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Abstract

The transferability and robustness of adversarial examples are two practical yet
important properties for black-box adversarial attacks. In this paper, we explore
effective mechanisms to boost both of them from the perspective of network hi-
erarchy, where a typical network can be hierarchically divided into output stage,
intermediate stage and input stage. Since over-specialization of source model, we
can hardly improve the transferability and robustness of the adversarial pertur-
bations in the output stage. Therefore, we focus on the intermediate and input
stages in this paper and propose a transferable and robust adversarial perturbation
generation (TRAP) method. Specifically, we propose the dynamically guided mech-
anism to continuously calculate accurate directional guidances for perturbation
generation in the intermediate stage. In the input stage, instead of the single-form
transformation augmentations adopted in the existing methods, we leverage multi-
form affine transformation augmentations to further enrich the input diversity and
boost the robustness and transferability of the adversarial perturbations. Extensive
experiments demonstrate that our TRAP achieves impressive transferability and
high robustness against certain interferences.

1 Introduction

Deep Neural Networks (DNNs) have achieved remarkable success in various computer visual tasks,
including image classification [17, 34, 11], object tracking [12, 16, 20], detection [29, 26], semantic
segmentation [24, 3, 5], etc. Unfortunately, these DNNs are easily to be interfered by some images,
which contain certain artificial yet inconspicuous perturbations, and yield incorrect outputs. These
deliberately crafted perturbations are named adversarial perturbations [38], which has attracted
significant attentions of researchers in the past few years [38, 10, 19, 27, 4, 6, 7, 43]. In general,
the adversarial perturbation generation (i.e., adversarial attack) methods can be classified into two
categories: white-box attacks and black-box attacks. The white-box attacks usually assume that the
attackers possess access to both the architecture and gradient information of the target model. On
the contrary, the black-box attacks assume that the attackers possess approximately zero knowledge
besides of the final predictions. In the black-box scenarios, the adversarial attack methods usually
require the generated perturbations to possess high transferability [23], which is vital to the attack
success rate. Recently, many literatures have been published to focusing on investigating this
intriguing property [27, 6, 49, 13, 47, 14]. Besides, the property of an adversarial example, which
assesses the performance drops against various interferences, is named robustness, which is also a
practical concern in real world systems [2, 9, 40, 30, 35, 1, 8].

In this paper, we explore to generate adversarial perturbations with high transferability and robustness
from the perspective of network hierarchy. Intuitively, a deep network architecture can be hierarchi-
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Figure 1: Demonstration of transferability and robustness of adversarial examples. All the adversarial
examples are crafted on Inception-v3 with ε = 16. (a) The comparison of transferability of adversarial
examples. The ground-truth label is highlighted in pink. (b) The comparison of robustness of
adversarial examples. Xadv denotes the original adversarial examples and A∗i (·) denotes different
multi-form transformations. Note that the descriptions under each image indicate its predicted
category by Inception-v3 and corresponding confidence. We highlight the category tags in green if
the attack is successful. If the attack is failed, the category tag is highlighted in red.

cally divided into three major stages, i.e., output stage, intermediate stage and input stage. Most of
the existing adversarial attack methods manipulate in one of these stages, each of which are relatively
orthogonal to the others and can thus play a complementary role to achieve higher transferability and
robustness.

Unfortunately, to our best knowledge, there is no existing approaches which can manipulate in
the output stage and boost the transferability. We believe that this phenomenon is induced by the
over-specialization of the DNN model in the output stage, which is a classic yet typical generalization
problem in machine learning. Therefore, we will not devote our efforts in this stage also, in this paper.
For the intermediate stage, some literatures [33, 31, 49, 15, 13, 21, 45, 14, 25] have explored to perturb
the intermediate features to improve the transferability of adversarial examples. [13] develops a new
paradigm to specifically optimize the transferability by utilizing the intermediate representation of a
given adversarial example as directional guidance, which provides a reasonable proxy for generating
the transferable perturbations. [13] inspires [21] to further explore linear combinations of auxiliary
results, which are produced in the baseline phase, as the directional guidance for the latter phase.
However, since these directional guidances are fixed once the baseline phase is completed, the positive
effects of these guidances tend to decline as the subsequent optimization steps carry out. Meanwhile,
the transferability, as well as the robustness, of the adversarial examples benefits from creating
diverse inputs at the input stage of network [2, 22, 47, 50, 48]. [2] generates robust adversarial
examples by introducing Expectation Over Transformation (EOT) to the inputs. Unfortunately, [2]
only applies single-form transformations, i.e. only one type of basic transformations at a time, to the
input image, where the complete (multi-form) affine transformation cannot be constructed to improve
the transferability and robustness of the adversarial examples. Note that, the expectation operation
tends to bring larger computational overheads.

To tackle these issues, we propose a transferable and robust adversarial perturbation generation
(TRAP) method from the perspective of network hierarchy. Specifically, dynamically guided mecha-
nism, which adaptively updates the directional guidance as the optimization progresses, is proposed to
boost the transferability in the intermediate stage. Figure 1(a) gives an example of the transferability
property of our method. In the input stage, we introduce a multi-form affine-transformation, which
contains multiple types of basic transformations, to the adversarial examples to perform combinatorial
augmentations with little computational overheads. Figure 1(b) reveals that our primary intention of
utilizing the multi-form transformation augmentation is to boost the robustness of the perturbations
to the practical variations.

Our contributions are summarized as below:
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• We propose a transferable and robust adversarial perturbation generation (TRAP) method from
the perspective of network hierarchy to boost the transferability and robustness of the adversarial
examples simultaneously.

• We propose a dynamically guided mechanism in the intermediate stage of network to adaptively
revise the directional guidance, as the perturbation generation process performs.

• We propose an affine-invariant perturbation enhancement mechanism, which improves both the
transferability and robustness of the adversarial perturbations, by augmenting the input images
with multi-form affine transformations, in the input stage.

2 Related Work

In this section, we give a brief review to the related black-box attack methods. By regarding the
adversarial perturbation generation process as an optimization problem, gradient-based methods
usually leverage the existing optimization algorithms to boost the transferability of adversarial
examples [10, 19, 18, 39, 6, 22, 42].

For the intermediate stage of network, perturbing the intermediate feature space is proposed to
improve the transferability of the black-box methods. Transferable Adversarial Perturbations (TAP)
[49] maximizes the distances between the benign images and their adversarial versions at all the
hidden layers. To search for perturbations with better transferability, Intermediate Level Attack (ILA)
[13] maximizes the scalar projection of the adversarial example onto a guided direction on a specific
hidden layer. Motivated by ILA [13], [21] takes the advantage of auxiliary examples produced by a
baseline attack and yields adversarial examples with better transferability.

In the input stage of network, input augmentation can be exploited to facilitate both the robustness
and transferability. EOT [2] adopts this principle and generates robust adversarial examples via single-
form affine transformation augmentations. Diverse Input Method (DIM) [47] further demonstrates
the effectiveness of input augmentation by applying random resizing and padding to the inputs with
a fixed probability. Scale-Invariant Method (SIM) [22] enriches the gradient information over an
ensemble of multi-scale copies of input image and generates more transferable adversarial examples.

3 Proposed Work

Given a clean image X , its ground-truth label ytrue and a substitute network with parameters θ, we
aim to generate an adversarial perturbation forX with high transferability and robustness. Considering
the relative orthogonality of different stages, naturally, we can design different mechanisms for each
stage and combine them to construct a novel adversarial perturbation generation method, named
transferable and robust adversarial perturbation generation (TRAP). The complete procedures of our
TRAP are summarized in Algorithm 1, which contains two mechanisms, i.e., dynamically guided
mechanism and affine-invariant perturbation enhancement mechanism. Note that the baseline attack
model in our method can be any transfer-based black-box attack methods with any gradient based
iterative optimizer. For convenience, we simply employ MI-FGSM [6] as our baseline model and
Momentum-SGD [28] as the optimizer in this paper.

3.1 Dynamically Guided Mechanism (DGM)

For the intermediate stage of network, [21] has empirically demonstrated that a larger perturbation
on the intermediate feature leads to a higher transferability. Then, a straightforward strategy is to
explicitly maximize the distances between the benign images and their corresponding adversarial
examples in feature space [49, 45, 15]. However, the transferability of such straightforwardly
generated examples usually becomes unsatisfactory, which is induced by overfitting the source model
when the number of attack iteration increases. On the contrary, [13, 21] leverage two phases, i.e.,
baseline phase and enhancement phase, to implicitly enlarge the intermediate feature gap between the
benign and perturbed images, with respect to a directional guidance obtained in the baseline phase.
Unfortunately, [13, 21] only exploit fixed directional guidance, which is generated by the baseline
phase and can only provide sufficient guidelines to the initial steps of the enhancement phase. It
cannot provide accurate reference information for subsequent optimization procedures. Therefore,
we propose a dynamically guided mechanism to alleviate this problem.
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Algorithm 1 Transferable and Robust Adversarial Perturbation Generation (TRAP)
Input: A benign example X with ground-truth label ytrue; the source model parameter θ;
Input: Perturbation budget ε; maximum iterations T ; iterations of baseline attack phase t1; momen-

tum factor µ; the transformation probability p;
Output: Final adversarial example Xadv

T

1: α = ε/t1; Xadv
0 = X

2: gm = 0;h∗0 = 0
3: for t = 0 to T − 1 do
4: if t == t1 then
5: Xadv

t = X; gm = 0

6: if t < t1 then
7: g = ∇XL1(A1 ◦A2 ◦A3 ◦A4(X

adv
t ; p), ytrue; θ)

8: else
9: g = ∇XL2(A1 ◦A2 ◦A3 ◦A4(X

adv
t ; p), h∗t ; θ)

10: Update gt+1 = µ · gm + g
‖g‖1

; gm = gt+1

11: if t >= t1 then
12: α = ε/(T − t1)
13: Update Xadv

t+1 = ClipεX{Xadv
t + α · sign(gt+1)}

14: if t >= t1 then
15: Update h∗t+1 by Eq.3
16: else
17: h∗t+1 = flatten(F l(Xadv

t+1 ; θ))

18: return Xadv
T

Specifically, we firstly perform t1 steps of the baseline attack phase and adopt cross-entropy loss to
train initial the attack model as:

L1(X
adv, ytrue; θ) = −1ytrue log(softmax(c(Xadv; θ))), (1)

where 1ytrue represents the one-hot formed ground-truth and c(X; θ) denotes the logits output and θ
stands for the network parameters. Then, an initial adversarial example Xadv

t1 can be obtained. In our
enhancement phase, we progressively update the directional guidance as the enhancement process
continues. In practice, we initialize the directional guidance h∗t1 with the hidden output hadvt1 , which
can be computed by

hadvt1 = flatten(F l(Xadv
t1 ; θ)), (2)

where F l(·; θ) indicates the output function of layer l of source model. Then, it can be updated in a
progressive manner via

h∗t = (1− β)hadvt−1 + βh∗t−1, t ≥ t1, (3)

where t denotes the optimization step in the enhancement phase, hadvt represents the hidden output
of Xadv

t , and β is employed to balance the tradeoff between the historical and current directional
guidances. Then, the gradient optimization direction can be sought for, with the help of the above
dynamically updated directional guidance. Similar to [13], we not only expect the optimized direction
hadvt to be consistent with the dynamical directional guidance h∗t , but also anticipate a larger amplitude
of the perturbation in that direction. This optimization can be achieved via:

L2(X
adv
t , h∗t ; θ) =

< h∗t − hx, hadvt − hx >
‖h∗t − hx‖2

∥∥hadvt − hx
∥∥
2

+ γ

∥∥hadvt − hx
∥∥
2

‖h∗t − hx‖2
, t ≥ t1, (4)

where hx and hadvt stand for the hidden outputs of the original image X and Xadv
t , respectively, and

γ denotes the tradeoff parameter.

3.2 Affine-Invariant Perturbation Enhancement Mechanism (AIM)

For input stage of network, we introduce a new augmentation paradigm, i.e., imposing multiple
basic instantiations of affine transformations on input concurrently to enrich the diversity of input
patterns, when generating the adversarial examples. Specifically, we leverage four types of basic

4



transformations, including translation, rotation, scaling and shearing. Note that these differentiable
basic transformations can be formulated in an unified mathematical expression and the calculations
can benefit from GPU accelerations. Besides, the invariance against these transformations is of great
significance to facilitate the robustness of adversarial examples [2].

Let A1(·), A2(·), A3(·), A4(·) denote the translation, rotation, scaling and shearing operations
respectively. In this paper, these operations are formulated in a manner of coordinate transformation.
Specifically, the formulation of translation, A1(·), can be defined as[

x′

y′

1

]
=

[
1 0 tx
0 1 ty
0 0 1

][
x
y
1

]
, (5)

where (x, y) denotes the coordinates of the original image pixel, (x′, y′) denotes the coordinates of
the transformed image pixel, and tx and ty represent the offsets of translation in the horizontal and
vertical directions, respectively. Similarly, the formulation of rotation, A2(·), can be defined as[

x′

y′

1

]
=

[
cos(θ) −sin(θ) 0
sin(θ) cos(θ) 0

0 0 1

][
x
y
1

]
, (6)

where θ represents the degree of rotation. The formulation of scaling, A3(·), can be defined as[
x′

y′

1

]
=

[
sx 0 0
0 sy 0
0 0 1

][
x
y
1

]
, (7)

where sx and sy denote the scaling factors of the horizontal and vertical directions, respectively. The
formulation of shearing, A4(·), can be defined as[

x′

y′

1

]
=

[
1 dx 0
dy 1 0
0 0 1

][
x
y
1

]
, (8)

where dx and dy denote the two shearing factors.

With the above defined basic transformations in (5) to (8), a multi-form affine transformation can be
achieved simply by multiplying these transformation matrices. In practice, we impose multi-form
transformations on adversarial example generated in each step. The updating rules of our proposed
AIM can be formulated in such a iterative manner:

Xadv
t+1 = ClipεX(Xadv

t + α · sign(∇XL(A1 ◦A2 ◦A3 ◦A4(X
adv
t ; p), ytrue; θ))), (9)

where ClipεX(·) denotes the clip operation which ensures the generated perturbed image is within the
ε−ball of the benign image X . Note that ∇XL(X, y

true; θ) represents the gradient of the final loss
with respect to X . A1 ◦A2 ◦A3 ◦A4 stands for our multi-form affine transformation operation, which
can degenerate to the single-form one by fixing certain transformation factors or offsets. Similar to
[47], p controls the execution probability of applying affine-transformation in each iteration. t and α
denote the number of iterations and step size, respectively.

4 Experimental Results

In this section, we evaluate our proposed TRAP in various experiments. Please note that we employ
the prefix ‘DG-’ to represent the utilization of our dynamically guided mechanism and ‘AI-’ to
represent the utilization of our affine-invariant perturbation enhancement mechanism, in the results.

4.1 Experimental Settings

Dataset. By following the experimental protocols in [22, 41], we randomly select 1000 images, which
belong to 1000 classes, from the ILSVRC2012 validation set [32]. For performance measurement,
we adopt the commonly used attack success rate (ASR).

Networks. We adopt five DNN models, i.e., Inception-v3(Inc-v3) [37], Inception-v4(Inc-v4) [36],
Inception-Resnet-v2(IncRes-v2) [36], ResNet-101(Res-101) [11], ResNet-152(Res-152) [11]. All
the models are available on Github1.

1https://github.com/Cadene/pretrained-models.pytorch
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Figure 2: Results of DGM when varying the number of iterations T . The caption ‘A’->‘B’ in each
sub-figure indicates that ‘A’ is the source model and ‘B’ is the target model.

Implementation details. In the experiments, MI-FGSM is employed as our baseline model. For fair
comparisons, all of the methods in the experiments employ Momentum-SGD as the optimizer and
the momentum factor µ is set to 1.0. The maximum perturbation for each pixel is set to be ε = 16.
The number of iterations T is set to 10. And step size is determined by α = ε/T . For DI-MI-FGSM
[47] and AI-MI-FGSM, the transformation probability p is set to 0.9. For ILA [13] and DG-ILA,
we set γ to 0.8. For DG-ILA, we set β to 0.8 and the number of iterations for the baseline phase t1
to 4. All the input images are resized to [299, 299, 3]. As for affine-transformation, we determine
tx, ty by sampling from the uniform distribution [−0.1, 0.1] for each step. Similar, θ is sampled from
[−90, 90], sx, sy are sampled from [0.5, 1.5] and dx, dy are sampled from [−30, 30].

4.2 Evaluation of DGM

Table 1: The evaluation of our DGM. The source
models we used are listed in the first column and
the target models are listed in the first line.

Model Attack Inc-v3 Inc-v4 IncRes-v2 Res-101 Res-152

Inc-v3

TAP[49] 99.8% 81.1% 75.9% 77.6% 73.6%
TAP* 99.7% 83.9% 78.2% 77.1% 74.4%

ILA[13] 99.6% 82.1% 78.6% 76.8% 73.8%
DG-ILA(ours) 99.7% 83.6% 81.2% 79.4% 76.6%

ILA++[21] 99.7% 85.0% 81.3% 79.2% 75.5%
DG-ILA++(ours) 99.5% 85.6% 82.5% 81.0% 76.8%

Inc-v4

TAP[49] 52.8% 99.9% 45.3% 48.2% 43.2%
TAP* 79.2% 98.7% 70.3% 76.2% 73.4%

ILA[13] 77.9% 98.2% 71.3% 74.7% 70.4%
DG-ILA(ours) 78.7% 98.0% 72.8% 77.7% 73.1%

ILA++[21] 78.9% 99.0% 73.3% 77.9% 73.2%
DG-ILA++(ours) 80.2% 98.8% 74.8% 78.7% 74.9%

IncRes-v2

TAP[49] 62.8% 59.6% 96.0% 63.6% 56.8%
TAP* 79.1% 74.9% 97.1% 73.0% 69.0%

ILA[13] 76.5% 74.1% 97.0% 73.1% 68.5%
DG-ILA(ours) 82.1% 78.4% 97.5% 76.9% 72.3%

ILA++[21] 79.5% 76.1% 98.1% 75.6% 69.9%
DG-ILA++(ours) 82.7% 78.1% 98.1% 78.0% 72.7%

Res-101

TAP[49] 63.0% 56.6% 50.4% 100.0% 92.8%
TAP* 77.6% 75.2% 65.2% 100.0% 98.8%

ILA[13] 72.3% 69.5% 61.2% 100.0% 97.7%
DG-ILA(ours) 74.1% 71.7% 62.9% 100.0% 97.5%

ILA++[21] 75.6% 72.0% 65.1% 100.0% 98.3%
DG-ILA++(ours) 77.7% 74.5% 67.1% 100.0% 98.5%

Res-152

TAP[49] 63.9% 58.2% 53.6% 94.9% 100.0%
TAP* 72.1% 70.9% 63.7% 94.8% 99.2%

ILA[13] 73.7% 73.8% 67.9% 96.2% 99.7%
DG-ILA(ours) 76.6% 77.4% 68.5% 96.2% 98.7%

ILA++[21] 74.6% 75.5% 68.0% 96.7% 99.8%
DG-ILA++(ours) 76.5% 78.2% 68.9% 96.5% 99.2%

In this subsection, we focus on evaluating our
proposed DGM. Following the protocols in [13],
the same intermediate layer are selected for all
the methods. Specifically, the selected inter-
mediate layer for Inc-v3, Inc-v4, IncRes-v2,
Res-101 and Res-152 are ‘Mixed6c’, ‘feature-
9’, ‘mixed6a’, ‘layer3’ and ‘layer2’, respectively.
According to our experiments, the performance
of constraining all the layers in original TAP
[49] is actually lower than that of constraining
certain layer alone, which is implemented by us
and denoted as TAP*. Besides, the results of
ILA [13] and ILA++ [21] are reproduced with
their released source codes.

Ablation Study. The results of ablation study
are given in Table 1. As can be observed,
both DG-ILA and DG-ILA++ obviously out-
performs their original baseline methods. When
the source model is IncRes-v2, the performance
gain can reach as much as 5%. Besides, DG-
ILA performs better than another related work
TAP* in most cases and DG-ILA++ can fur-
ther improve the performance. Apparently, our
DGM can successfully boost the transferability
of black-box attack methods.

Effects of the Number of Iterations. Figure 2 presents the steps-vs-ASR results. We can observe
that DG-ILA has a sustainable advantage over ILA as the increase of iteration number. Similar
tendency can also be seen from ILA++ and DG-ILA++. A possible explanation is that the current
search direction, which is usually better than the guidance from baseline attack phase, will make
contribution for next search and such progressive manner has more potential to find transferable
directions. As for TAP*, it may fall into overfitting more easily because of fixed optimization
objectives.
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Figure 4: Evaluation results of AIM and superiority of multi-form transformation when varying the
iteration number T . The sub-script ‘A’->‘B’ below each sub-plot represents that A is the source
model and B is the target model.
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Figure 3: (a) The attack success rate comparison
across various layers. (b) The relative differences
comparison of intermediate features.

Effects of Different Layer Selections. Since
ILA is a layer-centric attack method, the to-be-
manipulated layer is specifically selected on the
source model to obtain the best performance on
the target model. Then, it is necessary to exam-
ine the performance of our DGM across various
layers. Taking Inception-v3 as the source model,
we select the layers from ‘Conv2d_1a_3x3’ to
‘last_linear’, except for the pooling and dropout
layers, as the intermediate layers for evaluation.
The results are shown in Figure 3(a). As can be
observed, DG-ILA performs better than ILA in
most of the selected layers and can give the best
performance in black-box scenarios. Note that
DG-ILA does not function very well at the bottom and top layers, which may be induced by the initial
directional guidance is less transferable and lacks basic guidance ability. Fortunately, these layers
will not be selected in practice because of their poor ASRs compared to the mid-level layers. To
further verify the effectiveness of our DGM, we also calculate the relative feature difference, which
is computed by ‖F l(Xadv) −F l(X)‖2/‖F l(X)‖2, between the benign and the corresponding
adversarial examples across various layers on Inception-v3. As can be observed from Figure 3(b),
DG-ILA gives larger mid-layer disturbance (in feature maps) than ILA, which is consistent with our
expectation and the conclusion drawn in [49] and [21].

4.3 Evaluation of AIM
Table 2: The evaluation of AIM and usefulness of
single-form transformation adopted by us.

Model Attack Inc-v3 Inc-v4 IncRes-v2 Res-101 Res-152

Inc-v3

MI-FGSM[6] 100.0% 51.3% 49.2% 46.8% 42.4%
DI-MI-FGSM[47] 98.2% 72.3% 69.5% 59.2% 58.1%
AI-MI-FGSM(A1) 99.3% 75.5% 72.5% 61.9% 60.6%
AI-MI-FGSM(A2) 96.3% 73.8% 72.0% 63.3% 62.4%
AI-MI-FGSM(A3) 97.7% 76.6% 74.0% 65.2% 64.5%
AI-MI-FGSM(A4) 98.3% 76.8% 73.3% 63.7% 64.3%

Inc-v4

MI-FGSM[6] 53.5% 100.0% 47.3% 45.9% 41.8%
DI-MI-FGSM[47] 72.4% 96.0% 69.1% 59.2% 59.1%
AI-MI-FGSM(A1) 76.9% 97.7% 72.2% 63.2% 61.4%
AI-MI-FGSM(A2) 73.2% 93.0% 69.9% 63.7% 60.8%
AI-MI-FGSM(A3) 76.1% 96.4% 70.9% 66.0% 64.8%
AI-MI-FGSM(A4) 76.7% 94.0% 70.9% 64.3% 62.5%

IncRes-v2

MI-FGSM[6] 58.6% 51.8% 98.2% 46.6% 45.8%
DI-MI-FGSM[47] 69.5% 65.4% 87.6% 55.7% 55.9%
AI-MI-FGSM(A1) 73.9% 72.4% 91.2% 61.3% 62.0%
AI-MI-FGSM(A2) 72.6% 71.5% 88.0% 63.4% 63.6%
AI-MI-FGSM(A3) 73.9% 69.7% 88.8% 65.0% 64.6%
AI-MI-FGSM(A4) 70.1% 70.0% 87.4% 61.3% 62.0%

Res-101

MI-FGSM[6] 53.1% 47.3% 39.3% 100.0% 90.5%
DI-MI-FGSM[47] 77.7% 73.5% 67.8% 100.0% 94.7%
AI-MI-FGSM(A1) 83.9% 82.4% 77.8% 100.0% 97.9%
AI-MI-FGSM(A2) 81.1% 77.6% 70.5% 99.3% 93.3%
AI-MI-FGSM(A3) 80.4% 78.0% 74.1% 99.5% 94.6%
AI-MI-FGSM(A4) 82.2% 79.6% 74.8% 99.7% 94.1%

Res-152

MI-FGSM[6] 53.6% 49.4% 41.9% 92.1% 100.0%
DI-MI-FGSM[47] 78.7% 76.6% 71.4% 96.1% 100.0%
AI-MI-FGSM(A1) 84.4% 82.6% 79.1% 96.7% 100.0%
AI-MI-FGSM(A2) 81.6% 78.1% 74.2% 94.9% 99.3%
AI-MI-FGSM(A3) 81.3% 79.6% 73.2% 96.9% 99.7%
AI-MI-FGSM(A4) 83.3% 80.5% 76.9% 95.2% 99.8%

Ablation Study. We compare three attack meth-
ods, MI-FGSM [6], DI-MI-FGSM (momentum
version of DIM) [47] and our AI-MI-FGSM, and
present quantitative results in Table 2. Note that
Ai denotes the employed single-form transfor-
mationAi defined in 5 to 8. From Table 2, a first
glance shows that DI-MI-FGSM outperforms
MI-FGSM by a large margin and AI-MI-FGSM
is comparable to DI-MI-FGSM and even better
than it in most black-box settings. This table
verifies the usefulness of our each single-form
operation when boosting the transferability of
adversarial examples.

Multi-form Operation Analysis. To further
validate the effectiveness of the multi-form
affine transformation augmentation, Inception-
v3 is selected and the number of iterations are
varied. The results are presented in Figure 4.
As can be observed, if the multi-form transfor-
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Figure 6: Combination results of DG-ILA and various input transformation based methods. The
caption ‘A’->‘B’ in each sub-figure represents that ‘A’ is the source model and ‘B’ is the target model.

mation is utilized, e.g., ’scaling+shearing’, the
attack success rates are superior for most of the iterations. Note that the performance of the multi-
form transformation at the beginning is lower than the single-form transformations, which may be
induced by the augmented input space with more diversity. Besides, MI-FGSM [6] tends to fall
into the overfitting dilemma when the number of iterations become large, while DI-MI-FGSM [47]
can slightly alleviate this problem. In general, it is undeniable that AI-MI-FGSM with multi-form
transformation surpasses DI-MI-FGSM [47] and further boost the transferability.
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Figure 5: Comparison of destruction rate for var-
ious methods under corruption. The lower the
curve, the more robust against Gaussian corrup-
tion.

Robustness Analysis. To evaluate the robust-
ness of the generated adversarial examples from
our method, we adopt Gaussian noise and Gaus-
sian blurring to corrupt the generated adversar-
ial examples to observe their attacking perfor-
mances. Here, we uses the destruction rate,
which is proposed in [19, 44], to quantify the
robustness. Without loss of generality, we se-
lect Inception-v3 and Res-101 as the source and
target models respectively. 1000 images, which
is the same as previous experiments, are still
utilized. The destruction results under Gaussian
blurring and Gaussian noise are shown in Figure
5(a) and Figure 5(b) respectively. As can be ob-
served, the adversarial examples synthesized by
AI-MI-FGSM are more robust than the baseline
methods. Note that our multi-form transformation, e.g. ’scaling+shearing’, obviously boosts the
performance.

4.4 Evaluation of TRAP

Effects of the Combination of DGM and AIM. To verify the effectiveness of combining the two
proposed mechanisms, i.e., DGM and AIM, we select different input transformations and execute
Algorithm 1 to generate the final adversarial examples. The results are shown in Figure 6. As
can be observed, the obvious performance improvement indicates that our two mechanisms can
collaborate complementarily, even with single basic transformations. If we exploit the multi-form
affine transformation in the combination, the results are comparative with the best performance of
single-form and even better, especially on Res-101.

Comparison with State-of-the-Arts. Here, the proposed TRAP is compared to the existing SOTAs
on five models, which are employed in the previous experiments, as well as three defense models, i.e.,
adv-ResNet152 Baseline (adv-Res152B), adv-ResNet152 Denoise (adv-Res152D), adv-ResNeXt101
DenoiseAll (adv-ResNeXtDA) [46]. Note that we have subtracted the ratio of wrongly predicted
benign images in the reported ASR results. Because these models are very robust and in order to
reach full convergence, we perform 300 steps for all comparative attack methods. As can be observed
from Table 3, our TRAP significantly outperforms the existing SOTAs on the normally trained models
in most of the cases. Meanwhile, our TRAP gives better performance on the defended models in
most of the cases.
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Table 3: The ASRs of our TRAP and other SOTAs on five normally trained models and three defense
models.

Model Attack Inc-v3 Inc-v4 IncRes-v2 Res-101 Res-152 adv-Res152B adv-Res152D adv-ResNeXtDA

Inc-v3

MI-FGSM[6] 100.0% 36.8% 35.6% 34.2% 31.3% 0.8% 0.7% 0.7%
DI-MI-FGSM[47] 100.0% 89.0% 85.7% 76.7% 75.4% 2.7% 2.7% 2.9%
TI-MI-FGSM[7] 100.0% 40.0% 36.9% 35.9% 33.9% 0.4% 0.8% 1.1%

TAP[49] 99.7% 86.2% 81.2% 77.5% 76.8% 1.9% 2.4% 2.1%
ILA[13] 99.8% 85.6% 81.5% 80.3% 76.8% 2.3% 2.5% 2.4%

ILA++[21] 99.8% 86.7% 84.7% 82.2% 79.6% 2.5% 2.8% 2.7%
TRAP(ours) 99.7% 96.5% 94.7% 93.6% 92.4% 3.7% 4.6% 3.1%

Res-101

MI-FGSM[6] 44.2% 37.6% 31.3% 100.0% 86.3% 0.9% 1.1% 1.3%
DI-MI-FGSM[47] 93.5% 93.6% 88.7% 100.0% 100.0% 2.6% 3.1% 4.4%
TI-MI-FGSM[7] 52.3% 46.0% 40.2% 100.0% 88.8% 1.4% 1.7% 2.8%

TAP[49] 76.3% 74.9% 62.1% 100.0% 98.9% 0.7% 1.6% 1.6%
ILA[13] 75.1% 73.1% 65.3% 100.0% 98.7% 1.1% 1.7% 2.4%

ILA++[21] 77.5% 75.5% 68.1% 100.0% 99.2% 1.3% 1.7% 2.7%
TRAP(ours) 93.0% 93.8% 89.6% 100.0% 100.0% 3.8% 3.5% 3.4%

5 Conclusion

In this work, we investigate to improve the transferability and robustness of adversarial examples from
the perspective of network hierarchy. In the intermediate stage of network, we propose a dynamically
guided mechanism to iteratively revising the directional guidance during the perturbation generation
process. In the input stage of network, we propose to adopt multi-form affine transformation to
augment the input images to enrich the input diversity. Experimental results have demonstrated the
effectiveness of our proposed DGM and AIM, as well as the transferability and robustness of our
proposed TRAP.
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