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ABSTRACT

In this paper, our goal is to study fundamental foundations of linear quadratic
Gaussian (LQG) control problems for stochastic linear time-invariant systems via
Lagrangian duality of semidefinite programming (SDP) problems. In particular, we
derive an SDP formulation of the finite-horizon LQG problem, and its Lagrangian
duality. Moreover, we prove that Riccati equation for LQG can be derived the KKT
optimality condition of the corresponding SDP problem. Besides, the proposed pri-
mal problem efficiently decouples the system matrices and the gain matrix. This
allows us to develop new convex relaxations of non-convex structured control design
problems such as the decentralized control problem. We expect that this work would
provide new insights on the LQG problem and may potentially facilitate develop-
ments of new formulations of various optimal control problems. Numerical examples
are given to demonstrate the effectiveness of the proposed methods.
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1. Introduction

Duality has long been a core concept in optimal control theory such as the Pontrya-
gin’s maximal principle. On the other hand, emergence of convex optimization [1] and
semidefinite programming (SDP) techniques in control analysis and design promoted
new optimization formulations of control problems [2–12] during the last decades. Ac-
cordingly, the corresponding dual problems have been studied to further deepen our
understanding of the classical control theories, e.g., [2, 6, 13, 14]. For instance, a new
proof of Lyapunov’s matrix inequality was presented in [15] based on the standard
SDP duality [16]. In addition, SDP formulations of the LQR problem and their dual
formulations were developed in [13] and [14]. Comprehensive studies on the SDP du-
alities in systems and control theory, such as the Kalman-Yakubovich-Popov (KYP)
lemma, the LQR problem, and the H∞-norm computation, were provided in [17]. A
new Lagrangian duality result and its relation to reinforcement learning problems were
established in [18] for infinite-horizon LQR problems. More recent results include the
state-feedback solution to the LQR problem [19], the generalized KYP lemma and
H∞ analysis [20, 21] derived using the Lagrangian duality, a sufficient condition for
the strong duality of non-convex SDP problems [22].
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Several relations between the LQG problems and SDP problems have been studied in
the literature, see for example, [2,6,13,14]. The recent paper, [19], proposed a new SDP
formulation, where the finite-horizon LQR problem was converted into the optimal
covariance matrix selection problem, and it can be also interpreted as a dual problem
of the standard LQR approaches based on the Riccati equations or the Lyapunov
methods.

In this paper, we consider the finite-horizon linear quadratic Gaussian (LQG) con-
trol problem [23]. The goal is to investigate a new semidefinite programming (SDP)
formulation of the finite-horizon LQG problem and its dual counterpart by using the
Lagrangian duality in standard convex optimization [1]. In particular, we prove that
Riccati equation for LQG can be derived the KKT optimality condition of the corre-
sponding SDP problem. Moreover, the proposed primal problem efficiently decouples
the system matrices and the gain matrix. This fact allows us to develop new convex
relaxations of non-convex structured control design problems such as the decentralized
control problem. We expect that the results in this paper provide new insights on the
LQG problem based on a relation between our primal and dual formulations and the
Riccati equation, which can potentially facilitate developments new algorithms and
new formulations of various optimal control problems, such as the data-drive control
design algorithm [18].

Notation: The adopted notation is as follows: N and N+: sets of nonnegative and
positive integers, respectively; R: set of real numbers; R+: set of nonnegative real
numbers; R++: set of positive real numbers; Rn: n-dimensional Euclidean space; Rn×m:
set of all n ×m real matrices; AT : transpose of matrix A; A ≻ 0 (A ≺ 0, A � 0, and
A � 0, respectively): symmetric positive definite (negative definite, positive semi-
definite, and negative semi-definite, respectively) matrix A; In: n× n identity matrix;
Sn: symmetric n × n matrices; Sn+: cone of symmetric n × n positive semi-definite
matrices; Sn++: symmetric n × n positive definite matrices; Tr(A): trace of matrix
A; N (v,W ): normal distribution with mean v and variance W ; ∗ inside a matrix:
transpose of its symmetric term; s.t.: subject to.

2. Preliminaries

In this section, we briefly summarize basic concepts of the standard Lagrangian dual-
ity theory in [1]. Let us consider the optimization problem with a matrix inequality
(semidefinite programming, SDP), which is our main concern in this paper.

Problem 1 (Primal problem). Solve for x ∈ Rn

p∗ := inf
x∈D

f(x) s.t. Φ(x) � 0

where x ∈ Rn, Φ : Rn → Sn̂ is a differentiable matrix function, f : Rn → R is a
differentiable objective function, and D ⊆ Rn is some convex set.

Note that in Problem 1, we use inf instead of max because D can be potentially
an open set. An important property of problems of the form in Problem 1 that arises
frequently is the convexity.

Definition 1 (Convexity). Problem 1 is said to be convex if f is a convex function,
D is a convex set, and the feasible set, {x ∈ Rn : Φ(x) � 0}, is convex.
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Note that for the feasible set, {x ∈ Rn : Φ(x) � 0}, to be convex, Φ(x) needs to
be linear or convex in x. Associated with Problem 1, the Lagrangian function [1] is
defined as

L(x,Λ) := f(x) + Tr(ΛΦ(x))

for any Λ ∈ Sn̂+, called the Lagrangian multiplier. For any Λ ∈ Sn̂+, we define the dual
function as

g(Λ) := inf
x∈D

L(x,Λ) = inf
x∈D

(f(x) + Tr(ΛΦ(x)))

It is known that the dual function yields lower bounds on the optimal value p∗:

g(Λ) ≤ p∗ (1)

for any Lagrange multiplier, Λ ∈ Sn̂+. The Lagrange dual problem associated with Prob-
lem 1 is defined as follows.

Problem 2 (Dual problem). Solve for Λ ∈ Sn̂+

d∗ := sup
Λ∈Sn̂

+

g(Λ).

The dual problem is known to be convex even if the primal is not. In this context,
the original Problem 1 is sometimes called the primal problem. Similarly, d∗ is called
the dual optimal value, while p∗ is called the primal optimal value. The inequality (1)
implies the important inequality

d∗ ≤ p∗,

which holds even if the original problem is not convex. This property is called weak
duality, and the difference, p∗ − d∗ is called the optimal duality gap. If the equality
d∗ = p∗ holds, i.e., the optimal duality gap is zero, then we say that strong duality
holds.

Definition 2 (Strong duality). If the equality, d∗ = p∗, holds, then we say that strong
duality holds for Problem 1.

There are many results that establish conditions on the problem under which strong
duality holds. These conditions are called constraint qualifications. Once such con-
straint qualification is Slater’s condition, which is stated below.

Lemma 1 (Slater’s condition). Suppose that Problem 1 is convex. If there exists an
x ∈ relint(D) such that

Φ(x) ≺ 0,

then the strong duality holds, where relint(D) is the relative interior [1, pp. 37].

Without the constrain qualifications, such as the Slater’s condition, the strong du-
ality does not hold. For more comprehensive discussions on the duality, the reader is
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referred to the monograph [1]. Before closing this section, we introduce several trans-
formations of matrix inequalities, which will play important roles in this paper, and are
thus summarized in this section. One of the most popular transformations of matrix
inequalities is the so-called Schur complement, which frequently arises in LMI-based
computational control designs.

Lemma 2 (Schur complement [2]). The matrix inequality

ATHA− P ≺ 0, H ≻ 0

holds if and only if

[

−P ∗
A −H−1

]

≺ 0

In [3], an extended Schur complement was introduced to deal with robust control
design problems. For convenience, it is outlined below.

Lemma 3 (Extended Schur complement I, [3]). The following conditions are equiva-
lent:

(1) For a symmetric matrix P ≻ 0, the matrix inequality

ATPA− P ≺ 0

holds.
(2) For a symmetric matrix P ≻ 0, there exist a matrix G such that

[

−P ∗
GA P −G−GT

]

≺ 0

Application of Lemma 3 is restricted in the sense that P appears twice on the
left-hand side of the inequalities. In this paper, we will use a generalized version
of Lemma 3, which eliminates this restriction. Since the proof is not presented in
the literature, it is briefly presented here for completeness.

Lemma 4 (Extended Schur complement II). The following conditions are equivalent:

(1) For symmetric matrices H ≻ 0 and P ≻ 0, the matrix inequality

ATHA− P ≺ 0

holds.
(2) There exists a matrix G such that

[

−P ∗
GA H −G−GT

]

≺ 0

Proof. Suppose 1) holds. Then, using the Schur complement Lemma 2, we have

[

−P ∗
A −H−1

]

≺ 0
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Multiplying the last inequality with

[

I 0
0 H

]

from the left and right, one gets

[

−P ∗
HA −H

]

=

[

−P ∗
HA H −H −H

]

≺ 0

Letting G = H, we conclude that 2) holds. Conversely, assume that 2) holds. Then,

[

I

A

]T [
−P ∗
GA H −G−GT

] [

I

A

]

=

[

I

A

]T
{

[

−P 0
0 H

]

+

[

0
G

]

[

A −I
]

+
[

A −I
]T

[

0
G

]T
}

[

I

A

]

=− P +ATHA

≺0.

Therefore, 1) holds. This completes the proof.

Lemma 4 is more general than Lemma 3 in the sense that if H = P , Lemma 3 is
recovered from Lemma 4. Lastly, the matrix inequality transformations presented here
have a common feature: they present two matrix inequalities which are equivalent in
some sense. The concept of equivalent relations will be more rigorously formalized in
the next section.

3. Equivalence and strong duality

In this section, we present the concept of the equivalent transformation and its re-
lation with the strong duality proposed in [22]. Consider the following transformed
optimization of the original problem, Problem 1.

Problem 3 (Transformation I). Solve for (x, z) ∈ Rn × Rm

p̂∗ := inf
(x,z)∈D×Rm

f(x) s.t. Θ(x, z) � 0

where x ∈ Rn, Θ : Rn × Rm → Sn̂+m̂ is a differentiable matrix function, and is a
transformation of Φ(x) ∈ Sn̂, and z ∈ Rm is an additional variable introduced through
the transformation.

Problem 3 and Problem 1 can be related via some property called the equivalence,
which is defined below.

Definition 3 (Equivalence). For any t ∈ R and U ∈ Sn̂, define the two sets

F(U, t) :={x ∈ D,Φ(x) ≺ U, f(x) ≤ t}

G(U, t) :=

{

(x, z) ∈ D × R
n,Θ(x, z) ≺

[

U 0
0 0

]

, f(x) ≤ t

}

.

The two problems, Problem 1 and Problem 3, are said to be equivalent if the following
two statements are true:
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(1) for any t ∈ R and U ∈ Sn̂ such that F(U, t) 6= ∅ and x ∈ F(U, t), there exist
z ∈ Rn such that (x, z) ∈ G(U, t)

(2) for any t ∈ R and U ∈ Sn̂ such that G(U, t) 6= ∅ and (x, z) ∈ F(G, t), x ∈ G(U, t)
holds.

An implication of the strong equivalence in Definition 3 is that an optimal solution
of one problem can be recovered from an optimal solution of the other problem and
vice versa. This concept is formalized below.

Lemma 5. Suppose that the Slater’s condition holds for Problem 1. Moreover, suppose
that Problem 1 and Problem 3 are strongly equivalent. Then, p∗ = p̂∗ holds. Moreover,
let x∗ be an optimal solution of Problem 1. Then, there exists some ẑ∗ such that (x∗, ẑ∗)
is an optimal solution of Problem 3. Conversely, if (x̂∗, ẑ∗) is an optimal solution
of Problem 3, then x̂∗ is an optimal solution of Problem 1.

In the following, we study a convexification of matrix inequality constrained opti-
mizations, which have a special property to be addressed soon. Toward this goal, let
us consider the following optimization problem.

Problem 4 (Transformation II). Solve

inf
(v,w)∈h(D×Rm)

g(v,w) s.t. Ω(v,w) � 0

for some mapping h such that h(D ×Rm) is convex, where Ω : Rn ×Rm → Sn̂+m̂ and
g : Rn × Rm → R are convex, and f and Θ can be expressed as

f(x) =g(h(x, z)) = (g ◦ h)(x, z)

Θ(x, z) =Ω(h(x, z)) = (Ω ◦ h)(x, z)

Note that Problem 4 is convex, and hence will be called a convexification of Prob-
lem 3. In particular, we will consider a special convexification called lossless convexi-
fication defined below.

Definition 4 (Lossless convexification). Define the following sets associated
with Problem 3 and Problem 4:

F :={(x, z) ∈ D × R
m :,Θ(x, z) ≺ 0}, (2)

G := {(v,w) ∈ h(D × R
n) : Ω(v,w) ≺ 0} , (3)

and suppose that h is such that h : F → G is bijection. Then, Problem 3 is said to be
a lossless convexification of Problem 2.

An implication of Definition 4 is that solutions of Problem 4 have bijective cor-
respondences to solutions of Problem 3. Therefore, even if Problem 3 is nonconvex,
its solutions can be found from the convex Problem 4. Moreover, another property is
that the existence of such a lossless convexification ensures the strong duality of the
original Problem 1 (with the Slater’s condition). This result is formally summarized
below.

Lemma 6 (Strong duality). We suppose that Problem 3 and Problem 1 are equivalent,
and Problem 4 is a lossless convexification of Problem 3. If Problem 1 satisfies the
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Slater’s condition, then the strong duality holds for Problem 1.

4. Finite-horizon LQG problem

In this section, we turn our attention to the optimal control problem, which is our
main concern in this paper. Consider the stochastic linear time-invariant (LTI) system

x(k + 1) = Ax(k) +Bu(k) + w(k), (4)

where k ∈ N, x(k) ∈ Rn is the state vector, u(k) ∈ Rm is the input vector, x(0) ∼
N (0,Wf ) and w(k) ∼ N (0,W ) with Wf ≻ 0 and W ≻ 0 are mutually independent
Gaussian random vectors. In this paper, we consider the following finite-horizon linear
quadratic Gaussian (LQG) problem:

Problem 5 (Finite-horizon LQG problem). Solve

min
F0,...,FN−1∈Rm×n

E(x(k)TQfx(k)) +

N−1
∑

k=0

E

(

[

x(k)
u(k)

]T [
Q 0
0 R

] [

x(k)
u(k)

]

)

s.t. x(k + 1) = Ax(k) +Bu(k) + w(k), u(k) = Fkx(k).

A collection of assumptions that will be used throughout the paper is summarized
below.

Assumption 1. In this paper, we assume that Qf � 0, Q � 0, R ≻ 0,Wf ≻ 0, and
W ≻ 0.

If we define the covariance of the augmented vector [x(k)T , u(k)T ]T ∈ Rn×m

Sk = E

(

[

x(k)
u(k)

] [

x(k)
u(k)

]T
)

, k ∈ {0, . . . , N},

then, Problem 5 can be equivalently converted to the matrix equality constrained
optimization problem.

Problem 6. Solve

J∗
p := min

S0,...,SN−1∈Sn+m,F0,...,FN−1∈Rm×n

Jp({Sk}
N−1
k=0 )

s.t. Φ(Fk, Sk−1) = Sk k ∈ {1, . . . , N − 1},

[

In
F0

]

Wf

[

In
F0

]T

= S0,

where

Jp({Sk}
N−1
k=0 ) :=Tr

(

Qf

(

[

AT

BT

]T

SN−1

[

AT

BT

]

+W

))

+

N−1
∑

k=0

Tr

([

Q 0
0 R

]

Sk

)

Φ(F, S) :=

[

In
F

]

(

[

AT

BT

]T

S

[

AT

BT

]

+W

)

[

In
F

]T
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In Problem 6, the matrix equality constraints represent the covariance updates. In
this paper, instead of dealing with Problem 6 in its present form, we will consider the
modified problem (SDP relaxation) by replacing the matrix equalities in Problem 6
by inequalities.

Problem 7 (Primal problem). Solve

popt := min
S0,...,SN−1∈Sn+m,F0,...,FN−1∈Rm×n

Jp({Sk}
N−1
k=0 )

s.t. Φ(Fk, Sk−1) � Sk, k ∈ {1, . . . , N − 1},

[

I

F0

]

Wf

[

I

F0

]T

� S0.

Note that Problem 7 is not convex due to the bilinear matrix inequality constraints.
We will study its solution through the Lagrangian duality. To this end, its Lagrangian
dual problem can be derived as follows.

Problem 8 (Dual problem I). Solve

dopt := sup
Pk�0,P̄k�0

g({(Pk, P̄k)}
N−1
k=0 )

= sup
Pk�0,P̄k�0

inf
{Sk,Fk}

N−1

k=0

L({(Sk, Fk, Pk, P̄k)}
N−1
k=0 ),

where

g({(Pk, P̄k)}
N−1
k=0 ) := inf

{Sk,Fk}
N−1

k=0

L({(Sk, Fk, Pk, P̄k)}
N−1
k=0 ),

and (Pk, P̄k)
N−1
k=0 are called the dual variables.

It is well-known that the dual problem is convex even if the primal is not [1]. In this
paper, we will prove that the dual problem can be converted to an equivalent convex
SDP problem.

5. Main results

To proceed, denote by S the set of all optimal solutions of the form {(Fk, Sk)}
N−1
k=0

of Problem 7. In addition, define the mapping F := {{Fk}
N−1
k=0 : {(Fk, Sk)}

N−1
k=0 ∈ S}.

We conclude that Problem 6 is equivalent to Problem 7 in the following sense: if
{Fk}

N−1
k=0 ∈ F , then it is also optimal for Problem 6. This result is formally stated in

the following proposition.

Proposition 1. Let {Fk}
N−1
k=0 ∈ F . Then, it is an optimal solution of Problem 6, and

J∗
p = popt holds.

Proof. Let {Fk}
N−1
k=0 ∈ F and construct {S̄k}

N−1
k=0 such that

Φ(Fk, S̄k−1) = S̄k, k ∈ {1, 2, . . . , N − 1},

[

I

F0

]

Wf

[

I

F0

]T

= S̄0
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Clearly, S̄k � Sk,∀k ∈ {0, 1, . . . , N − 1} and hence, popt ≥ Jp({S̄k}
N−1
k=0 ). However,

since {Fk, S̄k}
N−1
k=0 is also a feasible point of Problem 7, and thus, Jp({S̄k}

N−1
k=0 ) ≥ popt.

Therefore, Jp({S̄k}
N−1
k=0 ) = popt and {Fk, S̄k}

N−1
k=0 is an optimal solution of Problem 7.

Since Problem 6 has a feasible set included by the feasible set of Problem 7, and
the optimal solution {Fk, S̄k}

N−1
k=0 of Problem 7 takes equalities in the constraints

of Problem 7, {Fk, S̄k}
N−1
k0 is also optimal solution of Problem 6. The second statement

is derived directly from the first statement. This completes the proof.

From Proposition 1, we can conclude that Problem 7 can replace Problem 5.
Therefore, in the sequel, we will address Problem 7 instead of Problem 5. For any
P0, . . . , PN−1 ∈ S

n+m
+ , and P̄0, . . . , P̄N−1 ∈ S

n+m
+ , define the Lagrangian function

of Problem 7

L({(Sk, Fk, Pk, P̄k)}
N−1
k=0 ) :=Jp({Sk}

N−1
k=0 ) +

N−1
∑

k=1

Tr((Φ(Fk, Sk−1)− Sk)Pk)

+ Tr

((

[

I

F0

]

Wf

[

I

F0

]T

− S0

)

P0

)

−
N−1
∑

k=0

Tr(SkP̄k)

Rearranging some terms, it can be represented by

L({(Sk, Fk, Pk, P̄k)}
N−1
k=0 ) =Jd({Pk, Fk}

N−1
k=0 )

+ Tr

((

[

AT

BT

]

Qf

[

AT

BT

]T

− PN−1 +

[

Q 0
0 R

]

− P̄N−1

)

SN−1

)

+

N−1
∑

k=1

Tr((Γ(Fk, Pk)− Pk−1 − P̄k−1)Sk−1). (5)

The corresponding Lagrangian dual problem [1, chapter 5] is Problem 8. In the
following two theorems, we establish a relation between the dual optimal solution and
the Riccati equation.

Theorem 1 (Strong duality). The strong duality holds, i.e., popt = dopt;

Proof. To prove the strong duality, we will use the results in Section 3. We will
first prove that Problem 7 is strictly feasible to apply Lemma 6. With Fk = 0,∀k ∈
{0, 1, . . . , N − 1} and any ε > 0, construct matrices {Sk}

N−1
k=0 as follows:

[

In
F0

]

Wf

[

In
F0

]T

+ εIn = S0, Φ(Fk, Sk−1) + εIn = Sk

The set {Fk, Sk}
N−1
k=0 satisfies the constraints of Problem 6 with strict inequalities.

Therefore, we conclude that Problem 7 is strictly feasible.
Next, we will prove that the constraints in Problem 7 can be equivalently converted

to linear matrix inequality constraints. In particular, to apply the extended Schur
complement, Lemma 4, we first replace the non-strict matrix inequality “�” and strict
matrix inequality “≺”, and replace “min” with “inf,” which do not change the result.
Then, by Lemma 4, we have that Φ(Fk, Sk−1) ≺ Sk holds if and only if there exists

9



Gk ∈ Rn×n such that





Sk ∗
[

Gk GkF
T
k

]

Gk +GT
k −

[

AT

BT

]T

Sk−1

[

AT

BT

]

−W



 ≻ 0 (6)

Similarly,

[

I

F0

]

Wf

[

I

F0

]T

≺ S0 is equivalent to

[

S0 ∗
[

G0 G0F
T
0

]

G0 +GT
0 −Wf

]

≻ 0. (7)

Next, the strict matrix inequality “≺” can be replaced with the non-strict matrix
inequality “�”, and “min” can be replaced with “inf.” Therefore, we see that Problem 7
is equivalent to

popt := min
S0,...,SN−1∈Sn+m,F0,...,FN−1∈Rm×n

Jp({Sk}
N−1
k=0 ) s.t. (6), (7)

in the sense of Definition 3. In the feasible set, Gk is nonsingular. Therefore, we can
find the bijective mapping

h :









S

S′

G

F









7→









S

S′

G

FGT









to change variables

h

















Sk

Sk−1

Gk

Fk

















=









Sk

Sk−1

Gk

FkG
T
k









=









Sk

Sk−1

Gk

Hk









,

and (6) and (7) can be converted to the LMIs





Sk ∗
[

Gk Hk

]

Gk +GT
k −

[

AT

BT

]T

Sk−1

[

AT

BT

]

−W



 � 0

and

[

S0 ∗
[

G0 H0

]

G0 +GT
0 −Wf

]

� 0

Now, we can invoke Lemma 6 to prove that the strong duality holds for Problem 7.
In particular, according to Lemma 6, if Problem 7 is strictly feasible, and Problem 7
admits an equivalent convex SDP through a bijective mapping of variables, then it
satisfies the strong duality. This completes the proof.
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According to [1, Chap. 5.5, pp. 243], for any optimization problem with differen-
tiable objective and constraint functions for which strong duality obtains, any pair
of primal and dual optimal points must satisfy the KKT conditions. Since the strong
duality holds for Problem 7, we can obtain some information on the solution using the
KKT condition. One result is that the Riccati equation can be derived from the KKT
condition.

Theorem 2. Consider the Riccati equation

ATXk+1A−ATXk+1B(R+BTXk+1B)−1BTXk+1A+Q = Xk (8)

for all k ∈ {0, . . . , N − 1} with XN = Qf , and define {(Sk, Fk, Pk, P̄k)}
N−1
k=0 with

Fk =− (R+BTXk+1B)−1BTXk+1A,

Sk =Φ(Fk, Sk−1), S0 =

[

I

F0

]

Wf

[

I

F0

]T

,

Pk =

[

Q+ATXk+1A ATXk+1B

BTXk+1A R+BTXk+1B

]

,

P̄k =0, k ∈ {0, . . . , N − 1}, (9)

Then, {(Sk, Fk)}
N−1
k=0 is an primal optimal point of Problem 7 and {(Pk, P̄k)}

N−1
k=0 is

the corresponding dual optimal point of Problem 7.

Proof. From the KTT condition of the generalized inequality constrained optimiza-
tion in [1, chap 5.9.2], its KKT condition can be summarized as the primal feasibility
condition

[

I

F0

]

Wf

[

I

F0

]T

� S0, Φ(Fk, Sk−1) � Sk, k ∈ {1, 2, . . . , N − 1}

the complementary slackness condition

Tr

((
[

I

F0

]

Wf

[

I

F0

]T

− S0

)

P0

)

= 0

Tr((Φ(Fk, Sk−1)− Sk)Pk) = 0
k ∈ {1, 2, . . . , N − 1}

Tr(SkP̄k) = 0, k ∈ {0, 1, . . . , N − 1}

(10)

and the dual feasibility condition

PN =

[

Qf 0
0 0

]

, Γ(0, PN )− P̄N−1 = PN−1

Γ(Fk, Pk)− P̄k−1 = Pk−1, k ∈ {1, 2, . . . N − 1}

Wf (P0,12 + F T
0 P0,22) + (P T

0,12 + P0, 22F0)Wf = 0

Mk(Pk+1,12 + F T
k+1Pk+1,22) + (P T

k+1,12 + Pk+1,22Fk+1)Mk = 0

k ∈ {1, 2, . . . , N − 1}

Pk � 0, P̄k � 0, k ∈ {0, 1, . . . N − 1}

11



where Mk =
[

A B
]

Sk

[

A B
]T

+W . By Assumption 1, Mk and Wf are nonsingular,
and hence, solving the KKT condition, we can prove that (9) uniquely solves the KKT
condition. According to [1, Chap. 5.5, pp. 243], for any optimization problem with
differentiable objective and constraint functions for which strong duality obtains, any
pair of primal and dual optimal points must satisfy the KKT conditions. Therefore,
the point in (9) is the primal and dual optimal points of (7). This completes the
proof.

Theorem 1 and Theorem 2 tell us that the optimal primal and dual solutions can
be constructed using the solution of the Riccati equation. Conversely, the solution of
the Riccati equation can be recovered from the optimal primal and dual solutions.

The dual problem in Problem 8 is a min-max problem, which is in general harder
to solve than a minimization or maximization problem. Another dual formulation
of Problem 8 is represented by a constrained maximization as follows:

Problem 9 (Dual problem II). Solve

d̃opt := max
P0,...,PN−1∈S

n+m

+

Jd({Pk, Fk}
N−1
k=0 )

s.t.

Γ(Fk, Pk) � Pk−1, k ∈ {1, . . . , N − 1},

Γ(0, PN ) � PN−1,
[

0
I

]T

Pk

[

0
I

]

≻ 0, Fk = −P−1
k,22P

T
k,12, k ∈ {0, . . . N − 1},

where

Jd({Pk, Fk}
N−1
k=0 ) :=Tr

(

[

I

F0

]

Wf

[

I

F0

]T

P0

)

+

N
∑

k=1

Tr

(

[

I

Fk

]

W

[

I

Fk

]T

Pk

)

Γ(F,P ) :=

[

AT

BT

] [

I

F

]T

P

[

I

F

] [

AT

BT

]T

+

[

Q 0
0 R

]

,

and

Pk =

[

Pk,11 Pk,12

P T
k,12 Pk,22

]

, PN =

[

Qf 0
0 0

]

Problem 9 is equivalent to Problem 8 in the sense that the optimal objective function
values are identical, and an optimal solution of Problem 9 is identical to the corre-
sponding optimal solution of Problem 8. Problem 9 is a convex optimization problem
(SDP problem), whose solution can be easily found by existing convex optimization
tools. The results are formally summarized in the following theorem.

Theorem 3. dopt = d̃opt and an optimal point of Problem 9 is {Pk}
N−1
k=0 with

Pk =

[

Q+ATXk+1A ATXk+1B

BTXk+1A R+BTXk+1B

]

(11)

12



for k ∈ {0, . . . , N − 1}, where Xk+1, k ∈ {0, . . . , N − 1} are the solution given in The-
orem 2.

Proof. We first define the set

F :=

{

P ∈ S
n+m
+ :

[

0
Im

]T

P

[

0
Im

]

≻ 0

}

.

Form the solution of the KKT condition in Theorem 2, there exists a unique dual

optimal point (11), which satisfies

[

0
Im

]T

Pk

[

0
Im

]

≻ 0. This ensures that the optimal

objective function value of the dual problem in Problem 8 is not changed when the con-

straints

[

0
Im

]T

Pk

[

0
Im

]

≻ 0, k ∈ {0, 1, . . . , N −1} is added. we can consider Problem 8

with its solution restricted to F as follows:

sup
Pk∈F ,P̄k�0
k∈{0,...,N−1}

inf
{Sk,Fk}

N−1

k=0

L({(Sk, Fk, Pk, P̄k)}
N−1
k=0 ) (12)

Now, let us focus on the term in the Lagrangian (5), i.e.,
∑N−1

k=1 Tr(Γ(Fk, Pk)Sk−1),
which can be represented by

N−1
∑

k=1

Tr(Γ(Fk, Pk)Sk−1) =

N−1
∑

k=1

E

(

[

z

Fkz

]T

Pk

[

z

Fkz

]

)

+

N−1
∑

k=1

Tr

([

Q 0
0 R

]

Sk−1

)

where z := Ax(k − 1) + Bu(k − 1). If

[

0
Im

]T

Pk

[

0
Im

]

≻ 0, then it is minimized with

respect to Fk when Fk = −P−1
22, kP

T
12, k.

Therefore, (12) is equivalent to

sup
Pk∈F , P̄k�0
k∈{0,..., N−1}

inf
{Sk}

N−1

k=0

L({(Sk, F̄k, Pk, P̄k)}
N−1
k=0 )

where F̄k := −P−1
22,kP

T
12,k. Since inf{Sk}

N−1

k=0

L({(Sk, F̄k, Pk, P̄k)}
N−1
k=0 ) has a finite value

only when Γ(F ∗
k , Pk)−P̄k−1 = Pk−1, k ∈ {1, 2, . . . N−1} and Γ(0, PN )−P̄N−1 = PN−1,

the problem (12) can be formulated as

maxP0,...,PN−1∈Sn

+

P̄0,...,P̄N−1∈Sn

+

Jd({Pk, F̄k}
N−1
k=0 )

s.t.

Γ(F̄k, Pk)− P̄k−1 = Pk−1, k ∈ {1, 2, . . . N − 1}

Γ(0, PN )− P̄N−1 = PN−1

or equivalently,

maxP0,...,PN−1∈Sn

+
Jd({Pk, F̄k}

N−1
k=0 )

13



s.t.

Γ(F̄k, Pk) � Pk−1, k ∈ {1, 2, . . . N − 1}

Γ(0, PN ) � PN−1

This completes the proof.

Note that the approaches given in this paper can be easily extended to linear time-
varying systems. In the next section, we study the decentralized LQG problem by
combining the developments in this section and the results in [6].

6. Decentralized LQG performance analysis and design

The structure of the optimization in Theorem 1 allows us to derive a sufficient but
simple convex relaxation for designing a decentralized LQG controller. Consider the
stochastic LTI system composed of M interconnected subsystems

xi(k + 1) =

M
∑

j=1

Aijxj(k) +Biui(k) + wi(k) (13)

for i ∈ {1, . . . ,M}, where k ∈ N is the time, xi(k) ∈ Rni is the state vector, ui(k) ∈
Rmi is the control vector, xi(0) ∼ N (0,Wf ) and wi(k) ∼ N (0,W ) are mutually
independent Gaussian random vectors. Let us define

x(k) =







x1(k)
...

xM (k)






, u(k) =







u1(k)
...

uM (k)






, w(k) =







w1(k)
...

wM (k)






. (14)

Then, the system dynamics (13) can be written as

x(k + 1) = Ax(k) +Bu(k) + w(k)

where

A =







A11 · · · A1M
...

. . .
...

AM1 · · · AMM






∈ R

n×n, B = diag(B1, . . . , BM ) ∈ R
n×m,

n = n1+ · · ·+nM , and m = m1+ · · ·+mM . Now, we formally state the decentralized
state-feedback LQG problem in the sequel.

Problem 10 (Decentralized LQG problem). Solve

J∗
K := min

Fk∈Rm×n,k∈{0, 1,..., N−1}
E(x(k)TQfx(k)) +

N−1
∑

k=0

E

(

[

x(k)
u(k)

]T [
Q 0
0 R

] [

x(k)
u(k)

]

)

subject to
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x(k + 1) =Ax(k) +Bu(k) +w(k)

u(k) =Fkx(k), Fk ∈ K

where K is a linear subspace defined as K := {K ∈ Rm×n : K =
diag(F1, F2, . . . , FM ), Fi ∈ Rmi×ni , i ∈ {1, . . . , M}}.

Equivalently, the problem can be converted into Problem 6 and Problem 7 with
the additional constraint Fk ∈ K, k ∈ {0, 1, . . . , N − 1}. The problem is a non-convex
structured state-feedback design problem. When Fk ∈ K, k ∈ {0, 1, . . . , N−1} is given,
then its exact cost can be evaluated using a convex optimization as follows.

Proposition 2. Let Fk ∈ K, k ∈ {0, 1, . . . , N − 1} be given. The cost corresponding
to the given structured static state-feedback gain is J∗(F0, . . . , FN−1) := Jp({Sk}

N−1
k=0 )

where Sk = Φ(Fk, Sk−1), k ∈ {1, . . . , N − 1} with S0 =

[

In
F0

]

Wf

[

In
F0

]T

.

The cost can be also evaluated using Problem 7, which is simply an SDP if Fk ∈
K, k ∈ {0, . . . , N − 1} are constants. Next, motivated by the LMI-based decentralized
control design method in [6], we suggest a simple convex relaxation of Problem 10.

Problem 11. Solve

(S∗
k , L

∗
k, G

∗
k)

N−1
k=0 := argminSk∈Sn+m,Lk∈Rn×m,Gk∈Rn×n fp({Sk}

N−1
k=0 )

subject to




Sk ∗
[

Gk Lk

]

Gk +GT
k −

[

AT

BT

]T

Sk−1

[

AT

BT

]

−W



 � 0, ∀k ∈ {1, 2, . . . , N − 1}

[

S0 ∗
[

G0 L0

]

G0 +GT
0 −Wf

]

� 0

Gk = diag(Gk,1, . . . , Gk,M ), Lk = diag(Lk,1, . . . , Lk,M )

Lk,i ∈ R
ni×mi , Gk, i ∈ R

ni×ni

Problem 11 is a convex optimization problem (SDP problem), whose solution can
be easily found using existing tools. Once its solution is found, then a suboptimal state
feedback gain can be recovered from the solution.

Proposition 3. Let (S∗
k, L

∗
k, G

∗
k)

N−1
k=0 be an optimal point of Problem 11, and let J̃∗

K be

the corresponding optimal objective function value. Then, J∗
K ≤ J̃∗

K is satisfied under
the decentralized control policy ui(k) = (L∗

k,i)
T (G∗

k,i)
−Txi(k) for all k ∈ {0, 1, . . . , N −

1} and i ∈ {1, 2, . . . ,M}.

Proof. Since W ≻ 0, it is easy to see that if the SDP is feasible, then Gk +GT
k ≻ 0,

implying that Gk is invertible. Pre- and post-multiplying both sides of the inequalities
in Problem 11 by





−I 0
0 −I

I G−1
k Lk





T

, k ∈ {0, 1, . . . , N − 1}
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and its transpose yield

Φ(Fk, Sk−1) �Sk k ∈ {1, 2, . . . , N − 1}
[

I

F0

]

Wf

[

I

F0

]T

�S0

with Fk = LT
kG

−T
k , k ∈ {0, 1, . . . , N − 1}. By using Theorem 1, one concludes that

J∗
K ≤ J̃∗

K is satisfied under the policy u(k) = F ∗
kx(k), k ∈ {0, . . . , N − 1}. Since F ∗

k

has a block diagonal structure according to the state and input partitions in (14), the
desired result can be obtained.

It can be readily proved that J∗
p ≤ J∗

K ≤ J∗(F ∗
0 , . . . , F

∗
N−1) ≤ J̃∗

K holds, where

(1) J∗
p is the optimal cost corresponding to the centralized full state-feedback

in Problem 6
(2) J∗

K is the true optimal cost obtained by solving Problem 10
(3) J∗(F ∗

0 , . . . , F
∗
N−1) is the exact cost evaluated using F ∗

0 , . . . , F
∗
N−1 obtained

from Problem 11
(4) J̃∗

K is the optimal objective value of Problem 11

Note that J̃∗
K ≥ J∗(F ∗

0 , . . . , F
∗
N−1) due to the inherent conservatism of the SDP

in Problem 11. A simple example is given in the sequel.

Example 1. Consider the interconnected system

x1(k + 1) = A11x1(k) +A12x2(k) +B1u1(k) + w1(k)

x2(k + 1) = A21x1(k) +A22x2(k) +B2u2(k) + w2(k)

where

A11 =

[

0.8220 −0.0898
−0.2389 0.9358

]

, A12 =

[

0.4860 −0.1820
0.1680 −0.3143

]

A21 =

[

0.1891 −0.3195
0.2067 −0.6610

]

, A22 =

[

−0.6404 1.4540
0.2067 −0.6610

]

B1 =

[

−0.3505
−1.9788

]

B2 =

[

−0.4901
−0.0515

]

Solving Problem 11 with Q = Qf = In, R = In,W = 0.01In,Wf = In, and N =

30 yields J̃∗
K = 19.6799 and J∗(F ∗

0 , . . . , F
∗
N−1) = 18.0598. On the other hand, the

optimal cost corresponding to the centralized LQG (full state-feedback) is J∗
p = 16.2610.

Therefore, one concludes J∗
p = 16.2610 ≤ J∗

K ≤ J∗(F ∗
0 , . . . , F

∗
N−1) = 18.0598. The time

histories of the state under the obtained decentralized control policy is shown in Figure 1
and the histogram of the cost of 3000 simulations is plotted in Figure 2.

7. Conclusion

In this paper, we have presented a new SDP formulation of the finite-horizon LQG
problem and its dual. The proposed primal problem efficiently decouples the system
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Figure 1. Time histories of the state under the obtained decentralized control policy.
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Figure 2. Cost histogram of 3000 simulations

matrices and the gain matrix. This fact allows us to develop new convex relaxations
of non-convex structured control design problems such as the decentralized control
problem. Besides, we are expected to gain new insights on the LQG problem through
this study. Numerical examples have demonstrated the effectiveness of the proposed
SDP formulations.
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