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Abstract—Surface defect detection plays an increasingly 

important role in manufacturing industry to guarantee the 

product quality. Many deep learning methods have been widely 

used in surface defect detection tasks, and have been proven to 

perform well in defects classification and location. However, deep 

learning-based detection methods often require plenty of data for 

training, which fail to apply to the real industrial scenarios since 

the distribution of defect categories is often imbalanced. In other 

words, common defect classes have many samples but rare defect 

classes have extremely few samples, and it is difficult for these 

methods to well detect rare defect classes. To solve the imbalanced 

distribution problem, in this paper we propose TL-SDD: a novel 

Transfer Learning-based method for Surface Defect Detection. 

First, we adopt a two-phase training scheme to transfer the 

knowledge from common defect classes to rare defect classes. 

Second, we propose a novel Metric-based Surface Defect Detection 

(M-SDD) model. We design three modules for this model: (1) 

feature extraction module: containing feature fusion which 

combines high-level semantic information with low-level 

structural information. (2) feature reweighting module: 

transforming examples to a reweighting vector that indicates the 

importance of features. (3) distance metric module: learning a 

metric space in which defects are classified by computing distances 

to representations of each category. Finally, we validate the 

performance of our proposed method on a real dataset including 

surface defects of aluminum profiles. Compared to the baseline 

methods, the performance of our proposed method has improved 

by up to 11.98% for rare defect classes. 

Keywords—surface defect detection, transfer learning, feature 

fusion, feature reweighting, distance metric 

I. INTRODUCTION  

Surface defect detection plays an increasingly important role 
manufacturing industry to guarantee the product quality. The 
automated product surface defect detection methods can timely 
find and control the adverse effects of these defects on the 
aesthetics and performance of the product. Generally, there are 
four lines of surface defect detection methods: (1) eddy current 
detection, (2) infrared detection, (3) magnetic flux leakage 
detection and (4) computer vision detection. The former three 
methods are far from satisfactory in terms of a wide variety of 
defect detection effect due to their insufficient application. 
Computer vision detection methods gradually take the place of 
the artificial detection methods and realize the automated 
surface defect detection, which also benefits a wide range of 

intelligent manufacturing domains, including machinery 
manufacturing [1], aerospace [2] and other fields. 

Surface defect detection consists of two components: (1) 
Defect classification – to detect the  types of defects exist in the 
image. Traditional surface defect classification methods often 
use conventional image processing algorithms or artificially 
designed features based classifiers. Image processing methods 
generally include image preprocessing [3] and image 
segmentation [4, 5]. Manual image features usually include 
texture features [6, 7], color features, shape features, etc. The 
features are extracted from the image and then be input into the 
classifier for defect classification. (2) Defect location - not only 
to detect the types of defects exist in the image, but also to locate 
these defects. Many deep learning-based methods are widely 
used in surface defect detection tasks, which can not only 
improve the performance of defect classification, but also realize 
defect location [8]. In some methods ,a candidate box is 
generated and then categorized for the defect location. In others, 
a convolutional neural network (CNN) is leveraged to directly 
predict the category and location of defects. 

Though deep learning-based methods perform well in some 
cases, they fail to work in real industrial scenarios since the 
distribution of defect categories is often imbalanced, that is, 
common defect classes have many samples but rare defect 
classes have extremely few samples, as shown in Figure 1. It is 
difficult for these methods to well detect rare defect classes. In 
real industrial environment, due to the limitation of the 
production environment, there widely exist defect categories 
with a large number of samples and defect categories with 
extremely few samples. If we train all the data together as usual, 
we can obtain a detection model with good overall performance 
but poor performance for the rare defect classes with extremely 
few samples. In addition, the feature map obtained through 
general feature extraction will lose structural information due to 
convolution and pooling operations. Since defects vary greatly, 
the same feature extraction operation is not effective for 
different defects, especially for small range of defect categories. 
In real production scenarios, surface defect detection still faces 
the following challenges: 

• The distribution of defect categories is extremely 
imbalanced, which means there are plenty of common 
defect samples but extremely few rare defect samples. 



When these imbalanced samples are carried out in joint 
training, it is disadvantageous for rare defect classes. 

• It is difficult to detect small range of defect categories. 
Because of convolution and pooling operations, the 
feature map from the general feature extractor loses 
structural information. 

To address these issues mentioned above, in this paper we 
propose a Transfer Learning-based method for Surface Defect 
Detection (TL-SDD) which contains a two-phase transfer 
learning scheme and a novel Metric-based Surface Defect 
Detection (M-SDD) model. The two-phase transfer learning 
scheme transfer the knowledge from common defect classes to 
rare defect classes. The first phase is to obtain a pre-trained 
defect detector with common defect samples, then finetune it 
with few both rare defect and common defect samples in the 
second phase. Feature fusion is adopted in feature extraction 
module to prevent the loss of structural information. To leverage 
plenty of common defect classes and quickly adapt to rare defect 
classes, we design a distance metric module to categorize the 
defects instead of fully connected network. Besides, we add a 
feature reweighting module trained in parallel with feature 
extraction module. This module transforms examples to a 
reweighting vector that indicates the importance of features. 
Overall, our contributions can be briefly summarized as follows: 

• We design a two-phase transfer learning scheme to 
ensure the generalization performance of the model for 
the rare defect classes with extremely few samples. 

• We design a novel surface detection model, which 
contains feature extraction module, feature reweighting 
module and distance metric module. 

• We conduct experiments on a real dataset including 
surface defects of aluminum profiles. The detection 

performance of our method has improved by up to 11.98% 
compared to the baseline methods.  

The remaining parts of this article are depicted as follows. 
The related work about this work is presented in Section II. In 
Section III, a novel surface defect detection method is provided.  
The experimental results on different surface defect detection 
situations are given in Section IV. Finally, a brief summary is 
presented in Section V. 

II. RELATED WORK 

A. Surface defect detection 

Sliding window. Generally, redundant sliding is performed 
on the original image through a smaller-sized window, and the 
image in the sliding window is input into the classification 
network for defect recognition. Finally, all the sliding windows 
are connected to obtain the result of rough positioning of the 
defect. Cha [9] et al. used the sliding window-based CNN 
classification network to realize the crack surface defect location. 
The limitation of this kind of method is that the sliding traversal 
speed is slow, the sliding window size needs to be selected 
accurately, and only a coarser-grained positioning effect can be 
obtained. 

Heatmap. A heatmap is an image that reflects the importance 
of each area in the image. In the field of computer vision, CAM 
(Class Activation Mapping) [10] and Grad-CAM [11] methods 
are often used to obtain heatmaps. Lin [12] et al. used CAM to 
obtain the heatmap, and used the Otsu binarization method to 
segment the heatmap to realize the location of scratches or line 
defects in the LED lamp image. Zhou [13] et al. used the grad-
CAM method to obtain the heat map, and also used the Otsu 
algorithm to segment to obtain the accurate area of the surface 
of defect location depends on the network classification 
performance. 

 

Fig. 1. Imbalanced distribution of defect categories: common defect classes with plenty of samples and rare defect classes with extremely few samples. 
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Object detection network. Object detection is one of the most 
basic tasks in the field of computer vision, and it is also the 
closest task to defect detection in the traditional sense. At 
present, object detection methods are based on deep learning 
emerge in an endless stream. Generally speaking, the defect 
detection network based on deep learning can be divided into 
two categories: (1)  two-stage network represented by Faster R-
CNN [14]. (2) one-stage network represented by SSD [15] or 
YOLO [16]. The two-stage method has higher detection 
accuracy. This work leverages Faster R-CNN as the backbone 
to improve and realize surface defect detection. 

B. Surface defect detection with few samples 

Data Augmentation. The most commonly used defect image 
amplification method leverages multiple image processing 
operations such as mirroring, rotation, translation, and distortion 
on the original defect samples to obtain more samples. Huang 
[17] et al. used the above method to amplify the defect data and 
apply it to the magnetic tile defect detection. Another common 
method is data synthesis. Tao [18] et al. used a segmentation 
network to segment the defective insulator from the natural 
background, and then superimposed it on the normal sample 
through image fusion. In this paper, we use some data 
augmentation methods to expand the dataset. 

Weakly supervised learning. Usually the method based on 
weakly supervision refers to the use of image-level category 
annotation to obtain the detection effect of sub-location level. 
Marino [19] et al. used a weakly supervised learning method 
based on PRM (Peak Response Maps) to classify, locate and 
segment potato surface defects. Niu [20] et al. proposed a 
weakly supervised learning defect detection method based on 

GAN. Through CycleGAN [21], the input test image is 
converted to its corresponding defect-free image, and the 
difference between the input image and the generated defect-
free image is compared to realize the surface defect detection. 
This type of method still requires a large number of labeled 
images, and is not suitable for situations with extremely few data. 

Semi-supervised learning. Semi-supervised learning usually 
uses a large amount of unlabeled data and a small part of labeled 
data for the training of surface defect detection models. Di [22] 
et al. proposed a semi-supervised GAN [23] network-based 
method to classify steel surface defects. In the designed CAE-
GAN defect detection network, a CAE-based encoder is used 
and fed into the softmax layer to form a discrimination device. 
He [24] et al. proposed a multi-trained semi-supervised learning 
method applied to the classification of steel surface defects. This 
method uses cDCGAN [25] to generate a large number of 
unlabeled samples. Gao [1] et al. proposed a semi-supervised 
learning method using CNN and improved the performance by 
using pseudo labels. At present, semi-supervised methods are 
mostly used to solve defect classification tasks, and have not 
been widely used in defect location. 

Meta-learning. The main goal of meta-learning is to learn 
prior knowledge and then be leveraged to quickly adapt to a new 
task. According to the process of learning parameters in the 
adaptive process, meta-learning methods can be divided into 
three types: (1) Optimization-based meta-learning: Finn [26] et 
al. proposed a model-independent meta-learning method 
MAML, which can learn a relatively good initialization 
parameter, so that the model can be quickly fine-tuned to have a 
relatively good effect after accepting a new task. (2) Model-

 

Fig. 2. TL-SDD Framework. Our proposed model leverages fully labeled common defect classes and quickly adapts to rare defect classes, using a feature 

extraction module , a feature reweighting module and a distance metric model within a two-phase transfer learning scheme. 
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based meta-learning: Santoro [27] et al. proposed a neural 
network with memory enhancement called MANN, which uses 
external memory space to explicitly record some information 
and combines it with the long-term memory capabilities of the 
neural network itself to realize few samples learning tasks. (3) 
Metric-based meta-learning: Snell [28] et al. proposed prototype 
networks, which learn a metric space in which classification can 
be completed by calculating the distance to the prototype 
representation of each class. This paper draws on the metric-
based meta-learning method to realize the detection of surface 
defects with imbalanced categories and few samples. 

III. APPROACH 

In this paper, we name the defect categories with plenty of 
annotated data as common defect classes and those with 
extremely few annotated samples as rare defect classes. We aim 
to obtain a surface defect detection model which can learn to 
well detect both common defect classes and rare defect classes 
by transferring knowledge from common defect classes to rare 
ones. 

Our proposed surface defect detection model introduces a 

feature extraction module  , a feature reweighting module  , 

and a distance metric module   into a two-stage detection 
framework Faster R-CNN [14]. And we propose a two-phase 
transfer learning scheme to ensure the generalization of the 
model for the rare defect classes. This setting is in good 
agreement with the reality -- one might expect to deploy a pre-
trained defect detector for rare defect classes with extremely few 
labeled samples. Our framework is shown as Figure 2. 

A. M-SDD model 

1) Feature extraction module 

We use ResNet-101 [29] to implement the backbone of 

feature extraction module  . In this module, we use the Feature 

Pyramid Networks [30] (FPN) for feature fusion. As shown in 

Figure 3, The left to right path is the feedforward calculation of 

the backbone CNN, and the feature hierarchy is composed of 

multi-scale feature maps is calculated with a scaling step of 2. 

The right to left path produces higher-resolution features by 

upsampling of more coarse-grained space. Because all levels of 

the pyramid use shared classifiers/regressors like traditional 

feature image pyramids, we use the same feature dimensions in 

all feature mappings. To keep the same number of channels at 

each layer, use 1×1 convolution to change channel dimensions. 

In order to be fused with high-resolution features, we increase 

the spatial resolution of low-resolution features by a factor of 2. 

In order to reduce the aliasing effect of upsampling, we append 

3×3 convolution to each merged map to generate the final fused 

feature. 

2) Feature reweighting module 

For the feature reweighting module  , we design a 
lightweight CNN, which can not only improve efficiency, but 
also simplify learning. The schematic diagram of this module is 
shown as Figure 4. This module takes the defect images and 
their annotations as input, learns to embed these information into 
the reweighting vector, and adjusts the contribution of the fused 
feature, so as to be used by subsequent modules. 

Formally, let 𝐹 ∈ ℝ𝑤×ℎ×𝑚 denotes fused feature, which is 
generated by 𝐸: 𝐹 = 𝐸(𝑥) , where 𝑥  denotes the input defect 
images. The fused feature has 𝑚  feature maps. 𝑥𝑖  and 𝑎𝑖 
denotes defect images and their associated bounding box 
annotations respectively, for class 𝑖, 𝑖 = 1, … , 𝑁 . The 
reweighting module takes (𝑥𝑖 , 𝑎𝑖)  as input, embeds it into a 
reweighting vector 𝑤𝑖 ∈ ℝ𝑚 with 𝑤𝑖 = 𝑃(𝑥𝑖 , 𝑎𝑖). The vector is 
responsible for adjusting the weight of fused features and 
highlighting more important features in class 𝑖. After getting the 
vector 𝑤𝑖 , our model applies it to obtain the class-specific 
feature 𝐹𝑖 for class 𝑖 by: 

𝐹𝑖 = 𝐹 ⨂  𝑤𝑖     (1) 

where ⨂ denotes 1×1 depth-wise convolution. 

After obtaining the class-specific feature 𝐹𝑖, RPN network 
and ROI pooling will generate candidate Region of Interest (ROI) 
sets of the same size. Please refer to Faster R-CNN[14] for 
details. 

 

Fig. 3. Feature extraction module. The left to right path at the top is the 

feedforward calculation of the backbone CNN. The right to left 

path in the middle is feature fusion. 1×1 convolution is to change 
channel dimensions. ×2 means upsampling. 3×3 convolution is to 
reduce the aliasing effect of upsampling. 
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Fig. 4. Feature reweighting module. This module takes the defect images 
and their annotations as input, learns to embed these information 

into the reweighting vector, and adjusts the contribution of fused 

feature. 
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3) Distance metric module 

In distance metric module , we generate a representation 

for each defect category, which is classified by using softmax 

function to calculate the probability that the sample belongs to 

each. The schematic diagram of this module is shown as Figure 

5. In this way, only a few parameters can be used for 

classification, so as to avoid over-fitting of rare defect classes 

with few training samples when using the fully connected 

network. 

We have dataset 𝐷 = 𝐷1 ∪ … ∪ 𝐷𝑁 , class 𝑖, 𝑖 = 1, … , 𝑁 .  

𝐷𝑖 = {(𝑥1
𝑖 , 𝑦1

𝑖 ), … , (𝑥𝑛
𝑖 , 𝑦𝑛

𝑖 )} denotes a subset of the dataset 𝐷 

belonging to class 𝑖 . We define a function 𝑓 , consisting of 

feature extractor, feature reweighting module, RPN and ROI 

pooling. Distance metric module compute a representation 𝑐𝑖 

for each class 𝑖 by: 

𝑐𝑖 =
1

|𝐷𝑖|
∑ 𝑓(𝑥)(𝑥,𝑦)∈𝐷𝑖

        (2) 

After the representation of each class is obtained, the 

probability of each sample corresponding to each class is 

calculated by: 

𝑃(𝑦 = 𝑖|𝑥) =
exp(−𝑑(𝑓(𝑥),𝑐𝑖))

∑ exp(−𝑑(𝑓(𝑥),𝑐𝑖′))𝑖′
   (3) 

where distance function 𝑑 means squared Euclidean distance.  

Finally, we choose loss function for the whole model as: 

 𝐿 = 𝐿𝑙𝑜𝑐 + 𝐿𝑐𝑙𝑎    (4) 

where 𝐿𝑙𝑜𝑐 is similar to loss function in RPN and 

 𝐿𝑐𝑙𝑎 = − log 𝑃(𝑦 = 𝑖|𝑥)   (5) 

B. Two-phase transfer learning scheme 

To ensure the generalization performance of the model, we 
proposed a two-phase transfer learning scheme which is 
different from the traditional model. We reorganize the 
annotated training images in the common defect classes into 
several few-shot defect detection learning tasks 𝑇𝑘 . Each task 
𝑇𝑘 = 𝑆𝑘 ∪ 𝑄𝑘  contains a support set 𝑆𝑘 (consisting of  𝑁 × 𝑠 
support images, which means each class has 𝑠 images, class 𝑖 =
1, … , 𝑁 ) and a query set 𝑄𝑘 (offering query images with 
annotations for performance evaluation). 

The whole learning process consists of two phases. (1) The 
first phase is the base training phase. In this phase, we jointly 
train the feature extractor, feature reweighting module, RPN and 
distance metric module with abundant few-shot tasks made up 
of common defect classes samples. In each task, we randomly 
sample 𝑠(𝑠=5) labeled images for each class in support set and 
each task and 2 labeled images for each class in query set of each 
task. (2) The second phase is few-shot fine-tuning. In this phase, 
we train the model on both common defect classes and rare 
defect classes. To keep balance between common defect classes 
and rare defect classes, we only include 𝑠(𝑠=5) labeled images 
for both common defect classes and rare defect classes in 
support set and 2 labeled images for each class in query set. We 
freeze the feature extractor in the training procedure and 
finetune the rest module. 

IV. EXPERIMENTS 

In this section, we evaluate our model in a real dataset 
including surface defects of aluminum profiles. We use Faster 
R-CNN [14] as the base detector and choose ResNet-101 [29] as 
backbone. 

A. Experimental Setup 

1) Dataset  

In this paper, we use a real dataset including surface defects 

of aluminum profiles to evaluate our model. This dataset is 

 

Fig. 6. Data augmentation. (a) is the original image, (b) is horizontal 
mirroring of the original image, (c) is vertical mirroring of the 

original image and (d) is 180° inversion of the original image. 
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Fig. 5. Distance metric module. This module learns a metric space in which 

the representation of each defect category is generated and defects 

are classified by computing distances to representations of each 

category. 

 

 

 



provided by the Guangdong Industry Intelligent Manufacturing 

Big Data Innovation Competition. We choose 4 common defect 

classes (Leak, Pit, Orange skin, Spot) and 2 rare defect classes 

(Convex powder, Chafed). This paper focuses on a single defect 

on the surface of aluminum, where a single defect refers to only 

a certain kind of defect on a single image. Because of the small 

number of images in the original dataset, we make data 

augmented by horizontal mirroring, vertical mirroring and 180° 

inversion of the original image. The schematic diagram of data 

augmentation is shown as Figure 6. Finally, each category in 

common defect classes contains at least 1000 images and each 

category in rare defect classes contains 64 images. The details 

of the dataset are shown in Table 1. 

TABLE I.  THE DETAILS OF SURFACE DEFECTS DETECTION OF 

ALUMINUM PROFILES DATASET 

Common defect  Rare defect  

Leak Pit Spot 
Orange 

skin 

Convex 

powder 
Chafed 

1076 1228 1044 1092 64 64 

 

2) Evaluation metrics 

In this paper, we choose Average Precision (AP) for each 

category as evaluation indicator of our model. The indicators 

are identified as:  

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 𝑇𝑃/(𝑇𝑃 + 𝐹𝑃)  (6) 

𝑅𝑒𝑐𝑎𝑙𝑙 = 𝑇𝑃/(𝑇𝑃 + 𝐹𝑁)   (7) 

𝐴𝑃 = (𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙)/2  (8) 

where TP (True Positives) denotes the number of positive 

samples that are correctly identified as positive samples, FP 

(False positives) denotes the number of negative samples that 

are misidentified as positive samples, and FN (False negatives) 

demotes the number of positive samples that were misidentified 

as negative samples. 

3) Baselines 

We compare our model with four baselines. Faster R-CNN-

joint (FR-joint) is the first baseline which train the detector with 

images from the common and rare defect classes together on 

Faster R-CNN. The second one is Faster R-CNN+ff-joint 

(FR+ff-joint) which adds feature fusion in feature extraction 

module and trains the detector on images from the common and 

rare defect classes together. The third one is two-phase Transfer 

Learning scheme adds feature fusion (TL-ff) in feature 

extraction module which trains Faster R-CNN with feature 

fusion on samples of common defects and then finetunes it on 

all defects. The fourth one (TL-ff+fr) adds a feature reweighting 

module on the basis of the third one. 

All the above baselines use Fast R-CNN [31] to classify 

defects, while our method uses the distance metric module. 

Stochastic gradient descent (SGD) with momentum is used for 

model training with a base learning rate of 0.0001. 

TABLE II.  EXPERIMENTAL RESULTS ON THREE METHODS 

AP(%) 
Common defect  Rare defect  

Leak Pit Spot 
Orange 

skin 

Convex 

powder 
Chafed 

FR-joint 74.83 69.87 54.69 75.53 46.01 49.08 

FR+ff-

joint 
76.07 72.98 62.68 76.91 46.84 50.82 

TL-ff 76.11 73.02 61.97 76.85 50.23 52.83 

TL-ff+fr 76.39 73.06 66.73 77.69 53.58 55.32 

TL-SDD 76.96 73.09 68.17 78.02 59.78 61.84 

 

B. Experimental results 

We present our main results in Table 2. We note that our 

model significantly outperforms the baselines. Compared with 

 

Fig. 7. Comparison of the two methods (Faster R-CNN-joint (FR-joint) and Faster R-CNN+ff-joint (FR+ff-joint) ) about the detection results of spot defects. 

(a) is the detection results of spot defects with FR-joint. (b) is the detection results of spot defects with FR+ff-joint. 
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the first baseline (FR-joint), the second baseline (FR+ff-joint) 

adds feature fusion in feature extractor. FR+ff-joint brings 2.88%  

improvement compared to FR-joint because of the feature 

fusion. Especially for spot defects, the detection performance is 

improved by 2% after feature fusion. This is because the scope 

of spot defects is small, and feature fusion combines high-level 

semantic information and low-level structural information, 

which greatly improves the detection effect of spot defects. 

Comparison of the two methods about the detection results of 

spot defects is shown in Figure 7. With the addition of feature 

fusion, the model can detect the dirty spot defects more 

effectively. 

 Compared with the first two baselines, the last three 

methods in Table 2 trains the detector with two-phase learning 

scheme. The performance of our method (TL-SDD) was 

improved by up to 11.98% for rare defect classes. This reflects 

the necessity of the two training phases employed in our model: 

it is better to first train a good model on common defect classes 

and then fine-tune with few-shot data, otherwise joint training 

will let the detector bias towards common defect classes and 

learn nearly nothing about rare defect classes. 

Figure 8 shows the performance of the last three methods in 

Table 2 including TL-ff, TL-ff+fr and TL-SDD (our method). 

Compared with TL-ff, TL-ff+fr adds a feature reweighting 

module which improve the performance by up to 2.92% for rare 

defect classes and 1.48% for common defect classes. It shows 

that the feature reweighting module actually enhance the 

presentation of features by embedding information of 

annotations into the reweighting vector and combining them 

with features. 

Compared with TL-ff+fr, our method TL-SDD uses distance 

metric module instead of Fast R-CNN to classify defects which 

improve the performance by up 6.36% for common defect 

classes. Figure 9 shows the visualization of the representation 

of images in metric space in which more visually similar classes 

tend to have closer representations. For example, the Leak 

defect is more similar with the Chafed defect than Convex 

powder defect and the Leak defect is closer to Chafed defect. 

As shown in Figure 9, the majority of samples are segregated 

by category, and the model can obtain a better detection 

performance. 

V. CONCLUSION 

In this paper, we propose a novel transfer learning-based 

method for surface defect detection (TL-SDD). First, we adopt 

a two-phase training scheme to avoid the overfitting problem 

caused by training the rare defect classes directly. Second, we 

propose a novel metric-based surface defect detection model 

(M-SDD). We design three modules for this model: (1) feature 

extraction module: combining high-level semantic information 

with low-level structural information. (2) feature reweighting 

module: transforming examples to a reweighting vector that 

indicates the importance of features. (3) distance metric module: 

learning a metric space in which defects are classified by 

computing distances to representations of each class. Finally, 

we validate the performance of the proposed method on a real 

dataset including surface defects of aluminum profiles. 

Compared to the baseline methods, defect detection 

performance was improved by up to 11.98% for rare defect 

classes. We only take one real data to evaluate our model, but 

our model can also be applied to other scenarios, such as steel 

surface, wood surface. In addition, we find that the defect shape 

is very irregular, and the detection performance of ordinary 

convolutional neural network on irregular objects may not be 

very well. In the future, we will try to improve the model by 

changing convolution and pooling layers. 
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