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DISSIPATIVE PROBABILITY VECTOR FIELDS AND GENERATION OF

EVOLUTION SEMIGROUPS IN WASSERSTEIN SPACES

GIULIA CAVAGNARI, GIUSEPPE SAVARÉ, AND GIACOMO ENRICO SODINI

Abstract. We introduce and investigate a notion of multivalued λ-dissipative probability vec-
tor field (MPVF) in the Wasserstein space P2(X) of Borel probability measures on a Hilbert
space X. Taking inspiration from the theory of dissipative operators in Hilbert spaces and of
Wasserstein gradient flows of geodesically convex functionals, we study local and global well
posedness of evolution equations driven by dissipative MPVFs. Our approach is based on a
measure-theoretic version of the Explicit Euler scheme, for which we prove novel convergence
results with optimal error estimates under an abstract CFL stability condition, which do not
rely on compactness arguments and also hold when X has infinite dimension.

We characterize the limit solutions by a suitable Evolution Variational Inequality (EVI),
inspired by the Bénilan notion of integral solutions to dissipative evolutions in Banach spaces.
Existence, uniqueness and stability of EVI solutions are then obtained under quite general
assumptions, leading to the generation of a semigroup of nonlinear contractions.
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1. Introduction

The aim of this paper is to study the local and global well posedness of evolution equations for
Borel probability measures driven by a suitable notion of probability vector fields in an Eulerian
framework.
For the sake of simplicity, let us consider here a finite dimensional Euclidean space X with scalar
product 〈·, ·〉 and norm | · | (our analysis however will not be confined to finite dimension and will
be carried out in a separable Hilbert space) and the space P(X) (resp. Pb(X)) of Borel probability
measures in X (resp. with bounded support).

A Cauchy-Lipschitz approach, via vector fields. A first notion of vector field can be
described by maps b : Pb(X) → C(X;X), typically taking values in some subset of continuous
vector fields in X (as the locally Lipschitz ones of Liploc(X;X)), and satisfying suitable growth-
continuity conditions. In this respect, the evolution driven by b can be described by a continuous
curve t 7→ µt ∈ Pb(X), t ∈ [0, T ], starting from an initial measure µ0 ∈ Pb(X) and satisfying the
continuity equation

∂tµt +∇ · (vtµt) = 0 in (0, T ) × X, (1.1a)

vt = b[µt] µt-a.e. for every t ∈ (0, T ), (1.1b)

in the distributional sense, i.e.
∫ T

0

∫

X

(

∂tζ + 〈∇ζ,vt〉
)

dµt dt = 0, vt = b[µt], for every ζ ∈ C1
c((0, T ) × X). (1.2)

If b is sufficiently smooth, solutions to (1.1a,b) can be obtained by many techniques. Recent
contributions in this direction are given by the papers [Pic19; Pic18; BF21; Cav+20], we also
mention [PR14; PR19] for the analysis in presence of sources. In particular, in [BF21] the
aim of the authors is to develop a suitable Cauchy-Lipschitz theory in Wasserstein spaces for
differential inclusions which generalizes (1.1b) to multivalued maps b : Pb(X) ⇒ Liploc(X;X) and
requires (1.1b), (1.2) to hold for a suitable measurable selection of b. As it occurs in the classical
finite-dimensional case, the differential-inclusion approach is suitable to describe the dynamics
of control systems, when the velocity vector field involved in the continuity equation depends
on a control parameter.

The Explicit Euler method. A natural approach, that is suitable for a great generalization, is
to approximate (1.1a,b) by a measure-theoretic version of the Explicit Euler scheme. Choosing a
step size τ > 0 and a partition {0, τ, · · · , nτ, · · · , Nτ} of the interval [0, T ], N = N(T, τ) = ⌈T/τ⌉,
we construct a sequence Mn

τ ∈ Pb(X), n = 0, · · · , N, by the algorithm

M0
τ := µ0, Mn+1

τ := (iX + τbnτ )♯M
n
τ , bnτ ∈ b[Mn

τ ], (1.3)

where iX(x) := x is the identity map and r♯µ denotes the push forward of µ ∈ P(X) induced by
a Borel map r : X → X and defined by r♯µ(B) := µ(r−1(B)) for every Borel set B ⊂ X. If M̄τ
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is the piecewise constant interpolation of the discrete values (Mn
τ )

N
n=0, one can then study the

convergence of M̄τ as τ ↓ 0, hoping to obtain a solution to (1.1a,b) in the limit.
It is then natural to investigate a few relevant questions:

〈E.1〉 what is the most general framework where the Explicit Euler scheme can be implemented,
〈E.2〉 what are the structural conditions ensuring its convergence,
〈E.3〉 how to characterize the limit solutions and their properties.

Concerning the first question 〈E.1〉, one immediately realizes that each iteration of (1.3) actually
depends on the probability distribution on the tangent bundle TX (which we may identify with
X× X, where the second component plays the role of velocity)

Φn
τ := (iX, b

n
τ )♯M

n
τ ,∈ P(TX)

whose first marginal isMn
τ . If we denote by x, v : TX → X the projections x(x, v) = x, v(x, v) = v,

and by expτ : TX → X the exponential map in the flat space X expτ (x, v) := x+ τv, we recover
Mn+1

τ by a single step of “free motion” driven by Φn
τ and given by

Mn+1
τ = expτ♯ Φ

n
τ = (x+ τv)♯Φ

n
τ .

This operation does not depend on the fact that Φn
τ is concentrated on the graph of a map (in

this case bnτ ∈ b[Mn
τ ]): one can more generally assign a multivalued map F : Pb(X) ⇒ Pb(TX)

such that for every µ ∈ Pb(X) every measure Φ ∈ F[µ] ∈ Pb(TX) has first marginal µ = x♯Φ. We
call F a multivalued probability vector field (MPVF in the following), which is in good analogy
with a Riemannian interpretation of Pb(TX). The disintegration Φx ∈ Pb(X) of Φ with respect to
µ provides a (unique up to µ-negligible sets) Borel family of probability measures on the space
of velocities such that Φ =

∫

X
Φx dµ(x). Φ is induced by a vector field b only if Φx = δb(x) is a

Dirac mass for µ-a.e.x. (1.3) now reads as

M0
τ := µ0, Mn+1

τ := expτ♯ Φ
n
τ = (x+ τv)♯Φ

n
τ , Φn

τ ∈ F[Mn
τ ]. (1.4)

Besides greater generality, this point of view has other advantages: working with the joint
distribution F[µ] instead of the disintegrated vector field b[µ] potentially allows for the weakening
of the continuity assumption with respect to µ. This relaxation corresponds to the introduction
of Young’s measures to study the limit behaviour of weakly converging maps [CRV04]. Adopting
this viewpoint, the classical discontinuous example in R (see [Fil88]), where b(x) = −sign(x),
admits a natural closed realization as MPVF given by

Φ ∈ F[µ] ⇔ Φx =

{

δb(x) if x 6= 0

(1− θ)δ−1 + θδ1 if x = 0
for some θ ∈ [0, 1].

In particular, F[δ0] =
{

δ0 ⊗ ((1− θ)δ−1 + θδ1) | θ ∈ [0, 1]
}

(see also [Cam+21, Example 6.2]).
The study of measure-driven differential equations/inclusions is not new in the literature [DR91;
SV96]. However, these studies, devoted to the description of impulsive control systems [Bre96]
and mainly motivated by applications in rational mechanics and engineering, have been used to
describe evolutions in Rd rather than in the space of measures.
A second advantage in considering a MPVF is the consistency with the theory of Wasserstein
gradient flows generated by geodesically convex functionals introduced in [AGS08] (Wasserstein
subdifferentials are particular examples of MPVFs) and with the multivalued version of the
notion of probability vector fields introduced in [Pic19; Pic18], whose originating idea was indeed
to describe the uncertainty affecting not only the state of the system, but possibly also the
distribution of the vector field itself.
A third advantage is to allow for a more intrinsic geometric view, inspired by Otto’s non-smooth
Riemannian interpretation of the Wasserstein space: probability vector fields provide an ap-
propriate description of infinitesimal deformations of probability measures, which should be
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measured by, e.g., the L2-Kantorovich-Rubinstein-Wasserstein distance

W 2
2 (µ, ν) := min

{

∫

X×X

|x− y|2 dγ(x, y) : γ ∈ Γ(µ, ν)
}

, (1.5)

where Γ(µ, ν) is the set of couplings with marginals µ and ν respectively. It is well known
[AGS08; Vil09; San15] that if µ, ν belong to the space P2(X) of Borel probability measures with
finite second moment

m2
2(µ) :=

∫

X

|x|2 dµ(x) <∞,

then the minimum in (1.5) is attained in a compact convex set Γo(µ, ν) and (P2(X),W2) is a
complete and separable metric space. Adopting this viewpoint and proceeding by analogy with
the theory of dissipative operators in Hilbert spaces, a natural class of MPVFs for evolutionary
problems should at least satisfy a λ-dissipativity condition, λ ∈ R, as

∀Φ ∈ F[µ], Ψ ∈ F[ν], µ 6= ν : W2(exp
τ
♯ Φ, exp

τ
♯ Ψ) ≤ (1+λτ)W2(µ, ν)+ o(τ) as τ ↓ 0. (1.6)

Metric dissipativity. Condition (1.6) in the simple case λ = 0 has a clear interpretation in
terms of one step of the Explicit Euler method: it is an asymptotic contraction as the time step
goes to 0. By using the properties of the Wasserstein distance, we will first compute the right
derivative of the (squared) Wasserstein distance along the deformation expτ

[Φ,Ψ]r :=
1

2

d

dτ
W 2

2 (exp
τ
♯ Φ, exp

τ
♯ Ψ)

∣

∣

∣

τ=0+

= min
{

∫

TX×TX

〈w − v, y − x〉dΘ(x, v; y,w) : Θ ∈ Γ(Φ,Ψ), (x, y)♯Θ ∈ Γo(µ, ν)
}

(1.7)

and we will show that (1.6) admits the equivalent characterization

[Φ,Ψ]r ≤ λW 2
2 (µ, ν) for every Φ ∈ F[µ], Ψ ∈ F[ν]. (1.8)

If we interpret the left hand side of (1.8) as a sort of Wasserstein pseudo-scalar product of Φ
and Ψ along the direction of an optimal coupling between µ and ν, (1.8) is in perfect analogy
with the canonical definition of λ-dissipativity (also called one-sided Lipschitz condition) for a
multivalued map F : X ⇒ X:

〈w − v, y − x〉 ≤ λ|x− y|2 for every v ∈ F [x], w ∈ F [y]. (1.9)

It turns out that the (opposite of the) Wasserstein subdifferential ∂F [AGS08, Section 10.3] of a
geodesically (−λ)-convex functional F : P2(X) → (−∞,+∞] is a MPVF and satisfies a condition
equivalent to (1.6) and (1.8). We also notice that (1.8) reduces to (1.9) in the particular case
when Φ = δ(x,v),Ψ = δ(y,w) are Dirac masses in TX.

Conditional convergence of the Explicit Euler method. Differently from the Implicit
Euler method, however, even if a MPVF satisfies (1.8), every step of the Explicit Euler scheme
(1.4) affects the distance by a further quadratic correction according to the formula

W 2
2 (exp

τ
♯ Φ, exp

τ
♯ Ψ) ≤W 2

2 (µ, ν) + 2τ [Φ,Ψ]r + τ2
(

|Φ|22 + |Ψ|22
)

, |Φ|22 :=
∫

TX

|v|2 dΦ(x, v),

which depends on the order of magnitude of Φ and Ψ, and thus of F, at µ and ν.
Our first main result (Theorems 7.5,7.7), which provides an answer to question 〈E.2〉, states that
if F is a λ-dissipative MPVF according to (1.8) then every family of discrete solutions (M̄τ )τ>0

of (1.4) in an interval [0, T ] satisfying the abstract CFL condition

|Φn
τ |2 ≤ L if 0 ≤ n ≤ N = N(T, τ), (1.10)
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is uniformly converging to a limit curve µ ∈ Lip([0, T ];P2(X)) starting from µ0, with a uniform
error estimate

W2(µt, M̄τ (t)) ≤ CL
√

τ(t+ τ)eλ+t for every t ∈ [0, T ] (1.11)

and a universal constant C ≤ 14. Apart from the precise value of C, the estimate (1.11)
is sharp [Rul96] and reproduces in the measure-theoretic framework the celebrated Crandall-
Liggett [CL71] estimate for the generation of dissipative semigroups in Banach spaces. We
derive it by adapting to the metric-Wasserstein setting the relaxation and doubling variable
techniques of [NS06], strongly inspired by the ideas of Kružkov [Kru70] and Crandall-Evans
[CE75].
This crucial result does not require any bound on the support of the measures neither local
compactness of the underlying space X, so that we will prove it in a general Hilbert space,
possibly with infinite dimension. Moreover, if µ, ν are two limit solutions starting from µ0, ν0
we show that

W2(µt, νt) ≤W2(µ0, ν0)e
λt t ∈ [0, T ],

as it happens in the case of gradient flows of (−λ)-convex functions. Once one has these building
blocks, it is not too difficult to construct a local and global existence theory, mimicking the
standard arguments for ODEs.

Metric characterization of the limit solution. As we stated in question 〈E.3〉, a further
important point is to get an effective characterization of the solution µ obtained as limit of the
approximation scheme.
As a first property, considered in [Pic19; Pic18] in the case of a single-valued PVF, one could hope
that µ satisfies the continuity equation (1.1a) coupled with the barycentric condition replacing
(1.1b)

vt(x) =

∫

TX

v dΦt(x, v), Φt = F[µt]. (1.12)

This is in fact true, as shown in [Pic19; Pic18] in the finite dimensional case, if F is single valued
and satisfies a stronger Lipschitz dependence w.r.t. µ (see (H1) in Appendix A).
In the framework of dissipative MPVFs, we will replace (1.12) with its relaxation à la Filippov
(see e.g. [Vin10, Chapter 2] and [AF09, Chapter 10])

vt(x) =

∫

TX

v dΦt(x, v) for some Φt ∈ co(cl(F)[µt]),

where cl(F) is the sequential closure of the graph of F in the strong-weak topology of Psw
2 (TX)

(see [NS21] and Section 2.2 for more details; in fact, a more restrictive “directional” closure could
be considered, see (6.34)) and co(cl(F)[µ]) denotes the closed convex hull of the given section
cl(F)[µ].
However, even in the case of a single valued map, (1.12) is not enough to characterize the limit
solution, as it has been shown by an interesting example in [Pic19; Cam+21] (see also the
gradient flow of Example 6.34).
Here we follow the metric viewpoint adopted in [AGS08] for gradient flows and we will charac-
terize the limit solutions by a suitable Evolution Variational Inequality satisfied by the squared
distance function from given test measures. This approach is also strongly influenced by the
Bénilan notion of integral solutions to dissipative evolutions in Banach spaces [Bén72]. The
main idea is that any differentiable solution to ẋ(t) ∈ F [x(t)] driven by a λ-dissipative operator
in a Hilbert space as in (1.9) satisfies

1

2

d

dt
|x(t)− y|2 = 〈ẋ(t), x(t) − y〉 = 〈ẋ(t)− w, x(t) − y〉+ 〈w, x(t) − y〉

≤ λ|x(t)− y|2 − 〈w, y − x(t)〉 for every w ∈ F[y].



6 GIULIA CAVAGNARI, GIUSEPPE SAVARÉ, AND GIACOMO ENRICO SODINI

In the framework of P2(X), we replace w ∈ F [y] with Ψ ∈ F[ν] and the scalar product 〈w, y−x(t)〉
with

[Ψ, µt]r := min
{

∫

TX×X

〈w, y − x〉dΘ(y,w;x) : Θ ∈ Γ(Ψ, µt), (y, x)♯Θ ∈ Γo(ν, µt)
}

,

as in (1.7). According to this formal heuristic, we obtain the λ-EVI characterization of a limit
curve µ as

1

2

d

dt
W 2

2 (µt, ν) ≤ λW 2
2 (µt, ν)− [Ψ, µt]r for every Ψ ∈ F[ν]. (λ-EVI)

As for Bénilan integral solutions, we can considerably relax the apriori smoothness assumptions
on µ, just imposing that µ is continuous and (λ-EVI) holds in the sense of distributions in (0, T ).
In this way, we obtain a robust characterization, which is stable under uniform convergence and
also allows for solutions taking values in the closure of the domain of F. This is particularly
important when F involves drift terms with superlinear growth (see Example 6.32).
The crucial point of this approach relies on a general error estimate, which extends the validity
of (1.11) to a general λ-EVI solution µ and therefore guarantees its uniqueness, whenever the
Explicit Euler method is solvable, at least locally in time.
Combining local in time existence with suitable global confinement conditions (see e.g. Theorem
6.31) we can eventually obtain a robust theory for the generation of a λ-flow, i.e. a semigroup
(St)t≥0 in a suitable subset D of P2(X) such that St[µ0] is the unique λ-EVI solution starting
from µ0 and for every µ0, µ1 ∈ D

W2(St[µ0],St[µ1]) ≤W2(µ0, µ1)e
λt, t ≥ 0,

as in the case of Wasserstein gradient flows of geodesically (−λ)-convex functionals.

Explicit vs Implicit Euler method. In the framework of contraction semigroups generated
by λ-dissipative operators in Hilbert or Banach spaces, a crucial role is played by the Implicit
Euler scheme, which has the advantage to be unconditionally stable, and thus avoids any apriori
restriction on the local bound of the operator, as we did in (1.10). In Hilbert spaces, it is well
known that the solvability of the Implicit Euler scheme is equivalent to the maximality of the
graph of the operator.
In the case of a Wasserstein gradient flow of a geodesically convex F : P2(X) → (−∞,+∞],
every step of the Implicit Euler method (also called JKO/Minimizing Movement scheme [JKO98;
AGS08]) can be solved by a variational approach: Mn+1

τ has to be selected among the solutions
of

min
M∈P2(X)

1

2τ
W 2

2 (M,Mn
τ ) + F(M). (1.13)

Notice, however, that in this case the MPVF ∂F is defined implicitely in terms of F and each
step of (1.13) provides a suitable variational selection in ∂F, leading in the limit to the minimal
selection principle.
In the case of more general dissipative evolutions, it is not at all clear how to solve the Implicit
Euler scheme, in particular when F[µ] is not concentrated on a map, and to characterize the
maximal extension of F (in the Hilbertian case the maximal extension of a dissipative operator F
is explicitly computable at least when the domain of F has not empty interior, see the Theorems
of Robert and Bénilan in [Qi83]). Indeed, the analogy with the Hilbertian theory does not extend
to some properties which play a crucial role. In particular, a dissipative MPVF F in P2(X) is
not locally bounded in the interior of its domain (see Example 5.2) and maximality may fail also
for single-valued continuous PVFs (see Example 5.3). Even more remarkably, in the Hilbertian
case a crucial equivalent characterization of dissipativity reads as

v ∈ F [x], w ∈ F [y] ⇒ |x− y| ≤ |(x− τv)− (y − τw)|
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which implies that the resolvent operators (I−τF )−1 (and every single step of the Implicit Euler
scheme) are contractions in X. On the contrary, if we assume the forward characterizations (1.6)
and (1.8) of dissipativity in P2(X) (with λ = 0) we cannot conclude in general that

Φ ∈ F[µ], Ψ ∈ F[ν] ⇒ W2(µ, ν) ≤W2(exp
−τ
♯ Φ, exp−τ

♯ Ψ), (1.14)

since the squared distance map f(t) := W 2
2 (exp

t
♯Φ, exp

t
♯Ψ), t ∈ R, is not convex in general (see

e.g. [AGS08, Example 9.1.5]) and the fact that its right derivative at t = 0 (corresponding to
[Φ,Ψ]r) is ≤ 0 according to (1.8) does not imply that f(0) ≤ f(t) for t < 0 (corresponding to
(1.14) for t = −τ).
For these reasons, we decided to approach the investigation of dissipative evolutions in P2(X) by
the Explicit Euler method, and we defer the study of the implicit one to a forthcoming paper.

Plan of the paper. As we already mentioned, our theory works in a general separable Hilbert
space X: we collect some preliminary material concerning the Wasserstein distance in Hilbert
spaces and the properties of strong-weak topology for P2(TX) in Section 2.
In Section 3, we will study the semi-concavity properties of W2 along general deformations
induced by the exponential map expτ and we introduce and study the pairings [·, ·]r, [·, ·]l. We
will apply such tools to derive the precise expressions of the left and right derivatives of W2

along absolutely continuous curves in P2(X) in Section 3.2.
In Section 4, we will introduce and study the notion of λ-dissipative MPVF, in particular
its behaviour along geodesics (Section 4.2) and its extension properties (Section 4.3). A few
examples are collected in Section 5.
The last two sections contain the core of our results. Section 6 is devoted to the notion of λ-EVI
solutions and to their properties: local uniqueness, stability and regularity in Section 6.3, global
existence in Section 6.4 and barycentric characterizations in Section 6.5. Section 7 contains
the main estimates for the Explicit Euler scheme: the Cauchy estimates between two discrete
solutions corresponding to different step sizes in Section 7.2 and the uniform error estimates
between a discrete and a λ-EVI solution in Section 7.3.

Acknowledgments. G.S. and G.E.S. gratefully acknowledge the support of the Institute of
Advanced Study of the Technical University of Munich. The authors thank the Department
of Mathematics of the University of Pavia where this project was partially carried out. G.S.
also thanks IMATI-CNR, Pavia. G.C. and G.S. have been supported by the MIUR-PRIN 2017
project Gradient flows, Optimal Transport and Metric Measure Structures. G.C. also acknowl-
edges the partial support of the funds FARB 2016 Politecnico di Milano Prog. TDG6ATEN04.

2. Preliminaries

In this section, we introduce the main concepts and results of Optimal Transport theory that
will be extensively used in the rest of the paper. We start by listing the adopted notation.

bΦ the barycenter of Φ ∈ P(TX) as in Definition 3.1;
BX(x, r) the open ball with radius r > 0 centered at x ∈ X ;
C(X ;Y ) the set of continuous functions from X to Y ;
Cb(X) the set of bounded continuous real valued functions defined in X ;
Cc(X) the set of continuous real valued functions with compact support;
Cyl(X) the space of cylindrical functions on X, see Definition 2.9;
cl(F), co(F)[µ] the sequential closure and convexification of F, see Section 4.3;

co(F)[µ], F̂ sequential closure of convexification and extension of F, see Section 4.3;
d

dt

+
ζ, d

dt+
ζ the right upper/lower Dini derivatives of ζ, see (6.3);

D(F) the proper domain of a set-valued function as in Definition 4.1
f♯ν the push-forward of ν ∈ P(X) through the map f : X → Y ;
Γ(µ, ν) the set of admissible couplings between µ, ν, see (2.1);
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Γo(µ, ν) the set of optimal couplings between µ, ν, see Definition 2.5;
Γi
o(µ0, µ1|F), i = 0, 1 the set of optimal couplings conditioned to F, see Definition 4.8;

I an interval of R;
iX(·) the identity function on a set X ;
I(µ|F) the set of time instants t s.t. xt♯µ belongs to D(F), see Definition 4.8;

Λ,Λo the sets of couplings as in Definition 3.8 and Theorem 3.9;
m2(ν) the 2-nd moment of ν ∈ P(X) as in Definition 2.5;
|Φ|2 the 2-nd moment of Φ ∈ P(TX) as in (3.2);
|F|2(µ) the 2-nd moment of F at µ as in (6.17);
|µ̇|(t) the metric derivative of a locally absolutely continuous curve µ;
P(X) the set of Borel probability measures on the topological space X ;
Pb(X) the set of Borel probability measures with bounded support;
P2(X) the subset of measures in P(X) with finite quadratic moments;
Psw
2 (X× Y) the space P2(X× Y) endowed with a weaker topology as in Definition 2.14;

P(TX|µ) the subset of P2(TX) with fixed first marginal µ as in (3.3);
[·, ·]r, [·, ·]l the pseudo scalar products as in Definition 3.5;
[Φ,ϑ]r,t, [Φ,ϑ]l,t the duality pairings as in Definition 3.17;
[F,µ]r,t, [F,µ]l,t the duality pairings as in Definition 4.9;
[F,µ]0+, [F,µ]1− the limiting duality pairings as in Definition 4.11;
supp(ν) the support of ν ∈ P(X);
Tanµ P2(X) the tangent space defined in Theorem 2.10;
W2(µ, ν) the L2-Wasserstein distance between µ and ν, see Definition 2.5;
X a separable Hilbert space;
TX the tangent bundle to X, usually endowed with the strong-weak topology;
x, v, expt the projection and exponential maps defined in (3.1);
xt the evaluation map defined in (3.4).

In the present paper we will mostly deal with Borel probability measures defined in (subsets of)
some separable Hilbert space endowed with the strong or a weaker topology. The convenient
setting is therefore provided by Polish/Lusin and completely regular topological spaces.
Recall that a topological space X is Polish (resp. Lusin) if its topology is induced by a complete
and separable metric (resp. is coarser than a Polish topology). We will denote by P(X) the set
of Borel probability measures on X. If X is Lusin, every measure µ ∈ P(X) is also a Radon
measure, i.e. it satisfies

∀B ⊂ X Borel, ∀ ε > 0 ∃K ⊂ B compact s.t. µ(B \K) < ε.

X is completely regular if it is Hausdorff and for every closed set C and point x ∈ X \ C there
exists a continuous function f : X → [0, 1] s.t. f(x) = 0 and f(C) = {1}.
Given X and Y Lusin spaces, µ ∈ P(X) and a Borel function f : X → Y , there is a canonical
way to transfer the measure µ from X to Y through f . This is called the push forward of µ
through f , denoted by f♯µ and defined by (f♯µ)(B) := µ(f−1(B)) for every Borel set B in Y , or
equivalently

∫

Y
ϕd(f♯µ) =

∫

X
ϕ ◦ f dµ

for every ϕ bounded (or nonnegative) real valued Borel function on Y . A particular case occurs
if X = X1 ×X2, Y = Xi and f = πi is the projection on the i-th component, i = 1, 2. In this
case, f is usually denoted with πi or πXi , and πXi

♯ µ is called the i-th marginal of µ.

This notation is particularly useful when dealing with transport plans: given X1 and X2 com-
pletely regular spaces and µ ∈ P(X1), ν ∈ P(X2), we define

Γ(µ, ν) :=
{

γ ∈ P(X1 ×X2) | π1♯γ = µ , π2♯γ = ν
}

, (2.1)

i.e. the set of probability measures on the product space having µ and ν as marginals.
On P(X) we consider the so called narrow topology which is the coarsest topology on P(X) s.t.
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the maps µ 7→
∫

X ϕdµ are continuous for every ϕ ∈ Cb(X), the space of real valued and bounded
continuous functions on X. In this way a net (µα)α∈A ⊂ P(X) indexed by a directed set A is
said to converge narrowly to µ ∈ P(X), and we write µα → µ in P(X), if

lim
α

∫

X
ϕdµα =

∫

X
ϕdµ ∀ϕ ∈ Cb(X).

We recall the well known Prokhorov’s theorem in the context of completely regular topological
spaces (see [Sch73, Appendix]).

Theorem 2.1 (Prokhorov). Let X be a completely regular topological space and let F ⊂ P(X)
be a tight subset i.e.

for every ε > 0 there exists Kε ⊂ X compact s.t. µ(X \Kε) < ε ∀µ ∈ F.

Then F is relatively compact in P(X) w.r.t. the narrow topology.

It is then relevant to know when a given F ⊂ P(X) is tight. If X is a Lusin completely regular
topological space, then the set F = {µ} ⊂ P(X) is tight. Another trivial criterion for tightness
is the following: if F ⊂ P(X1 ×X2) is s.t. Fi := {πi♯γ | γ ∈ F} ⊂ P(Xi) are tight for i = 1, 2,

then also F is tight. We also recall the following useful proposition (see [AGS08, Remark 5.1.5]).

Proposition 2.2. Let X be a Lusin completely regular topological space and let F ⊂ P(X).
Then F is tight if and only if there exists ϕ : X → [0,+∞] with compact sublevels s.t.

sup
µ∈F

∫

X
ϕdµ < +∞.

We recall the so-called disintegration theorem (see e.g. [AGS08, Theorem 5.3.1]).

Theorem 2.3. Let X,X be Lusin completely regular topological spaces, µ ∈ P(X) and r : X → X
a Borel map. Denote with µ = r♯µ ∈ P(X). Then there exists a µ-a.e. uniquely determined
Borel family of probability measures {µx}x∈X ⊂ P(X) such that µx(X \ r−1(x)) = 0 for µ-a.e.
x ∈ X, and

∫

X

ϕ(x) dµ(x) =

∫

X

(

∫

r−1(x)
ϕ(x) dµx(x)

)

dµ(x)

for every bounded Borel map ϕ : X → R.

Remark 2.4. When X = X1 × X2 and r = π1, we can canonically identify the disintegration
{µx}x∈X1

⊂ P(X) of µ ∈ P(X1 × X2) w.r.t. µ = π1♯µ with a family of probability measures

{µx1
}x1∈X1

⊂ P(X2). We write µ =

∫

X1

µx1
dµ(x1).

2.1. Wasserstein distance in Hilbert spaces

Let X be a separable (possibly infinite dimensional) Hilbert space. We will denote by Xs

(respt. Xw) the Hilbert space endowed with its strong (resp. weak) topology. Notice that Xw is
a Lusin completely regular space. Xs and Xw share the same class of Borel sets and therefore
of Borel probability measures, which we will simply denote by P(X), using P(Xs) and P(Xw)
only when we will refer to the correspondent topology. Finally, if X has finite dimension then
the two topologies coincide.
We now list some properties of Wasserstein spaces and we refer to [AGS08, §7] for a complete
account of this matter.

Definition 2.5. Given µ ∈ P(X) we define

m2
2(µ) :=

∫

X
|x|2 dµ(x), P2(X) := {µ ∈ P(X) | m2(µ) < +∞}.
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The L2-Wasserstein distance between µ, µ′ ∈ P2(X) is defined as

W 2
2 (µ, µ

′) := inf

{
∫

X×X
|x− y|2 dγ(x, y) | γ ∈ Γ(µ, µ′)

}

. (2.2)

The set of elements of Γ(µ, µ′) realizing the infimum in (2.2) is denoted with Γo(µ, µ
′). We say

that a measure γ ∈ P2(X ×X) is optimal if γ ∈ Γo(π
1
♯γ, π

2
♯γ).

We will denote by B(µ, ̺) the open ball centered at µ with radius ̺ in P2(X). The metric space
(P2(X),W2) enjoys many interesting properties: here we only recall that it is a complete and

separable metric space and that W2-convergence (sometimes denoted with
W2−→) is stronger than

the narrow convergence. In particular, given (µn)n∈N ⊂ P2(X) and µ ∈ P2(X), we have [AGS08,
Remark 7.1.11] that

µn
W2→ µ, as n→ +∞ ⇐⇒

{

µn → µ in P(Xs),

m2(µn) → m2(µ),
as n→ +∞. (2.3)

Finally, we recall that sequences converging in (P2(X),W2) are tight. More precisely we have
the following characterization of compactness in P2(X).

Lemma 2.6 (Relative compactness in P2(X)). A subset K ⊂ P2(X) is relatively compact
w.r.t. the W2-topology if and only if

(1) K is tight w.r.t. Xs,
(2) K is uniformly 2-integrable, i.e.

lim
k→∞

sup
µ∈K

∫

|x|≥k
|x|2 dµ = 0. (2.4)

Proof. Tightness is clearly a necessary condition; concerning (2.4) let us notice that the maps
Fk : P2(X) → [0,∞), Fk(µ) :=

∫

|x|≥k |x|2 dµ are upper semicontinuous, are decreasing w.r.t. k,

and converge pointwise to 0 for every µ ∈ P2(X). Therefore, if K is relatively compact, they
converge uniformly to 0 thanks to Dini’s Theorem.
In order to prove that (1) and (2) are also sufficient for relative compactness, it is sufficient
to check that every sequence (µn)n∈N in K has a convergent subsequence. Applying Prokhorov
Theorem 2.1 we can find µ ∈ P(X) and a convergent subsequence k 7→ µn(k) such that µn(k) → µ
in P(Xs). Sincem2(µn) is uniformly bounded, then µ ∈ P2(X). Applying [AGS08, Lemma 5.1.7],
we also get limk→∞m2(µn(k)) = m2(µ) so that limk→∞W2(µn(k), µ) = 0 by (2.3). �

Definition 2.7 (Geodesics). A curve (µt)t∈[0,1] ⊂ P2(X) is said to be a (constant speed) geodesic
if for all 0 ≤ s ≤ t ≤ 1 we have

W2(µs, µt) = (t− s)W2(µ0, µ1).

We also say that (µt)t∈[0,1] is a geodesic from µ0 to µ1. We say that A ⊂ P2(X) is a geodesically
convex set if for any pair µ0, µ1 ∈ A there exists a geodesic (µt)t∈[0,1] from µ0 to µ1 such that
(µt)t∈[0,1] ⊂ A.

We recall also the following useful properties of geodesics (see [AGS08, Theorem 7.2.1, Theorem
7.2.2]).

Theorem 2.8 (Properties of geodesics). Let µ0, µ1 ∈ P2(X) and µ ∈ Γo(µ0, µ1). Then (µt)t∈[0,1]
defined by

µt := (xt)♯µ, t ∈ [0, 1], (2.5)

is a (constant speed) geodesic from µ0 to µ1, where xt : X2 → X is given by, xt(x0, x1) :=
(1 − t)x0 + tx1. Conversely, any (constant speed) geodesic (µt)t∈[0,1] from µ0 to µ1 admits the
representation (2.5) for a suitable plan µ ∈ Γo(µ0, µ1).
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Finally, if (µt)t∈[0,1] is a geodesic connecting µ0 to µ1, then for every t ∈ (0, 1) there exists a
unique optimal plan between µ0 and µt (resp. between µt and µ1) and it is concentrated on a
map.

We define moreover the analogous of C∞
c (Rd) when we have X in place of Rd.

Definition 2.9 (Cyl(X)). We denote by Πd(X) the space of linear maps π : X → Rd of the form
π(x) = (〈x, e1〉, · · · , 〈x, ed〉) for an orthonormal set {e1, · · · , ed} of X. A function ϕ : X → R

belongs to the space of cylindrical functions on X, Cyl(X), if it is of the form

ϕ = ψ ◦ π
where π ∈ Πd(X) and ψ ∈ C∞

c (Rd).

We recall the following result (see [AGS08, Theorem 8.3.1, Proposition 8.4.5 and Proposition
8.4.6]) characterizing locally absolutely continuous curves in P2(X) defined in a (bounded or
unbounded) open interval I ⊂ R. We use the equivalent notation µ(t) ≡ µt for the evaluation
at time t ∈ I of a map µ : I → P2(X).

Theorem 2.10 (Wasserstein velocity field). Let µ : I → P2(X) be a locally absolutely continuous
curve defined in an open interval I ⊂ R. There exists a Borel vector field v : I×X → X and a
set A(µ) ⊂ I with L(I \A(µ)) = 0 such that for every t ∈ A(µ)

vt ∈ Tanµt P2(X) := {∇ϕ | ϕ ∈ Cyl(X)}L
2
µt

(X;X)
,

∫

X
|vt|2 dµt = |µ̇t|2 = lim

h→0

W 2
2 (µt+h, µt)

h2
,

and the continuity equation
∂tµt +∇ · (vtµt) = 0

holds in the sense of distributions in I×X. Moreover, vt is uniquely determined in L2
µt
(X;X)

for t ∈ A(µ) and

lim
h→0

W2((iX + hvt)♯µt, µt+h)

|h| = 0 for every t ∈ A(µ). (2.6)

We conclude this section with a useful property concerning the upper derivative of the Wasser-
stein distance, which in fact holds in every metric space.

Lemma 2.11. Let µ : I → P2(X), ν ∈ P2(X), t ∈ I, σ ∈ Γo(µt, ν), and consider the constant
speed geodesic (νt,s)s∈[0,1] defined by νt,s := (xs)♯σ for every s ∈ [0, 1]. The upper right and left

Dini derivatives b± : (0, 1] → R defined by

b+(s) :=
1

2s
lim sup

h↓0

W 2
2 (µt+h, νt,s)−W 2

2 (µt, νt,s)

h
,

b−(s) :=
1

2s
lim sup

h↓0

W 2
2 (µt, νt,s)−W 2

2 (µt−h, νt,s)

h

are respectively decreasing and increasing in (0, 1].

Proof. Take 0 ≤ s′ < s ≤ 1. Since (νt,s)s∈[0,1] is a constant speed geodesic from µt to ν, we have

W2(µt, νt,s) =W2(µt, νt,s′) +W2(νt,s′ , νt,s),

then, by triangular inequality

W2(µt+h, νt,s)−W2(µt, νt,s) ≤W2(µt+h, νt,s′) +W2(νt,s′ , νt,s)−W2(µt, νt,s)

=W2(µt+h, νt,s′)−W2(µt, νt,s′).



12 GIULIA CAVAGNARI, GIUSEPPE SAVARÉ, AND GIACOMO ENRICO SODINI

Dividing by h > 0 and passing to the limit as h ↓ 0 we obtain that the function a : [0, 1] → R

defined by

a+(s) := lim sup
h↓0

W2(µt+h, νt,s)−W2(µt, νt,s)

h

is decreasing. It is then sufficient to observe that for s > 0

b+(s) = a+(s)
W2(µt, νt,s)

s
= a+(s)W2(µt, ν).

The monotonicity property of b− follows by the same argument. �

2.2. A strong-weak topology on measures in product spaces

Let us consider the case when X = X×Y where X,Y are separable Hilbert spaces. X is naturally
endowed with the product Hilbert norm and P2(X) with the corresponding topology induced
by the L2-Wasserstein distance. However, it will be extremely useful to endow P2(X) with a
weaker topology which is related to the strong-weak topology on X, i.e. the product topology
of Xs × Yw. We follow the approach of [NS21], to which we refer for the proofs of the results
presented in this section.
In order to define the topology, we consider the space Csw

2 (X×Y) of test functions ζ : X×Y → R

such that

ζ is sequentially continuous in Xs × Yw,

∀ ε > 0 ∃Aε ≥ 0 : |ζ(x, y)| ≤ Aε(1 + |x|2X) + ε|y|2Y for every (x, y) ∈ X× Y.

Notice in particular that functions in Csw
2 (X × Y) have quadratic growth. We endow Csw

2 (X)
with the norm

‖ζ‖Csw
2

(X) := sup
(x,y)∈X

|ζ(x, y)|
1 + |x|2

X
+ |y|2

Y

.

Remark 2.12. When Y is finite dimensional, (2.2) is equivalent to the continuity of ζ.

Lemma 2.13. (Csw
2 (X× Y), ‖ · ‖Csw

2
(X×Y)) is a Banach space.

Definition 2.14 (Topology of Psw
2 (X×Y), [NS21]). We denote by Psw

2 (X×Y) the space P2(X×Y)
endowed with the coarsest topology which makes the following functions continuous

µ 7→
∫

ζ(x, y) dµ(x, y), ζ ∈ Csw
2 (X× Y).

It is obvious that the topology of P2(X × Y) is finer than the topology of Psw
2 (X × Y) and the

latter is finer than the topology of P(Xs × Yw). It is worth noticing that

any bounded bilinear form B : X× Y → R belongs to Csw
2 (X× Y),

so that for every net (µα)α∈A ⊂ P(X× Y) indexed by a directed set A, we have

lim
α∈A

µα = µ in Psw
2 (X× Y) ⇒ lim

α∈A

∫

B dµα =

∫

B dµ. (2.7)

The following proposition justifies the interest in the Psw
2 (X× Y)-topology.

Proposition 2.15.

(1) If (µα)α∈A ⊂ P2(X×Y) is a net indexed by the directed set A and µ ∈ P2(X×Y) satisfies
(a) µα → µ in P(Xs × Yw),

(b) lim
α∈A

∫

|x|2X dµα(x, y) =

∫

|x|2X dµ(x, y),

(c) sup
α∈A

∫

|y|2Y dµα(x, y) <∞,
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then µα → µ in Psw
2 (X × Y). The converse property holds for sequences: if A = N and

µn → µ in Psw
2 (X× Y) as n→ ∞ then properties (a), (b), (c) hold.

(2) For every compact set K ⊂ P2(X
s) and every constant c <∞ the sets

Kc :=
{

µ ∈ P2(X × Y) : πX♯ µ ∈ K,

∫

|y|2
Y
dµ(x, y) ≤ c

}

are compact and metrizable in Psw
2 (X× Y) (in particular they are sequentially compact).

It is worth noticing that the topology Pws
2 (X×Y) is strictly weaker than P2(X×Y) even when Y

is finite dimensional. In fact, Csw
2 (X× Y) does not contain the quadratic function (x, y) 7→ |y|2

Y
,

so that convergence of the quadratic moment w.r.t. y is not guaranteed.

3. Directional derivatives and probability measures on the tangent bundle

From now on, we will denote by X a separable Hilbert space with norm | · | and scalar product
〈·, ·〉. We denote by TX the tangent bundle to X, which is identified with the set X× X with the

induced norm |(x, v)| :=
(

|x|2+ |v|2
)1/2

and the strong-weak topology of Xs×Xw(i.e. the product
of the strong topology on the first component and the weak topology on the second one). We
will denote by x, v : TX → X the projection maps and by expt : TX → X the exponential map
defined by

x(x, v) := x, v(x, v) = v, expt(x, v) := x+ tv. (3.1)

The set P(TX) is defined thanks to the identification of TX with X × X and it is endowed with
the narrow topology induced by the strong-weak topology in TX. For Φ ∈ P(TX) we define

|Φ|22 :=
∫

TX

|v|2 dΦ(x, v). (3.2)

We denote by P2(TX) the subset of P(TX) of measures for which
∫ (

|x|2+ |v|2
)

dΦ <∞ endowed
with the topology of Psw

2 (TX) as in Section 2.2. If µ ∈ P(X) we will also consider

P(TX|µ) :=
{

Φ ∈ P(TX) | x♯Φ = µ
}

, P2(TX|µ) :=
{

Φ ∈ P(TX|µ) : |Φ|2 <∞
}

. (3.3)

We will also deal with the product space X2: we will use the notation

xt : X2 → X, xt(x0, x1) := (1− t)x0 + tx1, t ∈ [0, 1]. (3.4)

If v ∈ L2
µ(X;X) we can consider the probability

Φµ,v := (iX,v)♯µ ∈ P2(TX|µ). (3.5)

In this case we will say that Φ is concentrated on the graph of the map v. More generally, given
a Borel family of probability measures (Φx)x∈X ⊂ P2(X) satisfying

∫

(

∫

|v|2 dΦx(v)
)

dµ(x) <∞ (3.6)

we can consider the probability

Φ =

∫

X

Φx dµ(x) ∈ P2(TX|µ). (3.7)

Conversely, every Φ ∈ P2(TX|µ) can be disintegrated by a Borel family (Φx)x∈X ⊂ P2(X) sat-
isfying (3.6) and (3.7). Φ can be associated to a vector field v ∈ L2

µ(X;X) if and only if for
µ-a.e. x ∈ X Φx = δv(x). Recalling the disintegration Theorem 2.3 and Remark 2.4, we give the
following definition.
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Definition 3.1. Given Φ ∈ P2(TX|µ), the barycenter of Φ is the function bΦ ∈ L2
µ(X;X) defined

by

bΦ(x) :=

∫

X

v dΦx(v) for µ-a.e. x ∈ X,

where {Φx}x∈X ⊂ P2(X) is the disintegration of Φ w.r.t. µ.

Remark 3.2. Notice that, by the linearity of the scalar product, we get the following identity
which will be useful later

∫

X

〈ζ(x), bΦ(x)〉dµ(x) =
∫

TX

〈ζ(x), v〉dΦ(x, v) ∀ ζ ∈ L2
µ(X;X). (3.8)

3.1. Directional derivatives of the Wasserstein distance and duality pairings

Our starting point is a relevant semi-concavity property of the function

f(s, t) :=
1

2
W 2

2 (exp
s
♯ Φ0, exp

t
♯Φ1), s, t ∈ R, (3.9)

with Φ0,Φ1 ∈ P2(TX). We first state an auxiliary result, whose proof is based on [AGS08,
Proposition 7.3.1].

Lemma 3.3. Let Φ0,Φ1 ∈ P2(TX), s, t ∈ R, and let ϑs,t ∈ Γ(exps♯ Φ0, exp
t
♯Φ1). Then there exists

Θs,t ∈ Γ(Φ0,Φ1) such that (exps, expt)♯Θ
s,t = ϑs,t.

Proof. Define, for every r, s, t ∈ R,

Σr : TX → TX, Σr(x, v) = (expr(x, v), v); Λs,t : TX× TX → TX× TX, Λs,t := (Σs,Σt).

Consider the probabilities (Σs)♯Φ0, (Σ
t)♯Φ1 and ϑs,t. They are constructed in such a way that

there exists Ψs,t ∈ P(TX× TX) s.t.

(x0, v0)♯Ψ
s,t = (Σs)♯Φ0, (x1, v1)♯Ψ

s,t = (Σt)♯Φ1, (x0, x1)♯Ψ
s,t = ϑs,t,

where we adopted the notation xi(x0, v0, x1, v1) := xi and vi(x0, v0, x1, v1) := vi, i = 0, 1. We
conclude by taking Θs,t := (Λ−s,−t)♯Ψ

s,t. �

Proposition 3.4. Let Φ0,Φ1 ∈ P2(TX) with µ1 = x♯Φ1 and ϕ2 := |Φ0|22 + |Φ1|22, let f : R2 → R

be the function defined by (3.9) and let h, g : R → R be defined by

h(s) := f(s, s) =
1

2
W 2

2 (exp
s
♯ Φ0, exp

s
♯ Φ1), g(s) := f(s, 0) =

1

2
W 2

2 (exp
s
♯ Φ0, µ1), s ∈ R.

(3.10)

(1) The function (s, t) 7→ f(s, t)− 1
2ϕ

2(s2 + t2) is concave, i.e. it holds

f((1− α)s0 + αs1, (1− α)t0 + αt1) ≥ (1− α)f(s0, t0) + αf(s1, t1)

− 1

2
α(1− α)

[

(s1 − s0)
2 + (t1 − t0)

2
]

ϕ2
(3.11)

for every s0, s1, t0, t1 ∈ R and every α ∈ [0, 1].
(2) The function s 7→ h(s)− ϕ2s2 is concave.
(3) the function s 7→ g(s) − 1

2s
2|Φ0|22 is concave.

Proof. Let us first prove (3.11). We set s := (1 − α)s0 + αs1, t := (1 − α)t0 + αt1 and we
apply Lemma 3.3 to find Θ ∈ Γ(Φ0,Φ1) such that (exps, expt)♯Θ ∈ Γo(exp

s
♯ Φ0, exp

t
♯Φ1). Then,

recalling the Hilbertian identity

|(1− α)a+ αb|2 = (1− α)|a|2 + α|b|2 − α(1 − α)|a − b|2, a, b ∈ X,
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we have

W 2
2 (exp

s
♯ Φ0, exp

t
♯Φ1) =

∫

|x0 + sv0 − (x1 + tv1)|2 dΘ =

=

∫

|(1 − α)(x0 + s0v0) + α(x0 + s1v0)− (1− α)(x1 + t0v1)− α(x1 + t1v1)|2 dΘ

= (1− α)

∫

|x0 + s0v0 − (x1 + t0v1)|2 dΘ+ α

∫

|x0 + s1v0 − (x1 + t1v1)|2 dΘ

− α(1 − α)

∫

|(s1 − s0)v0 + (t1 − t0)v1|2 dΘ

≥ (1− α)W 2
2 (exp

s0
♯ Φ0, exp

t0
♯ Φ1) + αW 2

2 (exp
s1
♯ Φ0, exp

t1
♯ Φ1)

− α(1 − α)
(

(s1 − s0)
2 + (t1 − t0)

2
)(

∫

|v0|2 dΦ0 +

∫

|v1|2 dΦ1

)

.

which is the thesis. Claims (2) and (3) follow as particular cases when t = s or t = 0. �

Semi-concavity is a useful tool to guarantee the existence of one-sided partial derivatives at
(0, 0): for every α, β ∈ R we have (see e.g. [HL93, Ch. VI, Prop. 1.1.2]) that

f ′r(α, β) = lim
̺↓0

f(α̺, β̺) − f(0, 0)

̺
= sup

̺>0

f(α̺, β̺)− f(0, 0)

̺
− ̺ϕ2

2
(α2 + β2),

f ′l (α, β) = lim
̺↓0

f(0, 0) − f(−α̺,−β̺)
̺

= inf
̺>0

f(0, 0)− f(−α̺,−β̺)
̺

+
̺ϕ2

2
(α2 + β2).

f ′r (resp. f
′
l ) is a concave (resp. convex) and positively 1-homogeneous function, i.e. a superlinear

(resp. sublinear) function. They satisfy

f ′r(−α,−β) = −f ′l (α, β), f ′l (α, β) ≥ f ′r(α, β) for every α, β ∈ R, (3.12)

f ′r(α, β) ≥ αf ′r(1, 0) + βf ′r(0, 1) for every α, β ≥ 0, (3.13)

f(s, t) ≤ f(0, 0) + f ′r(s, t)−
ϕ2

2
(s2 + t2) for every s, t ∈ R.

Notice moreover that

f ′r(1, 0) = g′r(0) = lim
̺↓0

g(̺)− g(0)

̺

where g is the function defined in (3.10); a similar representation holds for f ′l (1, 0). We introduce
the following notation for f ′r, f

′
l , g

′
r and g′l.

Definition 3.5. Let µ0, µ1 ∈ P2(X), Φ0 ∈ P2(TX|µ0) and Φ1 ∈ P2(TX|µ1). Recalling the
definitions of f and g given by (3.9) and (3.10), we define

[Φ0, µ1]r := g′r(0) = f ′r(1, 0) = lim
s↓0

W 2
2 (exp

s
♯ Φ0, µ1)−W 2

2 (µ0, µ1)

2s
,

[Φ0, µ1]l := g′l(0) = f ′l (1, 0) = lim
s↓0

W 2
2 (µ0, µ1)−W 2

2 (exp
−s
♯ Φ0, µ1)

2s
,

and analogously

[Φ0,Φ1]r := f ′r(1, 1) = lim
t↓0

W 2
2 (exp

t
♯Φ0, exp

t
♯Φ1)−W 2

2 (µ0, µ1)

2t
,

[Φ0,Φ1]l := f ′l (1, 1) = lim
t↓0

W 2
2 (µ0, µ1)−W 2

2 (exp
−t
♯ Φ0, exp

−t
♯ Φ1)

2t
.
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Remark 3.6. Notice that [Φ0, µ1]r = [Φ0,Φµ1
]r and [Φ0, µ1]l = [Φ0,Φµ1

]l, where

Φµ1
= (iX, 0)♯µ1 ∈ P2(TX).

Moreover, using the notation

− Φ := J♯Φ, Φ ∈ P(TX), J(x, v) := (x,−v), (3.14)

we have

[−Φ0,−Φ1]r = − [Φ0,Φ1]l , and [−Φ0, µ1]r = − [Φ0, µ1]l .

In particular, the properties of [·, ·]l (in P2(TX)×P2(TX) or P2(TX)×P2(X)) and the ones of [·, ·]r
in P2(TX)× P2(X) can be easily derived by the corresponding ones of [·, ·]r in P2(TX)× P2(TX).

Recalling (3.13) and (3.12) we obtain the following result.

Corollary 3.7. For every µ0, µ1 ∈ P2(X) and for every Φ0 ∈ P2(TX|µ0), Φ1 ∈ P2(TX|µ1), it
holds

[Φ0, µ1]r + [Φ1, µ0]r ≤ [Φ0,Φ1]r and [Φ0, µ1]l + [Φ1, µ0]l ≥ [Φ0,Φ1]l .

Let us now show an important equivalent characterization of the quantities we have just in-
troduced. As usual we will denote by x0, v0, x1 : TX × X → X the projection maps of a point
(x0, v0, x1) in TX× X (and similarly for TX× TX with x0, v0, x1, v1).
First of all we introduce the following sets.

Definition 3.8. For every Φ0 ∈ P(TX) with µ0 = x♯Φ0 and µ1 ∈ P2(X) we set

Λ(Φ0, µ1) :=
{

σ ∈ Γ(Φ0, µ1) | (x0, x1)♯σ ∈ Γo(µ0, µ1)
}

.

Analogously, for every Φ0,Φ1 ∈ P(TX) with µ0 = x♯Φ0 and µ1 = x♯Φ1 in P2(X) we set

Λ(Φ0,Φ1) :=
{

Θ ∈ Γ(Φ0,Φ1) | (x0, x1)♯Θ ∈ Γo(µ0, µ1)
}

.

In the following proposition and subsequent corollary, we provide a useful characterization of
the pairings [·, ·]r and [·, ·]l.
Theorem 3.9. For every Φ0,Φ1 ∈ P2(TX) and µ1 ∈ P2(X) we have

[Φ0, µ1]r = min

{
∫

TX×X

〈x0 − x1, v0〉dσ | σ ∈ Λ(Φ0, µ1)

}

, (3.15)

[Φ0,Φ1]r = min

{
∫

TX×TX

〈x0 − x1, v0 − v1〉dΘ | Θ ∈ Λ(Φ0,Φ1)

}

. (3.16)

We denote by Λo(Φ0, µ1) (resp. Λo(Φ0,Φ1)) the subset of Λ(Φ0, µ1) (resp. Λ(Φ0,Φ1)) where the
minimum in (3.15) (resp. (3.16)) is attained.

Proof. First, we recall that the minima in the right hand side are attained since Λ(Φ0, µ1) and
Λ(Φ0,Φ1) are compact subsets of P2(TX× X) and P2(TX× TX) respectively by Lemma 2.6 and
the integrands are continuous functions with quadratic growth. Thanks to Remark 3.6, we only
need to prove the second equality. For every Θ ∈ Λ(Φ0,Φ1) and setting µ0 = x♯Φ0, µ1 = x♯Φ1,
we have

W 2
2 (exp

t
♯(Φ0), exp

t
♯(Φ1)) ≤

∫

TX×TX

|(x0 − x1) + t(v0 − v1)|2 dΘ

=

∫

X2

|x0 − x1|2 d(x0, x1)♯Θ+ 2t

∫

TX×TX

〈x0 − x1, v0 − v1〉dΘ+ t2
∫

X2

|v0 − v1|2 dΘ

=W 2
2 (µ0, µ1) + 2t

∫

TX×TX

〈x0 − x1, v0 − v1〉dΘ+ t2
∫

X2

|v0 − v1|2 dΘ.
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and this immediately implies

[Φ0,Φ1]r ≤ min

{
∫

TX×TX

〈x0 − x1, v0 − v1〉dΘ | Θ ∈ Λ(Φ0,Φ1)

}

.

In order to prove the converse inequality, thanks to Lemma 3.3, for every t > 0 we can find
Θt ∈ Γ(Φ0,Φ1) s.t.

(expt, expt)♯Θt ∈ Γo(exp
t
♯Φ0, exp

t
♯Φ1).

Then

W 2
2 (exp

t
♯Φ0, exp

t
♯Φ1)−W 2

2 (µ0, µ1)

2t
≥ 1

2t

∫

TX×TX

|(x0 − x1) + t(v0 − v1)|2 dΘt

− 1

2t

∫

TX×TX

|x0 − x1|2 dΘt

≥
∫

TX×TX

〈x0 − x1, v0 − v1〉dΘt.

(3.17)

Since Γ(Φ0,Φ1) is compact in P2(TX×TX), there exists a vanishing sequence k 7→ t(k) and Θ ∈
Γ(Φ0,Φ1) s.t. Θt(k) → Θ in P2(TX×TX). Moreover it holds (expt(k), expt(k))♯Θt(k) → (x0, x1)♯Θ

in P(TX × TX) so that (x0, x1)♯Θ ∈ Γo(µ0, µ1), and therefore Θ ∈ Λ(Φ0,Φ1). The convergence
in P2(TX× TX) yields

lim
k

∫

TX×TX

〈x0 − x1, v0 − v1〉dΘt(k) =

∫

TX×TX

〈x0 − x1, v0 − v1〉dΘ,

so that, passing to the limit in (3.17) along the sequence t(k), we obtain

[Φ0,Φ1]r ≥
∫

TX×TX

〈x0 − x1, v0 − v1〉dΘ for some Θ ∈ Λ(Φ0,Φ1).�

Corollary 3.10. Let Φ0,Φ1 ∈ P2(TX) and µ1 ∈ P2(X), then

[Φ, µ1]l = max

{
∫

TX×X

〈x0 − x1, v0〉dσ | σ ∈ Λ(Φ0, µ1)

}

, (3.18)

[Φ0,Φ1]l = max

{
∫

TX×TX

〈x0 − x1, v0 − v1〉dΘ | Θ ∈ Λ(Φ0,Φ1)

}

.

3.2. Right and left derivatives of the Wasserstein distance along a.c. curves

Let us now discuss the differentiability of the map I ∋ t 7→ 1
2W

2
2 (µ(t), ν) along a locally absolutely

continuous curve µ : I → P2(X), with I an open interval of R and ν ∈ P2(X).

Theorem 3.11. Let µ : I → P2(X) be a locally absolutely continuous curve and let v : I×X → X

and A(µ) be as in Theorem 2.10. Then, for every ν ∈ P2(X) and every t ∈ A(µ), it holds

lim
h↓0

W 2
2 (µt+h, ν)−W 2

2 (µt, ν)

2h
= [(iX,vt)♯µt, ν]r , (3.19)

lim
h↑0

W 2
2 (µt+h, ν)−W 2

2 (µt, ν)

2h
= [(iX,vt)♯µt, ν]l ,

so that the map s 7→W 2
2 (µs, ν) is left and right differentiable at every t ∈ A(µ). In particular,

(1) if t ∈ A(µ) and ν ∈ P2(X) are s.t. there exists a unique optimal transport plan between
µt and ν, then the map s 7→W 2

2 (µs, ν) is differentiable at t;
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(2) there exists a subset A(µ, ν) ⊂ A(µ) of full Lebesgue measure such that s 7→ W 2
2 (µs, ν)

is differentiable in A(µ, ν) and

1

2

d

dt
W 2

2 (µt, ν) = [(iX,vt)♯µt, ν]r = [(iX,vt)♯µt, ν]l

=

∫

〈vt(x1), x1 − x2〉dµ(x1.x2) for every µ ∈ Γo(µt, ν), t ∈ A(µ, ν).

Proof. Let ν ∈ P2(X) and for every t ∈ I we set Φt := (iX,vt)♯µt ∈ P2(TX). By Theorem 3.9, we
have

lim
h↓0

W 2
2 (exp

h
♯ Φt, ν)−W 2

2 (µt, ν)

2h
= [(iX,vt)♯µt, ν]r ,

lim
h↑0

W 2
2 (exp

h
♯ Φt, ν)−W 2

2 (µt, ν)

2h
= [(iX,vt)♯µt, ν]l .

Since exph♯ Φt = (iX + hvt)♯µt, then thanks to Theorem 2.10 we have that the above limits

coincide respectively with the limits in the statement, for all t ∈ A(µ).
Claim (1) comes by the characterizations given in Theorem 3.9 and Corollary 3.10. Indeed,
if there exists a unique optimal transport plan between µt and ν, then [(iX,vt)♯µt, ν]r =
[(iX,vt)♯µt, ν]l.

Claim (2) is a simple consequence of the fact that s 7→W 2
2 (µs, ν) is differentiable a.e. in I. �

Remark 3.12. Thanks to [AGS08, Proposition 8.5.4], in Theorem 3.11 we can actually replace v

with any Borel velocity field w solving the continuity equation for µ and s.t. ‖wt‖L2
µt

∈ L1
loc(I).

Indeed, we notice that by [AGS08, Lemma 5.3.2],

Λ((iX,vt)♯µt, ν) = {(iX,vt, iX)♯γ | γ ∈ Γo(µt, ν)}.

See Appendix B for a further discussion about Theorem 3.11.

Theorem 3.13. Let µ1, µ2 : I → P2(X) be locally absolutely continuous curves and let v1,v2 :
I× X → X be the corresponding Wasserstein velocity fields satisfying (2.6) in A(µ1) and A(µ2)
respectively. Then, for every t ∈ A(µ1) ∩A(µ2), it holds

lim
h↓0

W 2
2 (µ

1
t+h, µ

2
t+h)−W 2

2 (µ
1
t , µ

2
t )

2h
=
[

(iX,v
1
t )♯µ

1
t , (iX,v

2
t )♯µ

2
t

]

r
,

lim
h↑0

W 2
2 (µ

1
t+h, µ

2
t+h)−W 2

2 (µ
1
t , µ

2
t )

2h
=
[

(iX,v
1
t )♯µ

1
t , (iX,v

2
t )♯µ

2
t

]

l
.

In particular, there exists a subset A ⊂ A(µ1) ∩ A(µ2) of full Lebesgue measure such that s 7→
W 2

2 (µ
1
s, µ

2
s) is differentiable in A and

1

2

d

dt
W 2

2 (µ
1
t , µ

2
t ) =

[

(iX,v
1
t )♯µ

1
t , (iX,v

2
t )♯µ

2
t

]

r
=
[

(iX,v
1
t )♯µ

1
t , (iX,v

2
t )♯µ

2
t

]

l

=

∫

〈v1
t − v2

t , x1 − x2〉dµ(x1, x2) for every µ ∈ Γo(µ
1
t , µ

2
t ), t ∈ A.

(3.20)

The proof of Theorem 3.13 follows by the same argument of the proof of Theorem 3.11.

3.3. Convexity and semicontinuity of duality parings

We want now to investigate the semicontinuity and convexity properties of the functionals [·, ·]r
and [·, ·]l.
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Lemma 3.14. Let (Φn)n∈N ⊂ P2(TX) be converging to Φ in Psw
2 (TX), and let (νn)n∈N ⊂ P2(X)

be converging to ν in P2(X). Then

lim inf
n

[Φn, νn]r ≥ [Φ, ν]r and lim sup
n

[Φn, νn]l ≤ [Φ, ν]l . (3.21)

Finally, if (Φi
n)n∈N, i = 0, 1, are sequences converging to Φi in Psw

2 (TX) then

lim inf
n→∞

[

Φ0
n,Φ

1
n

]

r
≥
[

Φ0,Φ1
]

r
, lim sup

n→∞

[

Φ0
n,Φ

1
n

]

l
≥
[

Φ0,Φ1
]

l
. (3.22)

Proof. We just consider the proof of the first inequality (3.21); the other statements follow by
similar arguments and by Remark 3.6.
We can extract a subsequence of (Φn)n∈N (not relabeled) s.t. the lim inf is achieved as a limit.
We have to prove that

lim
n

[Φn, νn]r ≥ [Φ, ν]r . (3.23)

For every n ∈ N take σn ∈ Λo(Φn, νn) with ϑ̄n = (x0, x1)♯σn, and observe that the family
(ϑ̄n)n∈N is relatively compact in P2(X

2) (since the marginals of ϑ̄n are converging w.r.t. W2)
so that (σn)n∈N is relatively compact in Psws

2 (TX × X) by Proposition 2.15 since the moments
∫

|v0|2 dσn(x0, v0, x1) = |Φn|22 are uniformly bounded by assumption. Thus, possibly passing to
a further subsequence, we have that (σn)n∈N converges to some σ in Psws

2 (TX×X). In particular
σ ∈ Λ(Φ, ν) since optimality of the X2 marginals is preserved by narrow convergence.
(2.7) then yields

lim
n→∞

[Φn, νn]r = lim
n→∞

∫

〈v0, x0 − x1〉dσn =

∫

〈v0, x0 − x1〉dσ

which yields (3.23) since the RHS is larger than [Φ, ν]r by Theorem 3.9. �

Remark 3.15. Notice that in the special case in which Λ(Φ, ν) is a singleton, then the limit exists
and it holds

lim
n→∞

[Φn, νn]r = [Φ, ν]r , lim
n→∞

[Φn, νn]l = [Φ, ν]l .

Lemma 3.16. For every µ, ν ∈ P2(X) the maps Φ 7→ [Φ, ν]r and (Φ,Ψ) 7→ [Φ,Ψ]r (resp. Φ 7→
[Φ, ν]l and (Φ,Ψ) 7→ [Φ,Ψ]l) are convex (resp. concave) in P2(TX|µ) and P2(TX|µ)× P2(TX|ν).
Proof. We prove the convexity of (Φ,Ψ) 7→ [Φ,Ψ]r in P2(TX|µ)×P2(TX|ν); the argument of the
proofs of the other statements are completely analogous.
Let Φk ∈ P2(TX|µ), Ψk ∈ P2(TX|ν), and let βk ≥ 0, with

∑

k βk = 1, k = 1, · · · ,K. We set

Φ =
∑K

k=1 βkΦk, Ψ =
∑K

k=1 βkΨk, For every k let us select Θk ∈ Λ(Φk,Ψk) such that

[Φk,Ψk]r =

∫

〈v1 − v0, x1 − x0〉dΘk.

It is not difficult to check that Θ :=
∑

k βkΘk ∈ Λ(Φ,Ψ) so that

[Φ,Ψ]r ≤
∫

〈v1 − v0, x1 − x0〉dΘ =
∑

k

βk

∫

〈v1 − v0, x1 − x0〉dΘk =
∑

k

βk [Φk,Ψk]r . �

3.4. Behaviour of duality pairings along geodesics

We have seen that the duality pairings [·, ·]r and [·, ·]l may differ when the collection of optimal
plans Γo(µ0, µ1) contains more than one element. It is natural to expect a simpler behaviour
along geodesics. We will introduce the following definition, where we use the notation

xt(x0, x1) := (1− t)x0 + tx1, v0(x0, v0, x1) := v0 for every (x0, v0, x1) ∈ TX× X, t ∈ [0, 1].
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Definition 3.17. For ϑ ∈ P2(X× X), t ∈ [0, 1], ϑt = xt♯ϑ and Φ ∈ P2(TX|ϑt), we set

Γt(Φ,ϑ) :=
{

σ ∈ P2(TX× X) | (x0, x1)♯σ = ϑ, (xt ◦ (x0, x1), v0)♯σ = Φ
}

,

which is not empty since ϑt = xt♯ϑ = x♯Φ. We set

[Φ,ϑ]b,t :=

∫

〈x0 − x1, bΦ(x
t(x0, x1))〉dϑ(x0, x1),

[Φ,ϑ]r,t := min

{
∫

〈x0 − x1, v0〉dσ(x0, v0, x1) | σ ∈ Γt(Φ,ϑ)

}

,

[Φ,ϑ]l,t := max

{
∫

〈x0 − x1, v0〉dσ(x0, v0, x1) | σ ∈ Γt(Φ,ϑ)

}

.

If moreover Φ0 ∈ P2(TX|ϑ0), Φ1 ∈ P2(TX|ϑ1), ϑ ∈ Γ(ϑ0, ϑ1), we define

[Φ0,Φ1]r,ϑ := [Φ0,ϑ]r,0 − [Φ1,ϑ]l,1,

[Φ0,Φ1]l,ϑ := [Φ0,ϑ]l,0 − [Φ1,ϑ]r,1.

Notice that, if Φx is the disintegration of Φ with respect to ϑt = x♯Φ, we can consider the
barycentric coupling σt :=

∫

X×X
Φxt dϑ ∈ Γt(Φ,ϑ), i.e.

∫

ψ(x0, v0, x1) dσt =

∫

[

∫

ψ(x0, v0, x1) dΦ(1−t)x0+tx1
(v0)

]

dϑ(x0, x1)

so that [Φ,ϑ]b,t =
∫

〈v0, x0 − x1〉dσt and

[Φ,ϑ]r,t ≤ [Φ,ϑ]b,t ≤ [Φ,ϑ]l,t.

If we define by s : X2 → X2 the map s(x0, x1) := (x1, x0) (with a similar definition for TX × X:
s(x0, v0, x1) := (x1, v0, x0)) it is easy to check that

σ ∈ Γt(Φ,ϑ) ⇔ s♯σ ∈ Γ1−t(Φ, s♯ϑ)

so that
[Φ,ϑ]r,t = −[Φ, s♯ϑ]l,1−t, [Φ,ϑ]l,t = −[Φ, s♯ϑ]r,1−t. (3.24)

(3.15) and (3.18) have simpler versions in two particular cases, which will be explained in the
next remark.

Remark 3.18 (Particular cases). Suppose that ϑ ∈ P2(X
2), t ∈ [0, 1], ϑt = xt♯ϑ, Φ ∈ P2(TX|ϑt)

and xt : X2 → X is ϑ-essentially injective so that ϑ is concentrated on a Borel map (X0,X1) :
X → X × X, i.e. ϑ = (X0,X1)♯ϑt. In this case Γt(Φ,ϑ) contains a unique element given by
(X0 ◦ x, v,X1 ◦ x)♯Φ and

[Φ,ϑ]r,t = [Φ,ϑ]l,t = [Φ,ϑ]b,t =

∫

〈v,X0(x)−X1(x)〉dΦ(x, v) =
∫

〈bΦ,X0 −X1〉dϑt, (3.25)

where in the last formula we have applied the barycentric reduction (3.8). When t = 0 and ϑ is
the unique element of Γo(ϑ0, ϑ1) then X0(x) = x and we obtain

[Φ, ϑ1]r = [Φ, ϑ1]l = [Φ,ϑ]r,0 = [Φ,ϑ]l,0 =

∫

〈v, x−X1(x)〉dΦ(x, v) =
∫

〈bΦ, x−X1(x)〉dϑ0(x).

Another simple case is when Φ = Φϑt,w for some vector field w ∈ L2
ϑt
(X;X) as in (3.5) (i.e. its

disintegration Φx w.r.t. ϑt takes the form δw(x) and w = bΦ.). We have

[Φ,ϑ]r,t = [Φ,ϑ]l,t =

∫

〈w((1 − t)x0 + tx1), x0 − x1〉dϑ(x0, x1).

In particular we get

[Φ, ϑ1]r = min
{

∫

〈w(x), x0 − x1〉dϑ(x0, x1) | ϑ ∈ Γo(ϑ0, ϑ1)
}

.
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An important case in which the previous Remark 3.18 applies is that of geodesics in P2(X).

Lemma 3.19. Let µ0, µ1 ∈ P2(X), (µt)t∈[0,1] be a constant speed geodesic induced by an optimal
plan µ ∈ Γo(µ0, µ1) by the relation

µt = xt♯µ, t ∈ [0, 1], xt(x0, x1) = (1− t)x0 + tx1.

If t ∈ (0, 1), Φt ∈ P2(TX|µt), µ̂ = s♯µ ∈ Γo(µ1, µ0), then

1

1− t
[Φt, µ1]r =

1

1− t
[Φt, µ1]l =[Φt,µ]r,t =[Φt,µ]l,t

=− 1

t
[Φt, µ0]r =− 1

t
[Φt, µ0]l =− [Φt, µ̂]r,1−t =− [Φt, µ̂]l,1−t.

(3.26)

Proof. The crucial fact is that xt : X2 → X is injective on supp(µ) and thus a bijection on its
image supp(µt). Indeed, take (x0, x1), (x

′
0, x

′
1) ∈ supp(µ), then

∣

∣xt(x0, x1)− xt(x′0, x
′
1)
∣

∣

2
= (1− t)2|x0 − x′0|2 + t2|x1 − x′1|2 + 2t(1− t)〈x0 − x′0, x1 − x′1〉
≥ (1− t)2|x0 − x′0|2 + t2|x1 − x′1|2

thanks to the cyclical monotonicity of supp(µ) (see [AGS08, Remark 7.1.2]).
Then, for every x ∈ supp(µt), there exists a unique couple (x0, x1) = (X0(x),X1(x)) ∈ supp(µ)
s.t. x = (1 − t)x0 + tx1, where we refer to Remark 3.18 for the definitions of X0,X1 (cf. also
[San15, Theorem 5.29]). Hence, in the following diagram all maps are bijections:

supp(µt0) supp(µ) supp(µt1)

supp(µt)

(xt, x0) (xt, x1)

xt

(iX,X1)(iX,X0)

where µt1 = (xt, x1)♯µ = (iX,X1)♯µt is the unique element of Γo(µt, µ1) and µt0 = (xt, x0)♯µ =
(iX,X0)♯µt = (x1−t, x1)♯µ̂ is the unique element of Γo(µt, µ0) (see Theorem 2.8). Since

x−X1(x)

1− t
=
x− x1
1− t

= x0 − x1 = −x− x0
t

= −x−X0(x)

t
,

and Λ(Φt, µ1) = {(iTX,X1 ◦ x)♯Φt} thanks to Theorem 2.8, by Theorem 3.9 and Corollary 3.10
we have

[Φt, µ1]r = [Φt, µ1]l =

∫

TX

〈v, x −X1(x)〉dΦt(x, v).

Analogously, Λ(Φt, µ0) = {(iTX,X0 ◦ x)♯Φt}. Hence

[Φt, µ0]r = [Φt, µ0]l =

∫

TX

〈v, x −X0(x)〉dΦt(x, v).

Also recalling (3.24) and (3.25) we conclude. �

4. Dissipative probability vector fields: the metric viewpoint

4.1. Multivalued Probability Vector Fields and λ-dissipativity

Definition 4.1 (Multivalued Probability Vector Field - MPVF). Amultivalued probability vector
field F is a nonempty subset of P2(TX) with domain D(F) := x♯(F) = {x♯Φ : Φ ∈ F}. Given
µ ∈ P2(X), we define the section F[µ] of F as

F[µ] := (x♯)
−1(µ) ∩ F = {Φ ∈ F | x♯Φ = µ} .
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A selection F′ of F is a subset of F such that D(F′) = D(F). We call F a probability vector
field (PVF) if x♯ is injective in F, i.e. F[µ] contains a unique element for every µ ∈ D(F). F is
a vector field if for every µ ∈ D(F) F[µ] contains a unique element Φ concentrated on a map,
i.e. Φ = (iX, bΦ)♯µ.

Remark 4.2. We can equivalently formulate Definition 4.1 by considering F as a multifunction,
as in the case, e.g., of the Wasserstein subdifferential ∂F of a function F : P2(X) → (−∞,+∞],
see [AGS08, Ch. 10] and the next Section 5.1. According to this viewpoint, a MPVF is a set-
valued map F : P2(X) ⊃ D(F) ⇒ P2(TX) such that x♯Φ = µ for all Φ ∈ F[µ]. In this way,
each section F[µ] is nothing but the image of µ ∈ D(F) through F. In this case, probability
vector fields correspond to single valued maps: this notion has been used in [Pic19] with the
aim of describing a sort of velocity field on P(X), and later in [Pic18] dealing with Multivalued
Probability Vector Fields (called Probability Multifunctions).

Definition 4.3 (Metrically λ-dissipative MPVF). A MPVF F ⊂ P2(TX) is (metrically) λ-
dissipative, λ ∈ R, if

[Φ0,Φ1]r ≤ λW 2
2 (µ0, µ1) for every Φ0,Φ1 ∈ F, µi = x♯Φi. (4.1)

We say that F is (metrically) λ-accretive, if −F = {−Φ : Φ ∈ F} (recall (3.14)) is −λ-dissipative,
i.e.

[Φ0,Φ1]l ≥ λW 2
2 (µ0, µ1) for every Φ0,Φ1 ∈ F, µi = x♯Φi.

Remark 4.4. Notice that (4.1) is equivalent to ask for the existence of a coupling Θ ∈ Λ(Φ0,Φ1)
(thus (x0, x1)♯Θ is optimal between µ0 = x♯Φ0 and µ1 = x♯Φ1) such that

∫

〈v1 − v0, x1 − x0〉dΘ ≤ λW 2
2 (µ0, µ1) = λ

∫

|x1 − x0|2 dΘ.

Recalling the discussion of the previous section, λ-dissipativity has a natural metric interpreta-
tion: for every Φ0,Φ1 ∈ F with µ0 = x♯Φ0, µ1 = x♯Φ1 we have the asymptotic expansion

W 2
2 (exp

tΦ0, exp
tΦ1) ≤ (1 + 2λt)W 2

2 (µ0, µ1) + o(t) as t ↓ 0.

Remark 4.5. Thanks to Corollary 3.7, (4.1) implies the weaker condition

[Φ0, µ1]r + [Φ1, µ0]r ≤ λW 2
2 (µ0, µ1), ∀Φ0,Φ1 ∈ F, µ0 = x♯Φ0, µ1 = x♯Φ1. (4.2)

It is clear that the inequality of (4.2) implies the inequality of (4.1) whenever Γo(µ0, µ1) contains
only one element. More generally, we will see in Corollary 4.13 that (4.2) is in fact equivalent
to (4.1) when D(F) is geodesically convex (according to Definition 2.7).

As in the standard Hilbert case, λ-dissipativity can be reduced to dissipativity (meaning 0-
dissipativity) by a simple transformation. Let us introduce the map

Lλ : TX → TX, Lλ(x, v) := (x, v − λx),

observing that for every σ ∈ P2(TX × X) with (xi)♯σ = µi, i = 0, 1, the transformed plan

σλ := (Lλ, iX)♯σ satisfies
∫

〈v0, x0 − x1〉dσλ =

∫

〈v0 − λx0, x0 − x1〉dσ

=

∫

〈v0, x0 − x1〉dσ − λ

2

∫

|x0 − x1|2 dσ +
λ

2

(

m2
2(µ1)−m2

2(µ0)
)

. (4.3)

Similarly, if Θ ∈ P2(TX× TX) with xi♯Θ = µi, the plan Θλ := (Lλ, Lλ)♯Θ satisfies
∫

〈v0 − v1, x0 − x1〉dΘλ =

∫

〈v0 − v1 − λ(x0 − x1), x0 − x1〉dΘ

=

∫

〈v0 − v1, x0 − x1〉dΘ− λ

∫

|x0 − x1|2 dΘ. (4.4)
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Lemma 4.6. F is a λ-dissipative MPVF (resp. satisfies (4.2)) if and only if Fλ := Lλ
♯ (F) =

{Lλ
♯Φ | Φ ∈ F} is dissipative (resp. satisfies (4.2) with λ = 0).

Proof. Let us first check the case of (4.2). Since σ ∈ Λo(Φ0, µ1) if and only if σλ ∈ Λo(L
λ
♯Φ0, µ1),

(4.3) yields
∫

〈v0, x0 − x1〉dσλ =

∫

〈v0, x0 − x1〉dσ − λ

2

(

m2
2(µ0)−m2

2(µ1) +W 2
2 (µ0, µ1)

)

and therefore
[

Lλ
♯Φ0, µ1

]

r
= [Φ0, µ1]r −

λ

2

(

m2
2(µ0)−m2

2(µ1) +W 2
2 (µ0, µ1)

)

. (4.5)

Using the corresponding identity for
[

Lλ
♯Φ1, µ0

]

r
we obtain that Fλ is dissipative.

A similar argument, using the identity (4.4), shows the equivalence between the λ-dissipativity
of F and the dissipativity of Fλ. �

Let us conclude this section by showing that λ-dissipativity can be deduced from a Lipschitz
like condition similar to the one considered in [Pic19] (see Appendix A).

Lemma 4.7. Suppose that the MPVF F satisfies

W2(F[ν],F[ν
′]) ≤ LW2(ν, ν

′), ∀ ν, ν ′ ∈ D(F),

where W2 : P2(TX)× P2(TX) → [0,+∞) is defined by

W2
2(Φ0,Φ1) = inf

{
∫

TX×TX

|v0 − v1|2 dΘ(x0, v0, x1, v1) : Θ ∈ Λ(Φ0,Φ1)

}

,

with Λ(·, ·) as in Definition 3.8. Then F is λ-dissipative, for λ := 1
2(1 + L2)

Proof. Let ν ′, ν ′′ ∈ D(F), then by Theorem 3.9 and Young’s inequality, we have

[

F[ν ′],F[ν ′′]
]

r
= min

{
∫

TX×TX

〈x′ − x′′, v′ − v′′〉dΘ : Θ ∈ Λ(F[ν ′],F[ν ′′])

}

≤ 1

2

(

W 2
2 (ν

′, ν ′′) +W2
2(F[ν

′],F[ν ′′])
)

≤ L2 + 1

2
W 2

2 (ν
′, ν ′′). �

4.2. Behaviour of λ-dissipative MPVF along geodesics

Let us now study the behaviour of a MPVF F along geodesics. Recall that in the case of a
dissipative map F : H → H in a Hilbert space H, it is quite immediate to prove that the real
function

f(t) := 〈F (xt), x0 − x1〉, xt = (1− t)x0 + tx1, t ∈ [0, 1]

is monotone increasing. This property has a natural counterpart in the case of measures.

Definition 4.8. Let F ⊂ P2(TX), µ0, µ1 ∈ D(F), µ ∈ Γo(µ0, µ1). We define the sets

I(µ|F) :=
{

t ∈ [0, 1] : xt♯µ ∈ D(F)
}

,

Γi
o(µ0, µ1|F) :=

{

µ ∈ Γo(µ0, µ1) : i is an accumulation point of I(µ|F)
}

, i = 0, 1 (4.6)

Γ01
o (µ0, µ1|F) := Γ0

o(µ0, µ1|F) ∩ Γ1
o(µ0, µ1|F).

Notice that these sets depend on F just through D(F). In particular, if µ0, µ1 ∈ D(F) and D(F)
is open or geodesically convex according to Definition 2.7 then Γ01

o (µ0, µ1|F) 6= ∅.
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Definition 4.9. Let F ⊂ P2(TX) be a MPVF. Let µ0, µ1 ∈ D(F), µ ∈ Γo(µ0, µ1) and let
µt := xt♯µ, t ∈ [0, 1]. For every t ∈ I(µ|F) we define

[F,µ]r,t := sup {[Φ,µ]r,t | Φ ∈ F[µt]} , [F,µ]l,t := inf {[Φ,µ]l,t | Φ ∈ F[µt]} .

Theorem 4.10. Let us suppose that the MPVF F satisfies (4.2), let µ0, µ1 ∈ D(F), and let
µ ∈ Γo(µ0, µ1) with W

2 :=W 2
2 (µ0, µ1). Then the following properties hold

(1) [F,µ]l,t ≤ [F,µ]r,t for every t ∈ (0, 1) ∩ I(µ|F);
(2) [F,µ]r,s ≤ [F,µ]l,t + λW 2(t− s) for every s, t ∈ I(µ|F), s < t;
(3) t 7→ [F,µ]r,t + λW 2t and t 7→ [F,µ]l,t + λW 2t are increasing respectively in I(µ|F) \ {1}

and in I(µ|F) \ {0}.
(4) the right (resp. left) limits of t 7→ [F,µ]r,t and t 7→ [F,µ]l,t exist at every right (resp. left)

accumulation point of I(µ|F), and in those points the right (resp. left) limits of [F,µ]r,t
coincide with the right (resp. left) limits of [F,µ]l,t.

(5) [F,µ]l,t = [F,µ]r,t at every interior point t of I(µ|F) where one of them is continuous.

Proof. Throughout all the proof we set fr(t) := [F,µ]r,t and fl(t) := [F,µ]l,t. Thanks to Lemma
4.6 and in particular to (4.5), it is easy to check that it is sufficient to consider the dissipative
case λ = 0.

(1) It is a direct consequence of Lemma 3.19 and the definitions of fr and fl.
(2) We prove that for every Φ ∈ F[µs] and Φ′ ∈ F[µt] it holds

[Φ,µ]r,s ≤ [Φ′,µ]l,t. (4.7)

The thesis will follow immediately passing to the sup over Φ ∈ F[µs] in the LHS and
to the inf over Φ′ ∈ F[µt] in the RHS. It is enough to prove (4.7) in case at least one
between s, t belongs to (0, 1). Let us define the map L : P2(TX× X) → R as

L(γ) :=

∫

TX×X

〈v0, x0 − x1〉dγ(x0, v0, x1) γ ∈ P2(TX× X).

Observe that, since it never happens that s = 0 and t = 1 at the same time, the map
T : Γs(Φ,µ) → Λ(Φ, µt) defined as

T (σ) := (xs ◦ (x0, x1), v0, xt ◦ (x0, x1))♯σ
is a bijection s.t. (t− s)L(σ) = L(T (σ)) for every σ ∈ Γs(Φ,µ). This immediately gives
that

(t− s)[Φ,µ]r,s = [Φ, µt]r .

In the same way we can deduce that

(s− t)[Φ′,µ]l,t =
[

Φ′, µs
]

r
.

Thanks to the dissipativity of F we get

(t− s)[Φ,µ]r,s − (t− s)[Φ′,µ]l,t = [Φ, µt]r +
[

Φ′, µs
]

r
≤ 0.

(3) Combining (1) and (2) we have that for every s, t ∈ I(µ|F) with 0 < s < t < 1 it holds

fl(s) ≤ fr(s) ≤ fl(t) ≤ fr(t). (4.8)

This implies that both fl and fr are increasing in I(µ|F) ∩ (0, 1). Observe that, again
combining (1) and (2), it also holds

fr(0) ≤ fl(t) ≤ fr(t),

fl(t) ≤ fr(t) ≤ fl(1)

for every t ∈ I(µ|F) \{0, 1}, and then fr is increasing in I(µ|F) \{1} and fl is increasing
in I(µ|F) \ {0}.

(4) It is an immediate consequence of (4.8).
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(5) It is a straightforward consequence of (4). �

Thanks to the previous Theorem 4.10 the next definition is well posed.

Definition 4.11. Let us suppose that the MPVF F satisfies (4.2), let µ0, µ1 ∈ D(F).

If µ ∈ Γ0
o(µ0, µ1|F) we set [F,µ]0+ := lim

t↓0
[F,µ]r,t = lim

t↓0
[F,µ]l,t

If µ ∈ Γ1
o(µ0, µ1|F) we set [F,µ]1− := lim

t↑1
[F,µ]r,t = lim

t↑1
[F,µ]l,t.

Corollary 4.12. Let us keep the same notation of Theorem 4.10 and let s ∈ I(µ|F)∩ (0, 1) with
Φ ∈ F[µs].

(1) If µ ∈ Γ0
o(µ0, µ1|F), we have that

[F,µ]0+ ≤ [Φ,µ]l,s + λsW 2 = [Φ,µ]r,s + λsW 2; (4.9)

if moreover Φ0 ∈ F[µ0] then

[Φ0, µ1]r ≤ [Φ0,µ]r,0 ≤ [F,µ]0+. (4.10)

(2) If µ ∈ Γ1
o(µ0, µ1|F), we have that

[Φ,µ]l,s − λ(1− s)W 2 = [Φ,µ]r,s − λ(1− s)W 2 ≤ [F,µ]1−;

if moreover Φ1 ∈ F[µ1] then

[F,µ]1− ≤ [Φ1,µ]l,1 ≤ − [Φ1, µ0]r (4.11)

(3) In particular, for every Φ0 ∈ F[µ0], Φ1 ∈ F[µ1] and µ ∈ Γ01
o (µ0, µ1|F) we obtain

[Φ0,Φ1]r,µ ≤ [F,µ]0+ − [F,µ]1− ≤ λW 2
2 (µ0, µ1). (4.12)

(4.12) immediately yields the following property.

Corollary 4.13. Suppose that a MPVF F satisfies

for every µ0, µ1 ∈ D(F) the set Γ01
o (µ0, µ1|F) of (4.6) is not empty (4.13)

(e.g. if D(F) is open or geodesically convex), then F is λ-dissipative if and only if it satisfies
(4.2).

Proposition 4.14. Let F ⊂ P2(TX) be a MPVF satisfying (4.2), let µ0 ∈ D(F) and let Φ ∈
P2(TX|µ0). Consider the following statements

(P1) [Φ, µ]r + [Ψ, µ0]r ≤ λW 2
2 (µ0, µ) for every Ψ ∈ F with µ = x♯Ψ;

(P2) for every µ ∈ D(F) there exists Ψ ∈ F[µ] s.t. [Φ, µ]r + [Ψ, µ0]r ≤ λW 2
2 (µ0, µ);

(P3) [Φ,µ]r,0 ≤ [F,µ]0+ for every µ1 ∈ D(F), µ ∈ Γ0
o(µ0, µ1|F);

(P4) [Φ,µ]r,0 ≤ [F,µ]0+ for every µ1 ∈ D(F), µ ∈ Γ0
o(µ0, µ1|F);

(P5) [Φ,µ]r,0 ≤ λW 2
2 (µ0, µ1) + [F,µ]1− for every µ1 ∈ D(F), µ ∈ Γ1

o(µ0, µ1|F);
(P6) [Φ,µ]r,0 ≤ λW 2

2 (µ0, µ1) + [F,µ]1− for every µ1 ∈ D(F), µ ∈ Γ1
o(µ0, µ1|F).

Then the following hold

(1) (P1) ⇒ (P2) ⇒ (P3) ⇒ (P4);
(2) (P1) ⇒ (P2) ⇒ (P5) ⇒ (P6);
(3) if for every µ1 ∈ D(F) Γ0

o(µ0, µ1|F) 6= ∅, then (P4) ⇒ (P1) (in particular, (P1), (P2),
(P3), (P4) are equivalent);

(4) if for every µ1 ∈ D(F) Γ1
o(µ0, µ1|F) 6= ∅, then (P6) ⇒ (P1) (in particular, (P1), (P2),

(P5), (P6) are equivalent).
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Proof. We first prove that (P2) ⇒ (P3),(P5). Let us choose an arbitrary µ1 ∈ D(F); by the
definition of [F,µ]r,t and arguing as in the proof of Theorem 4.10(2), for all µ ∈ Γo(µ0, µ1) and
t ∈ I(µ|F) there exists Ψ ∈ F[µt] such that

[Φ,µ]r,0 =
1

t
[Φ, µt]r ≤ −1

t
[Ψ, µ0]r + tλW 2

2 (µ0, µ1) = [Ψ,µ]r,t + tλW 2
2 (µ0, µ1)

≤ [F,µ]r,t + tλW 2
2 (µ0, µ1)

where we also used (3.26). If µ ∈ Γ0
o(µ0, µ1|F), by passing to the limit as t ↓ 0 we get (P3).

In the second case, assuming that µ ∈ Γ1
o(µ0, µ1|F), we can pass to the limit as t ↑ 1 and we get

(P5).
We now prove item (3). Let µ1 ∈ D(F), Ψ ∈ F[µ1], µ ∈ Γ0

o(µ0, µ1|F), s ∈ I(µ|F) ∩ (0, 1),
Φs ∈ F[µs], with µs = xs♯µ. Assuming (P4) and using (4.10), (4.9), (3.26) and (4.2), we have

[Φ, µ1]r ≤ [Φ,µ]r,0 ≤ [F,µ]0+ ≤ [Φs,µ]r,s + λsW 2
2 (µ0, µ1)

=
1

1− s
[Φs, µ1]r + λsW 2

2 (µ0, µ1) ≤ − 1

1− s
[Ψ, µs]r + λ(1 + s)W 2

2 (µ0, µ1).

By Lemma 3.14, letting s ↓ 0 we get (P1). Item (4) follows by (4.10), (4.11). �

4.3. Extensions of dissipative MPVF

Let us briefly study a few simple properties about extensions of λ-dissipative MPVFs. The first
one concerns the sequential closure in Psw

2 (TX) (the sequential closure may be smaller than the
topological closure, but see Proposition 2.15): given A ⊂ P2(TX), we will denote by cl(A) its
sequential closure defined by

cl(A) :=
{

Φ ∈ P2(TX) : ∃Φn ∈ A : Φn → Φ in Psw
2 (TX)

}

.

Proposition 4.15. If F is a λ-dissipative MPVF then its sequential closure cl(F) is λ-dissipative
as well.

Proof. If Φi, i = 0, 1, belong to cl(F), we can find sequences Φi
n ∈ F such that Φi

n → Φi in
Psw
2 (TX) as n→ ∞, i = 0, 1. It is then sufficient to pass to the limit in the inequality

[

Φ0
n,Φ

1
n

]

r
≤ λW 2

2 (µ
0
n, µ

1
n), µin = x♯Φ

i
n

using the lower semicontinuity property (3.22) and the fact that convergence in Psw
2 (TX) yields

µin → x♯Φ
i in P2(X) as n→ ∞. �

A second result concerns the convexification of the sections of F. For every µ ∈ D(F) we set

co(F)[µ] := the convex hull of F[µ] =
{

∑

k

αkΦk : Φk ∈ F[µ], αk ≥ 0,
∑

k

αk = 1
}

,

co(F)[µ] := cl(co(F)[µ]).

Notice that if F[µ] is bounded in P2(TX) then co(F)[µ] coincides with the closed convex hull of
F[µ].

Proposition 4.16. If F is λ-dissipative, then co(F) and co(F) are λ-dissipative as well.

Proof. By Proposition 4.15 and noting that co(F) ⊂ cl(co(F)), it is sufficient to prove that co(F)
is λ-dissipative. By Lemma 4.6 it is not restrictive to assume λ = 0. Let Φi ∈ co(F)[µi], i = 0, 1;
there exist positive coefficients αi

k, k = 1, · · · ,K, with
∑

k α
i
k = 1, and elements Φi

k ∈ F[µi],

i = 0, 1, such that Φi =
∑K

k=1 α
i
kΦ

i
k. Setting βh,k := α0

hα
1
k, we can apply Lemma 3.16 and we

obtain
[

Φ0,Φ1
]

r
=
[

∑

h,k

βh,kΦ
0
h,
∑

h,k

βh,kΦ
1
k

]

r
≤
∑

h,k

βh,k
[

Φ0
h,Φ

1
k

]

r
≤ 0. �
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As a last step, we want to study the properties of the extended MPVF

F̂ :=
{

Φ ∈ P2(TX) : µ = x♯Φ ∈ D(F),

[Φ, ν]r + [Ψ, µ]r ≤ λW 2
2 (µ, ν) ∀Ψ ∈ F, ν = x♯Ψ

}

.
(4.14)

It is obvious that F ⊂ F̂; if the domain of F satisfies the geometric condition (4.16), the following

result shows that F̂ provides the maximal λ-dissipative extension of F.

Proposition 4.17. Let F be a λ-dissipative MPVF.

(a) If F′ ⊃ F is λ-dissipative with D(F′) ⊂ D(F), then F′ ⊂ F̂. In particular co(cl(F)) ⊂ F̂.

(b) ĉl(F) = F̂ and ĉo(F) = F̂.

(c) F̂ is sequentially closed and F̂[µ] is convex for every µ ∈ D(F̂).

(d) If D(F) satisfies (4.13), then the restriction of F̂ to D(F) is λ-dissipative and for every
µ0, µ1 ∈ D(F)

[F,µ]0+ = [F̂,µ]0+, [F,µ]1− = [F̂,µ]1− for every µ ∈ Γ01
o (µ0, µ1|F). (4.15)

(e) If µ0 ∈ D(F), µ1 ∈ D(F) and Γ1
o(µ0, µ1|F) 6= ∅ then

Φi ∈ F̂[µi] ⇒ [Φ0,Φ1]r ≤ λW 2
2 (µ0, µ1).

(f) If

for every µ0, µ1 ∈ D(F) the set Γ01
o (µ0, µ1|F) is not empty, (4.16)

then F̂ is λ-dissipative as well and for every µ0, µ1 ∈ D(F) (4.15) holds.

Proof. Claim (a) is obvious since every λ-dissipative extension F′ of F in D(F) satisfies F′ ⊂ F̂.

(b) Let us prove that if Φ ∈ F̂ then Φ ∈ ĉl(F). If Ψ ∈ cl(F) we can find a sequence Ψn ∈ F
converging to Ψ in Psw

2 (TX) as n→ ∞. We can then pass to the limit in the inequalities

[Φ, νn]r + [Φn, µ]r ≤ λW 2
2 (µ, νn), µ = x♯Φ, νn = x♯Ψn,

using the lower semicontinuity results of Lemma 3.14. We conclude since D(F) = D(cl(F)).

In order to prove that Φ ∈ F̂ ⇒ Φ ∈ ĉo(F) we take Ψ =
∑

αkΨk ∈ co(F); for some Ψk ∈ F[ν],
ν = x♯Ψ ∈ D(F), and positive coefficients αk, k = 1, · · · ,K, with

∑

k αk = 1. Taking a convex
combination of the inequalities

[Φ, ν]r + [Ψk, µ]r ≤ λW 2
2 (µ, ν), for every k = 1, · · · ,K,

and using Lemma 3.16 we obtain

[Φ, ν]r + [Ψ, µ]r ≤
∑

k

αk

(

[Φ, ν]r + [Ψk, µ]r

)

≤ λW 2
2 (µ, ν).

The proof of claim (c) follows by a similar argument.

(d) Let µi ∈ D(F), Φi ∈ F̂[µi], i = 0, 1, and µ ∈ Γ01
o (µ0, µ1|F). The implication (P1)⇒(P4) of

Proposition 4.14 applied to µ and to s♯µ yields

[Φ0,µ]r,0 ≤ [F,µ]0+, [Φ1, s♯µ]r,0 ≤ [F, s♯µ]0+ = −[F,µ]1−

so that (4.12) yields

[Φ0,Φ1]r ≤ [Φ0,µ]r,0 + [Φ1, s♯µ]r,0 ≤ [F,µ]0+ − [F,µ]1− ≤ λW 2
2 (µ0, µ1).

In order to prove (4.15) we observe that F ⊂ F̂ so that, for every µ ∈ Γ01
o (µ0, µ1|F) and every

t ∈ I(µ|F), we have [F,µ]r,t ≤ [F̂,µ]r,t and [F,µ]l,t ≥ [F̂,µ]l,t, hence (4.15) is a consequence of
Definition 4.11 and Theorem 4.10.
The proof of claim (f) follows by the same argument.
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In the case of claim (e), we use the implication (P1)⇒(P6) of Proposition 4.14 applied to µ and
the implication (P1)⇒(P3) applied to s♯µ, obtaining

[Φ0,µ]r,0 ≤ λW 2
2 (µ0, µ1) + [F,µ]1−, [Φ1, s♯µ]r,0 ≤ [F, s♯µ]0+ = −[F,µ]1−

and then

[Φ0,Φ1]r ≤ [Φ0,µ]r,0 + [Φ1, s♯µ]r,0 ≤ λW 2
2 (µ0, µ1). �

5. Examples of λ-dissipative MPVFs

In this section we present significant examples of λ-dissipative MPVFs which are interesting for
applications.

5.1. Subdifferentials of λ-convex functionals

Recall that a functional F : P2(X) → (−∞,+∞] is λ-(geodesically) convex on P2(X) (see [AGS08,
Definition 9.1.1]) if for any µ0, µ1 in the proper domain D(F) := {µ ∈ P2(X) | F(µ) < +∞}
there exists µ ∈ Γo(µ0, µ1) such that

F(µt) ≤ (1− t)F(µ0) + tF(µ1)−
λ

2
t(1− t)W 2

2 (µ0, µ1) ∀ t ∈ [0, 1],

where (µt)t∈[0,1] is the constant speed geodesic induced by µ, i.e. µt = xt♯µ.

The Fréchet subdifferential ∂F of F [AGS08, Definition 10.3.1] is a MPVF which can be charac-
terized [AGS08, Theorem 10.3.6] by

Φ ∈ ∂F[µ] ⇔ µ ∈ D(F), F(ν)− F(µ) ≥ − [Φ, ν]l +
λ

2
W 2

2 (µ, ν) for every ν ∈ D(F).

According to the notation introduced in (3.14), we set

− ∂F[µ] = J♯∂F[µ], J(x, v) = (x,−v), (5.1)

and we have the following result.

Theorem 5.1. If F : P2(X) → (−∞,+∞] is a proper, lower semicontinuous and λ-convex
functional, then −∂F is a (−λ)-dissipative MPVF.

Referring to [AGS08], here we list interesting and explicit examples of (−λ)-dissipative MPVFs
induced by proper, lower semicontinuous and λ-convex functionals, focusing on the cases when
D(∂F) = P2(X).

(1) Potential energy. Let P : X → R be a l.s.c. and λ-convex functional satisfying

|∂oP (x)| ≤ C(1 + |x|) for every x ∈ X,

for some constant C > 0, where ∂oP (x) is the element of minimal norm in ∂P (x). By
[AGS08, Proposition 10.4.2] the PVF

F[µ] := (iX,−∂oP )♯µ, µ ∈ P2(X),

is a (−λ)-dissipative selection of −∂FP for the potential energy functional

FP (µ) :=

∫

X

P dµ, µ ∈ P2(X).

(2) Interaction energy. If W : X → [0,+∞) is an even, differentiable, and λ-convex function
for some λ ∈ R, whose differential has a linear growth, then, by [AGS08, Theorem
10.4.11], the PVF

F[µ] := (iX, (−∇W ∗ µ))♯µ, µ ∈ P2(X),



DISSIPATIVE PVFS AND GENERATION OF EVOLUTION SEMIGROUPS IN WASSERSTEIN SPACES 29

is a (−λ)-dissipative selection of −∂FW , the opposite of the Wasserstein subdifferential
of the interaction energy functional

FW (µ) :=
1

2

∫

X2

W (x− y) d(µ⊗ µ)(x, y), µ ∈ P2(X).

(3) Opposite Wasserstein distance. Let µ̄ ∈ P2(X) be fixed and consider the functional
FWass : P2(X) → R defined as

FWass(µ) := −1

2
W 2

2 (µ, µ̄), µ ∈ P2(X),

which is geodesically (−1)-convex [AGS08, Proposition 9.3.12]. Setting

b(µ) := argmin

{
∫

X

|b(x)− x|2 dµ : b = bγ ∈ L2
µ(X;X), γ ∈ Γo(µ, µ̄)

}

,

the PVF

F[µ] := (iX, iX − b(µ))#µ, µ ∈ P2(X)

is a selection of −∂FWass(µ) and it is therefore 1-dissipative.

5.2. MPVF concentrated on the graph of a multifunction

The previous example of Section 5.1 has a natural generalization in terms of dissipative graphs in
X×X [AC84; AF09; Bré73]. We consider a (not empty) λ-dissipative set F ⊂ X×X, i.e. satisfying

〈v0 − v1, x0 − x1〉 ≤ λ|x0 − x1|2 for any (x0, v0), (x1, v1) ∈ F.

The corresponding MPVF defined as

F := {Φ ∈ P2(TX) | Φ is concentrated on F}
is λ-dissipative as well. In fact, if Φ0,Φ1 ∈ F with νi = x♯Φi, i = 0, 1, and Θ ∈ Λ(Φ0,Φ1) then
(x0, v0, x1, v1) ∈ F × F Θ-a.e., so that

∫

TX×TX

〈v0 − v1, x0 − x1〉dΘ(x0, v0, x1, v1) ≤ λ

∫

TX×TX

|x0 − x1|2 dΘ = λW 2
2 (ν0, ν1).

since (x0, x1)♯Θ ∈ Γo(ν0, ν1). Taking the supremum w.r.t. Θ ∈ Λ(Φ0,Φ1) we obtain [Φ0,Φ1]l ≤
λW 2

2 (ν0, ν1) which is even stronger than λ-dissipativity. If D(F ) = X then D(F) contains Pc(X),
the set of Borel probability measures with compact support. If F has also a linear growth, then
it is easy to check that D(F) = P2(X) as well.
Despite the analogy just shown with dissipative operators in Hilbert spaces, there are important
differences with the Wasserstein framework, as highlighted in the following examples. The main
point here is that the dissipativity property of Definition 4.3 does not force the sections v♯F[µ]
to belong to the tangent space Tanµ P2(X).

Example 5.2. Let X = R2, let B := {x ∈ R2 | |x| ≤ 1} be the closed unit ball, let LB be
the (normalized) Lebesgue measure on B, and let r : R2 → R2, r(x1, x2) = (x2,−x1) be the
anti-clockwise rotation of π/2 degrees. We define the MPVF

F[ν] =

{

(iR2 , 0)♯ν, if ν ∈ P2(R
2) \ {LB},

{(iR2 , ar)♯LB | a ∈ R} , if ν = LB .

Observe that D(F) = P2(R
2) and F is obviously unbounded at ν = LB . F also satisfies (4.2)

with λ = 0 (hence it is dissipative): it is enough to check that

[(iR2 , ar)♯LB, ν]r = 0 for every ν ∈ P2(R
2), a ∈ R. (5.2)
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To prove (5.2), we notice that the optimal transport plan from LB to ν is concentrated on a map
and optimal maps belong to the tangent space TanLB

P2(R
2) [AGS08, Prop. 8.5.2]; by Remark

3.18 we have just to check that
∫

R2

〈r(x),∇ϕ(x)〉dLB(x) = 0 ∀ϕ ∈ C∞
c (R2),

that is a consequence of the Divergence Theorem on B. This example is in contrast with the
Hilbertian theory of dissipative operators according to which an everywhere defined dissipative
operator is locally bounded (see [Bré73, Proposition 2.9]).

Example 5.3. In the same setting of the previous example, let us define the MPVF

F[ν] = (iR2 , r)♯ν, r(x1, x2) = (x2,−x1), ν ∈ P2(R
2).

It is easy to check that F is dissipative and Lipschitz continuous (as a map from P2(R
2) to

P2(TR
2)). Moreover, arguing as in Example 5.2, we can show that (iRd , 0)♯LB ∈ F̂[LB ], where

F̂ is defined in (4.14). This is again in contrast with the Hilbertian theory of dissipative operators,
stating that a single valued, everywhere defined, and continuous dissipative operator coincides
with its maximal extension (see [Bré73, Proposition 2.4]).

5.3. Interaction field induced by a dissipative map

Let us consider the Hilbert space Y = Xn, n ∈ N, endowed with the scalar product 〈x,y〉 :=
1
n

∑n
i=1〈xi, yi〉, for every x = (xi)

n
i=1, y = (yi)

n
i=1 ∈ Xn. We identify TY with (TX)n and we

denote by xi, vi the i-th coordinate maps. Every permutation σ : {1, · · · , n} → {1, · · · , n} in
Sym(n) operates on Y by the obvious formula σ(x)i = xσ(i), i = 1, · · · , n, x ∈ Y.
Let G : Y → Y be a Borel λ-dissipative map bounded on bounded sets (this property is always
true if Y has finite dimension) and satisfying

x ∈ D(G) ⇒ σ(x) ∈ D(G), G(σ(x)) = σ(G(x)) for every permutation σ. (5.3)

Denoting by (G1, · · · , Gn) the components of G, by xi the projections from Y to X and by
µ⊗n =

⊗n
i=1 µ, the MPVF

F[µ] := (x1, G1)♯µ
⊗n with domain D(F) := Pb(X)

is λ-dissipative as well. In fact, if µ, ν ∈ D(F), Φ = (x1, G1)♯µ
⊗n and Ψ = (x1, G1)♯ν

⊗n, and γ ∈
Γo(µ, ν), we can consider the plan β := P♯γ

⊗n ∈ Γ(µ⊗n, ν⊗n), where P ((x1, y1), · · · , (xn, yn)) :=
((x1, · · · , xn), (y1, · · · , yn)). Considering the map H1(x,y) := (x1, G

1(x), y1, G
1(y)) we have

Θ := H1
♯ β ∈ Λ(Φ,Ψ), so that

[Φ,Ψ]r ≤
∫

〈v1 − w1, x1 − y1〉dΘ(x1, v1, y1, w1) =

∫

〈G1(x)−G1(y), x1 − y1〉dβ(x,y)

=
1

n

n
∑

k=1

∫

〈Gk(x)−Gk(y), xk − yk〉dβ(x,y) =
∫

〈G(x)−G(y),x− y〉dβ(x,y)

where we used (5.3) and the invariance of β with respect to permutations. The λ-dissipativity
of G then yields
∫

〈G(x)−G(y),x− y〉dβ(x,y) ≤ λ

∫

|x− y|2Y dβ(x,y) = λ
1

n

n
∑

k=1

∫

|xk − yk|2Y dβ(x,y)

= λ
1

n

n
∑

k=1

∫

|xk − yk|2Y dγ(xk, yk) = λW 2
2 (µ, ν).

A typical example when n = 2 is provided by

G(x1, x2) := (A(x1 − x2), A(x2 − x1))
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where A : X → X is a Borel, locally bounded, dissipative and antisymmetric map satisfying
A(−z) = −A(z). We easily get

〈G(x)−G(y),x− y〉

=
1

2

(

〈A(x1 − x2)−A(y1 − y2), x1 − y1〉 − 〈A(x1 − x2)−A(y1 − y2), x2 − y2〉
)

=
1

2
〈A(x1 − x2)−A(y1 − y2), x1 − x2 − (y1 − y2)〉 ≤ 0.

In this case

F[µ] = (iX,a[µ])♯µ, a[µ](x) =

∫

X

A(x− y) dµ(y) for every x ∈ X.

6. Solutions to Measure Differential Inclusions

6.1. Metric characterization and EVI

Let I denote an arbitrary (bounded or unbounded) interval in R.
The aim of this section is to study a suitable notion of solution to the following differential
inclusion in the L2-Wasserstein space of probability measures

µ̇(t) ∈ F[µ(t)], t ∈ I, (6.1)

driven by a MPVF F as in Definition 4.1. In particular, we will address the usual Cauchy
problem when (6.1) is supplemented by a given initial condition.
Measure Differential Inclusions have been introduced in [Pic18] extending to the multi-valued
framework the theory of Measure Differential Equations developed in [Pic19]. In these papers,
the author aims to describe the evolution of curves in the space of probability measures under
the action of a so called probability vector field F (see Definition 4.1 and Remark 4.2). However,
as exploited also in [Cam+21], the definition of solution to (6.1) given in [Pic19; Pic18; Cam+21]
is too weak and it does not enjoy uniqueness property which is recovered only at the level of the
semigroup through an approximation procedure.
From the Wasserstein viewpoint, the simplest way to interpret (6.1) is to ask for a locally
absolutely continuous curve µ : I → P2(X) to satisfy

(iX,vt)♯µt ∈ F[µt] for a.e. t ∈ I, (6.2)

where v is the Wasserstein metric velocity vector associated to µ (see Theorem 2.10). Even in
the case of a regular PVF, however, (6.2) is too strong, since there is no reason why a given F[µt]
should be associated to a vector field of the tangent space Tanµt P2(X). Starting from (6.2), we
thus introduce a weaker definition of solution to (6.1), modeled on the so-called EVI formulation
for gradient flows, which will eventually suggest, as a natural formulation of (6.1), the relaxed

version of (6.2) as a differential inclusion with respect to the extension F̂ of F introduced in
(4.14).
We start from this simple remark: whenever F is λ-dissipative, recalling Theorem 3.11 and
Remark 4.5, one easily sees that every locally absolutely continuous solution according to the
above definition (6.2) also satisfies the Evolution Variational Inequality (λ-EVI)

1

2

d

dt
W 2

2 (µt, ν) ≤ λW 2
2 (µt, ν)− [Φ, µt]r in D

′
(

int (I)
)

, (λ-EVI)

for every ν ∈ D(F) and every Φ ∈ F[ν], where [·, ·]r is the functional pairing in Definition 3.5 (in
fact, (λ-EVI) holds a.e. in I). This provides a heuristic motivation for the following definition.

Definition 6.1 (λ-Evolution Variational Inequality). Let F be a MPVF and let λ ∈ R. We say

that a continuous curve µ : I → D(F) is a λ-EVI solution to (6.1) for the MPVF F if (λ-EVI)
holds for every ν ∈ D(F) and every Φ ∈ F[ν].
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A λ-EVI solution µ is said to be a strict solution if µt ∈ D(F) for every t ∈ I, t > inf I.
A λ-EVI solution µ is said to be a global solution if sup I = +∞.

In Example 6.32 we will clarify the interest in imposing no more than continuity in the above
definition.
Recall that the right upper and lower Dini derivatives of a function ζ : I → R are defined for
every t ∈ I, t < sup I by

d

dt

+

ζ(t) lim sup
h↓0

ζ(t+ h)− ζ(t)

h
,

d

dt+
ζ(t) lim inf

h↓0

ζ(t+ h)− ζ(t)

h
. (6.3)

Remark 6.2. Arguing as in [MS20, Lemma A.1] and using the lower semicontinuity of the map
t 7→ [Φ, µt]r, the distributional inequality of (λ-EVI) can be equivalently reformulated in terms
of the right upper or lower Dini derivatives of the squared distance function and requiring the
condition to hold for every t ∈ int (I):

1

2

d

dt

+

W 2
2 (µt, ν) ≤ λW 2

2 (µt, ν)− [Φ, µt]r for every t ∈ int (I) , Φ ∈ F, ν = x♯Φ, (λ-EVI1)

1

2

d

dt+
W 2

2 (µt, ν) ≤ λW 2
2 (µt, ν)− [Φ, µt]r for every t ∈ int (I) , Φ ∈ F, ν = x♯Φ. (λ-EVI2)

A further equivalent formulation [MS20, Theorem 3.3] involves the difference quotients: for every
s, t ∈ I, s < t

e−2λ(t−s)W 2
2 (µt, ν)−W 2

2 (µs, ν) ≤ −2

∫ t

s
e−2λ(r−s) [Φ, µr]r dr for every Φ ∈ F, ν = x♯Φ.

(λ-EVI3)
Finally, if µ is also locally absolutely continuous, then (λ-EVI1) and (λ-EVI2) are also equivalent
to

1

2

d

dt
W 2

2 (µt, ν) ≤ λW 2
2 (µt, ν)− [Φ, µt]r for a.e. t ∈ I and every Φ ∈ F, ν = x♯Φ.

The following Lemma provides a further insight.

Lemma 6.3. Let F be a λ-dissipative MPVF and let µ : I → D(F) be a continuous λ-EVI
solution to (6.1). We have

1

2

d

dt

+

W 2
2 (µt, ν) ≤ [F,µ]0+ for every ν ∈ D(F), t ∈ int (I), µ ∈ Γ0

o(µt, ν|F),
(6.4a)

1

2

d

dt

+

W 2
2 (µt, ν) ≤ λW 2

2 (µt, ν) + [F,µ]1− for every ν ∈ D(F), t ∈ int (I) , µ ∈ Γ1
o(µt, ν|F).

(6.4b)

If moreover µ is locally absolutely continuous with Wasserstein velocity field v satisfying (2.6)
for every t in the subset A(µ) ⊂ I of full Lebesgue measure, then

[(iX,vt)♯µt, ν]r ≤ λW 2
2 (µt, ν)− [Φ, µt]r if t ∈ A(µ), Φ ∈ F, ν = x♯Φ, (6.5a)

[(iX,vt)♯µt,µ]r,0 ≤ [F,µ]0+ if t ∈ A(µ), ν ∈ D(F), µ ∈ Γ0
o(µt, ν|F), (6.5b)

[(iX,vt)♯µt,µ]r,0 ≤ λW 2
2 (µt, ν) + [F,µ]1− if t ∈ A(µ), ν ∈ D(F), µ ∈ Γ1

o(µt, ν|F). (6.5c)

Proof. In order to check (6.5a) it is sufficient to combine (3.19) of Theorem 3.11 with (λ-EVI1).
(6.5b) and (6.5c) then follow applying Proposition 4.14. Let us now prove (6.4a): let us fix

ν ∈ D(F) and t ∈ int (I). Take µ ∈ Γo(µt, ν) and define the constant speed geodesic (νs)s∈[0,1]
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by νs := (xs)♯µ, thus in particular ν0 = µt and ν1 = ν. Then by Lemma 2.11, for every
s ∈ I(µ|F) ∩ (0, 1) and Φs ∈ F(νs) we have

1

2

d

dt

+

W 2
2 (µt, ν) ≤

1

2s

d

dt

+

W 2
2 (µt, νs) ≤ −1

s
[Φs, µt]r +

λ

s
W 2

2 (µt, νs)

≤ [F,µ]r,s + λsW 2
2 (µt, ν),

where the second inequality comes from (λ-EVI1). Taking µ ∈ Γ0
o(µt, ν|F) and passing to the

limit as s ↓ 0 we get (6.4a). Analogously for (6.4b). �

We can now give an interpretation of absolutely continuous λ-EVI solutions in terms of differ-
ential inclusions.

Theorem 6.4. Let F be a λ-dissipative MPVF and let µ : I → D(F) be a locally absolutely
continuous curve.

(1) If µ satisfies the differential inclusion (6.2) driven by any λ-dissipative extension of F
in D(F), then µ is also a λ-EVI solution to (6.1) for F.

(2) µ is a λ-EVI solution of (6.1) for F if and only if

(iX,vt)♯µt ∈ F̂[µt] for a.e. t ∈ I. (6.6)

(3) If D(F) satisfies (4.13) and µt ∈ D(F) for a.e. t ∈ I, then the following properties are
equivalent:

- µ is a λ-EVI solution to (6.1) for F.
- µ satisfies (6.5b).

- µ is a λ-EVI solution to (6.1) for the restriction of F̂ to D(F).
(4) If F satisfies (4.16) then µ is a λ-EVI solution to (6.1) for F if and only if it is a λ-EVI

solution to (6.1) for F̂.

Proof. (1) It is sufficient to apply Theorem 3.11 and the definition of λ-dissipativity.

The left-to-right implication ⇒ of (2) follows by (6.5a) of Lemma 6.3 and the definition of F̂.

Conversely, if µ satisfies (6.6), ν ∈ D(F), Φ ∈ F[ν], then Theorem 3.11 and the definition of F̂
yield

1

2

d

dt
W 2

2 (µt, ν) = [(iX,vt)♯µt, ν]r ≤ λW 2
2 (µt, ν)− [Φ, µt]r a.e. in I.

Claim (3) is an immediate consequence of Lemma 6.3, Proposition 4.17(d) and Proposition 4.14.

Claim (4) is a consequence of Proposition 4.17(f) and the λ-dissipativity of F̂. �

Proposition 6.5. Let F : P2(X) → (−∞,+∞] be a proper, lower semicontinuous and λ-convex
functional and let µ ∈ C(I; D(∂F)) be a locally absolutely continuous curve. Then

(1) if µ is a Gradient Flow for F i.e.

(iX,vt)♯µt ∈ −∂F(µt) a.e. t ∈ I,

then µ is a (−λ)-EVI solution of (6.1) for the MPVF −∂F as in (5.1);
(2) if µ is a (−λ)-EVI solution of (6.1) for the MPVF −∂F and the domain of ∂F satisfies

for a.e. t ∈ I, Γ0
o(µt, ν|∂F) 6= ∅ ∀ν ∈ D(∂F),

then µ is a Gradient Flow for F.

Proof. The first assertion is a consequence Theorem 6.4(1). We prove the second claim; by (6.5b)
we have that for a.e. t ∈ I it holds

[(iX,vt)♯µt, ν]r ≤ [(iX,vt)♯µt,µ]r,0 ≤ [−∂F,µ]0+ ∀ ν ∈ D(F) ∀µ ∈ Γ0
o(µt, ν|∂F).
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We show that for every ν0, ν1 ∈ D(∂F) and every ν ∈ Γ0
o(ν0, ν1|F)

[−∂F,ν]0+ ≤ F(ν1)− F(ν0)−
λ

2
W 2

2 (ν0, ν1). (6.7)

To prove that, we take s ∈ I(ν|∂F) ∩ (0, 1) and Φs ∈ −∂F(νs). By definition of subdifferential
we have

[Φs, ν1]r ≤ F(ν1)− F(νs)−
λ

2
W 2

2 (νs, ν1)

where νs = xs♯ν. Dividing by (1−s), using (3.26) and passing to the infimum w.r.t. Φs ∈ −∂F(νs)
we obtain

[−∂F,ν]r,s ≤
1

1− s
(F(ν1)− F(νs))−

λ(1− s)

2
W 2

2 (ν0, ν1).

Passing to the limit as s ↓ 0 and using the lower semicontinuity of F lead to the result. Once
that (6.7) is established we have that for a.e. t ∈ I it holds

[(iX,vt)♯µt, ν]r ≤ F(ν)− F(µt)−
λ

2
W 2

2 (µt, ν) for every ν ∈ D(∂F). (6.8)

To conclude it is enough to use the lower semicontinuity of the LHS (see Lemma 3.14) and the
fact that D(∂F) is dense in D(F) in energy: indeed we can apply [NS21, Corollary 4.5] and
[AGS08, Lemma 3.1.2] to the proper, lower semicontinuous and convex functional Fλ : P2(X) →
(−∞,+∞] defined as

Fλ(ν) = F(ν)− λ

2
m2

2(ν)

to get the existence, for every ν ∈ D(F), of a family (ντ )τ>0 ⊂ D(Fλ) = D(F) s.t.

ντ → ν, Fλ(ντ ) → Fλ(ν) as τ ↓ 0.

Of course F(ντ ) → F(ν) as τ ↓ 0 and, applying [AGS08, Lemma 10.3.4], we see that ντ ∈
D(∂Fλ). However ∂Fλ = Lλ

♯ ∂F (see (4.5)) so that ντ ∈ D(∂F). We can thus write (6.8) for
ντ in place of ν and pass to the limit as τ ↓ 0, obtaining that, by definition of subdifferential,
(iX,vt)♯µt ∈ −∂F(µt) for a.e. t ∈ I. �

We derive a further useful a priori bound for λ-EVI solutions.

Proposition 6.6. Let F be a λ-dissipative MPVF and let T ∈ (0,+∞]. Every λ-EVI solution

µ : [0, T ) → D(F) with initial datum µ0 ∈ D(F) satisfies the a priori bound

W2(µt, µ0) ≤ 2|F|2(µ0)
∫ t

0
eλs ds, for all t ∈ [0, T ), (6.9)

where

|F|2(µ) := inf
{

|Φ|2 : Φ ∈ F[µ]
}

for every µ ∈ D(F).

Proof. Let Φ ∈ F(µ0). (λ-EVI) with ν := µ0 then yields

d

dt

+

W 2
2 (µt, µ0)− 2λW 2

2 (µt, µ0) ≤ −2 [Φ, µt]r ≤ 2|Φ|2W2(µt, µ0), for every t ∈ [0, T ).

We can then apply the estimate of [AGS08, Lemma 4.1.8] to obtain

e−λtW2(µt, µ0) ≤ 2|Φ|2
∫ t

0
e−λs ds, for all t ∈ [0, T ),

which in turn yields (6.9). �

We conclude this section with a result showing the robustness of the notion of λ-EVI solution.

Proposition 6.7. If µn : I → D(F) is a sequence of λ-EVI solutions locally uniformly converging
to µ as n→ ∞, then µ is a λ-EVI solution.
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Proof. µ is a continuous curve defined in I with values in D(F). Using pointwise convergence,
the lower semicontinuity of µ 7→ [Φ, µ]r of Lemma 3.14, and Fatou’s Lemma, it is easy to pass
to the limit in the equivalent characterization (λ-EVI3) of λ-EVI solutions, written for µn. �

6.2. Local existence of λ-EVI solutions by the Explicit Euler Scheme

In order to prove the existence of a λ-EVI solution to (6.1), our strategy is to employ an
approximation argument through an Explicit Euler scheme as it occurs for ODEs.
In the following ⌊·⌋ and ⌈·⌉ denote the floor and the ceiling functions respectively.

Definition 6.8 (Explicit Euler Scheme). Let F be a MPVF and suppose we are given a step
size τ > 0, an initial datum µ0τ ∈ D(F), a bounded interval [0, T ], corresponding to the final step
N(T, τ) := ⌈T/τ⌉ , and a stability bound L > 0. A sequence (Mn

τ ,F
n
τ )0≤n≤N(T,τ) ⊂ D(F)×F is

a L-stable solution to the Explicit Euler Scheme in [0, T ] starting from µ0τ ∈ D(F) if










M0
τ = µ0τ ,

F n
τ ∈ F[Mn

τ ], |F n
τ |2 ≤ L 0 ≤ n < N(T, τ),

Mn
τ = (expτ )♯F

n−1
τ 1 ≤ n ≤ N(T, τ).

(EE)

We define the following two different interpolations of the sequence (Mn
τ ,F

n
τ ):

• the affine interpolation:

Mτ (t) := (expt−nτ )♯F
n
τ if t ∈ [nτ, (n+ 1)τ ] for some n ∈ N, 0 ≤ n < N(T, τ), (6.10)

• the piecewise constant interpolation:

M̄τ (t) :=M ⌊t/τ⌋
τ , t ∈ [0, T ],

F τ (t) := F⌊t/τ⌋
τ , t ∈ [0, T ].

We will call E (µ0τ , τ, T, L) (resp. M (µ0τ , τ, T, L)) the (possibly empty) set of all the curves
(Mτ ,F τ ) (resp. Mτ ) arising from the solution of (EE).

The affine interpolation can be trivially written as

Mτ (t) =
(

expt−⌊t/τ⌋τ
)

♯
(F τ (t)) , t ∈ [0, T ],

and Mτ satisfies the uniform Lipschitz bound

W2(Mτ (t),Mτ (s)) ≤ L|t− s| 0 ≤ s ≤ t ≤ T, Mτ ∈ E (µ0, τ, T, L). (6.11)

Notice that, since in general F[µ] is not reduced to a singleton, the sets E (µ0, τ, T, L) and
M (µ0, τ, T, L) may contain more than one element (or may be empty). Stable solutions to the
Explicit Euler scheme generated by a λ-dissipative MPVF exhibit a nice behaviour, which is
clarified by the following important result, which will be proved in Section 7 (see Proposition
7.3 and Theorems 7.4, 7.5, 7.7), with a more accurate estimate of the error constants A(ϑ). We
stress that in the next statement A(ϑ) solely depend on ϑ (in particular, it is independent of
λ,L, T, τ, η,Mτ ,Mη).

Theorem 6.9. Let F be a λ-dissipative MPVF.

(1) For every µ0, µ
′
0 ∈ D(F), every Mτ ∈ M (µ0, τ, T, L), M

′
τ ∈ M (µ′0, τ, T, L) with τλ+ ≤ 2

we have

W2(Mτ (t),M
′
τ (t)) ≤ eλtW2(µ0, µ

′
0) + 8L

√
tτ
(

1 + |λ|
√
tτ
)

eλ+t for every t ∈ [0, T ]. (6.12)

(2) For every ϑ > 1 there exists a constant A(ϑ) such that if Mτ ∈ M (M0
τ , τ, T, L) and

Mη ∈ M (M0
η , η, T, L) with λ+(τ + η) ≤ 1 then

W2(Mτ (t),Mη(t)) ≤
(

ϑW2(M
0
τ ,M

0
η ) +A(ϑ)L

√

(τ + η)(t+ τ + η)
)

eλ+ t, t ∈ [0, T ].
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(3) For every ϑ > 1 there exists a constant A(ϑ) such that if µ ∈ C([0, T ]; D(F)) is a λ-EVI
solution and Mτ ∈ M (M0

τ , τ, T, L) then

W2(µ(t),Mτ (t)) ≤
(

ϑW2(µ0,M
0
τ ) +A(ϑ)L

√

τ(t+ τ)
)

eλ+t for every t ∈ [0, T ]. (6.13)

(4) If n 7→ τ(n) is a vanishing sequence of time steps, (µ0,n)n∈N is a sequence in D(F)

converging to µ0 ∈ D(F) in P2(X) and Mn ∈ M (µ0,n, τ(n), T, L), then Mn is uniformly

converging to a limit curve µ ∈ Lip([0, T ]; D(F)) which is a λ-EVI solution starting from
µ0.

If we assume that the Explicit Euler scheme is locally solvable, Theorem 6.9 provides a crucial
tool to obtain local existence and uniqueness of λ-EVI solutions.

Definition 6.10 (Local and global solvability of (EE)). We say that the Explicit Euler Scheme
(EE) associated to a MPVF F is locally solvable at µ0 ∈ D(F) if there exist strictly positive
constants τ , T, L such that E (µ0, τ, T, L) is not empty for every τ ∈ (0, τ ).
We say that (EE) is globally solvable at µ0 ∈ D(F) if for every T > 0 there exist strictly positive
constants τ , L such that E (µ0, τ, T, L) is not empty for every τ ∈ (0, τ ).

Let us now state the main existence result for λ-EVI solutions. Given T ∈ (0,+∞] and µ :
[0, T ) → P2(X) we denote by |µ̇|+(t) the right upper metric derivative

|µ̇|+(t) := lim sup
h↓0

W2(µt+h, µt)

h
.

Theorem 6.11 (Local existence and uniqueness). Let F be a λ-dissipative MPVF.

(a) If the Explicit Euler Scheme is locally solvable at µ0 ∈ D(F), then there exists T > 0

and a unique λ-EVI solution µ ∈ Lip([0, T ]; D(F)) starting from µ0, satisfying

t 7→ e−λt|µ̇|+(t) is decreasing in [0, T ). (6.14)

If µ′ : [0, T ′] → D(F) is any other λ-EVI solution starting from µ0 then µ(t) = µ′(t) if
0 ≤ t ≤ T ∧ T ′.

(b) If the Explicit Euler Scheme is locally solvable in D(F) and

for any local λ-EVI solution µ starting from µ0 ∈ D(F)

there exists δ > 0 : t ∈ [0, δ] ⇒ µ(t) ∈ D(F),
(6.15)

then for every µ0 ∈ D(F) there exist a unique maximal time T ∈ (0,∞] and a unique
strict λ-EVI solution µ ∈ Liploc([0, T );D(F)) starting from µ0, which satisfies (6.14) and

T <∞ ⇒ lim
t↑T

µt 6∈ D(F). (6.16)

Any other λ-EVI solution µ′ : [0, T ′) → D(F) starting from µ0 coincides with µ in
[0, T ∧ T ′).

Proof. (a) Let τ , T, L positive constants such that E (µ0, τ, T, L) is not empty for every τ ∈ (0, τ ).
Thanks to Theorem 6.9(2), the family Mτ ∈ E (µ0, τ, T, L) satisfies the Cauchy condition in
C([0, T ];P2(X)) so that there exists a unique limit curve µ = limτ↓0Mτ which is also Lipschitz
in time, thanks to the a-priori bound (6.11). Theorem 6.9(4) shows that µ is a λ-EVI solution
starting from µ0 and the estimate (6.13) of Theorem 6.9(3) shows that any other λ-EVI solution
in an interval [0, T ′] starting from µ0 should coincide with µ in [0, T ′ ∧ T ].
Let us now check (6.14): we fix s, t such that 0 ≤ s < t < T and h ∈ (0, T − t), and we set
sτ := τ ⌊s/τ⌋, hτ := τ ⌊h/τ⌋. The curves r 7→ Mτ (sτ + r), r 7→ Mτ (sτ + hτ + r) belong to
M (Mτ (sτ ), τ, t − s, L) and M (Mτ (sτ + hτ ), τ, t− s, L), so that (6.12) yields

W2(Mτ (sτ + t− s),Mτ (sτ + hτ + (t− s))) ≤ eλ(t−s)W2(Mτ (sτ ),Mτ (sτ + hτ )) +B
√
τ ,
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for B = B(λ,L, τ , T ). Passing to the limit as τ ↓ 0 we get

W2(µ(t), µ(t+ h)) ≤ eλ(t−s)W2(µ(s), µ(s + h)).

Dividing by h and passing to the limit as h ↓ 0 we get (6.14).

(b) Let us call S the collection of λ-EVI solutions µ : [0, S) → D(F) starting from µ0 with values
in D(F) and defined in some interval [0, S), S = S(µ). Thanks to (6.15) and the previous claim
the set S is not empty.
It is also easy to check that two curves µ′, µ′′ ∈ S coincide in the common domain [0, S) with
S := S(µ′) ∧ S(µ′′): in fact the set {t ∈ [0, S) : µ′(r) = µ′′(r) if 0 ≤ r ≤ t} contains t = 0, is
closed since µ′, µ′′ are continuous, and it is also open since if µ′ = µ′′ in [0, t] then the previous
claim and the fact that µ′(t) = µ′′(t) ∈ D(F) show that µ′ = µ′′ also in a right neighborhood of
t. Since [0, S) is connected, we conclude that µ′ = µ′′ in [0, S).
We can thus define T := sup{S(µ) : µ ∈ S} obtaining that there exists a unique λ-EVI solution
µ starting from µ0 and defined in [0, T ) with values in D(F).
If T < ∞, since µ is Lipschitz in [0, T ) thanks to (6.14), we know that there exists the limit
µ̄ := limt↑T µ(t) in P2(X). If µ̄ ∈ D(F) we can extend µ to a λ-EVI solution with values in D(F)
and defined in an interval [0, T ′) with T ′ > T , which contradicts the maximality of T . �

Recall that a set A in a metric space X is locally closed if every point of A has a neighborhood
U such that A ∩ U = Ā ∩ U . Equivalently, A is the intersection of an open and a closed subset
of X. In particular, open or closed sets are locally closed.

Corollary 6.12. Let F be a λ-dissipative MPVF for which the Explicit Euler Scheme is locally
solvable in D(F). If D(F) is locally closed then for every µ0 ∈ D(F) there exists a unique
maximal strict λ-EVI solution µ ∈ Liploc([0, T );D(F)), T ∈ (0,+∞], satisfying (6.16).

Let us briefly discuss the question of local solvability of the Explicit Euler scheme. The main
constraints of the Explicit Euler construction relies on the a priori stability bound and in the
condition Mn

τ ∈ D(F) for every step 0 ≤ n ≤ N(T, τ). This constraint is feasible if at each
measure Mn

τ , 0 ≤ n < N(T, τ), the set Admτ,L(M
n
τ ) defined by

Admτ,L(µ) :=
{

Φ ∈ F[µ] : |Φ|2 ≤ L and expτ♯ Φ ∈ D(F)
}

is not empty. If D(F) is open and F is locally bounded, then it is easy to check that the Explicit
Euler scheme is locally solvable (see Lemma 6.13). We will adopt the following notation:

|F|2(µ) := inf
{

|Φ|2 : Φ ∈ F[µ]
}

for every µ ∈ D(F), (6.17)

and we will also introduce the upper semicontinuous envelope |F|2⋆ of the function |F|2: i.e.

|F|2⋆(µ) := inf
δ>0

sup
{

|F|2(ν) : ν ∈ D(F), W2(ν, µ) ≤ δ
}

= sup
{

lim sup
k→∞

|F|2(µk) : µk ∈ D(F), µk → µ in P2(X)
}

.

Lemma 6.13. If F is a λ-dissipative MPVF, µ0 ∈ Int(D(F)) and F is bounded in a neighborhood
of µ0, i.e. there exists ̺ > 0 such that |F|2 is bounded in B(µ0, ̺), then the Explicit Euler scheme
is locally solvable at µ0 and the locally Lipschitz solution µ given by Theorem 6.11(a) satisfies

|µ̇|+(t) ≤ eλt|F|2⋆(µ0) ∀ t ∈ [0, T ). (6.18)

In particular, if D(F) is open and F is locally bounded, for every µ0 ∈ D(F) there exists a unique
maximal λ-EVI solution µ ∈ Liploc([0, T );P2(X)) satisfying (6.16) and (6.18).
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Proof. Let µ0 ∈ Int(D(F)) and let ̺, L > 0 so that |F|2(µ) < L for every µ ∈ B(µ0, ̺).
We set T := ̺/(2L), τ = T ∧ 1 and we perform a simple induction argument to prove that
W2(M

n
τ , µ0) ≤ Lnτ < ̺ if n ≤ N(T, τ) so that we can always find an element F n

τ ∈ Fτ,L. In fact,
if W2(M

n
τ , µ0) < Lnτ and n < N(T, τ) then W2(M

n+1
τ , µ0) ≤ W2(M

n+1
τ ,Mn

τ ) +W2(M
n
τ , µ0) ≤

L(n+1)τ . (6.14) shows that |µ̇t|+ ≤ Leλt for every L > |F|2⋆(µ0), so that we obtain (6.18). �

More refined estimates will be discussed in the next sections. Here we will show another example,
tailored to the case of measures with bounded support.

Proposition 6.14. Let F be a λ-dissipative MPVF such that D(F) ⊂ Pb(X) and for every
µ0 ∈ D(F) there exist ̺ > 0, L > 0 such that for every µ ∈ Pb(X)

supp(µ) ⊂ supp(µ0) + BX(̺) ⇒ ∃Φ ∈ F[µ] : supp(v♯Φ) ⊂ BX(L).

Then for every µ0 ∈ D(F) there exists T ∈ (0,+∞] and a unique maximal strict λ-EVI solution
µ ∈ Liploc([0, T );D(F)) satisfying (6.16).

Proof. Arguing as in the proof of Lemma 6.13, it is easy to check that setting T := ̺/4L,
τ = T ∧1 we can find a discrete solution (Mτ ,F τ ) ∈ E (µ0, τ, T, L) satisfying the more restrictive
condition supp(Mn

τ ) ⊂ supp(µ0)+BX(Lnτ) ⊂ supp(µ0)+BX(̺/2), supp(v♯F
n
τ ) ⊂ BX(L) so that

the Explicit Euler scheme is locally solvable and Mτ satisfies the uniform bound

supp(Mτ (t)) ⊂ supp(µ0) + BX(̺/2) for every t ∈ [0, T ]. (6.19)

Theorem 6.11 then yields the existence of a local solution, and Theorem 6.9(3) shows that the
local solution satisfies the same bound (6.19) on the support, so that (6.15) holds. �

6.3. Stability and uniqueness

In the following theorem we prove a stability result for λ-EVI solutions of (6.1), as it occurs in
the classical Hilbertian case scenario. We distinguish three cases: the first one assumes that the
Explicit Euler scheme is locally solvable in D(F).

Theorem 6.15 (Uniqueness and Stability). Let F be a λ-dissipative MPVF such that the Explicit

Euler scheme is locally solvable in D(F), and let µ1, µ2 : [0, T ) → D(F), T ∈ (0,+∞], be λ-EVI
solutions to (6.1). If µ1 is strict, then

W2(µ
1
t , µ

2
t ) ≤W2(µ

1
0, µ

2
0)e

λ+ t for every t ∈ [0, T ). (6.20)

In particular, if µ10 = µ20 then µ1 ≡ µ2 in [0, T ).
If µ1, µ2 are both strict, then

W2(µ
1
t , µ

2
t ) ≤W2(µ

1
0, µ

2
0)e

λt for all t ∈ [0, T ). (6.21)

Proof. In order to prove (6.20), let us fix t ∈ (0, T ). Since the Explicit Euler scheme is locally
solvable and µ1t ∈ D(F), there exist τ , δ, L such that M (µ1t , τ, δ, L) is not empty for every
τ ∈ (0, τ ). If M1

τ ∈ M (µ1t , τ, δ, L), then (6.13) yields

W2(µ
1
t+h, µ

2
t+h) ≤W2(M

1
τ (h), µ

2
t+h) +W2(M

1
τ (h), µ

1
t+h)

≤ ϑW2(µ
1
t , µ

2
t )e

λ+h +B
√
τ if 0 ≤ h ≤ δ,

for B = B(λ,L, τ , δ) Passing to the limit as τ ↓ 0 we obtain

W2(µ
1
t+h, µ

2
t+h) ≤ ϑW2(µ

1
t , µ

2
t )e

λ+h

and a further limit as ϑ ↓ 1 yields

W2(µ
1
t+h, µ

2
t+h) ≤W2(µ

1
t , µ

2
t )e

λ+h for every h ∈ [0, δ],

which implies that the map t 7→ e−λ+tW2(µ
1
t , µ

2
t ) is decreasing in [t, t + δ]. Since t is arbitrary,

we obtain (6.20).
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In order to prove the estimate (6.21) (which is better than (6.20) when λ < 0), we argue in a
similar way, using (6.12).
As before, for a given t ∈ (0, T ), since the Explicit Euler scheme is locally solvable and µ1t , µ

2
t ∈

D(F), there exist τ , δ, L such that M (µ1t , τ, δ, L) and M (µ2t , τ, δ, L) are not empty for every
τ ∈ (0, τ ). If M i

τ ∈ M (µit, τ, δ, L), for i = 1, 2, (6.12) and (6.13) then yield

W2(µ
1
t+h, µ

2
t+h) ≤W2(µ

1
t+h,M

1
τ (h)) +W2(M

1
τ (h),M

2
τ (h)) +W2(µ

2
t+h,M

2
τ (h))

≤ eλhW2(µ
1
t , µ

2
t ) +B

√
τ if 0 ≤ h ≤ δ,

for B = B(λ,L, τ , δ). Passing to the limit as τ ↓ 0 we obtain

W2(µ
1
t+h, µ

2
t+h) ≤ eλhW2(µ

1
t , µ

2
t )

which implies that the map t 7→ e−λtW2(µ
1
t , µ

2
t ) is decreasing in (0, T ). �

It is possible to prove (6.21) by a direct argument depending on the definition of λ-EVI solution
and a geometric condition on D(F). The simplest situation deals with absolutely continuous
curves.

Theorem 6.16 (Stability for absolutely continuous solutions). Let F be a λ-dissipative MPVF

and let µ1, µ2 : [0, T ) → D(F), T ∈ (0,+∞], be locally absolutely continuous λ-EVI solutions to
(6.1). If Γ0

o(µ
1
t , µ

2
t |F) 6= ∅ for a.e. t ∈ (0, T ), then (6.21) holds. In particular, if µ10 = µ20 then

µ1 ≡ µ2 in [0, T ).

Proof. Since µ1, µ2 are locally absolutely continuous curves, we can apply Theorem 3.13 and find
a subset A ⊂ A(µ1)∩A(µ2) of full Lebesgue measure such that (3.20) holds and Γ0

o(µ
1
t , µ

2
t |F) 6= ∅

for every t ∈ A. Selecting µt ∈ Γ0
o(µ

1
t , µ

2
t |F), we have

1

2

d

dt
W 2

2 (µ
1
t , µ

2
t ) =

∫

〈v1
t (x1), x1 − x2〉dµt(x1, x2) +

∫

〈v2
t (x2), x2 − x1〉dµt(x1, x2).

Using (6.5b), (6.5c), for every t ∈ A we get

1

2

d

dt
W 2

2 (µ
1
t , µ

2
t ) =

[

(iX,vt)♯µ
1
t , µ

2
t

]

r
≤ [F,µt]0+ + λW 2

2 (µ
1
t , µ

2
t ) + [F, s♯µt]1− = λW 2

2 (µ
1
t , µ

2
t ),

where we also used the property

[F, s♯µt]1− = −[F,µt]0+. �

The last situation deals with comparison between an absolutely continuous and a merely contin-
uous λ-EVI solution. The argument is technically more involved and takes inspiration from the
proof of [NS06, Theorem 1.1]: we refer to the Introduction of [NS06] for an explanation of the
heuristic idea. Since it is also at the core of the discrete estimates of Theorem 6.9, we present
it here in the easier continuous setting.

Theorem 6.17 (Refined stability). Let T > 0 and let µ1 ∈ AC([0, T ]; D(F)) and µ2 ∈
C([0, T ]; D(F)) be λ-EVI solutions for the λ-dissipative MPVF F. If at least one of the follow-
ing properties hold:

(1) Γ0
o(µ

1
r , µ

2
s|F) 6= ∅ for every s ∈ (0, T ) and r ∈ [0, T ) \N with N ⊂ (0, T ), L1(N) = 0;

(2) µ1 satisfies (6.2),

then
W2(µ

1
t , µ

2
t ) ≤ eλtW2(µ

1
0, µ

2
0) for every t ∈ [0, T ].

Proof. We extend µ1 in (−∞, 0) with the constant value µ10, we denote by v the Wasserstein
velocity field associated to µ1 (and extended to 0 outside A(µ1)) and we define the functions
w, f, h : (−∞, T ]× [0, T ] → R by

w(r, s) := W2(µ
1
r, µ

2
s)
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f(r, s) :=

{

2|F|2(µ10)w(0, s) if r < 0,

0 if r ≥ 0,
h(r, s) :=

{

0 if r < 0,

2
[

(iX,vr)♯µ
1
r, µ

2
s

]

r
if r ≥ 0.

Theorem 3.11 yields

∂

∂r
w2(r, s) = h(r, s) in D′(−∞, T ) for every s ∈ [0, T ]. (6.22)

In case (1) holds, writing (6.4b) for µ2 with ν = µ1r with r ∈ (−∞, T ] \ N , then for every
µrs ∈ Γ0

o(µ
1
r , µ

2
s|F) we obtain

d

ds

+

w2(r, s) ≤ 2λw2(r, s)− 2[F,µrs]0+ for s ∈ (0, T ) and r ∈ (−∞, T ) \N. (6.23)

On the other hand (6.5b) yields

−2[F,µrs]0+ ≤ −2[(iX,vr)♯µ
1
r ,µrs]r,0 ≤ −2

[

(iX,vr)♯µ
1
r, µ

2
s

]

r
for every r ∈ A(µ1) \N,

−2[F,µrs]0+ ≤ 2|F|2(µ10)w(0, s) = f(r, s) for every r < 0.
(6.24)

Combining (6.23) and (6.24) we obtain

d

ds

+

w2(r, s) ≤ 2λw2(r, s) + f(r, s)− h(r, s) for s ∈ (0, T ), r ∈ (−∞, 0] ∪A(µ1) \N.

Since |h(r, s)| ≤ 2|µ̇1r|w(r, s), applying Lemma C.2 we get

∂

∂s
w2(r, s) ≤ 2λw2(r, s) + f(r, s)− h(r, s) in D′(0, T ) for a.e. r ∈ (−∞, T ]. (6.25)

(6.25) can also be deduced in case (2) using (6.2).
By multiplying both inequalities (6.22) and (6.25) by e−2λs we get

∂

∂r

(

e−2λsw2(r, s)
)

= e−2λsh(r, s) in D′(−∞, T ) and every s ∈ [0, T ],

∂

∂s

(

e−2λsw2(r, s)
)

≤ e−2λs
(

f(r, s)− h(r, s)
)

in D′(0, T ) and a.e. r ∈ (−∞, T ].

We fix t ∈ [0, T ] and ε > 0 and we apply the Divergence theorem in [NS06, Lemma 6.15] on the
two-dimensional strip Qε

0,t as in Figure 1,

Qε
0,t := {(r, s) ∈ R2 | 0 ≤ s ≤ t , s− ε ≤ r ≤ s},

and we get

✻

✲

✛ ✲ε

✛ ✲
ε r = t

s = t

�
�
�
�
�
�
�
�
�
��

�
�
�
�
�
�
�
�
�
��

Qε
0,t

r

s

r = s

r = s− ε

Figure 1. Strip Qε
0,t corresponding to penalization about the diagonal {r = s}.
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∫ t

t−ε
e−2λtw2(r, t) dr ≤

∫ 0

−ε
w2(r, 0) dr +

∫∫

Qε
0,t

e−2λsf(r, s) dr ds.

Using

w(t, t) ≤
∫ t

r
|µ̇1|(u) du+ w(r, t) ≤

∫ t

t−ε
|µ̇1|(u) du+ w(r, t) if t− ε ≤ r ≤ t,

then, for every ϑ, ϑ⋆ > 1 conjugate coefficients (ϑ⋆ = ϑ/(ϑ− 1)), we get

w2(t, t) ≤ ϑw2(r, t) + ϑ⋆

(
∫ t

t−ε
|µ̇1|(u) du

)2

. (6.26)

Integrating (6.26) w.r.t. r in the interval (t− ε, t), we obtain

e−2λtw2(t, t) ≤ ϑ

ε

∫ t

t−ε
e−2λtw2(r, t) dr + ϑ⋆

(
∫ t

t−ε
|µ̇1|(u) du

)2

max{1, e2|λ|T }. (6.27)

Finally, we have the following inequality

ε−1

∫∫

Qε
0,t

e−2λsf(r, s) dr ds ≤ 2|F|2(µ0)
∫ ε

0
e−2λsw(0, s) ds. (6.28)

Summing up (6.27) and (6.28) we obtain

e−2λtw2(t) ≤ ϑ

(

w2(0) + 2|F|2(µ0)
∫ ε

0
e−2λsw(0, s) ds

)

+ ϑ⋆

(
∫ t

t−ε
|µ̇1|(u) du

)2

max{1, e2|λ|T }.

where we have used the notation w(s) = w(s, s). Taking the limit as ε ↓ 0 and ϑ ↓ 1, we obtain
the thesis. �

Corollary 6.18 (Local Lipschitz estimate). Let F be a λ-dissipative MPVF and let µ : (0, T ) →
D(F), T ∈ (0,+∞], be a λ-EVI solution to (6.1). If at least one of the following two conditions
holds

(a) µ is strict and (EE) is locally solvable in D(F),
(b) µ is locally absolutely continuous and (4.16) holds,

then µ is locally Lipschitz and

t 7→ e−λt|µ̇|+(t) is decreasing in (0, T ). (6.29)

Proof. Since for every h > 0 the curve t 7→ µt+h is a λ-EVI solution, (6.21) yields

e−λ(t−s)W2(µt+h, µt) ≤W2(µs+h, µs) for every 0 < s < t.

Dividing by h and taking the limsup as h ↓ 0, we get (6.29), which in turn shows the local
Lipschitz character of µ. �

6.4. Global existence and generation of λ-flows

We collect here a few simple results on the existence of global solutions and the generation of a
λ-flow. A first result can be deduced from the global solvability of the Explicit Euler scheme.

Theorem 6.19 (Global existence). Let F be a λ-dissipative MPVF. If the Explicit Euler
Scheme is globally solvable at µ0 ∈ D(F), then there exists a unique global λ-EVI solution

µ ∈ Liploc([0,∞);D(F)) starting from µ0.

Proof. We can argue as in the proof of Theorem 6.11(a), observing that the global solvability of
(EE) allows for the construction of a limit solution on every interval [0, T ], T > 0. �
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Let us provide a simple condition ensuring global solvability, whose proof is deferred to Section
7.

Proposition 6.20. Let F be a λ-dissipative MPVF such that for every R > 0 there exist
M = M(R) > 0 and τ̄ = τ̄(R) > 0 such that

µ ∈ D(F), m2(µ) ≤ R, 0 < τ ≤ τ̄ ⇒ ∃Φ ∈ F[µ] : |Φ|2 ≤ M(R), expτ♯ Φ ∈ D(F). (6.30)

Then the Explicit Euler scheme is globally solvable in D(F).

Global existence of λ-EVI solution is also related to the existence of a λ-flow.

Definition 6.21. We say that the λ-dissipative MPVF F generates a λ-flow if for every µ0 ∈
D(F) there exists a unique λ-EVI solution µ = S[µ0] starting from µ0 and the maps µ0 7→
St[µ0] = (S[µ0])t induce a semigroup of Lipschitz transformations (St)t≥0 of D(F) satisfying

W2(St[µ0],St[µ1]) ≤ eλtW2(µ0, µ1) for every t ≥ 0. (6.31)

Theorem 6.22 (Generation of a λ-flow). Let F be a λ-dissipative MPVF. If at least one of the
following properties is satisfied:

(a) the Explicit Euler Scheme is globally solvable for every µ0 in a dense subset of D(F);
(b) the Explicit Euler Scheme is locally solvable in D(F) and, for every µ0 in a dense subset

of D(F), there exists a strict global λ-EVI solution starting from µ0;
(c) the Explicit Euler Scheme is locally solvable in D(F) and D(F) is closed;

(d) for every µ0 ∈ D(F), µ1 ∈ D(F) Γ0
o(µ0, µ1|F) 6= ∅ and, for every µ0 in a dense subset

of D(F), there exists a locally absolutely continuous strict global λ-EVI solution starting
from µ0;

(e) for every µ0 in a dense subset of D(F), there exists a locally absolutely continuous solution
of (6.2) starting from µ0,

then F generates a λ-flow.

Proof. (a) Let D be the dense subset of D(F) for which (EE) is globally solvable. For every
µ0 ∈ D we define St[µ0], t ≥ 0, as the value at time t of the unique λ-EVI solution starting from
µ0, whose existence is guaranteed by Theorem 6.19.
If µ0, µ1 ∈ D, T > 0, we can find τ , L such that M (µ0, τ, T, L) and M (µ1, τ, T, L) are not
empty for every τ ∈ (0, τ ). We can then pass to the limit in the uniform estimate (6.12) for
every choice of M i

τ ∈ M (µi, τ, T, L), i = 0, 1, obtaining (6.31) for every µ0, µ1 ∈ D.

We can then extend the map St to D = D(F) still preserving the same property. Proposition

6.7 shows that for every µ0 ∈ D(F) the continuous curve t 7→ St[µ0] is a λ-EVI solution starting
from µ0.
Finally, if µ ∈ C([0, T ′);D(F)) is any λ-EVI solution starting from µ0, we can apply (6.13) to
get

W2(µt,M
1
τ (t)) ≤

(

2W2(µ0, µ1) + C(τ , L, T )
√
τ
)

eλ+t for every t ∈ [0, T ], (6.32)

for every T < T ′, τ < τ , where C(τ , L, T ) > 0 is a suitable constant. Passing to the limit as
τ ↓ 0 in (6.32) we obtain

W2(µt,St[µ1]) ≤ 2W2(µ0, µ1)e
λ+t for every t ∈ [0, T ]. (6.33)

Choosing now a sequence µ1,n in D converging to µ0 and observing that we can choose arbitrary
T < T ′, we eventually get µt = St[µ0] for every t ∈ [0, T ′).

(b) Let D be the dense subset of D(F) such that there exists a global strict λ-EVI solution
starting from D. By Theorem 6.15 such a solution is unique and the corresponding family of
solution maps St : D → D(F) satisfy (6.31). Arguing as in the previous claim, we can extend St
to D(F) still preserving (6.31) and the fact that t 7→ St[µ0] is a λ-EVI solution.
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If µ is λ-EVI solution starting from µ0, Theorem 6.15 shows that (6.33) holds for every µ1 ∈ D.
By approximation we conclude that µt = St[µ0].

(c) Corollary 6.12 shows that for every initial datum µ0 ∈ D(F) there exists a global λ-EVI
solution. We can then apply Claim (b).

(d) Let D be the dense subset of D(F) such that there exists a locally absolutely continuous
strict global λ-EVI solution starting from D. By Theorem 6.16 such a solution is the unique
locally absolutely continuous solution starting from µ0 and the corresponding family of solution
maps St : D → D(F) satisfy (6.31). Arguing as in the previous claim (b), we can extend St to

D(F) still preserving (6.31) (again thanks to Theorem 6.16) and the fact that t 7→ St[µ0] is a
λ-EVI solution.
If µ is a λ-EVI solution starting from µ0 ∈ D(F) and (µn0 )n∈N ⊂ D is a sequence converging to
µ0, we can apply Theorem 6.17(1) and conclude that µt = St[µ0].

(e) The proof follows by the same argument of the previous claim, eventually applying Theorem
6.17(2). �

By Lemma 6.13 we immediately get the following result.

Corollary 6.23. If F is locally bounded λ-dissipative MPVF with D(F) = P2(X) then for every
µ0 ∈ P2(X) there exists a unique global λ-EVI solution starting from µ0.

We conclude this section by showing a consistency result with the Hilbertian theory, related to
the example of Section 5.2.

Corollary 6.24 (Consistency with the theory of contraction semigroups in Hilbert spaces).
Let F ⊂ X × X be a dissipative maximal subset generating the semigroup (Rt)t≥0 of nonlinear
contractions [Bré73, Theorem 3.1]. Let F be the dissipative MPVF

F := {Φ ∈ P2(TX) | Φ is concentrated on F}.

The semigroup µ0 7→ St[µ0] := (Rt)♯µ0, t ≥ 0, is the 0-flow generated by F in D(F).

Proof. Let D be the set of discrete measures 1
n

∑n
j=1 δxj

with xj ∈ D(F ). Since every µ0 ∈ D(F)

is supported in D(F ), D is dense in D(F). Our thesis follows by applying Theorem 6.22(e) if we
show that for every µ0 = 1

n

∑n
j=1 δxj,0

∈ D there exists a locally absolutely continuous solution

µ : [0,∞) → D of (6.2) starting from µ0.
It can be directly checked that

µt := (Rt)♯µ0 =
1

n

n
∑

j=1

δxj,t
, xj,t := Rt(xj,0)

satisfies the continuity equation with Wasserstein velocity vector vt (defined on the finite support
of µt) satisfying

vt(xj,t) = ẋj,t = F ◦(xj,t), |vt(xj,t)| ≤ |F ◦(xj,0)| for every j = 1, · · · , n, and a.e. t > 0,

where F ◦ is the minimal selection of F . It follows that

(iX,vt)♯µt ∈ F[µt] for a.e. t > 0,

so that µ is a Lipschitz EVI solution for F starting from µ0. We can thus conclude observing
that the map µ0 7→ (Rt)♯µ0 are contractions in P2(X) and the curve µt = (Rt)♯µ0 is continuous

with values in D(F). �
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6.5. Barycentric property

If we assume that the MPVF F is a sequentially closed subset of Psw
2 (TX) with convex sections,

we are able to provide a stronger result showing a particular property satisfied by the solutions
of (6.1) (see Theorem 6.27). This is called barycentric property and it is strictly connected with
the weaker definition of solution discussed in [Pic19; Pic18; Cam+21].
We first introduce a directional closure of F along smooth cylindrical deformations. We set

expϕ(x) := x+∇ϕ(x) for every ϕ ∈ Cyl(X)

and

F[µ] :=
{

Φ ∈ P2(X) | ∃ϕ ∈ Cyl(X), (rn)n∈N ⊂ [0,+∞), rn ↓ 0, Φn ∈ F[exprnϕ♯ µ] :

Φn → Φ in Psw
2 (TX)

}

.
(6.34)

Definition 6.25 (Barycentric property). Let F be a MPVF. We say that a locally absolutely
continuous curve µ : I → D(F) satisfies the barycentric property (resp. the relaxed barycentric
property) if for a.e. t ∈ I there exists Φt ∈ F[µt] (resp. Φt ∈ co(F[µt])) s.t.

d

dt

∫

X

ϕ(x) dµt(x) =

∫

TX

〈∇ϕ(x), v〉dΦt(x, v) ∀ϕ ∈ Cyl(X). (6.35)

Notice that F ⊂ F ⊂ cl(F) and F = F if F is sequentially closed in Psw
2 (TX). Recalling

Proposition 4.17(a) we also get

co(F) ⊂ F̂,

so that the relaxed barycentric property implies the corresponding property for the extended
MPVF F̂.

Remark 6.26. If X = Rd, the property stated in Definition 6.25 coincides with the weak definition
of solution to (6.1) given in [Pic18].

The aim is to prove that the λ-EVI solution of (6.1) enjoys the barycentric property of Definition
6.25, under suitable mild conditions on F. This is strictly related to the behaviour of F along
the family of smooth deformations induced by cylindrical functions. Let us denote by prµ the

orthogonal projection in L2
µ(X;X) onto the tangent space Tanµ P2(X) and by bΦ the barycenter

of Φ as in Definition 3.1.

Theorem 6.27. Let F be a λ-dissipative MPVF such that for every µ ∈ D(F) there exist
constants M,ε > 0 such that

∀ϕ ∈ Cyl(X) : sup
X

|∇ϕ| ≤ ε ⇒ expϕ♯ µ ∈ D(F), |F|2(expϕ♯ µ) < M. (6.36)

If µ : I → D(F) is a locally absolutely continuous λ-EVI solution of (6.1) with Wasserstein
velocity field v satisfying (2.6) for every t in the subset A(µ) ⊂ I of full Lebesgue measure, then

for every t ∈ A(µ) there exists Φt ∈ co(F)[µt] such that vt = prµt
◦ bΦt . (6.37)

In particular, µ satisfies the relaxed barycentric property.
If moreover F = F and for every ν ∈ D(F) F[ν] is a convex subset of P2(TX), then µ satisfies
(6.35).

Proof. In the following t is a fixed element of A(µ) and M is the constant associated to the

measure µt in (6.36). For every ζ ∈ Cyl(X) there exists δ = δ(ζ) > 0 such that νζ := exp−δζ
♯ µt ∈

D(F) and σζ := (iX, exp
−δζ)♯µt ∈ Γ01

o (µt, ν
ζ |F) is the unique optimal transport plan between µt

and νζ .
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Thanks to Theorem 3.11, the map s 7→ W 2
2 (µs, ν

ζ) is differentiable at s = t, moreover by
employing also (6.5b), it holds

δ

∫

X

〈vt(x),∇ζ(x)〉dµt(x) =
d

dt

1

2
W 2

2 (µt, ν
ζ) ≤ [F,σζ ]0+ = lim

s↓0
[F,σζ ]l,s. (6.38)

We can choose a decreasing vanishing sequence (sk)k∈N ⊂ (0, 1), measures νζk := x
sk
♯ σζ and

Φζ
k ∈ F[νζk ] such that supk |Φζ

k|2 ≤ M and Φζ
k → Φζ in Psw

2 (TX). Then, by (6.13), we get

Φζ ∈ F[µt] with |Φζ |2 ≤ M and by (6.38) and the upper semicontinuity of [·, ·]l (see Lemma
3.14) we get

δ

∫

X

〈vt(x),∇ζ(x)〉dµt(x) ≤
[

Φζ , νζ
]

l
= δ

∫

TX

〈v,∇ζ(x)〉dΦζ(x, v). (6.39)

Indeed, notice that, by [AGS08, Lemma 5.3.2], we have Λ(Φζ , νζ) = {Φζ⊗νζ} with (x0, x1)♯(Φ
ζ⊗

νζ) = σζ .
By means of the identity highlighted in Remark 3.2, the expression in (6.39) can be written as
follows

〈vt,∇ζ〉L2
µt

(X;X) ≤ 〈bΦζ ,∇ζ〉L2
µt

(X;X) = 〈prµt
(bΦζ),∇ζ〉L2

µt
(X;X)

so that
〈vt,∇ζ〉L2

µt
(X;X) ≤ sup

b∈K
〈b,∇ζ〉L2

µt
(X;X) for all ζ ∈ Cyl(X)

where
K :=

{

prµt
(bΦ) : Φ ∈ F[µt], |Φ|2 ≤M

}

⊂ Tanµt P2(X). (6.40)

Applying Lemma C.1 in Tanµt P2(X) ⊂ L2
µt
(X;X) we obtain that vt ∈ co(K). In order to obtain

(6.37) it is sufficient to prove that vt is the L2-projection of the barycenter of an element of
co(F[µt]).
Notice that an element v ∈ Tanµ P2(X) coincides with prµ(bΦ) for Φ ∈ P2(TX|µ) if and only if

∫

〈v,∇ζ〉dµ =

∫

〈v,∇ζ〉dΦ(x, v) for every ζ ∈ Cyl(X). (6.41)

It is easy to check that any element v ∈ co(K) can be represented as prµt
(bΦ) (and thus as

in (6.41)) for some Φ ∈ co(F[µt]). If v ∈ co(K) we can find a sequence Φn ∈ co(F[µt]) such
that |Φn|2 ≤M and vn = prµt

(bΦn) → v in L2
µt
(X;X). Since the sequence (Φn)n∈N is relatively

compact in Psw
2 (TX) by Proposition 2.15(2), we can extract a (not relabeled) subsequence con-

verging to a limit Φ in Psw
2 (TX), as n → +∞. By definition Φ ∈ co(F[µt]) with |Φ|2 ≤ M . We

can eventually pass to the limit in (6.41) written for vn and Φn thanks to Psw
2 (TX) convergence,

obtaining the corresponding identity for v and Φ in the limit.
Finally, being µ locally absolutely continuous, it satisfies the continuity equation driven by v in
the sense of distributions (see Theorem 2.10), so that

d

dt

∫

X

ζ(x) dµt(x) =

∫

X

〈∇ζ(x),vt(x)〉dµt(x) =
∫

TX

〈∇ζ(x), v〉dΦt(x, v) ∀ζ ∈ Cyl(X). �

Remark 6.28. We notice that it is always possible to estimate the value of M in (6.40) by
|F|2⋆(µt).
Remark 6.29. Using a standard approximation argument (see for example the proof of Lemma
5.1.12(f) in [AGS08]) it is possible to show that actually the barycentric property (6.35) holds
for every ϕ ∈ C1,1(X;R) (indeed, in this case, ∇ϕ ∈ Tanµ P2(X) for every µ ∈ P2(X)).

As a complement to the studies investigated in this section, we prove the converse characteri-
zation of Theorem 6.27 in the particular case of regular measures or regular vector fields. We
refer to [AGS08, Definitions 6.2.1, 6.2.2] for the definition of Pr

2(X), that is the space of regular
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measures on X. When X = Rd has finite dimension, Pr
2(X) is just the subset of measures in

P2(X) which are absolutely continuous w.r.t. the Lebesgue measure Ld.

Theorem 6.30. Let F be a λ-dissipative MPVF. Let µ : I → D(F) be a locally absolutely
continuous curve satisfying the relaxed barycentric property of Definition 6.25. If for a.e. t ∈ I

at least one of the following properties holds:

(1) µt ∈ Pr
2(X),

(2) F[µt] contains a unique element Φt concentrated on a map, i.e. Φt = (iX, bΦt)♯µt

then µ is λ-EVI solution of (6.1).

Proof. Take ϕ ∈ Cyl(X) and observe that, since µ has the relaxed barycentric property, then for
a.e. t ∈ I (recall Theorem 3.11) there exists Φt ∈ co(F[µt]) such that

d

dt

∫

X

ϕ(x) dµt(x) =

∫

TX

〈∇ϕ(x), v〉dΦt =

∫

X

〈∇ϕ,prµt
◦ bΦt〉dµt =

∫

X

〈vt,∇ϕ〉dµt,

hence µ solves the continuity equation ∂tµt +div(vtµt) = 0, with vt = prµt
◦ bΦt ∈ Tanµt P2(X).

By Theorem 3.11, we also know that

d

dt

1

2
W 2

2 (µt, ν) =

∫

X2

〈vt(x0), x0 − x1〉dγt(x0, x1), t ∈ A(µ, ν), γt ∈ Γo(µt, ν), ν ∈ P2(X).

(6.42)
Possibly disregarding a Lebesgue negligible set, we can decompose the set A(µ, ν) in the union
A1 ∪A2, where A1, A2 correspond to the times t for which the properties (1) and (2) hold.
If t ∈ A1 and ν ∈ D(F), then by [AGS08, Theorem 6.2.10], since µt ∈ Pr

2(X), there exists a unique
γt ∈ Γo(µt, ν) and γt = (iX, rt)♯µt for some map rt s.t. iX−rt ∈ Tanµt P2(X) ⊂ L2

µt
(X;X) (recall

[AGS08, Proposition 8.5.2]), so that
∫

X2

〈vt(x0), x0 − x1〉dγt(x0, x1) =

∫

X

〈vt(x0), x0 − rt(x0)〉dµt(x0)

=

∫

X

〈bΦt , x0 − rt(x0)〉dµt(x0) =
∫

TX

〈v, x− rt(x)〉dΦt(x, v) = [Φt, ν]r , (6.43)

where we also applied Theorem 3.9 and Remark 3.18, recalling that in this case Λ(Φt, ν) is a
singleton.
If t ∈ A2 we can select the optimal plan γt ∈ Γo(µt, ν) along which

[Φt, ν]r = [Φt,γt]r,0 =

∫

X

〈bΦt(x0), x0 − x1〉dγt(x0, x1).

If rt is the barycenter of γt with respect to its first marginal µt, recalling that iX − rt ∈
Tanµt P2(X) (see also the proof of [AGS08, Thm. 12.4.4]) we also get
∫

X2

〈vt(x0), x0 − x1〉dγt(x0, x1) =

∫

X

〈vt(x0), x0 − rt(x0)〉dµt(x0)

=

∫

X

〈bΦt(x0), x0 − rt(x0)〉dµt(x0) =
∫

X

〈bΦt(x0), x0 − x1〉dγt(x0, x1) = [Φt, ν]r (6.44)

where we still applied Theorem 3.9 and Remark 3.18.
Combining (6.42) with (6.43) and (6.44) we eventually get

d

dt

1

2
W 2

2 (µt, ν) = [Φt, ν]r ≤ − [Ψ, µt]r + λW 2
2 (µt, ν), ∀Ψ ∈ F[ν],

by definition of F̂ and the fact that co(F)[µt] ⊂ F̂[µt]. �
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Thanks to Theorem 6.30, we can apply to barycentric solutions the uniqueness and approxi-
mation results of the previous Sections. We conclude this section with a general result on the
existence of a λ-flow for λ-dissipative MPVFs, which is the natural refinement of Proposition
6.14

Theorem 6.31 (Generation of λ-flow). Let F be a λ-dissipative MPVF such that Pb(X) ⊂ D(F)
and for every µ0 ∈ Pb(X) there exist ̺ > 0 and L > 0 such that

supp(µ) ⊂ supp(µ0) + BX(̺) ⇒ ∃Φ ∈ F[µ] : supp(v♯Φ) ⊂ BX(L). (6.45)

Let Fb := F ∩ Pb(TX). If there exists a ≥ 0 such that for every Φ ∈ Fb

supp(Φ) ⊂
{

(x, v) ∈ TX : 〈v, x〉 ≤ a(1 + |x|2)
}

, (6.46)

then F generates a λ-flow.

Proof. It is enough to prove that Fb generates a λ-flow. Applying Proposition 6.14 to the
MPVF Fb, we know that for every µ0 ∈ D(Fb) there exists a unique maximal strict λ-EVI
solution µ ∈ Liploc([0, T );Pb(X)) driven by Fb and satisfying (6.16). We argue by contradiction,
and we assume that T < +∞. Notice that by (6.45) F satisfies (6.36), so that µ is a relaxed
barycentric solution for Fb. Since µ0 ∈ Pb(X), we know that supp(µ0) ⊂ BX(r0) for some r0 > 1.
It is easy to check that (6.46) holds also for every Φ ∈ co(Fb). Moreover, setting b := 2a,
condition (6.46) yields

〈v, x〉 ≤ b|x|2 for every (x, v) ∈ suppΦ ∈ Fb, |x| ≥ 1. (6.47)

Let φ(r) : R → R be any smooth increasing function such that φ(r) = 0 if r ≤ r0 and φ(r) = 1
if r ≥ r0 + 1, and let ϕ(t, x) := φ(|x|e−bt). Clearly ϕ ∈ C1,1(X × [0,+∞)), with ∇ϕ(t, x) =
x
|x|φ

′(|x|e−bt)e−bt if x 6= 0, ∇ϕ(t, 0) = 0, and ∂tϕ(t, x) = −bφ′(|x|e−bt)|x|e−bt. We thus have for

a.e. t ∈ [0, T )

d

dt

∫

X

ϕ(t, x) dµt = e−bt

∫

TX

(

− bφ′(|x|e−bt)|x|+ 〈v, x〉|x|−1φ′(|x|e−bt)
)

dΦt(v, x)

≤ e−bt

∫

TX

(

− bφ′(|x|e−bt)|x|+ b|x|φ′(|x|e−bt)
)

dΦt(v, x) = 0

where in the last inequality we used (6.47) and the fact that the integrand vanishes if |x| ≤ 1.
We get

∫

X

ϕ(t, x) dµt = 0 in [0, T );

this implies that supp(µt) ⊂ BX((r0 + 1)ebt) so that the limit measure µT belongs to Pb(X) as
well, leading to a contradiction with (6.16) for Fb.
We deduce that µ is a global strict λ-EVI solution for Fb. We can then apply Theorem 6.22(b)
to Fb. �

6.6. A few borderline examples

We conclude this section with a few examples which reveal the importance of some of the
technical tools we developed so far. First of all we exhibit an example of dissipative MPVF
generating a 0-flow, for which solutions starting from initial data are merely continuous (in
particular the nice regularizing effect of gradient flows does not hold for general dissipative
evolutions). This clarifies the interest in a definition of continuous, not necessarily absolutely
continuous, solution.

Example 6.32 (Lifting of dissipative evolutions and lack of regularizing effect). Let us consider
the situation of Corollary 6.24, choosing the Hilbert space X = ℓ2(N). Following [Rul96, Example
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3] we can easily find a maximal linear dissipative operator A : D(A) ⊂ ℓ2(N) → ℓ2(N) whose
semigroup does not provide a regularizing effect.
The domain of A is D(A) := {x ∈ ℓ2(N) :∑∞

k=1 k
2|xk|2 <∞} and A is defined as

A(x1, x2, . . . , x2k−1, x2k, . . . ) = (−x2, x1, . . . ,−kx2k, kx2k−1, . . . ), x ∈ D(A),

so that there is no regularizing effect for the semigroup (Rt)t≥0 generated by (the graph of)
A: evolutions starting outside the domain D(A) stay outside the domain and do not give raise
to locally Lipschitz or a.e. differentiable curves. Corollary 6.24 shows that the 0-flow (St)t≥0

generated by F on P2(X) is given by

St[µ0] = (Rt)♯µ0 for every µ0 ∈ D(F) = P2(X)

so that there is the same lack of regularizing effect on probability measures.

In the next example we show that a constant MPVF generates a barycentric solution.

Example 6.33 (Constant PVF and barycentric evolutions). Given θ ∈ P2(X), we consider the
constant PVF

F[µ] := µ⊗ θ.

F is dissipative: in fact, if Φi = µi ⊗ θ, i = 0, 1, µ ∈ Γo(µ0, µ1), and r : X× X ×X → TX× TX

is defined by r(x0, x1, v) := (x0, v;x1, v), then

Θ = r♯(µ⊗ θ) ∈ Λ(Φ0,Φ1)

so that (3.16) yields

[Φ0,Φ1]r ≤
∫

〈x0 − x1, v − v〉d(µ⊗ θ)(x0, x1, v) = 0.

Applying Proposition 6.20 and Theorem 6.19 we immediately see that F generates a 0-flow
(St)t≥0 in P2(X), obtained as a limit of the Explicit Euler scheme. It is also straightforward
to notice that we can apply Theorem 6.27 to F so that for every µ0 ∈ P2(X) the unique EVI
solution µt = Stµ0 satisfies the continuity equation

∂tµt +∇ · (bµt) = 0, b =

∫

X

xdθ(x).

Since b is constant, we deduce that St acts as a translation with constant velocity b, i.e.

µt = (iX + tb)♯µ0,

so that St coincides with the semigroup generated by the PVF F′[µ] := (iX, b)♯µ.

We conclude this section with a 1-dimensional example of a curve which satisfies the barycentric
property but it is not an EVI solution.

Example 6.34. Let X = R. It is well known (see e.g. [NS09]) that P2(R) is isometric to the closed
convex subset K ⊂ L2(0, 1) of the (essentially) increasing maps and the isometry J : P2(R) → K

maps each measure µ ∈ P2(R) into the pseudo inverse of its cumulative distribution function.
It follows that for every ν̄ ∈ P2(R) the functional F : P2(R) → R defined as

F(µ) :=
1

2
W 2

2 (µ, ν̄)

is 1-convex, since it satisfies F(µ) = G(J(µ)) where G : L2(0, 1) → R is defined as

G(u) :=
1

2
‖u− J(ν̄)‖2 for every u ∈ L2(0, 1).

Thus F generates a gradient flow (St)t≥0 which is a semigroup of contractions in P2(R); for every
µ0 ∈ P2(R) St[µ0] is the unique (−1)-EVI solution for the MPVF −∂F starting from µ0 ∈ P2(X)
(see Proposition 6.5). Since the notion of gradient flow is purely metric, the gradient flow of G
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starting from J(µ0) is just the image through J of the gradient flow of F starting from µ0 ∈ P2(X).
It is easy to check that

u(t) := e−tJ(µ0) + (1− e−t)J(ν̄)

is the gradient flow of G starting from u0 = J(µ0). Note that u(t) is the L2(0, 1) geodesic from
J(ν̄) to J(µ0) evaluated at the rescaled time e−t, so that St[µ0] must coincide with the evaluation
at time e−t of the (unique) geodesic connecting ν̄ to µ0 i.e.

St[µ0] = xs♯γ, s = e−t ∈ (0, 1],

where γ ∈ Γo(ν̄, µ0).
Let us now consider the particular case ν̄ = 1

2δ−a +
1
2δa, where a > 0 is a fixed parameter and

µ0 = δ0. It is straightforward to see that

µt = St[δ0] =
1

2
δa(1−e−t) +

1

2
δa(e−t−1), t ≥ 0

so that

(iX,vt)♯µt =
1

2
δ((1−e−t)a,e−ta) +

1

2
δ((e−t−1)a,−e−ta) ∈ −∂F(µt), a.e. t > 0,

where v is the Wasserstein velocity field of µt. On the other hand, [AGS08, Lemma 10.3.8]
shows that

δ0 ⊗
(

1

2
δ−a +

1

2
δa

)

∈ −∂F(δ0)

so that the constant curve µ̄t := δ0 for t ≥ 0 has the barycentric property for the MPVF −∂F

but it is not a EVI solution for −∂F, being different from µt = St[δ0].

7. Explicit Euler Scheme

In this section, we collect all the main estimates concerning the Explicit Euler scheme (EE).

7.1. The Explicit Euler Scheme: preliminary estimates

Our first step is to prove simple a priori estimates and a discrete version of (λ-EVI) as a
consequence of Proposition 3.4.

Proposition 7.1. Every solution (Mτ ,F τ ) ∈ E (µ0, τ, T, L) of (EE) satisfies

W2(Mτ (t), µ0) ≤ Lt, |F τ (t)|2 ≤ L for every t ∈ [0, T ], (7.1)

W2(Mτ (t),Mτ (s)) ≤ L|t− s| for every s, t ∈ [0, T ], (7.2)

d

dt

1

2
W 2

2 (Mτ (t), ν) ≤ [F τ (t), ν]r + τ |F τ (t)|22 ≤ [F τ (t), ν]r + τL2 in [0, T ], ∀ν ∈ P2(X), (IEVI)

with possibly countable exceptions. In particular

1

2
W 2

2 (M
n+1
τ , ν)− 1

2
W 2

2 (M
n
τ , ν) ≤ τ [F n

τ , ν]r +
1

2
τ2L2 for every 0 ≤ n < N(T, τ),∀ν ∈ P2(X).

(7.3)

Proof. The second inequality of (7.1) is a trivial consequence of the definition of E (µ0, τ, T, L),
the first inequality is a particular case of (7.2). The estimate (7.2) is immediate if nτ ≤ s < t ≤
(n + 1)τ since

W2(Mτ (s),Mτ (t)) =W2((exp
s−nτ )♯F

n
τ , (exp

t−nτ )♯F
n
τ ) ≤

√

∫

TX

|(t− s)v)|2 dF n
τ

= (t− s)

√

∫

TX

|v|2 dF n
τ ≤ (t− s)L.
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This implies that the metric velocity of Mτ is bounded by L in [0, T ] and therefore Mτ is
L-Lipschitz.
Let us recall that for every ν ∈ P2(X) and Φ ∈ P2(TX) the function g(t) := 1

2W
2
2 (exp

t
♯Φ, ν)

satisfies

t 7→ g(t)− 1

2
t2|Φ|22 is concave, g′r(0) = [Φ, ν]r , g′(t) ≤ [Φ, ν]r + t|Φ|22 t ≥ 0, (7.4)

by Definition 3.5 and Proposition 3.4. In particular, the concavity yields the differentiability of
g with at most countable exceptions. Thus, taking any n ∈ N, 0 ≤ n < N(T, τ), t ∈ [nτ, (n+1)τ)
and Φ = F n

τ so that expt♯Φ = Mτ (t), (7.4) yields (IEVI). (7.3) follows by integration in each

interval [nτ, (n + 1)τ ]. �

In the following, we prove a uniform bound on curves Mτ ∈ M (µ0, τ, T, L) which is useful to
prove global solvability of the Explicit Euler scheme, as stated in Proposition 6.20. We will use
the following discrete Gronwall estimate: if a sequence (xn)n∈N of positive real numbers satisfies

xn+1 − xn ≤ τy + ταxn, 1 ≤ n ≤ N, α ≥ 0, y ≥ 0, τ > 0,

then
xn ≤ (x0 + τny)eαnτ 0 ≤ n ≤ N + 1. (7.5)

Proposition 7.2. Let F be a λ-dissipative MPVF such that for every R > 0 there exist M =
M(R) > 0 and τ̄ = τ̄(R) > 0 such that

µ ∈ D(F), m2(µ) ≤ R, 0 < τ ≤ τ̄ ⇒ ∃Φ ∈ F[µ] : |Φ|2 ≤ M(R), expτ♯ Φ ∈ D(F), (7.6)

then the Explicit Euler scheme is globally solvable in D(F). More precisely, if for a given µ0 ∈
D(F) with Ψ0 ∈ F[µ0], m0 := m2(µ0), and we set

R := m0 +
(

|Ψ0|2 + 1
)√

2T e(1+2λ+)T , L := M(R), τ =
1

L2
∧ τ̄(R) ∧ T, (7.7)

then for every τ ∈ (0, τ ] the set E (µ0, τ, T, L) is not empty.

Proof. We want to prove by induction that for every integer N ≤ N(T, τ), (EE) has a solution
up to the index N satisfying the upper bound

m2(M
N
τ ) ≤ R, (7.8)

corresponding to the constants R,L given by (7.7). For N = 0 the statement is trivially satisfied.
Assuming that 0 ≤ N < N(T, τ) and elements (Mn

τ ,F
n
τ ), 0 ≤ n < N , MN

τ , are given satisfying
(EE) and (7.8), we want to show that we can perform a further step of the Euler Scheme so that
(EE) is solvable up to the index N + 1 and m2(M

N+1
τ ) ≤ R.

Notice that by the induction hypothesis, for n = 0, . . . , N − 1, we have |F n
τ |2 ≤ L; since

m2(M
N
τ ) ≤ R, by (7.6) we can select FN

τ ∈ F[MN
τ ] with |FN

τ |2 ≤ L such that MN+1
τ =

expτ♯ F
N
τ ∈ D(F). Using (7.3) with ν = µ0, the λ-dissipativity with Ψ0 ∈ F[µ0]

[F n
τ , µ0]r ≤ λW 2

2 (M
n
τ , µ0)− [Ψ0,M

n
τ ]r ,

and the bound

− [Ψ0,M
n
τ ]r ≤

1

2
W 2

2 (M
n
τ , µ0) +

1

2
|Ψ0|22,

we end up with

1

2
W 2

2 (M
n+1
τ , µ0)−

1

2
W 2

2 (M
n
τ , µ0) ≤

τ2

2
L2 + τ

(

1

2
+ λ+

)

W 2
2 (M

n
τ , µ0) +

τ

2
|Ψ0|22,

for every n ≤ N . Using the Gronwall estimate (7.5) we get

W2(M
n
τ , µ0) ≤

√
T + τ

(

|Ψ0|2 +
√
τL
)

e(
1

2
+λ+) (T+τ) ≤

√
2T
(

|Ψ0|2 + 1
)

e(1+2λ+)T
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for every n ≤ N + 1, so that

m2(M
N+1
τ ) ≤ m0 +

√
2T
(

|Ψ0|2 + 1
)

e(1+2λ+)T ≤ R. �

We conclude this section by proving the stability estimate (6.12) of Theorem 6.9. We introduce
the notation

Iκ(t) :=

∫ t

0
eκr dr =

1

κ
(eκt − 1) if κ 6= 0; I0(t) := t.

Notice that for every t ≥ 0
Iκ(t) ≤ teκt if κ ≥ 0; (7.9)

Proposition 7.3. Let Mτ ∈ M (µ0, τ, T, L) and M ′
τ ∈ M (µ′0, τ, T, L). If λ+τ ≤ 2 then

W2(Mτ (t),M
′
τ (t)) ≤W2(µ0, µ

′
0)e

λt + 8L
√
tτ
(

1 + |λ|
√
tτ
)

eλ+t

for every t ∈ [0, T ].

Proof. Let us set w(t) := W2(Mτ (t),M
′
τ (t)). Since by Proposition 3.4(2), in every interval

[nτ, (n+ 1)τ ] the function t 7→ w2(t)− 4L2(t− nτ)2 is concave, with

d

dt
w2(t)

∣

∣

∣

∣

t=nτ+

= 2
[

F τ (t),F
′
τ (t)

]

r
≤ 2λW 2

2 (M̄τ (t), M̄
′
τ (t)),

we obtain
d

dt
w2(t) ≤ 2λW 2

2 (M̄τ (t), M̄
′
τ (t)) + 8L2τ t ∈ [0, T ],

with possibly countable exceptions. Using the identity a2 − b2 = 2b(a − b) + |a − b|2 with a =
W2(M̄τ (t), M̄

′
τ (t)) and b = W2(Mτ (t),M

′
τ (t)) and observing that |a − b| ≤ W2(M̄τ (t),Mτ (t)) +

W2(M̄
′
τ (t),M

′
τ (t)) ≤ 2Lτ , we eventually get

d

dt
w2(t) ≤ 2λw2(t) + 8L2τ + 8|λ|Lτw(t) + λ+8L

2τ2

≤ 2λw2(t) + 8|λ|Lτw(t) + 24L2τ,

since λ+τ ≤ 2 by assumption. The Gronwall lemma [AGS08, Lemma 4.1.8] and (7.9) yield

w(t) ≤
(

w2(0)e2λt + 24L2τ I2λ(t)
)1/2

+ 8|λ|Lτ Iλ(t)

≤ w(0)eλt + 8L
√
tτ
(

1 + |λ|
√
tτ
)

eλ+t. �

7.2. Error estimates for the Explicit Euler scheme

Theorem 7.4. Let F be a λ-dissipative MPVF. If Mτ ∈ M (M0
τ , τ, T, L), Mη ∈ M (M0

η , η, T, L)

with λ
√

T (τ + η) ≤ 1, then for every ϑ > 1 there exists a constant C(ϑ) such that

W2(Mτ (t),Mη(t)) ≤
(√

ϑW2(M
0
τ ,M

0
η ) + C(ϑ)L

√

(τ + η)(t+ τ + η)
)

eλ+ t

for every t ∈ [0, T ].

Proof. We argue as in the proof of Theorem 6.17 with the aim to gain a convenient order of
convergence. Since λ-dissipativity implies λ′-dissipativity for λ′ ≥ λ, it is not restrictive to
assume λ > 0. We set σ := τ + η. We will extensively use the a priori bounds (7.1) and (7.2);
in particular,

W2(Mτ (t), M̄τ (t)) ≤ Lτ, W2(Mη(t), M̄η(t)) ≤ Lη.

We will also extend Mτ and M̄τ for negative times by setting

Mτ (t) = M̄τ (t) =M0
τ , Fτ (t) =M0

τ ⊗ δ0 if t < 0. (7.10)

The proof is divided into several steps.
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1. Doubling variables.
We fix a final time t ∈ [0, T ] and two variables r, s ∈ [0, t] together with the functions

w(r, s) := W2(Mτ (r),Mη(s)), wτ (r, s) := W2(M̄τ (r),Mη(s)),

wη(r, s) := W2(Mτ (r), M̄η(s)), wτ,η(r, s) := W2(M̄τ (r), M̄η(s)),
(7.11)

observing that

|w − wτ | ∨ |wη − wτ,η| ≤ Lτ, |w − wη| ∨ |wτ − wτ,η| ≤ Lη. (7.12)

By Proposition 7.1, we can write (IEVI) both for Mτ and Mη and we obtain

∂

∂r

1

2
W 2

2 (Mτ (r), ν1) ≤ τ |F τ (r)|22 + [F τ (r), ν1]r ∀ν1 ∈ P2(X) (IEVIτ )

∂

∂s

1

2
W 2

2 (Mη(s), ν2) ≤ η|F η(s)|22 + [F η(s), ν2]r

≤ η|F η(s)|22 + λW 2
2 (M̄η(s), ν2)−

[

Φ, M̄η(s)
]

r
, ∀ν2 ∈ D(F), Φ ∈ F[ν2].

(IEVIη)

Apart from possible countable exceptions, (IEVIτ ) holds for r ∈ (−∞, t] and (IEVIη) for s ∈ [0, t].
Taking ν1 = M̄η(s), ν2 = M̄τ (r), Φ = F τ (r ∨ 0) ∈ F[M̄τ (r)], summing the two inequalities
(IEVIτ,η), setting

f(r, s) :=

{

2LW2(M̄η(s),Mτ (0)) = 2Lwη(0, s) if r < 0,

0 if r ≥ 0,

using (7.1) and the λ-dissipativity of F, we obtain

∂

∂r
w2
η(r, s) +

∂

∂s
w2
τ (r, s) ≤ 2λw2

τ,η(r, s) + 2L2σ + f(r, s)

in (−∞, t]× [0, t] (see also [NS06, Lemma 6.15]). By multiplying both sides by e−2λs, we have

∂

∂r
e−2λsw2

η +
∂

∂s
e−2λsw2

τ ≤
(

2λ
(

w2
τ,η − w2

τ

)

+ f + 2L2σ
)

e−2λs. (7.13)

Using (7.12), the inequality

wτ,η + wτ = wτ,η − wτ + 2(wτ − w) + 2w ≤ 2Lσ + 2w, |w(r, s) − w(s, s)| ≤ L|r − s|
and the elementary inequality a2 − b2 ≤ |a− b||a+ b|, we get

2
(

w2
τ,η(r, s) − w2

τ (r, s)
)

≤ R, R := 4L2σ(σ + |r − s|) + 4Lσw(s, s) if r, s ≤ t.

Thus (7.13) becomes

∂

∂r
e−2λsw2

η +
∂

∂s
e−2λsw2

τ ≤ Z, Z :=
(

Rλ+ f + 2L2σ
)

e−2λs. (7.14)

2. Penalization.

We fix any ε > 0 and apply the Divergence Theorem to the inequality (7.14) in the two-
dimensional strip Qε

0,t as in Figure 1 and we get
∫ t

t−ε
e−2λtw2

τ (r, t) dr ≤
∫ 0

−ε
w2
τ (r, 0) dr+

+

∫ t

0
e−2λs

(

w2
τ (s, s)− w2

η(s, s)
)

ds+

∫ t

0
e−2λs

(

w2
η(s− ε, s)− w2

τ (s− ε, s)
)

ds

+

∫∫

Qε
0,t

Z drds.

(7.15)

3. Estimates of the RHS.
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We want to estimate the integrals (say I0, I1, I2, I3) of the right hand side of (7.15) in terms of

w(s) := w(s, s) and W (t) := sup
0≤s≤t

e−λsw(s).

We easily get

I0 =

∫ 0

−ε
w2
τ (r, 0) dr = εw2(0).

(7.12) yields

|wτ (s, s)− wη(s, s)| ≤ L(τ + η) = Lσ

and

|w2
τ (s, s)− w2

η(s, s)| ≤ Lσ
(

Lσ + 2w(s)
)

;

after an integration,

I1 ≤ L2σ2t+ 2Lσ

∫ t

0
e−2λsw(s) ds ≤ L2σ2t+ 2LσtW (t).

Performing the same computations for the third integral term at the RHS of (7.15) we end up
with

I2 =

∫ t

0
e−2λs

(

w2
η(s− ε, s)− w2

τ (s− ε, s)
)

ds ≤ L2tσ2 + 2Lσ

∫ t

0
e−2λsw(s − ε, s) ds

≤ L2σ2t+ 2L2σεt+ 2Lσ

∫ t

0
e−2λsw(s) ds ≤ L2σ2t+ 2L2σεt+ 2LσtW (t).

Eventually, using the elementary inequalities,
∫∫

Qε
0,t

λe−2λs dr ds ≤ ε

2
,

∫∫

Qε
0,t

e−2λsw(s, s) dr ds = ε

∫ t

0
e−2λsw(s) ds,

and f(r, s) ≤ 2L2(η + s) + 2Lw(s) for r < 0 and f(r, s) = 0 for r ≥ 0, we get

I3 =

∫∫

Qε
0,t

Z drds ≤ 2L2σε(σ + ε) + 4Lλσε

∫ t

0
e−2λsw(s) ds+ 2L2σεt

+ 2

∫∫

Qε
0,ε∧t

(L2(η + s) + Lw(s))e−2λs drds

≤ 2L2σε(σ + ε) + 2L2ε2(σ + ε) + 2L2σεt+ 4LλσεtW (t) + 2Lε2W (t ∧ ε).
We eventually get

3
∑

k=0

Ik ≤ εw2(0) + 2L2σ2t+4L2σεt+2L2ε(σ+ ε)2 +4Lσ(1+ λε)tW (t)+ 2Lε2W (t∧ ε). (7.16)

4. LHS and penalization
We want to use the first integral term in (7.15) to derive a pointwise estimate for w(t);
(7.2) and (7.11) yield

w(t) = w(t, t) ≤ L(t− r) + w(r, t) ≤ L(τ + |t− r|) + wτ (r, t)

so that we get for every ϑ, ϑ⋆ > 1 conjugate coefficients

e−2λtw2(t) ≤ ϑ

ε

∫ t

t−ε
e−2λtw2

τ (r, t) dr + ϑ⋆L
2(τ + ε)2 ≤ ϑ

ε
(I0 + I1 + I2 + I3) + ϑ⋆L

2(τ + ε)2.
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(7.16) yields

e−2λtw2(t) ≤(2ϑ+ ϑ⋆)L
2(σ + ε)2 + ϑ

(

w2(0) + 2L2σ2t/ε+ 4L2σt
)

+
4L(1 + λε)σϑ

ε
tW (t) + 2LεϑW (t ∧ ε).

5. Conclusion.

Choosing ε :=
√

σ(σ ∨ t) and assuming λ
√
Tσ ≤ 1, we obtain

e−2λtw2(t) ≤ ϑw2(0) + (14ϑ + 4ϑ⋆)L
2σ(σ ∨ t) + 10ϑL

√

σ(σ ∨ t)W (t). (7.17)

Since the right hand side of (7.17) is an increasing function of t, (7.17) holds even if we substitute
the left hand side with e−2λsw2(s) for every s ∈ [0, t]; we thus obtain the inequality

W 2(t) ≤ ϑw2(0) + (14ϑ + 4ϑ⋆)L
2σ(σ ∨ t) + 10ϑL

√

σ(σ ∨ t)W (t).

Using the elementary property for positive a, b

W 2 ≤ a+ 2bW ⇒ W ≤ b+
√

b2 + a ≤ 2b+
√
a, (7.18)

we eventually obtain

e−λtw(t) ≤
(

ϑw2(0) + (14ϑ + 4ϑ⋆)L
2σ(σ ∨ t)

)1/2
+ 10ϑL

√

σ(σ ∨ t)

≤
√
ϑw(0) + C(ϑ)L

√

σ(σ ∨ t), C(ϑ) := (14ϑ + 4ϑ⋆)
1/2 + 10ϑ. �

7.3. Error estimates between discrete and EVI solutions

Theorem 7.5. Let F be a λ-dissipative MPVF. If µ ∈ C([0, T ]; D(F)) is a λ-EVI solution and
Mτ ∈ M (M0

τ , τ, T, L), then for every ϑ > 1 there exists a constant C(ϑ) such that

W2(µ(t),Mτ (t)) ≤
(√

ϑW2(µ0,M
0
τ ) + C(ϑ)L

√

τ(t+ τ)
)

eλ+t for every t ∈ [0, T ].

Remark 7.6. When µ0 =M0
τ and λ ≤ 0 we obtain the optimal error estimate

W2(µ(t),Mτ (t)) ≤ 13L
√

τ(t+ τ).

Proof. We repeat the same argument of the previous proof, still assuming λ > 0, extending
Mτ , M̄τ , F̄ τ as in (7.10) and setting

w(r, s) :=W2(Mτ (r), µ(s)), wτ (r, s) :=W2(M̄τ (r), µ(s)).

We use (λ-EVI) for µ(s) with ν = M̄τ (r) and Φ = Fτ (r∨ 0) and (IEVI) for Mτ (r) with ν = µ(s)
obtaining

∂

∂r

e−2λs

2
W 2

2 (Mτ (r), µ(s)) ≤ e−2λs
(

τ |F τ (r)|22 + [F τ (r), µ(s)]r

)

s ∈ [0, T ], r ∈ (−∞, T )

∂

∂s

e−2λs

2
W 2

2 (µ(s), M̄τ (r)) ≤ −e−2λs [F τ (r ∨ 0), µ(s)]r in D
′(0, T ), r ∈ (−∞, T ).

Using [NS06, Lemma 6.15] we can sum the two contributions obtaining

∂

∂r
e−2λsw2(r, s) +

∂

∂s
e−2λsw2

τ (r, s) ≤ Z, Z := (2L2τ + 2f(r, s))e−2λs,

where

f(r, s) :=

{

LW2(Mτ (0), µ(s)) = Lw(0, s) if r < 0,

0 if r ≥ 0.



DISSIPATIVE PVFS AND GENERATION OF EVOLUTION SEMIGROUPS IN WASSERSTEIN SPACES 55

Let t ∈ [0, T ] and ε > 0. Applying the Divergence Theorem in Qε
0,t (see Figure 1) we get

∫ t

t−ε
e−2λtw2

τ (r, t) dr ≤
∫ 0

−ε
w2
τ (r, 0) dr

+

∫ t

0
e−2λs

(

w2
τ (s, s)− w2(s, s)

)

ds+

∫ t

0
e−2λs

(

w2(s− ε, s)− w2
τ (s− ε, s)

)

ds

+

∫∫

Qε
0,t

Z drds.

(7.19)

Using

w(t, t) ≤ w(r, t) + L(t− r) ≤ wτ (r, t) + L(τ + ε) if t− ε ≤ r ≤ t,

we get for every ϑ, ϑ⋆ > 1 conjugate coefficients (ϑ⋆ = ϑ/(ϑ − 1))

e−2λtw2(t) ≤ ϑ

ε

∫ t

t−ε
e−2λtw2

τ (r, t) dr + ϑ⋆L
2(τ + ε)2. (7.20)

Similarly to (7.12) we have

|wτ (s, s)− w(s, s)| ≤ Lτ, |w2
τ (s, s)− w2(s, s)| ≤ Lτ

(

Lτ + 2w(s)
)

and, after an integration,
∫ t

0
e−2λs

(

w2
τ (s, s)− w2(s, s)

)

ds ≤ L2tτ2 + 2Lτ

∫ t

0
e−2λsw(s) ds. (7.21)

Performing the same computations for the third integral term at the RHS of (7.19) we end up
with

∫ t

0
e−2λs

(

w2(s− ε, s)− w2
τ (s− ε, s)

)

ds ≤ L2tτ2 + 2Lτ

∫ t

0
e−2λsw(s− ε, s) ds

≤ L2tτ(τ + 2ε) + 2Lτ

∫ t

0
e−2λsw(s) ds.

(7.22)

Finally, since if r < 0 we have f(r, s) = Lw(0, s) ≤ L2s+ Lw(s, s), then

ε−1

∫∫

Qε
0,t

Z drds ≤ 2L2tτ + ε−1

∫∫

Qε
0,ε∧t

2f(r, s)e−2λs drds

≤ 2L2tτ + L2ε2 + 2Lε sup
0≤s≤ε∧t

e−λsw(s). (7.23)

Using (7.21), (7.22), (7.23) in (7.19), we can rewrite the bound in (7.20) as

e−2λtw2(t) ≤ ϑ⋆L
2(τ + ε)2 + ϑ

(

w2(0) + 2L2tτ2/ε+ 2L2tτ + L2ε2 + 2Lε sup
0≤s≤ε∧t

e−λsw(s)
)

+
4ϑLτ

ε

∫ t

0
e−2λsw(s) ds.

Choosing ε :=
√

τ(τ ∨ t) we get

e−2λtw2(t) ≤ 4ϑ⋆L
2τ(t ∨ τ) + ϑ

(

w2(0) + 5L2τ(t ∨ τ)
)

+ 6ϑL
√

τ(t ∨ τ) sup
0≤s≤t

e−λsw(s).

A further application of (7.18) yields

e−λtw(t) ≤
(

ϑw2(0) + (5ϑ + 4ϑ⋆)L
2τ(t ∨ τ)

)1/2
+ 6ϑL

√

τ(t ∨ τ)

≤
√
ϑw(0) + C(ϑ)L

√
t+ τ

√
τ , C(ϑ) := (5ϑ + 4ϑ⋆)

1/2 + 6ϑ. �
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As proved in the following, the limit curve of the interpolants (Mτ )τ>0 of the Euler Scheme
defined in (6.10) is actually a λ-EVI solution of (6.1).

Theorem 7.7. Let F be a λ-dissipative MPVF and let n 7→ τ(n) be a vanishing sequence of

time steps, let (µ0,n)n∈N be a sequence in D(F) converging to µ0 ∈ D(F) in P2(X) and let Mn ∈
M (µ0,n, τ(n), T, L). Then Mn is uniformly converging to a limit curve µ ∈ Lip([0, T ]; D(F))
which is a λ-EVI solution starting from µ0.

Proof. Theorem 7.4 shows that Mn is a Cauchy sequence in C([0, T ]; D(F)), so that there exists
a unique limit curve µ as n→ ∞. µ is also L-Lipschitz; moreover we observe that

W2(M̄τ (t),Mτ (t)) =W2

(

Mτ

(⌊

t

τ

⌋

τ

)

,Mτ (t)

)

≤ Lτ, for any t ∈ [0, T ] (7.24)

so that µ is also the uniform limit of M̄τ(n).
Let us fix a reference measure ν ∈ D(F) and Φ ∈ F[ν]. (IEVI) and the λ-dissipativity of F yield

d

dt

1

2
W 2

2 (Mn(t), ν) ≤ τ(n)|F τ(n)(t)|22 +
[

F τ(n), ν
]

r

≤ τ(n)L2 + λW 2
2 (M̄τ(n)(t), ν)−

[

Φ, M̄τ(n)(t)
]

r

for a.e. t ∈ [0, T ]. Integrating the above inequality in an interval (t, t+ h) ⊂ [0, T ] we get

W 2
2 (Mn(t+ h), ν)−W 2

2 (Mn(t), ν)

2h
≤ τ(n)L2 (7.25)

+
1

h

∫ t+h

t

(

λW 2
2 (M̄τ(n)(s), ν)−

[

Φ, M̄τ(n)(s)
]

r

)

ds.

Notice that as n→ +∞, by (7.24), we have

lim inf
n→+∞

[

Φ, M̄τ(n)(s)
]

r
≥ [Φ, µ(s)]r for every s ∈ [0, T ]

together with the uniform bound given by
∣

∣

∣

[

Φ, M̄τ(n)(s)
]

r

∣

∣

∣
≤ 1

2
W 2

2 (M̄τ(n)(s), ν) +
1

2
|Φ|22 for every s ∈ [0, T ].

Thanks to Fatou’s Lemma and the uniform convergence given by Theorem 7.4, we can pass to
the limit as n→ +∞ in (7.25) obtaining

W 2
2 (µ(t+ h), ν)−W 2

2 (µ(t), ν)

2h
≤ 1

h

∫ t+h

t

(

λW 2
2 (µ(s), ν)− [Φ, µ(s)]r

)

ds.

A further limit as h ↓ 0 yields

1

2

d

dt

+

W 2
2 (µ(t), ν) ≤ λW 2

2 (µ(t), ν)− [Φ, µ(t)]r

which provides (λ-EVI). �

Appendix A. Comparison with [Pic19]

In this section, we provide a brief comparison between the assumptions we required in order to
develop a strong concept of solution to (6.1) and the hypotheses assumed in [Pic19]. We remind
that the relation between our solution and the weaker notion studied in [Pic19] was exploited in
Section 6.5. Here, we conclude with a further remark coming from the connections between our
approximating scheme proposed in (EE) and the schemes proposed in [Cam+21] and [Pic19].

We consider a finite time horizon [0, T ] with T > 0, the space X = Rd and we deal with
measures in Pb(R

d) and in Pb(TR
d), i.e. compactly supported. We also deal with single-valued

probability vector fields (PVF) for simplicity, which can be considered as everywhere defined
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maps F : Pb(R
d) → Pb(TR

d) such that x♯F[ν] = ν. This is indeed the framework examined in
[Pic19].
We start by recalling the assumptions required in [Pic19] for a PVF F : Pb(R

d) → Pb(TR
d).

(H1) there exists a constant M > 0 such that for all ν ∈ Pb(R
d),

sup
(x,v)∈supp(F[ν])

|v| ≤M

(

1 + sup
x∈supp(ν)

|x|
)

;

(H2) F satisfies the following Lipschitz condition: there exists a constant L ≥ 0 such that for
every Φ = F[ν], Φ′ = F[ν ′] there exists Θ ∈ Λ(Φ,Φ′) satisfying

∫

TRd×TRd

|v0 − v1|2 dΘ(x0, v0, x1, v1) ≤ L2W 2
2 (ν, ν

′),

with Λ(·, ·) as in Definition 3.8.

Remark A.1. We stress that actually in [Pic19] condition (H2) is local, meaning that L is allowed
to depend on the radius R of a ball centered at 0 and containing the supports of ν and ν ′. Thanks
to assumption (H1), it is easy to show that for every final time T all the discrete solutions of
the Explicit Euler scheme and of the scheme of [Pic19] starting from an initial measure with
support in B(0, R) are supported in a ball B(0, R′) where R′ solely depends on R and T . We can
thus restrict the PVF F to the (geodesically convex) set of measures with support in B(0, R′)
and act as L does not depend on the support of the measures.

Proposition A.2. If F : Pb(R
d) → Pb(TR

d) is a PVF satisfying (H2), then F is λ-dissipative

for λ = L2+1
2 , the Explicit Euler scheme is globally solvable in D(F), and F generates a λ-flow,

whose trajectories are the limit of the Explicit Euler scheme in each finite interval [0, T ].

Proof. The λ-dissipativity comes from Lemma 4.7. We prove that (6.30) holds. Let ν ∈ D(F)
and take Θ ∈ Λ(F[ν],F[δ0]) such that

∫

TRd×TRd

|v′ − v′′|2 dΘ ≤ L2W 2
2 (ν, δ0) = L2m2

2(ν).

Since F[δ0] ∈ Pc(TR
d) by assumption, there exists D > 0 such that supp(v♯F[δ0]) ⊂ BD(0).

Hence, we have

L2m2
2(ν) ≥

∫

TRd×TRd

|v′ − v′′|2 dΘ ≥
∫

TRd×TRd

[|v′| −D]2+ dΘ

≥
∫

TRd

|v′|2 dF[ν]− 2D

∫

TRd

|v′|dF[ν],

where [ . ]+ denotes the positive part. By the trivial estimate |v′| ≤ D + |v′|2

4D , we conclude

|F[ν]|22 ≤ 2
(

2D2 + L2m2
2(ν)

)

.

Hence (6.30) and thus the global solvability of the Explicit Euler scheme in D(F) by Proposition
6.20. To conclude it is enough to apply Theorem 6.22(a) and Theorem 7.7. �

It is immediate to notice that the semi-discrete Lagrangian scheme proposed in [Cam+21] co-
incides with the Explicit Euler Scheme given in Definition 6.8. In particular, we can state the
following comparison between the limit obtained by the Explicit Euler scheme (EE) (leading to
the λ-EVI solution of (6.1)) and that of the approximating LASs scheme proposed in [Pic19]
(leading to a barycentric solution to (6.1) in the sense of Definition 6.25).
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Corollary A.3. Let F be a PVF satisfying (H1)-(H2), µ0 ∈ Pb(R
d) and let T ∈ (0,+∞). Let

(nk)k∈N be a sequence such that the LASs scheme (µnk)k∈N of [Pic19, Definition 3.1] converges
uniformly-in-time and let (Mτk )k∈N be the affine interpolants of the Explicit Euler Scheme defined

in (6.10), with τk = T
nk
. Then (µnk)k∈N and (Mτk)k∈N converge to the same limit curve µ ∈

C([0, T ];Pb(R
d)), which is the unique λ-EVI solution of (6.1) in [0, T ].

Proof. By Proposition A.2, F is a
(

L2+1
2

)

-dissipative MPVF s.t. M(µ0, τ, T, L̃) 6= ∅ for every

τ > 0, where L̃ > 0 is a suitable constant depending on µ0 and F. Thus by Theorem 7.7,
(Mτk)k∈N uniformly converges to a λ-EVI solution µ ∈ C([0, T ];P2(R

d)) which is unique since

F generates a
(

L2+1
2

)

-flow. Since we start from a compactly supported µ0, the semi-discrete

Lagrangian scheme of [Cam+21] and our Euler Scheme actually coincide. To conclude we apply
[Cam+21, Theorem 4.1] obtaining that µ is also the limit of the LASs scheme. �

We conclude that among the possibly not-unique (see [Cam+21]) barycentric solutions to (6.1)
- i.e. the solutions in the sense of [Pic19]/Definition 6.25 - we are selecting only one (the λ-EVI
solution), which turns out to be the one associated with the LASs approximating scheme.
In light of this observation, we revisit an interesting example studied in [Pic19, Section 7.1] and
[Cam+21, Section 6].

Example A.4 (Splitting particle). For every ν ∈ Pb(R) define:

B(ν) := sup

{

x : ν(]−∞, x]) ≤ 1

2

}

, η(ν) := ν(]−∞, B(ν)])− 1

2
,

so that ν({B(ν)}) = η(ν) + 1
2 − ν(]−∞, B(ν)[). We define the PVF F[ν] :=

∫

Fx[ν] dν(x), by

Fx[ν] :=







δ−1 if x < B(ν)
δ1 if x > B(ν)

1
ν({B(ν)})

(

ηδ1 +
(

1
2 − ν(]−∞, B(ν)[)

)

δ−1

)

if x = B(ν), ν({B(ν)}) > 0.

By [Pic19, Proposition 7.2], F satisfies assumptions (H1)-(H2) with L = 0 and the LASs scheme
admits a unique limit. Moreover, the solution µ : [0, T ] → Pb(R) obtained as limit of LASs, is
given by

µt(A) =µ0((A∩]−∞, B(µ0)− t[) + t) + µ0((A∩]B(µ0) + t,+∞[)− t)

+
1

µ0({B(µ0)})

(

ηδB(µ0)+t(A) + (
1

2
− µ0(]−∞, B(µ0)[))δB(µ0)−t(A)

)

.
(A.1)

By Corollary A.3, (A.1) is the (unique) λ-EVI solution of (6.1). In particular:

i) if µ0 = 1
b−aLx[a,b], i.e. the normalized Lebesgue measure restricted to [a, b], we get

µt =
1

b−aLx[a−t, a+b
2

−t]+
1

b−aLx[ a+b
2

+t,b+t];

ii) if µ0 = δx0
, we get µt =

1
2δx0+t +

1
2δx0−t.

Notice that, in case (i), since µt ≪ L for all t ∈ (0, T ), i.e. µt ∈ Pr
2(R), we can also apply

Theorem 6.30 to conclude that µ is the λ-EVI solution of (6.1) with µ0 =
1

b−aLx[a,b]. Moreover,

take ε > 0, and consider case (i) where we denote by µε0 the initial datum and by µε the
corresponding λ-EVI solution to (6.1) with a = x0 − ε, b = x0 + ε. We can apply (6.31) with
µ0 = µε0 and µ1 = δx0

in order to give another proof that, for all t ∈ [0, T ], the W2-limit of St[µ
ε
0]

as ε ↓ 0, that is St[δx0
] = 1

2δx0+t +
1
2δx0−t, is a λ-EVI solution starting from δx0

. Thus we end
up with (ii).
Dealing with case (ii), we recall that, if µ0 = δx0

then also the stationary curve µ̄t = δx0
, for

all t ∈ [0, T ], satisfies the barycentric property of Definition 6.25 (see [Cam+21, Example 6.1]),
thus it is a solution in the sense of [Pic19]. However, µ̄ is not a λ-EVI solution since it does not
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coincide with the curve given by ii). This fact can also be checked by a direct calculation as
follows: we find ν ∈ Pb(R) such that

d

dt

1

2
W 2

2 (µ̄t, ν) > λW 2
2 (µ̄t, ν)− [F[ν], µ̄t]r t ∈ (0, T ), (A.2)

where λ = 1
2 is the dissipativity constant of the PVF F coming from the proof of Proposition

A.2. Notice that the LHS of (A.2) is always zero since t 7→ µ̄t = δ0 is constant. Take ν = Lx[0,1]

so that we get F[ν] =
∫

Fx[ν] dν(x), with Fx[ν] = δ1 if x > 1
2 , Fx[ν] = δ−1 if x < 1

2 . Noting that
Λ(F[ν], δ0) = {F[ν]⊗ δ0}, by using the characterization in Theorem 3.9 we compute

[F[ν], δ0]r =

∫

TX

〈x, v〉dF[ν] =
∫ 1/2

0
〈x, v〉dFx[ν](v) dx+

∫ 1

1/2
〈x, v〉dFx[ν](v) dx =

1

4
.

Since W 2
2 (δ0, ν) = m2

2(ν) =
1
3 , we have

λW 2
2 (µ̄t, ν)− [F[ν], µ̄t]r =

1

6
− 1

4
< 0,

and thus we obtain the desired inequality (A.2) with ν = Lx[0,1].

Appendix B. Wasserstein differentiability along curves

In general, if µ : [0,+∞) → P2(X) is a locally absolutely continuous curve and ν ∈ P2(X), then
the map [0,+∞) ∋ s 7→ W 2

2 (µs, ν) is locally absolutely continuous and thus differentiable in
a set of full measure A(µ, ν) ⊂ (0,+∞) which, in principle, depends both on µ and ν. What
Theorem 3.11 shows is that, independently of ν, there is a full measure set A(µ), depending only
on µ, where this map is left and right differentiable. If moreover ν and t ∈ A(µ) are such that
there is a unique optimal transport plan between them, we can actually conclude that such a
map is differentiable at t.
We want to highlight how this result is optimal giving an example of a locally absolutely contin-
uous curve µ : [0,+∞) → P2(R

2) s.t. the full measure set of differentiability points of the map
[0,+∞) ∋ s 7→W 2

2 (µs, ν) depends also on ν ∈ P2(R
2). To do that it is enough to show that

for every t0 ∈ A(µ) there exist ν0 ∈ P2(R
2) and γ1,γ2 ∈ Γo(µt0 , ν0) s.t. L(γ1) 6= L(γ2),

where A(µ) is as in Theorem 2.10 and, for γ ∈ P2(R
2 × R2) s.t. x0♯γ = µt, we define

L(γ) :=

∫

X2

〈vt(x), x− y〉dγ(x, y).

Indeed this will imply that [(iX,vt0)♯µt0 , ν0]r 6= [(iX,vt0)♯µt0 , ν0]l, hence the non differentiability
at t0.
Let us consider two regular functions u : [0,+∞) → R2 and r : [0,+∞) → R s.t. |ut| = 1 for
every t ≥ 0. Let ω : [0,+∞) → R2 be defined as the orthogonal direction to ut:

ωt :=

(

0 −1
1 0

)

ut, t ≥ 0.

Being the norm of u constant in time, there exists some regular λ : (0,+∞) → R s.t. u̇t = λtωt

for every t > 0. Finally we define

x1 : [0,+∞) → R2, x1(t) := rtut,

x2 : [0,+∞) → R2, x2(t) := −rtut,

µ : [0,+∞) → P2(R
2), µt :=

1

2

(

δx1(t) + δx2(t)

)

.
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Observe that ẋ1(t) = ṙtut+ rtu̇t = −ẋ2(t) for every t > 0. Moreover, for every ϕ ∈ C∞
c (R2) and

t > 0, we have

d

dt

∫

R2

ϕdµt =
d

dt

(

1

2
ϕ(x1(t)) +

1

2
ϕ(x2(t))

)

=
1

2
∇ϕ(x1(t)) ẋ1(t) +

1

2
∇ϕ(x2(t)) ẋ2(t)

=

∫

R2

〈vt(x),∇ϕ(x)〉dµt,

where

vt(x) :=

{

ẋ1(t) if x = x1(t),

ẋ2(t) if x = x2(t),
t > 0.

Hence, the above defined vector field vt solves the continuity equation with µt. Let t0 ∈ A(µ)
and let us define ω0 := ω(t0), ν0 :=

1
2δω0

+ 1
2δ−ω0

and the plans γ1,γ2 ∈ Γo(µt0 , ν0) by

γ1 :=
1

2
δx1(t0) ⊗ δω0

+
1

2
δx2(t0) ⊗ δ−ω0

,

γ2 :=
1

2
δx2(t0) ⊗ δω0

+
1

2
δx1(t0) ⊗ δ−ω0

.

Notice that they are optimal since any plan in Γ(µt0 , ν0) has the same cost, being the points
ω0, x1(t0), x2(t0),−ω0 the vertexes of a rhombus. Finally, we compute L(γ1) and L(γ2):

L(γ1) =

∫

R2×R2

〈x− y,vt(x)〉dγ1(x, y) =
1

2
〈ẋ1(t0), x1(t0)− ω0〉+

1

2
〈ẋ2(t0), x2(t0) + ω0〉

= 〈ẋ1(t0), x1(t0)− ω0〉 = 〈ṙt0ut0 + rt0 u̇t0 , rt0ut0 − ω0〉 = rt0 ṙt0 − rt0λt0 ,

L(γ2) =

∫

R2×R2

〈x− y,vt(x)〉dγ2(x, y) =
1

2
〈ẋ2(t0), x2(t0)− ω0〉+

1

2
〈ẋ1(t0), x1(t0) + ω0〉

= 〈ẋ1(t0), x1(t0) + ω0〉 = 〈ṙt0ut0 + rt0 u̇t0 , rt0ut0 + ω0〉 = rt0 ṙt0 + rt0λt0 .

In this way, if rt0 6= 0 and λt0 6= 0 we have L(γ1) 6= L(γ2). A possible choice for u and r
satisfying the assumptions is

ut := (cos(t), sin(t)), rt = 1, t ≥ 0,

so that λt = 1 for every t > 0.

Appendix C. Support function and Dini derivatives

We recall the following characterization of the closed convex hull co(C) of a set C (i.e. the
intersection of all the closed convex sets containing C) in a Banach space.

Lemma C.1. Let Z be a Banach space and let C ⊂ Z be nonempty. Then v ∈ co(C) if and
only if

〈z∗, v〉 ≤ sup
c∈C

〈z∗, c〉 ∀ z∗ ∈ Z∗. (C.1)

Moreover if C is bounded, it is enough to have (C.1) holding for every z∗ ∈W , with W a dense
subset of Z∗.

Proof. The result is a direct consequence of Hahn-Banach theorem.
Concerning the last assertion, observe that the function

Z∗ ∋ z∗ 7→ sup
c∈C

〈z∗, c〉

is Lipschitz continuous if C is bounded. Hence, if (C.1) holds only for some W ⊂ Z∗ dense,
then it holds for the whole Z∗. �



REFERENCES 61

Let us state and prove a simple lemma that allows us to pass from a differential inequality for
the right upper Dini derivative to the corresponding distributional inequality (see also [MS20,
Lemma A.1] and [Gál57]).

Lemma C.2. Let (a, b) ⊂ R be an open interval (bounded or unbounded) and let ζ, η : (a, b) → R

be s.t. ζ is continuous in (a, b) and η is measurable and locally bounded from above in (a, b). If

d

dt

+

ζ(t) ≤ η(t) for every t ∈ (a, b),

then the above inequality holds also in the sense of distributions, meaning that

−
∫ b

a
ζ(t)ϕ′(t) dt ≤

∫ b

a
η(t)ϕ(t) dt for every ϕ ∈ C∞

c (a, b).

Proof. Let ϕ ∈ C∞
c (a, b), then there exist a < x < y < b s.t. the support of ϕ is contained in

[x, y] ; since η is locally bounded from above, there exists a positive constant C > 0 s.t. η(t) ≤ C
for every t ∈ [x, y]. Then the function t 7→ ζ(t)− Ct is s.t.

d

dt

+

(ζ(t)− Ct) ≤ 0 for every t ∈ [x, y]

so that it is decreasing in [x, y] and hence a function of bounded variation in [x, y]. Its distribu-
tional derivative is hence a non positive measure T on [x, y] whose absolutely continuous part
(w.r.t. the 1-dimensional Lebesgue measure on [x, y]) coincides a.e. with the right upper Dini
derivative. Then we have

−
∫ b

a
(ζ(t)− Ct)ϕ′(t) dt = T (ϕ) =

∫ b

a

d

dt

+

(ζ(t)− Ct)ϕ(t) dt+ Ts(ϕ) ≤
∫ b

a
(η − C)ϕ(t) dt,

where Ts is the singular part of T . This immediately gives the thesis. �
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[Bré73] H. Brézis. Opérateurs maximaux monotones et semi-groupes de contractions dans les
espaces de Hilbert. North-Holland Mathematics Studies, No. 5. Notas de Matemática
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[NS21] E. Naldi and G. Savaré. Weak topology and Opial property in Wasserstein spaces,
with applications to Gradient Flows and Proximal Point Algorithms of geodesically
convex functionals. 2021. arXiv: 2104.06121 [math.OC].

[Pic18] B. Piccoli. “Measure differential inclusions”. In: 2018 IEEE Conference on Decision
and Control (CDC) (2018), pp. 1323–1328.

[Pic19] B. Piccoli. “Measure differential equations”. In: Arch. Ration. Mech. Anal. 233.3
(2019), pp. 1289–1317. doi: 10.1007/s00205-019-01379-4.

[PR14] B. Piccoli and F. Rossi. “Generalized Wasserstein distance and its application
to transport equations with source”. In: Arch. Ration. Mech. Anal. 211.1 (2014),
pp. 335–358. doi: 10.1007/s00205-013-0669-x.

[PR19] B. Piccoli and F. Rossi. “Measure dynamics with probability vector fields and
sources”. In:Discrete Contin. Dyn. Syst. 39.11 (2019), pp. 6207–6230. doi: 10.3934/dcds.2019270.

https://arxiv.org/abs/2011.07117
https://doi.org/10.1007/BF02757989
https://doi.org/10.2307/2373376
https://doi.org/10.1007/1-4020-1964-5
https://doi.org/10.1007/978-94-015-7793-9
https://doi.org/10.1137/S0036141096303359
https://doi.org/10.1016/j.jfa.2019.108347
https://doi.org/10.1142/S0218202506001224
https://doi.org/10.1137/090750809
https://arxiv.org/abs/2104.06121
https://doi.org/10.1007/s00205-019-01379-4
https://doi.org/10.1007/s00205-013-0669-x
https://doi.org/10.3934/dcds.2019270


REFERENCES 63

[Qi83] L. Q. Qi. “Uniqueness of the maximal extension of a monotone operator”. In: Non-
linear Anal. 7.4 (1983), pp. 325–332. doi: 10.1016/0362-546X(83)90086-X.

[Rul96] J. Rulla. “Error analysis for implicit approximations to solutions to Cauchy prob-
lems”. In: SIAM J. Numer. Anal. 33.1 (1996), pp. 68–87. doi: 10.1137/0733005.

[San15] F. Santambrogio. Optimal transport for applied mathematicians. Vol. 87. Progress
in Nonlinear Differential Equations and their Applications. Calculus of varia-
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