

f(X) =
2µ√
λ

tanh

(
X√

2

)[
1 +O

(
1

(µR)2

)]
. (4.36)

Free coefficients arise at subleading orders. The two series can be matched in their overlapping

regime of validity, for X → ∞ (but x → 0). The terms we have written explicitly match at

leading order, and the procedure fixes the undetermined coefficients at subleading orders. We

have performed the matching explicitly to O
(
e−
√

2X
)

and to O (1/µ), but will not write the

explicit formulas here.

We may now use this solution to compute the charge and the classical action as a function

of µ. Combining those expressions we find the final result for the scaling dimension:

∆̂−1(λ∗Q)

λ∗
=

4π2

λ∗

[
3

4

(
λ∗Q

4π2

)4/3

+
4
√

2

3π

(
λ∗Q

4π2

)

+

(
32 + 3π2

)
6π2

(
λ∗Q

4π2

)2/3

+O

((
λ∗Q

4π2

)1/3
)]

.

(4.37)

As expected, comparing with eq. (4.19), the coefficient of the leading term ∼ (λ∗Q)4/3 is the

same for both Neumann and Dirichlet boundary conditions. For Dirichlet we find a positive

classical term linear in Q, corresponding to a negative coefficient b1 for the EFT boundary

action (3.3):

b1 = −4
√

2

3λ∗

[
1 +O

(
λ∗

(4π)2

)]
. (4.38)

As in the example of sec. 2.2, this coefficient is needed to match in the EFT the decrease in

the charge density close to the boundary. Finally, we notice that the Q2/3 term in the EFT is

determined from b1, c1 and c2 by the relations (3.14). We may then use the explicit values of

the ci’s in eq. (4.8) for this model, together with the value of b1 in eq. (4.38), to compare the

EFT prediction with the result for the Q2/3 term in eq. (4.37). We find perfect agreement,

providing an additional non-trivial check of the EFT approach.

5 Other large charge phases in BCFTs

Large charge operators in CFTs are not always described by a superfluid EFT. Alternative

phases are for instance found in free theories, N ≥ 2 SCFTs [12, 56, 57] and free fermions [58].

Similarly, there also exist BCFTs with different large charge phases. Here we discuss some

examples.
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5.1 Free charged scalar with interacting boundary

The large charge sector of CFTs with moduli, such as free theories or N ≥ 2 SCFTs in four

dimensions, behaves differently than in generic theories. This is because the corresponding

EFT is formulated in terms of an axio-dilaton complex scalar field φ with flat potential. As

a result the lowest dimensional charged operator obeys ∆Q ∝ Q for Q→∞ [12].

Here we analyze what happens when coupling such theories to a boundary, which may

partially lift the flat direction, focusing on the example of a free bulk theory. A possibility

which is special to BCFT is to couple free bulk theories to interacting boundary degrees of

freedom, see e.g. [23, 25] for perturbative examples. Here we consider the case where the free

bulk scalar is charged under a U(1) symmetry preserved by the boundary.

We consider first a simple toy model, given by:∫
ddx|∂φ|2 +

λ

4

∫
dd−1x|φ|4 , (5.1)

where the boundary conditions are perturbation of Neumann ones. This has a fixed point in

3− ε dimensions at the zero of the beta function βλ = −ελ+ 5λ
2

4π +O
(

λ2

(4π)2

)
. We would like

to study the scaling dimension of the lowest dimensional operators with large U(1) charge

Q ∼ 1/λ∗. To this aim, we proceed as in sec. 3. Namely we consider the theory on the strip

R×HSd−1 and expand the field around a profile of the form:

φ = e−iµtf(θ) , (5.2)

where we work in spherical coordinates and the function f solves the equations of motion.

To leading order we work in d = 3, for which the bulk equation reads

1

R2 sin θ
∂θ [sin θ∂θf (θ)] +

(
µ2 − 1

4R2

)
f (θ) = 0 , (5.3)

while the boundary condition and the condition of fixed charge imply[
∂θf(θ)/R+

λ

2
f3(θ)

]
θ=π

2

= 0 , Q = 2µR2

∫
θ≤π

2

dΩ2f
2(θ) . (5.4)

To solve the eqs. (5.3) and (5.4), we notice that, for arbitrary µ, the regular solution of

the bulk equation can be written in terms of a hypergeometric function:

f(θ) = v 2F1

(
1 + 2Rµ

2
,
1− 2Rµ

2
; 1;

1− cos θ

2

)
. (5.5)

To find the value of v and µ we may instead plug this expression in the eq.s (5.4), and solve

them as a function of the charge and the coupling. Though we were not able to find a solution

in closed form for general values of Q, it is possible to check numerically that such a solution

always exists, and that the chemical potential and v satisfy 1
2R ≤ µ ≤

3
2R and v2 ∝ Q. In the

following we discuss the explicit result for small and large λQ.
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At small λQ, the solution is close to the one describing unperturbed Neumann, φ =

ve−i
t

2R . Therefore, expanding the chemical potential around µ ' 1
2R we find

µ =
1

2R
+
λQ

4πR
+O

(
λ2Q2

(4π)2R

)
, v =

√
Q

2πR

[
1− λQ

8π
(1 + log 2) +O

(
λ2Q2

(4π)2R

)]
. (5.6)

Computing the classical energy we find

∆̂Q =
Q

2
+
λQ2

8π
+O

(
λ2Q3

(4π)2

)
, (5.7)

which is in perfect agreement with the diagrammatic result for the anomalous dimension of

the boundary operator φ̂Q,

γ̂Q =
λQ(Q− 1)

8π
+O

(
λ2Q3

(4π)2

)
λ=λ∗=

εQ(Q− 1)

10
+O

(
ε2Q3

)
. (5.8)

Let us now consider the large λQ regime. In this case the absence of a bulk potential

implies that the chemical potential stays of order one, differently than in the O(2) model

studied in sec. 4. Nonetheless the boundary interaction implies that the coefficient of the

ratio ∆̂Q/Q changes compared to eq. (5.7). To see this we notice that λv2 ∼ λQ. Therefore

in the limit λQ → ∞, the boundary condition (5.4) demands that f(θ)/v approaches zero.

This is effectively analogous to a Dirichlet condition. In this limit µ ' 3
2 so that f(θ) ' v cos θ

and we find that the scaling dimension reads:

∆̂Q =
3

2
Q+O

(
(λQ)2/3

λ

)
. (5.9)

Consider now a more general theory in d dimensions, in which additional boundary

degrees of freedom are coupled to the free field. In a large charge state we expect that these

will be gapped by the large expectation value of the scalar field.16 Integrating them out, we

will then produce a potential ∼ |φ|
2(d−1)
d−2 in the boundary, and we expect a description similar

to the model we just discussed to apply. In particular the energy of the ground state should

coincide with the free Dirichlet answer ∆̂Q ' d
2Q to leading order in Q.

We also expect that similar considerations apply to the lowest dimensional large charge

operators for more general bulk theories that have moduli, e.g. in four-dimensional N ≥ 2

SCFTs coupled to a superconformal boundary, especially when the boundary conditions break

enough supersymmetry. 17

16E.g. in the previous model one has λ|φ|4|bdry ∼ (λQ)2/3/λ for large λQ.
17Superconformal boundary conditions in N ≥ 2 superconformal theories in four dimensions were analyzed,

e.g., in [59–61].
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5.2 Free fermion in four dimensions

As a next example, let us consider a free massless Dirac fermion in four dimensions. In

component it reads:

ψD ≡

(
ψα

ζ†α̇

)
=


ψ1

ψ2

ζ†1
ζ†2

 . (5.10)

In the absence of a boundary, the free Dirac field enjoys a U(1)×U(1) symmetry under which

the phases of ψα and ζ†α̇ shift independently. Bulk operators with charge Q � 1 under the

diagonal U(1) acting as ψD → eiαψD were constructed explicitly in [58]. These correspond

to Fermi spheres with all spinor harmonic levels filled up to spin j = jmax − 1 and a number

δQ of modes filled in the j = jmax level. When the numbers of fermions δQ in the last level

vanishes, the scaling dimension reads:

∆Q =
3

4

(
3

2

) 1
3

Q
4
3 +

1

2 · 2
2
3 · 3

1
3

Q
2
3 +O

(
Q−

2
3

)
. (5.11)

When some fermions are present in the last level, the Q4/3 terms is unchanged, but the

subleading corrections are different.

Now we consider the theory in the half plane x3 ≥ 0. The are two conformal boundary

conditions. In components, these differ only by a sign and read:(
ψ1 ± ζ†1

)∣∣∣
bry

= 0 and
(
ψ2 ∓ ζ†2

)∣∣∣
bry

= 0 . (5.12)

Therefore, it is clear that adding a boundary to the free Dirac fermionic theory reduces the

number of total independent fermionic degrees of freedom by half. The internal symmetry

is further broken to a single U(1). We conclude that, for the boundary CFT, the scaling

dimension of the lightest operator of charge Q under the unbroken U(1) is exactly related to

the bulk scaling dimension of the operator with charge 2Q:

∆̂Q =
1

2
∆2Q . (5.13)

5.3 Theories with charged degrees of freedom only at the boundary

It is possible to consider models in which all charged states are made of boundary degrees

of freedom, i.e. in which the Noether current is a boundary operator and there is no bulk

current. For these models, large charge states are clearly not described by the EFT discussed

in this paper. Here we provide a few general comments.

Let us first gain some intuition through discussing an example on the half-plane. Namely

we consider the following classical model in four spacetime dimensions

S =

∫
x≥0

d4x

[
1

2
(∂φ)2 − λ

4
φ4

]
+

∫
z=0

d3x
[
|∂ψ|2 − g1|ψ|2φ2 +

g2

2
|ψ|4φ− g3

3
|ψ|6

]
, (5.14)
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where φ and ψ are, respectively, a real and a complex scalar field. The boundary conditions

for φ are perturbation of Neumann and break explicitly the Z2 symmetry of the bulk action.

We assume all couplings to be positive. For sufficiently large g3, the classical solution with

finite charge density is given by:

ψ = eiµtv , φ =

√
2

λ

1

z + c/µ
, (5.15)

where v2 ∼ µ/λ and c ∼ O(1), the precise value being determined by the equation of motion

for ψ and the boundary condition for φ. We see that the chemical potential therefore not

only gaps the boundary radial mode of ψ, but it also sources a non-trivial one-point function

for the bulk field. In particular in the µ → ∞ limit the boundary conditions for the bulk

field are exactly the same as those defining the extra-ordinary transition at leading order in

the epsilon expansion [62]. Therefore the low energy EFT describing this model is given by

a boundary superfluid coupled to the (irrelevant) boundary operators of the φ4 theory with

the extra-ordinary boundary conditions. In this case the only primary boundary operator is

the displacement operator D̂ [26] (see appendix A.1 for a review), which has dimension 4,

and the EFT reads:

SEFT = Sextra-ordinary + c

∫
z=0

d3x(∂̂χ)3 + cD̂

∫
z=0

d3xD̂(∂̂χ)−1 + . . . . (5.16)

For more general theories we expect something similar to happen. Namely the presence

of a chemical potential in the boundary might drastically change the boundary conditions

for the bulk fields, and therefore the boundary spectrum in the µ → ∞ limit. Notice that

in general the boundary conditions will break boosts and therefore will not define a BCFT

sector even in the µ→∞ limit. However, coupling this scale invariant sector (representing the

bulk degrees of freedom) to the boundary superfluid through irrelevant boundary operators

nonlinearly realizes the symmetries of the microscopic BCFT, and hence should provide a

complete description of its physics at energies E � µ.

Large charge operators on the strip should admit a similar description. In particular the

charge density can only accumulate at the boundary and the energy of large charge operators

with minimal scaling dimension scales as:

∆̂Q ∝ Q
d−1
d−2 . (5.17)

We further generically expect a subsector of the theory to be described by a superfluid Gold-

stone boson on the boundary. However in this case also some bulk degrees of freedom will

remain gapless, and to determine the full spectrum of charged BCFT operators we have to

solve this generically strongly coupled sector of our effective theory.

6 Other applications

6.1 The large charge sector of defect CFTs

It is simple to extend our ideas to general defect CFTs, i.e. CFTs in the presence of a

conformal defect. Consider for instance a p-dimensional conformal defect or interface in a
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d-dimensional CFT with U(1) symmetry. We expect large charge defect operators to be

described by an EFT analogous to the one described in sec. 3, with the same bulk action and

a defect action generically scaling as ∼ µp ∼ Q
p
d−1 .18 This implies that the scaling dimension

of large charge defect operators differs from that of bulk operators only at order Q
p
d−1 :19

∆
(defect)
Q −∆

(bulk)
Q ∼ Q

p
d−1 . (6.1)

Notice that in the case of an interface between two identical theories p = d − 1, and the

difference scales linearly with the charge analogously to the corrections to eq. (1.1) for BCFTs.

Also the spectrum of excited states is largely unchanged, being described by a Fock space of

phonons with the same dispersion relation to leading order in µ.

6.2 Thermodynamics and OPE coefficients in BCFTs

It is expected that, in non-integrable CFTs, OPE coefficients of a light operator O in between

two heavy operators H and H ′ are controlled by the Eigenstate Thermalization Hypothesis

(ETH) [5]. In this section we review the relevant statements and provide their generalization

to BCFTs.

Consider first diagonal matrix elements of the form 〈H|O|H〉. In the limit ∆H →∞ the

equivalence between microcanonical and canonical ensembles implies that these coincide with

the thermal expectation value 〈O〉β ' bOβ
−∆O , where bO is a numerical coefficient which

depends on the operator. As it follows from simple dimensional analysis, the temperature in

this equivalence is parametrically set by the energy density εH ∼ ∆H/R
d of the state |H〉

as εH ' d−1
d bT /β

d [8], where bT is the coefficient in front of the thermal one-point function

of the stress tensor and it is thus proportional to the CT central charge of the theory (see

e.g. [65] for details on thermal correlators in CFT). Therefore we conclude:

〈H|O|H〉 ' 〈O〉β ∼ ∆
∆O
d
H . (6.2)

Eq. (6.2) equivalently follows from the requirement that the correlator obeys the macroscopic

limit [5, 11].

The extension of eq. (6.2) to off-diagonal matrix elements is provided by the Eigenstate

Thermalization Hypothesis (ETH) ansatz, that states

〈H|O|H ′〉 = δHH′〈O〉β + Ω−1/2

(
∆H + ∆H′

2

)
ROHH′ , (6.3)

where Ω (∆) is the density of states with energy ∆ and ROHH′ are random variables, whose

variance is set by the four point-function 〈H|OO|H〉 and does not scale exponentially with

∆H and ∆H′ [8, 66]. In the thermodynamic limit the density of states scales as:

Ω(∆H) ∼ eS(∆H) , S(∆H) ∝ ∆
d−1
d

H , (6.4)

18For p = d − 2, the EFT is analogous to that describing vortices in superfluids [63], the only difference

being that the latter are dynamical and therefore describe new states in the bulk CFT - see [64].
19More generally, this scaling only depends on dimensional analysis and not on the specific form of the EFT.
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where S(∆H) is the entropy of the system at a temperature β−1 ∼ ∆
1/d
H and the powers are

again dictated by dimensional analysis (for the entropy density S(∆H)/Rd−1).

Let us now consider BCFTs. From the viewpoint of the state-operator correspondence

it is natural to expect a relation of the form (6.3) for matrix elements of both boundary and

bulk operators in between two heavy boundary states. Due to the locality of the theory, the

relation between temperature and energy density is unmodified to leading order. We may

further use locality to argue that the value of the entropy of the system with a boundary

Ŝ(∆H), and therefore of the density of states, admits a relation similar to eq. (1.1) with the

entropy of the bulk CFT:

Ŝ(∆̂H) ' 1

2
S(2∆̂H) . (6.5)

The factor of two in the argument of S follows from the fact that the temperature in the

thermodynamic limit is set by the energy density and not the total energy. The 1/2 in front

instead follows because, by locality, the leading contribution to the partition function on the

hemisphere depends only on the total volume. As for eq. (1.1), we expect that corrections

will scale as the area of the boundary, and therefore in the thermodynamic limit will be

suppressed by a relative factor ∆
−1/d
H .

6.3 Solid EFT near a boundary

It is clear that the EFT approach towards boundary conditions is independent of conformal

symmetry and might therefore be used to study more general setups. In particular, the

EFT approach allows to account for the non-linear realization of the spontaneously broken

spacetime symmetries in the spirit of [33]. As an illustration, here we construct the most

general boundary conditions for the phonon modes in a solid close to a boundary.

Let us first recall the construction of the EFT for a homogeneous and isotropic solid in

infinite volume [67]. From the low energy viewpoint, a solid can be defined as a theory invari-

ant under the Poincaré group and an internal group G isomorphic to the d − 1-dimensional

Euclidean group, in which boosts and the spatial Euclidean group Ed−1 are broken to the

diagonal group of G and Ed−1 [68]. Intuitively, G is an emergent symmetry which accounts for

the regularity of the crystal structure, whose symmetry group is approximately continuous in

the long wavelength limit. The most economic way to realize this symmetry breaking pattern

is to introduce d− 1 scalars φI that under the internal group G transform as:

φI → RIJφ
J + aJ , R ∈ O(d− 1) . (6.6)

The fields are expanded around the expectation value

〈φI〉 = αxI + const. , (6.7)

where α physically represents the compressibility of the solid. To leading order in derivatives

the action is most conveniently written in terms of the following matrix

BIJ = ∂µφ
I∂µφJ . (6.8)
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Assuming parity, a complete set of G-invariants is given by:

A = Tr [B] , C2 =
Tr
[
B2
]

Tr [B]2
, . . . , Cd−1 =

Tr
[
Bd−1

]
Tr [B]d−1

. (6.9)

The bulk action is finally written as

S =

∫
ddxF [A,C2, . . . , Cd−2] , (6.10)

where F is an arbitrary function.

The physical meaning of eq. (6.10) becomes clear upon expanding into fluctuations πi =

α−1φi−xi, where the πi denote the d− 1 phonon modes of the solid. One finds the following

quadratic action:

S(2) = −AFA
d− 1

∫
ddx

[
π̇iπ̇i − c2

T (∂iπ
j)2 −

(
c2
L − c2

T

)
(∂iπ

i)2
]
, (6.11)

where, cL and cT are the sound speed of the longitudinal and transverse modes respectively,

whose value follow depends on the function F in eq. (6.10).20 Eq. (6.20) therefore just states

that the phonons have a linear dispersion relation in the long wavelength limit, as well known.

The advantage of this construction is that Lorentz invariance constrains the interaction of

these modes upon further expanding eq. (6.10).

Let us now consider the solid near its a boundary in the n direction at xn = 0. Focusing

momentarily only on the linearly realized symmetries, a boundary breaks translations in the

nth direction. Therefore the shift symmetry of the πN phonon associated with the breaking

of translations in the nth direction must be explcitly broken by the boundary conditions.

Rotations and translations in the parallel direction should instead be preserved by a boundary

at xn = 0. To leading order in derivatives, a natural guess for such boundary conditions reads:

∂nπ
i|xn=0 = 0 i 6= N , πN |xn=0 = 0 , (6.14)

corresponding to Neumann boundary conditions for the phonons propagating parallel to the

boundary, and Dirichlet for the orthogonal one. In the following we shall see how to obtain

eq. (6.14) as well as its first derivative corrections within the EFT framework outlined above.

20Explicitly these are given by [69]:

c2T = 1 +
(d− 1)

FAA

d−1∑
n=2

∂F

∂Cn

n(n− 1)

(d− 1)n
, (6.12)

c2T = 1 +
2FAAA

2

(d− 1)FAA
+

2(d− 2)

FAA

d−1∑
n=2

∂F

∂Cn

n(n− 1)

(d− 1)n
, (6.13)

where we denoted with subscripts derivatives with respect to A and all quantities are evaluated on the

background configurations ∂iφ
J = αδJi . If we further assume conformal invariance, we must have F =

Adf (C2, . . . , Cd−1) and the sound speeds are related as c2L = 1
d−1

+ 2 d−2
d−1

c2T .
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Notice first that the boundary corresponds to the endpoint of the lattice structure. There-

fore we expect that the boundary not only breaks the spacetime symmetry, but also part of

the internal group G. Let us call φA with A = 1, . . . , d− 2 the d− 2 fields whose background

expectation value is proportional to the coordinates parallel to the boundary, and φN the

remaining one. We expect that the boundary preserves only the subgroup H ⊂ G corre-

sponding to shifts and internal rotations of the fields φA. We therefore consider the most

general boundary conditions compatible with this group.

As in the superfluid case, the shift invariance of the fields φA implies that their boundary

conditions may be thought as perturbations of Neumann ones.21 The boundary condition for

φN will instead generically be of the mixed type, and to leading order in derivatives it will be

written in terms of a non-linear function of ∂nφ
N and φN itself at xn = 0. On the background

∂µφ
N = αδnµ such a boundary condition specifies the value of φN at the boundary, breaking

explicitly the shift symmetry. As for the superfluid, we may discuss systematically this state

of affairs introducing the most general boundary action for the fields φI and their derivatives

parallel to the boundary, such that the group H is preserved.

To build the boundary action, we define a matrix B̂AB as follows:

B̂AB = ∂̂µφ
A∂̂µφB , (6.15)

where ∂̂µ = {∂0, ∂a} denotes the derivative along the coordinates parallel to the boundary.

Out of traces of B̂ we can build the following H-invariants:

Â = Tr
[
B̂
]
, Ĉ2 =

Tr
[
B̂2
]

Tr [B]2
, . . . , Ĉd−2 =

Tr
[
B̂d−2

]
Tr [B]d−1

. (6.16)

Finally we notice that the field φN is H-invariant, and therefore the boundary action may

depend on it as well. This also implies that we can systematically neglect derivatives of φN in

the boundary action to the first non-trivial order. Overall, the most general boundary action

reads:22

Sbdry =

∫
xn=0

dd−1xG
[
φN , Â, Ĉ2, . . . , Ĉd−2

]
. (6.17)

Varying eq. (6.10) and eq. (6.17) we may now see that the background profile (6.7) is

largely unaffected:

φA = αxaδAa + const. , φN = αxnδNn + cN . (6.18)

The constant term for the φA fields is unspecified as before. The only difference with eq. (6.7)

is that the constant contribution cN cannot be shifted arbitrarily and instead follows from

21This is because charge conservation implies that the bulk currents corresponding to the shift symmetry

obey JnA = −∂̂aĴaA at the boundary, where ĴA is a boundary current, which is one-derivative suppressed - see

e.g. Appendix A.2. Consistently with this observation, the unbroken diagonal rotations imply JnI ∝ δnI on the

background.
22For a conformal solid we would have G = Âd−1g(φN , Ĉ2, . . .).
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the boundary condition[
∂F

∂∂nφN
− ∂G

∂φN

]
xn=0

= −
[

2

d
FAA+

∂G

∂φN

]
xn=0

= 0 , (6.19)

where all quantities are evaluated on the profile (6.18). For instance a boundary action

G = −md−1
(
φN
)2

+ . . . with m → ∞ dictates φN = 0 corresponding to Dirichlet boundary

conditions.23 In general the equilibrium value cN depends also on the compressibility α of

the solid through the functions F and G. In practice we do not need to solve explicitly for

the cN .

As before, the physical meaning of this construction is appreciated once we expand in

fluctuations. The boundary action for the phonon modes read:24

S
(2)
bdry = − GAÂ

(d− 2)

∫
xd=0

dd−1x
[
π̇aπ̇a − ĉ2

T (∂aπ
b)2 −

(
ĉ2
L − ĉ2

T

)
(∂aπ

a)2

+2µNπ
N∂aπ

a −m2
N (πN )2

]
,

(6.20)

where the explicit value of the coefficients is obtained expanding the function G in eq. (6.17).25

Eq. (6.20) is manifestly invariant under the unbroken rotations, and in fact it could have been

guessed without keeping track of the full broken group. However, the nonlinear terms that

we neglected are instead constrained by Lorentz invariance, and may be straightforwardly

analyzed upon expanding the boundary action to higher orders. Notice that the terms in

eq. (6.20) are all of the same order in the derivative expansion since, as we will see explicitly

below, πN ∼ ∂π because of the boundary conditions.

From eqs. (6.11) and (6.20) we finally obtain the boundary conditions for the phonon

modes. These may be written as:

c2
T∂nπ

a|xn=0 =
GAÂ(d− 1)

FAA(d− 2)

[
π̈a − ĉ2

T∂b∂
bπa −

(
ĉ2
L − ĉ2

T

)
∂a∂bπ

b + µN∂aπ
N
]
xn=0

,

m2
Nπ

N |xn=0 =

{
µN∂aπ

a +
FAA(d− 2)

GAÂ(d− 1)

[
c2
T∂nπ

N +
(
c2
L − c2

T

)
∂iπ

i
]}

xn=0

. (6.24)

23It is possible to write the boundary action in an equivalent dual form, which is manifestly smooth for pure

Dirichlet conditions. We explain how to do this for a simple example in the appendix B.
24In writing the bulk action (6.11) we integrated by parts discarding some boundary terms. These however

only renormalize those in eq. (6.20) and therefore do not affect our analysis.
25The explicit expressions are given by:

ĉ2T = 1 +
(d− 2)

GAÂ

d−2∑
n=2

∂G

∂Ĉn

n(n− 1)

(d− 2)n
, (6.21)

ĉ2T = 1 +
2GAAÂ

2

(d− 2)GAÂ
+

2(d− 3)

GAÂ

d−2∑
n=2

∂G

∂Ĉn

n(n− 1)

(d− 2)n
, (6.22)

µN = −α∂GA/∂φ
N

GA
, m2

N =
∂2G/∂(φN )2

2GA
. (6.23)
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Neglecting the right-hand side, eqs. (6.24) reduce to the guess (6.14). Corrections are one

derivative suppressed and are clearly compatible with the unbroken symmetry group. Our

construction additionally shows that these are also compatible with the underlying Poincaré

symmetry.
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A Ward identities in BCFTs

In this appendix we clarify some important properties of the energy-momentum tensor and

the conserved currents in boundary (and defect) conformal field theories. In appendix A.1,

we study the Ward identities associated with diffeomorphisms, Weyl invariance and internal

symmetries by taking variations of the curved-spacetime effective action with respect to the

background fields. In appendix A.2, we study the consequences of the Nother procedure in

the case of boundary conformal field theories. We comment on a certain puzzle that arises in

perturbative calculations in these models, clarify its source and resolution.

A.1 Background field approach to Ward identities in BCFTs

In this appendix we derive the Ward identities associated with diffeomorphisms and Weyl

invariance in BCFTs. We will show that diffeomorphism and Weyl invariance are always

saturated by the bulk stress tensor and the displacement operator only, and we will derive

the corresponding Ward identities. This is not entirely trivial because, a priori, the variations

of the metric and its normal derivatives may source additional operators on the boundary;

however we will argue that these are excluded by the unitarity bounds in BCFTs. Our

derivation provides an extension of the one given in [21], where these additional contributions

were not considered.

We mostly use the notation and conventions of [21]. In particular, we use the embedding

formalism to parametrize the submanifold geometry [70]. Let us consider a d dimensional

Riemannian manifold M equipped with a metric gµν . We define the following:

• xµ, µ = 1, · · · d denotes the bulk coordinates.

• σa, a = 1, · · · d− 1 denotes the boundary coordinates.

• The embedding functions Xµ(σa) represent the boundary’s position.
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• The induced metric associated with the boundary is given by ĝab ≡ gµν∂aXµ∂bX
ν .

• The bulk covariant derivative ∇µ, with standard torsionless Levi-Civita connection

associated with the background metric gµν . The covariant derivative of a vector Aν is

thus given by ∇µAν ≡ ∂µA
ν + ΓνµρA

ρ, and the Christoffel symbols are related to the

metric through Γνµρ = 1
2g
να [−∂αgµρ + ∂µgαρ + ∂ρgαν ].

• ∇̂a is the induced boundary covariant derivative, it acts on a mixed-index tensor Aµb in

the following way:

∇̂aAµb ≡ ∂aA
µ
b + ΓµνaA

ν
b − Γ̂cabA

µ
c , (A.1)

where Γ̂cab is the Levi-Civita connection associated with the induced metric ĝab, and Γµνa
is the pullback of the Levi-Civita connection, defined by Γµνa ≡ Γµνρ∂aX

ρ.

• The projector tangential to the boundary submanifold is Pµν = gνρĝ
ab∂aX

µ∂bX
ρ.

• nµ is a unit normalized (nµn
µ = 1) foliation 1-form normal to the boundary submanifold.

The following relations hold: gµν = nµnν + Pµν , δµν = nµnν + Pµν . Using the above

definitions it is clear that nνPµν = nµPµν = 0.

• We also define the second fundamental form: Πµ
ab ≡ ∇̂a∂bX

µ. Note that it is symmetric

Πµ
ab = Πµ

ba and satisfies Pµν Πν
ab = 0. The extrinsic curvature reads Kab = −nµΠµ

ab (in

the embedding formalism this is automatically symmetric Kab = Kba). We denote its

corresponding trace by K ≡ ĝabKab.

Let Z = Z(gµν , X
µ) be the partition function of the theory as a function of the geometry.

The effective action W = − logZ(gµν , X
µ) is the generating functional of all the connected

correlation functions in the theory. Its variation with respect to the metric gµν and the

embedding Xµ formally define the energy momentum tensor and the displacement operator:

〈Tµνtot(x)〉 ≡ − 2
√
g

δW

δgµν(x)

∣∣∣∣
Xµ=fixed

, (A.2)

〈D̂µ(σa)〉 ≡ − 1√
ĝ

δW

δXµ(σa)

∣∣∣∣
gµν=fixed

, (A.3)

where g and ĝ are the determinants of gµν and ĝab respectively and the displacement operator

has support only at the boundary. At a closer look however eq. (A.2) in general does not define

a unique scaling operator, but rather a combination of bulk and boundary ones. Indeed in

general the variation of the effective action with respect to gµν and Xµ receives contributions

from both the bulk and the boundary. The most general form of δW reads:

δW = −1

2

∫
M
ddx
√
g δgµν〈Tµν〉+

∫
∂M

dd−1σ
√
ĝδXµ〈D̂µ〉

−
∫
∂M

dd−1σ
√
ĝ

[
1

2
δgµν〈T̂µν〉+ nρ∇ρδgµν〈Âµν〉+ nρnσ∇ρ∇σδgµν〈B̂µν〉+ · · ·

] (A.4)
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where the dots stand for higher-order normal derivatives acting on the metric. The defi-

nition eq. (A.2) then implies that Tµνtot receives contributions from several operators at the

boundary:26

Tµνtot = Tµν + δ(x⊥)T̂µν − 2KÂµνδ(x⊥)− 2nα∇αδ(x⊥)Âµν + · · · (A.5)

where K is the trace of the extrinsic curvature defined above. Here Tµν is the bulk stress

tensor and T̂µν the boundary stress tensor. The additional terms in the second line of eq. (A.4)

have no clear physical interpretations and are often neglected in the BCFT literature. We

will argue below that indeed they must vanish in BCFTs.

We remark here that an alternative approach was previously discussed in the litera-

ture [18] (see also [28]), in which the boundary contribution to the variation (A.4) is not

written in terms of normal derivatives of the metric, but in terms of the variation of an arbi-

trary number of geometric invariants, such as the induced metric, the extrinsic curvature, etc.

While that approach is ultimately equivalent to ours, we believe that the parametrization in

eq. (A.4) is more convenient, since it makes manifest which are the independent operators

that may generically be sourced by geometric perturbations in BCFTs.

First we notice that the sum is not infinite and it is restricted by dimensional analysis,

and the unitarity bounds. In the following we retain all terms up to Âµν for simplicity of the

presentation, but our results do not depend on this restriction.

Next we write down the Ward identities associated with reparametrization, diffeomor-

phism and Weyl invariance. These state that the effective action W must be invariant under

the following reparametrizations:

1. Reparametrization of the boundary coordinates, generated by a vector field ζa:

δζx
µ = 0, δζσ

a = −ζa. (A.6)

The metric and embedding functions transform according to:

δζgµν = 0, δζX
µ = ζa∂aX

µ. (A.7)

2. Reparametrization of the bulk coordinates (diffeomorphisms), generated by a vector

field ξµ:

δξx
µ = −ξµ, δξσ

a = 0. (A.8)

The metric and embedding functions change according to:

δξgµν = ∇µξν +∇νξµ, δξX
µ = −ξµ. (A.9)

3. Weyl rescaling of the metric:

δΩgµν = 2Ω(x)gµν , δΩX
µ = 0. (A.10)

26The delta function in the direction normal to the boundary is defined in a general coordinate independent

way as δ(x⊥) ≡
∫
∂M dd−1σ

√
ĝ δd (x−X(σ)) /

√
g.
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Obviously, the first two requirements hold for general boundary QFTs, while the last is

special of BCFTs. In the following we will study the consequences of these requirements on

the partition function of the theory.

Reparametrization of the boundary coordinates δζW = 0 implies:

δζW =

∫
dd−1σ

√
ĝ ζa∂aX

µ〈D̂µ〉 . (A.11)

This should vanish for an arbitrary ζa, hence:

∂aX
µD̂µ = 0 . (A.12)

The above Ward identity states that all the components of D̂µ parallel to the boundary must

vanish. The identity eq. (A.12), as well as those we will derive below, hold in correlation

functions at separeted points.

Reparametrization of the bulk coordinates leads to the following requirement:

0 = −1

2

∫
M
ddx
√
g δξgµν〈Tµν〉

+

∫
∂M

dd−1σ
√
ĝ

[
δξX

µ〈D̂µ〉 −
1

2
δξgµν〈T̂µν〉 − nρ∇ρδξgµν〈Âµν〉+ · · ·

]
=

∫
M
ddx
√
g ξν∇µ〈Tµν〉

+

∫
∂M

dd−1σ
√
ĝ
[
nµξν〈Tµν〉|∂M − ξν〈D̂ν〉 − ∇µξν〈T̂µν〉 − nρ∇ρ∇µξν〈Âµν〉+ · · ·

]
,

(A.13)

where 〈D̂µ〉 ≡ gµν〈D̂ν〉 and we integrated by parts in the second line; this picks a contribu-

tion from the bulk stress tensor at the boundary. Therefore, the bulk stress-tensor remains

conserved even in the presence of a boundary:

∇µ〈Tµν〉 = 0 . (A.14)

The remaining terms should vanish for an arbitrary ξν . To study the implications of this

fact, let us consider first a small diffeomeorphism around the flat metric, in coordinates such

that the boudary is at xd = 0. In this case, equation (A.13) translates into the following

expression:

0 =

∫
xd=0

dd−1x
[
ξa

(
〈T da〉|xd=0 + ∂b〈T̂ ab〉 − 〈D̂a〉

)
+ξd

(
〈T dd〉|xd=0 + ∂a〈T̂ da〉 − 〈D̂d〉

)
+∂dξa

(
−〈T̂ da〉+ ∂b〈Âab〉

)
+∂dξd

(
−〈T̂ dd〉+ ∂a〈Âda〉

)]
−∂2

dξa〈Âda〉 − ∂2
dξd〈Âdd〉

]
+ · · · .

(A.15)
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Since all normal derivatives of the vector ξµ are independent, each parenthesis in eq. (A.15)

should vanish. Generalizing eq. (A.15) to an arbitrary curved manifold and using eq. (A.12),

we find:27

Tna|∂M + ∇̂bT ba +Ka
bT̂

bn − ∇̂c
(
Kc

bÂ
ab
)
−R a

nbc Â
bc = 0 ,

Tnn|∂M − D̂n −KabT̂
ab + ∇̂aT̂ an + (K c

a Kcb +Rnanb) Âab = 0 ,

∇̂aÂab − T̂nb = 0 , (A.16)

T̂nn +KabÂ
ab = 0 ,

Ânn = Âna = 0 ,

where we decomposed all tensors into transverse and parallel component using:

vµ = ∂aX
µva + nµvn , vn = vn . (A.17)

The first eq. in (A.16) in flat space reduces to ∂b〈T̂ ab〉 = −〈T da〉|xd=0 in agreement with

Noether’s theorem for translations along the boundary. However the identities (A.16), with-

out further input, are not enough to rule out the existence of the operator Âab and of the

component T̂ da of the boundary stress tensor, which have no clear physical interpretation.

Finally, ignoring trace anomalies, Weyl invariance requires:

gµν〈Tµνtot〉 = 0, (up to Weyl anomalies). (A.18)

Using eq. (A.5) this implies that Tµν , T̂µν , Âµν , etc. are traceless.

We now explain how to rule out the existence of the additional operators in eq. (A.4) in

BCFTs in flat space, at least in low enough dimensions. Consider first Âµν . Eqs. (A.16) set

Âdd = Âad = 0. The remaining component Âab is a traceless symmetric operator of dimension

d−2. By the unitarity bounds, which demand that any primary operator with spin ` satisfies

∆̂` ≥ d− 1− `, we deduce that it cannot be a primary. The only other possibility is that it

is a level 2 descendant of a scalar, but this again is not compatible with the unitarity bound

∆̂0 ≥ d−3
2 for d < 5.28 Therefore we conclude that Âab = 0 for d < 5. Using this in eqs. (A.16)

we find also T̂ da = 0. A similar argument rules out the existence of B̂µν in eq. (A.4) for d < 6.

Furthermore, we also notice that T̂ ab is a spin 2 operator of dimension d − 1 and it

is therefore conserved: ∂aT̂
ab = 0. This means that we must have T̂ ab = 0 in non-trivial

theories, since otherwise we would be able to construct two set of conserved spacetime charges,

signalling the presence of a decoupled sector at the boundary.29

27Here Rµνρσ is the Riemann tensor defined as [∇ρ,∇µ]vν = −Rσνρµvσ.
28In d = 5 Âab could be a level 2 descendant of a free scalar and would therefore drop from eq. (A.15) by

the free equations of motion. In d > 5 a non-zero Âab, and therefore a non-vanishing T̂ ad = ∂bÂ
ab, would be

compatible with the vanishing of the second parenthesis in eq. (A.15) only if D̂d contains the contribution

from a level 4 descendant which cancels that of ∂aT̂
ad - since the bulk stress tensor is a primary.

29Notice that T̂ ab cannot be a descendant because ∂aT̂
ab = 0 is obtained as the boundary limit of the

primary operator T db.
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Finally, the vanishing of Âµν and T̂µν imply that the Ward identities for diffeomorphism

at the boundary take the following simple form:

T da|xd=0 = 0 , T dd|xd=0 = D̂d , (A.19)

where we focused again on flat space.

We end this section with three additional simple applications of the background field

approach: Ward identities for internal symmetries, the case of general defect CFTs, and the

study of contact terms in correlation functions.

Consider a CFT with a continuous internal symmetry group G of dimension nG. In

BCFTs, the boundary conditions may possibly break the symmetry to a sub-group H ⊂ G

of dimension nH . We denote with A,B, . . . the indices labelling the generators of the Lie

Algebra of G, with i, j, . . . those of the algebra of H and with ĩ, j̃, . . . those parametrizing

the coset G/H. Without loss of generality, one can couple the theory to the background

bulk G gauge field AAµ (x) (with nG components) and nG − nH boundary spurion fields πĩ(σ)

compensating for the possible explicit symmetry breaking. The background gauge field and

spurion field transform under a gauge transformation with infinitesimal parameter λA as:

AAµ → AAµ +Dµλ
A (A.20)

πĩ → πĩ + λĩ − λif ĩ
ij̃
πj̃ , (A.21)

where Dµ is the covariant derivative of G, fABC are the structure constants of the group and

the spurions transform as Goldstone fields [71]. The response of the effective action under a

small variation of the sources can be parametrized as follows:

δGW =

∫
M
ddx
√
g δGA

A
µ 〈J

µ
A〉

+

∫
∂M

dd−1σ
√
ĝ
(
δGA

A
µ 〈Ĵ

µ
A〉+ δGπ

ĩ〈P̂ĩ〉+ nρ∇ρδGAAµ 〈M̂
µ
A〉+ · · ·

)
.

(A.22)

where Jµ is the bulk Noether current and Ĵµ, P̂ and M̂µ encode the most general response of

the boundary. We will restrict to flat space in what follows. Plugging the transformation rules

(A.20), (A.21), invariance of the effective action under the gauge transformation demands

(neglecting ’t Hooft anomalies):

0 = −
∫
xd>0

ddxλA∂µ〈JµA〉

+

∫
xd=0

dd−1x
[
λi
(
−〈Jdi 〉|xd=0 − ∂a〈Ĵai 〉

)
+ λĩ

(
−〈Jd

ĩ
〉|xd=0 + 〈P̂ĩ〉 − ∂a〈Ĵ

a
ĩ
〉
)

+∂dλ
A
(
〈ĴdA〉 − ∂a〈M̂a

A〉
)

+ ∂2
dλ〈M̂d〉+ · · ·

]
,

(A.23)

where we set to zero all sources after taking the variation, since we only consider correlation

functions at separated points. Gauge invariance in the bulk gives:

∂µJ
µ
A = 0 , (A.24)
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as expected. We also see from eq. (A.23) that M̂d = 0. Proceeding as before, from the

unitarity bounds we conclude that ∂aM̂
a = 0 for d < 5, which leads to Ĵd = 0, and that the

boundary current ĴA vanishes in a BCFT.30 Therefore we find the following Ward identities:

Jdi |xd=0 = 0 , Jd
ĩ
|xd=0 = P̂ĩ . (A.25)

These state that for every bulk symmetry broken by the boundary conditions there must be

an operator Pĩ of dimension d − 1. Similarly to the displacement operator, these operators

are responsible for the non-conservation of the internal charges.

All our arguments generalize almost verbatim to generic defect CFTs. Consider a p-

dimensional defect parametrized by coordinates σa and embedding functions Xµ(σa). The

response to linear perturbations of the geometry can be parametrized in terms of the bulk

stress tensor Tµν and a defect operator D̂µ of dimension p+ 1. The Ward identities imply:

∂aX
µD̂µ = 0 , ∇µTµν = −δd−p(x⊥)D̂ν . (A.26)

The second eq. in (A.26) is equivalent to (A.19) in BCFTs, as the latter is obtained by

integrating the former on a pillow geometry around the boundary.

Finally we remark that it is also possible to analyze contact terms within this approach

upon introducing sources for the operator insertions as in, e.g., [72]. Consider for instance

a p-dimensional linear defect in flat space and introduce a source Ĵ(σ) for a scalar defect

operator Ô(σ) such that:
δW

δĴ(σ)
= − 1√

ĝ
〈Ô(σ)〉 . (A.27)

Invariance of the partition functions under a combination of a diffeomorphism (A.9) and a

boundary reparametrization (A.7) with parameters such that ξµ|∂M = ∂aX
µζa gives:[∫

ddx 2∇µξν
δ

δgµν
−
∫
dpσ ζa∂aĴ

δ

δĴ

]
W = 0 . (A.28)

Notice that with this choice of the reparametrization vectors the contribution of the displace-

ment operator cancels. Upon taking a functional derivative with respect to the source Ĵ

and setting ξµ = δµa , we then find the standard Ward identity for translations parallel to the

defect:

∂µ〈Tµa(xν)Ô(ya) . . .〉 = δd−p(x⊥)δp(xa − ya)∂a〈Ô(ya) . . .〉+ . . . , (A.29)

where the dots stand for contact terms associated with the other operator insertions. Re-

cently, the generalization of the Ward identity (A.28) to non-conformal defects played an

important role in the proof of the existence of a canonically decreasing entropy function in

one-dimensional defect RG flows [73] (see also [15, 16] for a similar result in d = 2).

30The boundary current for the broken generators may be the descendant of a scalar for d > 3. This would

modify the right hand side of eq. (A.25), and it would imply that every P̂ĩ is a linear combination of a primary

and a descendant which cancels the contribution of ∂aĴ
a
ĩ

.
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A.2 Boundary and bulk currents in weakly coupled theories

Suppose we have a weakly coupled BCFT with action S and a symmetry group G. As in

the previous subsection, we use greek indices µ = 1, . . . , d to denote bulk indices and Latin

indices a = 1, . . . , d − 1 to denote boundary ones. Under an infinitesimal G-variation with

spacetime dependent parameter εα(x) we must have:

δS =

∫
xd>0

ddxJµα(x)∂µε
α(x) +

∫
xd=0

dd−1xĴaα(x)∂aε
α(x) . (A.30)

Standard arguments then lead to the following Ward identities:

∂µJ
µ
α = 0 , ∂aĴ

a
α = −Jdα|xd=0 . (A.31)

The above equations are consistent with having a conserved charge in the bulk theory, as

expected. Note that the second relation is crucial in order to have a conserved charge associ-

ated with the bulk theory. In the case of translational invariance along the xa directions that

are tangent to the boundary these relations read:

∂µT
µa = 0 , ∂aT̂

ab = −T db|xd=0 . (A.32)

For a unitary theory, one can always improve T̂ ab to be traceless symmetric [74]. Then the

unitarity bounds imply that T da|xd=0 = 0 and Jdα|xd=0 = 0 for internal symmetries. Therefore,

barring the case of decoupled degrees of freedom on the boundary, in unitary CFT we only

have to consider the bulk stress tensor and currents.

This raises a natural question in perturbative theories. Indeed, it often occurs that there

are bulk and boundary currents which are separately conserved at tree-level. In these cases,

there are boundary states such that 〈Tµν〉tree = 〈Jµ〉tree = 0 at tree-level, whose quantum

numbers are therefore measured by the boundary operators. However, we just argued above

that when we consider interactions all the charges should be written in terms of the bulk

operators only, apparently in contradiction with the existence of states for which these vanish

at tree-level. We shall now see that this contradiction is resolved by noticing that the limit

xd → 0 of the bulk current and stress tensor does not commute with the zero coupling limit.

Let us consider first the case of currents associated with internal symmetries. We assume

for simplicity that there is a unique conserved current (the generalization to many currents

is straightforward). At first order in the coupling g, the equations of motion imply that the

conservation relation (A.31) is modified at the boundary by an equation of the form:

∂aĴ
a = gÔ = −Jd|xd=0 , (A.33)

where for g → 0 the conservation (A.31) is restored. Notice that the last equality is more

formally written in terms of the bulk to boundary OPE as:

Jd(xd) ∼ −gÔ +O
(
xd
)
. (A.34)
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The slightly broken symmetry implies that Ô becomes a descendant of the vector Ĵa, which

acquires an anomalous dimension γJ = g2 NO
2(d−1) +O

(
g3
)
∼ g2, where NO is the normalization

of the tree-level two-point function 〈Ô(x)Ô(0)〉 = NO/x2(d−1) [25, 75, 76].31 This implies that

in perturbation theory equation (A.34) gets modified according to:

Jd(xd) ∼ −(xd)γJ
[
g +O

(
g2
)]
Ô +O

(
xd
)
. (A.35)

Here, the O(g2) in parenthesis crucially refers to terms which do not depend on xd. From this

relation, it is already clear that the limits xd → 0 and g → 0 do not commute. Notice also

that we have re-summed an infinite number of (trivial) logarithms in perturbation theory to

make manifest that Jd indeed vanishes at the boundary. Finally we used the fact that Ô is

the only scalar of classical dimension (d− 1) which can appear in the OPE, as we now prove.

Equation (A.35) is consistent with conservation (in the limit of small xd) if and only if Ja

contains a vector of dimension d − 2 + γJ in the boundary OPE whose divergence cancels

∂dJ
d. Clearly the only possibility is the current:

Ja(xd) ∼
γJ +O

(
g3
)

(xd)1−γJ
Ĵa +O

(
(xd)0

)
. (A.36)

Notice that the current can only be used to cancel the contribution of Ô, therefore no other

field with the same classical scaling dimension can appear in (A.35) unless other currents are

present. In other words, the equation of motion (A.33) implies the existence of an anomalous

dimension for the boundary current and therefore the OPE structure (A.35), (A.36). Similar

arguments can be used to prove that only primary scalars with dimensions exactly equal to

(d− 1) and vectors with dimension larger than d− 2 are admissible in the bulk to boundary

OPE of the current [23].

We can finally use eq. (A.36) to resolve our initial puzzle. Indeed, the tree-level expec-

tation value of the boundary current is now reproduced by integrating the bulk current over

xd: even in a state for which 〈Jµ〉tree = 0, the OPE (A.36) leads to the following contribution

from the integration region close to the boundary∫ O(1)

0
dxdJa(xd) ∼

∫ O(1)

0
dxd

γJ
(xd)1−γJ

Ĵa +O
(
g2
)

= Ĵa +O
(
g2
)
, (A.37)

where in the last step we have evaluated the integral and expanded in small g to find the

leading order contribution.

The same arguments can be generalized to the case of the stress tensor. In particular,

assuming the equations of motion take the following form

∂aT̂
ab = gV̂ b = −Tnb|xd=0 , (A.38)

31This result for γJ can be derived from studying the two-point function 〈∂aĴa(x)∂bĴ
b(0)〉.
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the equations (A.35) and (A.36) get modified to

Tnb ∼ −(xd)γT
[
g +O

(
g2
)]
V̂ b +O

(
xd
)
,

T ab ∼ (xd)γT−1
[
γT +O

(
g3
)]
T̂ ab +O

(
(xd)0

)
,

(A.39)

where γT ∼ g2 is the anomalous dimension of T̂ ab. eq. (A.37) generalizes to the stress tensor

in a similar way.

B Dual boundary actions for mixed boundary conditions

It is often the case that the same boundary conditions may be speficied by two different

boundary actions. When this happens, it is possible to switch from one to the other via a

Legendre transform. Here we explain this point in a simple example.

Let us consider a real scalar field in d-spacetime dimension, whose bulk action is:

Sbulk =

∫
xd>0

ddx
[
(∂φ)2 − V (φ)

]
. (B.1)

We consider boundary conditions at xd = 0 of the following form

f(φ, ∂dφ)|xd=0 = 0 , (B.2)

where f is an arbitrary function of φ and its normal derivative ∂dφ at the boundary. eq. (B.2)

can be equivalently solved for φ or for ∂dφ:

φ|xd=0 = P (∂dφ)|xd=0 ⇐⇒ ∂dφ|xd=0 = G(φ)|xd=0 . (B.3)

Correspondingly, we can specify the boundary condition (B.2) via two different but equivalent

boundary actions. The simplest option is to just consider:

Sbdry = −
∫
xd=0

dd−1xW (φ) , W ′ = G . (B.4)

It is then easy to check that the variation of S+Sbulk imposes precisely the boundary condition

(B.3) written in the form ∂dφ = G(φ).

We may dualize the boundary action (B.4) integrating-in an auxiliary field λ as follows:

Sbdry = −
∫
xd=0

dd−1x [W (λ) + ∂dφ(φ− λ)] . (B.5)

To check the equivalence with eq. (B.4) it is useful to notice that the variation of φ∂dφ produces

a term δφ∂dφ which cancels the boundary term from the variation of the bulk action. The

variation δ(∂dφ) at the boundary then sets λ = φ. Integrating out λ instead we obtain the

following action

Sbdry = −
∫
xd=0

dd−1x
[
φ∂dφ+ W̃ (∂dφ)

]
, (B.6)
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where W̃ is the Legendre transform of W :

W̃ (∂dφ) = W (λ∗)− λ∗∂dφ with G(λ∗) = ∂dφ . (B.7)

It is simple to check that the variation δ(∂dφ) imposes eq. (B.3) in the form φ = P (∂dφ).

As a simple illustration, we can consider linear boundary conditions

(∂dφ− µφ)∂M = 0 . (B.8)

Following the previous steps we find that these can be represented in two equivalent ways

S
(1)
bdry = −

∫
dd−1x

µ

2
φ2 or S

(2)
bdry = −

∫
dd−1x

[
φ∂dφ−

(∂dφ)2

2µ

]
. (B.9)

We notice that the S
(1)
bdry is apparently singular in the limit µ→∞, corresponding to Dirich-

let boundary conditions, but it is trivial for µ = 0 corresponding to Neumann boundary

conditions. Conversely, S
(2)
bdry is singular for µ → 0 but it is regular for Dirichlet boundary

conditions µ→∞.

C The conformal superfluid action with a boundary

In this section we discuss how to construct the EFT action (3.1) on R×HSd−1. Let us first

recall how to obtain the bulk action (3.2). To this aim it is enough to notice that the most

general U(1), diffeomorphism and Weyl-invariant action for a scalar is obtained contracting

∂µχ and geometric invariants obtained out of a rescaled metric g̃µν = (∂χ)2gµν . We distinguish

these from the one constructed out of the standard metric with a tilde. Discarding terms which

vanish on the leading order equations of motion, the leading terms read:

Sbulk =

∫
M
ddx
√
g̃
[
c1 + c2R̃+ c3R̃

µν∂µχ∂νχ+O
(
∇̃4
)]

, (C.1)

whose expansion coincides with eq. (3.2). Notice that we are also assuming that the bulk

theory is parity invariant, otherwise in d = 3 it would be possible to write terms which are

first order in derivatives in terms of the gauge field dual to χ [41].

We now discuss the boundary conditions. Classically, the boundary conditions should

provide enough information to solve a second order differential boundary value problem.

At a quantum-level, we can think of a boundary as specifying a state in the appropriate

quantization [17]. Either way, since χ is a shift invariant scalar, the boundary condition can

only specify the value of its normal derivative. To do so in the most general way compatible

with the d − 1-dimensional conformal group, we can parametrize the boundary conditions

with a boundary action. Since the latter lives in (d − 1) dimension, it is necessarily O(1/µ)

suppressed with respect to the bulk action. Therefore, to leading order in the derivative

expansion, the boundary condition arises from the variation of the bulk action and reads:

nµjµ|∂M = nµ(∂χ)∂µχ|∂M ' 0 . (C.2)
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We can use this condition to discard all terms proportional to nµ∂µχ at the boundary.32 This

implies that to leading order in derivatives we can only write one term compatible with Weyl

invariance:

Sbdry =

∫
dd−1x

√
ĝ b1(∂̂χ)d−1 + . . . . (C.3)

We will now show that this action does not receive correction to first subleading order in

derivatives.

To construct higher order terms it is convenient to work in terms of the rescaled metric

g̃µν as before. We use the same notation of appendix A.1 for geometric quantities, including a

tilde to denote when they are constructed from the rescaled metric, for instance ñµ = (∂χ)nµ,
ˆ̃gab = ĝab(∂χ)2, etc. To first order in derivatives there are three Weyl-invariant operators:

Ô1 = ˆ̃∇a∂aχ , Ô2 = ∂aχ∂bχK̃
ab , Ô3 = K̃ab

ˆ̃gab , (C.4)

where K̃ab = −ñµ ˆ̃∇a∂bXµ is the rescaled extrinsic curvature. The first operator is clearly a

total derivative. Using that the extrinsic curvature of the equator vanishes, we find that

K̃ab = ĝab
nµ∂µ(∂χ)

(∂χ)2
, (C.5)

and therefore all terms proportional to the extrinsic curvature vanish on the leading order

boundary condition (C.2).

Finally in odd spacetime dimensions we need to consider the Wess-Zumino term to re-

produce the boundary Weyl anomaly in the EFT. For instance in d = 3 this depends on two

coefficients ba and da [21]. While the Wess-Zumino term is usually written for a background

dilaton field, here its role is played by the dynamical composite field log(∂χ). Since χ itself

may contribute to the Weyl anomaly, it’s the difference of central charges between the UV

BCFT and the superfluid theory that shows up in the following expressions:33

SWZ =− 1

24π

∫
∂M

d2x
√
ĝ log(∂χ)

[
∆baR̂+ ∆da (Kab − trace)2

]
+

∆ba
24π

∫
∂M

d2x
√
ĝ ∂a log(∂χ)ĝab∂b log(∂χ) .

(C.6)

Notice that the first line vanishes identically on the boundary ofM = R×HSd−1. In general

the Wess-Zumino term is always of order O(µ0) in the EFT and is therefore suppressed

by (d − 1) derivatives with respect to the term in eq. (C.3). Therefore we conclude that all

additional higher derivative terms in the boundary action (C.3) are suppressed by two or more

derivatives. It would be interesting to understand, if the anomaly terms lead to distinctive

features in the EFT despite this high suppression.

32This is because, in perturbation theory, their effect is the same as that of higher derivative operators which

do not involve normal derivatives.
33This phenomenon in the context of 2d bulk CFT was demonstrated through explicit computation in [58].
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D Details on the epsilon expansion

D.1 Anomalous dimensions at small λ∗Q

In this subsection we explain how to obtain the results (4.20) and (4.32) for the one-loop

anomalous dimensions of the lowest dimensional charge Q boundary operators in the Wilson-

Fisher fixed point with Neumann and Dirichlet boundary conditions. As a reminder, one

defines the wave-function renormalization ẐQ of a bare operator ÔQ [46] isolating the diver-

gent part of its correlation functions with other (renormalized) operators:

〈ÔQ(x) . . .〉 = ẐQ 〈[ÔQ](x) . . .〉︸ ︷︷ ︸
=finite

, xd = 0 , (D.1)

where ÔQ = φ̂Q for the Neumann boundary conditions, while ÔQ = (∂dφ̂)Q for Dirichlet.

The anomalous dimension then follows from:

γ̂Q =
∂ log ẐQ
∂λ

βλ , (D.2)

where the d-dimensional beta function is given in eq. (4.3).

Let us consider first Neumann boundary conditions ∂dφ|xd=0 = 0. The φ propagator in

this case is [19]:

GN (y, x) =
1

(d− 2)Ωd−1(y − z)d−2
+

1

(d− 2)Ωd−1(y − z̄)d−2
, z̄ = (z1, . . . , zd−1,−zd) .

(D.3)

To one-loop accuracy we consider one insertion of the interaction term in a generic correlator

containing the operator φ̂Q:

〈φ̂Q(x) . . .〉 ' 〈φ̂Q(x) . . .〉free −
λ

4
〈φ̂Q(x)

∫
yd≥0

ddy(φ̄φ)2(y) . . .〉free , (D.4)

where the subscript stresses that all matrix elements are evaluated via Wick contraction using

eq. (D.3). To extract the divergent contribution, we consider all possible contractions of the

interaction term with the operator φ̂Q(x). To this order we obtain:

〈φ̂Q(x) . . .〉 ' 〈φ̂Q(x) . . .〉free − λQ〈φ̂Q−1(x)

∫
ddy GN (x, y)GN (y, y)φ(y) . . .〉free

− λQ(Q− 1)

4
〈φ̂Q−2(x)

∫
yd≥0

ddy G2
N (x, y)φ2(y) . . .〉free + finite ,

(D.5)

These contractions correspond to the diagrams in figure 2. Logarithmic divergences34 arise

only from the limit yd → 0 and y|| → x||. Therefore we can extract them by expanding φ(y) =

34There is a power divergence for yd → 0 with y||=fixed, but its contribution vanishes in dimensional

regularization.

– 43 –



(a) (b)

Figure 2: Feynman diagrams that contribute one-loop corrections to the anomalous dimen-

sion (4.20).

φ(x) + . . . and introducing an arbitrary IR cutoff in the integration. This implies that we can

absorb the divergences in the correlator with the following wave-function renormalization:35

ẐQ = 1− λQ
∫ ′

ddy GN (x, y)GN (y, y)− λQ(Q− 1)

4

∫ ′
ddy G2

N (x, y) ,

= 1− λ

16π2ε

(
Q2 − 2Q

)
+ finite ,

(D.6)

where the prime on the integral serves as a reminder that an IR cutoff of our choice must be

introduced in the integration; this determines the finite scheme-dependent terms in the second

line. Notice also that, in dimensional regularization, the propagator GN (y, y) at coincident

points is obtained simply discarding the first divergent term in eq. (D.3). Using eq. (D.2)

with βλ ' −ελ we find the result (4.20).

The same procedure can be used to extract the wave-function of the operator (∂dφ̂)Q for

Dirichlet boundary conditions. In this case the propagator is given by

GD(y, x) =
1

(d− 2)Ωd−1(y − z)d−2
− 1

(d− 2)Ωd−1(y − z̄)d−2
, (D.7)

where z̄ is defined as in eq. (D.3). Proceeding as before we then find

ẐQ = 1− λQ
∫ ′

ddy yd∂dGD(x, y)GD(y, y)− λQ(Q− 1)

4

∫ ′
ddy ydyd (∂dGD(x, y))2 ,

= 1− λ

32π2ε

(
Q2 − 3Q

)
+ finite ,

(D.8)

where again we introduced an arbitrary IR cutoff in the integration and neglected the scheme-

dependent contributions in the second line. Notice that, while the propagator (D.7) vanishes

when x is at the boundary, its normal derivative does not. Using eq. (D.2) we then obtain

the result (4.32) in the main text.

As a consistency check, we note that the results (4.20) and (4.32) are in agreement with

those obtained in [19] for Q = 1.

35To one-loop accuracy the anomalous dimension are scheme-independent even away from the fixed point.
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D.2 Casimir energy for large λ∗Q in the epsilon expansion

We would like to evaluate the sum we encountered in (4.24) for large µR, which we repeat

here:

S(µR) ≡ 1

2

∞∑
`=1

σ(`) ,

σ(`) =
(`+ 1)(`+ 2)

2
R [ω+(`) + ω−(`)]− `3 − 4`2 − `

(
µ2R2 + 4

)
− 2µ2R2 +

5
(
µ2R2 − 1

)2
8`

,

(D.9)

where we omitted the ∗ notation of the main text to avoid clutter. The large µR limit is a

flat space limit, terms with ` ∼ µR should dominate and the result should be expressible by

integrals instead of sums. We realize these expectations below.

First we want to perform the sum for “low `’s”, from ` = 1 to ` = aµR, where a � 1

such that aµR is a large integer. We expand the summand for large µR, to get:

σ(`) = (µR)4

[
5

8
`+ 4`2 + 8`+

5

`

1

(µR)2 +

√
3

2
(`+ 1)(`+ 2)

1

(µR)3 + . . .

]
. (D.10)

The terms can be summed in closed form and expanded for small a. The final result takes

the form

Slow(µR) =
1

2

aµR∑
`=1

σ(`)

= (µR)4

[
5

16
log(aµR eγE )− 1

4
a2 + . . .

+
1

µR

(
5

32a
− 5

4
a+ . . .

)
+

1

(µR)2

(
− 5

192a2
− 5

8
log(aµR eγE ) + . . .

)
+

1

(µR)3

(
− 5

8a
+

(
47

24
√

3
− 8

3

)
a+ . . .

)
+ . . .

]
,

(D.11)

where we hoped to convey the structure of this double expansion and demonstrate that to

obtain the terms in (4.27) we only need to expand to O(µR) in (D.10).

Next, we want evaluate the sum for “high `’s”, from ` = aµR + 1 to ` = ∞. Note

that Shigh(µR) is supposed to have such an a-dependence that it completely cancels the

a-dependence of Slow(µR). We proceed by introducing a variable to be regarded as (dimen-
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sionless) flat space momentum, k ≡ `/(µR), and write the Euler-Maclaurin formula as

Shigh(µR) =
1

2

∞∑
aµR+1

σ(`)

=
µR

2

∫ ∞
a

dk Σ(k)− Σ(a)

4
−
∑
m=1

B2m

2(2m)!(µR)2m−1
Σ(2m−1)(a) ,

Σ(k) ≡ σ(kµR) .

(D.12)

The function Σ(k) is an explicit function of µR, and can be straightforwardly expanded as

Σ(k) =
1

µR
Σ1(k) +

1

(µR)2
Σ2(k) + . . . ,

Σ1(k) = −k3 − k +
5

8k
+

1

2
k2

(√
k2 + 3 +

√
4k2 + 9 +

√
k2 + 3−

√
4k2 + 9

)
,

(D.13)

where we have determined the expansion up to Σ4(k), but will spare the reader from the

explicit expressions.

All we would have to do is to plug this expression back into (D.12) and expand for small

a. This would be rather cumbersome because of the 5/8k term in (D.13) that would make

the this a singular expansion near k = 0. Subtracting this term is not an option either, since

this would ruin the fast decay of Σ1(k) for k → ∞. Instead, we look for a subtraction that

while making the integrand regular as k → 0 does not spoil the k →∞ asymptotics and that

is simple enough so that it can be exactly summed over `. The following subtraction fits the

bill:

Σ̂1(k) = Σ1(k)− 5

8k (1 + 8k2/5)
, (D.14)

where the 8/5 prefactor of k2 is inessential, but makes some subsequent expressions simpler.36

Now, we can plug Σ̂i(k) into (D.12), and preform the small a expansion. We find that the a

36At higher orders in 1/(µR) we can use the same subtraction with its overall coefficient adjusted. In

particular, Σ2,4 does not require subtraction and Σ̂3(k) = Σ3(k) + 5

4k(1+8k2/5)
.
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dependent terms drop out from the sum of Slow(µR) + Shigh(µR).37 The final result reads

S(µR) = (µR)4

[
5

16
log(µR) +

5

32

(
2γE − log

(
8

5

))
+

1

2

∫ ∞
0

dk Σ̂1(k)

]
+ (µR)3 1

2

∫ ∞
0

dk Σ2(k)

+ (µR)2

[
−5

8
log(µR)− 5

16

(
2γE − log

(
8

5

))
+

13

24
+

1

2

∫ ∞
0

dk Σ̂3(k)

]
+ (µR)

[
5
√

3

8
√

2
+

1

2

∫ ∞
0

dk Σ4(k)

]
+ . . .

(D.15)

The above procedure is another application of matched asymptotic series expansion that we

used in this paper repeatedly.

Next we plug in d = 4 into (4.17) to relate µR to λn:

(µR)3 − µR =
λQ

4π2
, =⇒ µR =

(
λQ

4π2

)1/3

+
1

3

(
λQ

4π2

)−1/3

+ . . . . (D.16)

Plugging the second line into (4.24) and (D.15), we finally obtain (4.27).
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