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Abstract. Nowadays deep learning-based methods have achieved a re-
markable progress at the image classification task among a wide range
of commonly used datasets (ImageNet, CIFAR, SVHN, Caltech 101,
SUN397, etc.). SOTA performance on each of the mentioned datasets is
obtained by careful tuning of the model architecture and training tricks
according to the properties of the target data. Although this approach
allows setting academic records, it is unrealistic that an average data
scientist would have enough resources to build a sophisticated training
pipeline for every image classification task he meets in practice. This
work is focusing on reviewing the latest augmentation and regulariza-
tion methods for the image classification and exploring ways to auto-
matically choose some of the most important hyperparameters: total
number of epochs, initial learning rate value and it’s schedule. Having a
training procedure equipped with a lightweight modern CNN architec-
ture (like MobileNetV3 or EfficientNet), sufficient level of regularization
and adaptive to data learning rate schedule, we can achieve a reason-
able performance on a variety of downstream image classification tasks
without manual tuning of parameters to each particular task. Resulting
models are computationally efficient and can be deployed to CPU us-
ing the OpenVINO™ toolkit. Source code is available as a part of the
OpenVINO™ Training Extension:{l
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1 Introduction

Throughout the past decade deep learning-based image classification methods
have made a great progress increasing their performance by 45% from the
AlexNet level on well-known ImageNet benchmark . Although SOTA re-
sults are obtained by a fine-grained adaptation of all the training pipeline com-
ponents to the target task, in practice a data engineer could not have enough
resources to do it. Typically to solve an image classification task we need to
make the following decisions:

— Choose a model architecture;

! nttps://github.com/openvinotoolkit/training_extensions
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Build data augmentation pipeline;

Choose optimization method and it’s parameters (learning rate schedule,
length of the training);

— Apply some extra regularization methods in case of overfitting;

Apply additional techniques to handle hard classes imbalance or high level
of label noise if needed.

Wrong decisions on each step can hurt the resulting classification model perfor-
mance or bring misalignments with the requirements to computational complex-
ity, for instance. At the same time, techniques and models which are successful
on one dataset may not be beneficial on others, i.e. they are not dataset-agnostic.
From the practical perspective, although reaching the ultimate performance is
very demanding task, one can still think about some fail-safe training configu-
ration that would allow obtaining moderate results on a wide range of middle-
sized image classification datasets with minimum effort to further tuning. In
this work we aim to propose such a configuration for a couple of modern com-
putationally effective architectures: EfficientNet-B0 [34] and MobileNetV3 [14]
family. To reach the goal we added the adaptability to the optimization pro-
cess of scheduling the weights, designed a robust initial learning rate estimation
heuristic and curated a set of regularization techniques that suit well to the
considered model architectures.
In brief, the key contributions of this paper can be summarized as follows:

— Designed an optimization controlling policy that includes an optimal initial
learning rate estimator and a modified version of the ReduceLROnPlateau [2]
scheduler equipped with an early stopping procedure;

— Proposed a way of applying Deep Mutual Learning [44] to reduce overconfi-
dence of model predictions;

— For each of the considered models curated a suitable bundle of data augmen-
tation and regularization methods and validated it on various middle-sized
downstream image classification datasets.

2 Related Work

Optimal learning rate estimation and scheduling. The problem of initial learn-
ing rate setting can be seen as a general hyperparameter optimization and, thus,
a variety of general methods can be directly applied [3,21]. From the other
side, several simple heuristics were designed to directly tackle it [1,/24]. The
last approach is more lightweight because it doesn’t imply dependencies on any
hyperparameters estimation frameworks, but at the same time, it is not very
reliable since assumptions that these algorithms are based on, could not strictly
hold in a wide range of real-world tasks. Considering a fine-grained grid search
as the most robust method, we believe that a combination of a hyperparame-
ters tuning framework and properly designed trials execution process will be a
good trade-off between robustness and accuracy. When the initial learning rate
is chosen, the schedule and stopping criteria define the final result of the train-
ing. Typically researchers set reasonable amount of training epochs in advance,
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especially if they focus on a single dataset, but to save computational resources
and avoid overfitting it is beneficial to stop training early [31,{42]. Early stopping
can break logic of popular schedulers like cosine or 1cycle [33], especially if too
large number of total epochs was set initially, so in this work we use drops to
decrease learning rate in combination with initial linear warm-up.

Data augmentation. Recently a wide range of effective data augmentation meth-
ods has been proposed [11}25]. Augmix [13] allows combining several simple aug-
mentations (like random crop, color perturbation, rotation, flip) into a pipeline
with adjustable applying policy. That allows to use Augmix as a replacement for
classic sequential pipeline of transformations. In case of high capacity models,
additional mixing-sample augmentations like fmix [11] can be applied on the top
of Augmix output to further diversify the input data.

Regularization. To achieve higher classification accuracy, a training pipeline
should keep a balance between fitting ability and regularization. We have tested a
lot of approaches acting on different directions: continuous dropout [32], mutual
learning [44], label smoothing and confidence penalty [29], no bias decay [12],
and found a suitable combination for each of considered architecture type. Com-
plexity of data augmentation, batch size and learning rate values can also be
viewed as regularization factors. Taking this into account, transferring regular-
ization parameters between different datasets and architectures should be done
with care.

Optimization. Currently even SOTA approaches in classification still use SGD
[30,139] for finetuning on small target datasets, while use stronger adaptive opti-
mizers [23)38] for initial pre-training with huge amount of samples. We are aiming
to finetune already pre-trained models and choose the SGD-based Sharpness-
Aware Minimizer (SAM) [10] as a default optimizer. SAM, like SGD, preserves
the mentioned fitting-regularization tradeoff, it’s authors claim that SAM also
provides robustness to label noise. This property is useful if we aim to build a
reliable training pipeline.

3 Method

In this section, we describe the overall training pipeline from models architectures
to training tricks.

3.1 Models

We chose MobileNetV3 [14] and EfficientNet [34] as base architectures for per-
forming image classification. Namely, we conducted all the experiments on Mo-
bileNetV3 small 1x, large 0.75x, large 1x and EfficientNet-B0. The chosen mod-
els form a strong performance accuracy trade-off in the range from 0.06 to 0.4
GFLOPs, which is enough in most of edge-oriented applications.
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3.2 Training tricks

Data Augmentation. Properly chosen data augmentation pipeline can boost clas-
sification accuracy on a variety of downstream tasks. At the same time, opti-
mal augmentations are different for different datasets. Thus, any hand-crafted
pipeline would be suboptimal and considering this, our goal is to to find a pipeline
that maintains fitting-regularization tradeoff for MobileNetV3 and EfficientNet.
After conducting experiments with modern techniques [11}/13,/37,143], we found
AugMix |13] with a pre-trained on ImageNet policy is the most beneficial for our
setup. When we add MixUp [43], CutMix [37] or FMix [11] to the pipeline we
observe a performance drop compared to pure AugMix. This indicates that Aug-
Mix provides a better fitting-regularization tradeoff for the chosen lightweight
models, while MixUp-like augmentations are too hard for them.

Optimization. Conventionally, SGD with momentum is widely used for fine-
tuning in downstream classification tasks [30,[39]. An extension to SGD, Sharp-
ness Aware Minimization (SAM) |10], allows to achieve higher results in the
fine-tuning than SGD, while requiring two forward-backward passes of the model
per training iteration. We operate with lightweight models, so additional cost of
SAM is not critical. We also tried AdamW [16], but it performed slightly worse
than SGD.

Additionally, we employ no bias decay (turning off weight decay for biases in
all layers) [12] for better generalization.

Optimal Learning Rate Estimation. Since SGD performance on a given dataset is
highly correlated with the initial learning rate magnitude, we have to incorporate
estimation of this parameter into our training pipeline. Straightforward approach
is to use grid or random search within a given range, but we were focusing on
less time consuming methods. Fast-ai’s heuristic |[15] can generate learning rate
proposal after performing several training iterations, but in our experiments it
tends to output too high values which destroy ImageNet initialization even if
warmup strategy is applied. To overcome this problem, we propose to finetune
the model with a pre-defined small learning rate for one epoch on the target data
and then run the original fast-ai algorithm. In this case the model would react
to fast increase of the learning rate more smoothly and the algorithm will select
a value which is quite close to one located with the grid search (see Figure [1)).
Fast-ai’s heuristic with pre-training is almost as lightweight as the original one:
for instance if the training is scheduled for 100 epochs, one extra epoch for
finetuning will introduce only 1% of additional overhead.

For fine-grained learning rate selections we use Tree-structured Parzen Es-
timator (TPE) from the Optuna [3] framework. We set optimization criterion
as top-1 accuracy on the validation subset after training on the target data for
several epochs. We use median trial pruning criterion which breaks a trial if the
best intermediate result is worse than the median of intermediate results of the
previous trials at the same step. Pruning heuristic also could be used for grid
search, but TPE also generates locations of the next trials based on previous
trials locations instead of random choice or using a grid, which allows us to set
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Fig. 1: Without pretraining the estimated learning rate is too large (=~ 0.02).
Whereas with one epoch pretraining the estimated learning rate is more suitable
for the CIFAR-100 dataset (= 0.0056).

a lower total trails limit compared to the grid search. We set TPE as a default
initial learning estimator in our pipeline, though fast-ai with pre-training could
be used in case of limited resources.

Learning Rate Scheduling and Early Stopping. Complexity of the input dataset
can drastically vary and thus the number of epochs that are sufficient for train-
ing also varies. For efficient training we have to adapt to different data. To
achieve this, we need a flexible learning rate schedule and reliable early stop-
ping criterion. Popular SOTA schedulers like cosine [22| and lcycle [33] require
a pre-defined number of epochs and the shape of the produced learning rate
curve depends on it. If we, for an instance, predefine 200 training epochs and
early stopping criterion returns a stop flag on the 20th epoch, the training will
be stopped at an unstable state of the model, because convergence hasn’t been
reached yet. If we take into account this drawback and prohibit early stopping
criterion returning a stop flag till the half of the training pass, this will cause
too long training, but the model will converge.

To overcome these problems we propose to use a modified version of Re-
duceLROnPlateau [2] scheduler denoted hereafter as ReduceLROnPlateauV2.
In ReduceLROnPlateauV2 we force learning rate decay if 75% of the maximum
training length had been reached, but learning rate drop have not been per-
formed yet. This helps model to converge when average training loss, which we
use as a criterion for learning rate drop, is unstable. Also we incorporated early
stopping into ReduceLROnPlateauV2: if the learning rate was decayed to a pre-
defined minimal value and the best top-1 score on validation subset hadn’t been
improving for a predefined number of epochs, we stop the training.

Additionally we use 5 epoch linear learning rate warmup and, following no
bias decay practice, we increase learning rate for biases by a factor of 2.
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Fig. 2: Distributions of the most probable class confidence produced by the fast
model on validation data. If slow student is trained with AM-Softmax, fast stu-
dent does not tend to return overconfident predictions. Experiment is conducted
with a pair of MobileNetV3 small models on Cars Dataset [18] containing 196
classes.

Mutual Learning. To further boost the performance of classification models we
tried to apply deep mutual learning (DML) [44]. This technique implies mutual
learning of a collection of simple student models. As a result, performance of
each student individually is supposed to be increased. We directly apply this
technique to pairs of identical models and didn’t obtain substantial accuracy
gain. This framework could also be used in a different manner: if one of the
students has a stronger regularization and trains slower than the others, it may
prevent others from overfitting and softly transfer properties of it’s regularized
distribution to faster students. We applied the second setup to pairs of models
with the same architecture, but different loss functions. Fast student is trained
with the cross-entropy loss while slow one is trained with the AM-Softmax [§]
loss with scale s = 1 and margin m = 0. Such settings of the angular loss
make output distribution of the slower model less confident and it also pushes
the faster model to output a smoother distribution while strong discriminative
properties formed by AM-Softmax are transferred to the faster model as well.
In the described scheme the overall training losses are defined as follows:

Lyast(v) = Lep(p1(2),y) + Drcr(p2(2)||p1(2))
Lgiow(x) = Lanms(p2(),y) + Drr(pi(x)||p2(x))

where (z,y) is a training sample and it’s label, Dxr.(p||g) is Kullback Leibler
divergence between discrete distributions p and g, p; (x) — distribution estimated
by the fast model on the sample x, ps(x) — distribution estimated by the slow
model on the sample z. Results of applying this approach are demonstrated on
the Figure

Drawback of the DML is significant increase of the training time and memory
footprint. Taking this into account, we decide to include this technique only to
the training strategy for MobileNetV3 family, besides for EfficientNet-BO0 it is
not so beneficial. Instead, we train EfficientNet-B0O with AM-Softmax directly.
In that case s = max(y/2 - log(C — 1), 3) (where C is the number of classes) and
margin m = 0.35.
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4 Experiments

This section describes the evaluation process, metrics, datasets and reports the
evaluation results. For a given model family we use the same training techniques
and parameters across all the considered datasets; this allows us to validate how
well the proposed training pipeline can work on variable data.

4.1 Datasets

To validate the proposed approach we choose 11 widespread classification datasets,
that are listed in Table [il

Table 1: Image classification datasets which were used for training.

Dataset Number of classes|Number of Images
Train| Validation
Oxford-IIIT Pets 28| 37 3680 3369
Describable Textures (DTD)* (6] 47 4826 814
Oxford 102 Flowers™ [27] 102 6614 1575
Caltech 101 [9] 101 6941 1736
Cars Dataset [18] 196 8144 8041
Birdsnap™ |4] 500 47386 2443
CIFAR-100 [19] 100 50000/ 10000
Fashion-MNIST (35| 10 60000/ 10000
SVHN |26] 10 73257| 26032
Food-101 |5] 101 75750 25250
SUN397* [36] 397 92440| 16314

* for experiments on these datasets we do custom random splits.

4.2 Evaluation protocol

To evaluate image classification models besides commonly used top-k accuracy
metric, we also calculate mean average precision (mAP) in the same sense as it
is considered in person re-identification field [45]. We would denote a set of C
classes as a gallery and each of N samples in the evaluation set as a query. Then,
in terms of the retrieval task, we have to rank the gallery by similarity with the
query, compute the average precision of this query, and then collect the mAP.
In terms of the classification task, the similarity is the predicted probability of
a class, and, thus, computing average precision is straightforward:

Ya AP(g) YN APG) 181
LA _ 11

mAP = 0 N 2

where K; is the index of the probability of ground truth class in the sorted
set of predicted class probabilities for a sample. AP(i) varies from 1 (if the
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model prediction is always correct) to % (if the model always assigns the lowest
probability to the true class). mAP can be viewed as an aggregation of all C'
possible top-k scores and reveals the ranking ability of the evaluated classification
models.

After single dataset evaluation metrics are defined, we also have to define
a way to compare different strategies for a given model taking into account
results on a set of datasets. In this work, we will follow |41] and consider metrics
averaging across datasets as a measure of the quality of a training strategy for
a given model. This approach doesn’t imply any weighting procedure, so each
dataset equally contributes to the final metric.

4.3 Results

We trained all the models starting from the ImageNet-pretrained weights. We
consider the following training setup as a baseline: training length is 200 epochs;
learning rate is annealed to zero with cosine schedule; optimization is performed
with SGD with momentum; training images are augmented with random flip,
random color jittering, random crop and random rotation; dropout with p = 0.2
is applied to the classifier layer; learning rate is set as an average of optimal
learning rates obtained by grid search over all the 11 considered datasets for
each model individually.

Table 2: Results of our adaptive training pipeline against baseline.

Model AVG top-1, %|AVG top-5, %|AVG mAP|AVG epochs
MobileNetV3-small baseline 82.24 95.29 82.35 200
Our MobileNetV3-small 85.00 96.15 88.01 86
MobileNetV3-large-0.75x baseline 85.28 96.30 87.03 200
Our MobileNetV3-large-0.75x 87.60 96.97 91.14 83
MobileNetV3-large baseline 85.79 96.47 87.99 200
Our MobileNetV3-large 88.26 97.34 91.79 81
EfficientNet-B0 baseline 86.47 96.77 89.27 200
Our EfficientNet-B0 89.13 97.79 92.75 82

For our adaptive pipeline we set the maximum training length to 200 epochs,
maximum amount of trials in TPE to 15 (each trial takes 6 epochs or less); learn-
ing rate search range for EffficientNet-B0 is [0.001 —0.01], while for MobileNetV3
the range is [0.005 — 0.03]; Augmix with a pre-trained on ImageNet policy, ran-
dom flip, random crop and random rotation are employed for data augmentation;
early stopping and learning rate decay patiences are equal to 5 epochs; p in SAM
is 0.05. Weight decay is always set to 5 - 10~%. Input resolution for all versions
of the considered models is 224 x 224, no test time augmentation is applied.

The final results are presented for all our models in the Table[2] Our adaptive
training strategy clearly outperforms baseline by 2 — 3% AVG top-1 and 3 — 5%
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AVG mAP. Also it reduces average number of epochs required for training more
than twice: from 200 to 86 or less.

Top-1 scores by datasets are presented in the Table [3| as well as compari-
son with other solutions. Our MobileNetV3-small with adaptive training out-
performs both our baseline and one of the best publicly available repositories
with advanced training tricks for MobileNetV3-small (it includes label smooth-
ing [29], Mixup [43], no bias decay [12], EMA decay and learning rate warmup).
At the same time, two non-adaptive strategies for MobileNetV3-small perform
on par. EfficientNet-B0 with adaptive strategy demonstrates results similar to
ResNet-50 from VTAB [41], which is trained with heavyweight search over hyper-
parameters (learning rate, schedule, optimizers, batch size, train preprocessing
functions, evaluation pre-processing, and weight decay). The results of heavy-
weight SOTA models are also presented in the Table [3| for the reference.

Table 3: Detailed comparison with other methods. Top-1 metric is presented.

; &
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Our MNV3-small baseline | 79.57 | 68.58 |74.71(57.38| 96.02 |77.12{90.41|87.24|95.13| 93.89 [84.65
Our MNV3-small 83.49 | 72.45(79.59(62.83] 97.29 {79.04|92.94(91.33]95.74| 94.86 |85.55
MNV3-small™ 82.43 | 68.13 [69.45|61.13] 96.49 | 78.75(91.74|86.66[95.48| 92.81 |85.41
MNV3-large-0.75x baseline| 81.05 | 72.28 |80.97|61.97| 96.13 |81.39(92.87|91.18|95.02| 95.36 |89.86
Our MNV3-large-0.75x 85.36 | 74.50 |85.53|67.02| 97.54 |83.21(95.23|93.75(95.83| 96.22 |90.51
Our MNV3-large baseline |81.70 | 73.53 |81.57|62.65| 96.18 |82.21|93.46(91.29|95.31| 95.69 {90.13
Our MNV3-large 86.24 | 76.49 |85.77|67.96| 97.57 | 84.1 [95.42]|93.76(96.17| 96.63 |91.21
Our EffNet-BO baseline 84.84 | 74.81 |83.75(64.43] 96.88 |80.03|94.54(90.46(95.80| 95.26 {91.74
Our EffNet-B0 86.52|77.18(86.06|72.10/97.82(83.33|95.63|93.77(96.28| 97.10 |92.00
VTAB ResNet-50 [41] 84.00| 76.8 - - 19740 - - - - 197.40|92.6
Inception v4 [17] 87.5 | 78.1 {90.00| - - - - 193.30] - ]98.50(94.50
EffNet-B7+SAM [10] 92.56 - 192.98| - - - - 194.82| - ]99.37(96.03

* for these datasets we do splits as defined by the authors, for others we use custom splits
*Implementation is taken from https://github.com/ShowLo/MobileNetV3, learning rate is set

the same as for our baseline.

4.4 Ablation study

We conduct an ablation study by removing each single component of our train-
ing pipeline, while others are enabled (see Table . For experiments we use
all the data except the SUN397 for MobilenetV3 and subset of 6 datasets for
EfficientNet-B0 (CIFAR-100, DTD, Flowers, Cars, Pets, Caltech101). Each of
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the training tricks has roughly equal gain (< 2% top-1), excepting AM-Softmax
related ones that add 2 — 3% of mAP to the result.

Table 4: Impact of each training trick to MobileNetV3-large and EfficientNet-B0

results.
Configuration MobileNetV3-large EfficientNet-B0
AVG top-1|AVG mAP|AVG top-1|AVG mAP

Final solution 90.63 94.17 90.63 94.14
w/o SAM 89.74 93.34 90.44 94.14
w/o Mutual Learning 89.58 90.71 - -

w/o AugMix 90.14 93.75 90.41 93.88
w/o NBD 90.16 93.49 90.43 94.14
w/o AM-Softmax - - 90.51 92.14
w/o adaptive learning rate strategy| 89.97 93.38 90.16 93.83

5

Conclusion

In this work, we presented adaptive training strategies for several lightweight
image classification models that can perform better on a wide range of down-
stream datasets in finetuning from ImageNet scenario than conventional training
pipelines if there are no resources available for heavyweight models and exten-
sive hyperparameters optimization. These strategies are featured with optimal
learning rate estimation and early stopping criterion, allowing them to adapt to
the input datasets to some extent. The ability to adapt is shown by conducting
experiments on 11 diverse image classification datasets.
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Supplementary Material

1.1

Classification Tasks

We provide a brief description of each task:

Caltech101. The task consists in classifying pictures of objects (101 classes
plus a background clutter class), including animals, airplanes, chairs, or scis-
sors. The image size varies, but it typically ranges from 200-300 pixels per
edge.

Oxford-IIIT Pets. The task consists in classifying pictures of cat and
dog breeds (37 classes with around 200 images each), including Persian cat,
Chihuahua dog, English Setter dog, or Bengal cat. Images dimensions are
typically 200 pixels or larger.

Describable Textures (DTD). The task consists in classifying images of
textural patterns (47 classes, with 120 training images each). Some of the
textures are banded, bubbly, meshed, lined, or porous. The image size ranges
between 300x300 and 640x640 pixels.

Oxford 102 Flowers. The task consists in classifying images of flowers
present in the UK (102 classes, with between 40 and 248 training images per
class). Azalea, Californian Poppy, Sunflower, or Petunia are some examples.
Each image dimension has at least 500 pixels.

SUN397. The Sun397 task is a scenery benchmark with 397 classes and, at
least, 100 images per class. Classes have a hierarchy structure, and include
cathedral, staircase, shelter, river, or archipelago. The images are (colour)
200x200 pixels or larger.

SVHN. This task consists in classifying images of Google’s street-view house
numbers (10 classes, with more than 1000 training images each). The image
size is 32x32 pixels.

Cars Dataset. The task consists in classifying images of the cars, where
each class has been split roughly in a 50-50 split. Classes are typically at
the level of Make, Model, Year, e.g. 2012 Tesla Model S or 2012 BMW M3
coupe.

Birdsnap. The task of the fine-grained visual categorization of birds. There
are 500 species of North American birds represented, labeled by species.
There are between 69 and 100 images per species.

CIFAR-100. The task consists in classifying natural images (100 classes,
with 500 training images each). Some examples include apples, bottles, di-
nosaurs, and bicycles. The image size is 32x32.

Fashion-MNIST. Fashion-MNIST is a dataset of Zalando’s article images.
Each example is a 28x28 grayscale image, associated with a label from 10
classes.

Food-101. The data set of 101 food categories. For each class, 250 manually
reviewed test images are provided as well as 750 training images. On purpose,
the training images were not cleaned, and thus still contain some amount of
noise. This comes mostly in the form of intense colors and sometimes wrong
labels. All images have a maximum side length of 512 pixels.
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1.2 Performance Evaluation on CPU

We evaluate the performance of our models in the OpenVINO™2021.3 Toolkit.
Results are presented in the Table [5} Models provide a performance-accuracy
trade-off in 0.4 GFLOPs budget.

Table 5: Performance on the Intel®Xeon™Gold 6230 2.1GHz CPU in Open-
VINO™2021.3 Toolkit. Batch size is set to 1, input resolution is 224 x 224, in-
ference precision is FP32.

Model GFLOPs|Parameters, M| FPS |Latency, ms
MobileNetV3-small-1x 0.06 1.61 467.9 2.05
MobileNetV3-large-0.75x| 0.15 2.83 365.22 2.65
MobileNetV3-large-1x 0.22 4.31 336.09 2.89
EfficientNet-B0 0.4 4.11 322.75 3.01

1.3 Extended Ablation Study
For the extended ablation study we use all the data except the SUN397 for

MobileNetV3 and subset of 6 datasets for EfficientNet-BO (CIFAR-100, DTD,
Flowers, Cars, Pets, Caltech101) if nothing else is said.

Table 6: Augmentation influence for the MobileNetV3-large.

Augmentation AVG metrics

top-1 | mAP
Basic augmentations| 88.89 | 90.33
FMix 89.00|91.17
AugMix 89.37|90.53
CutMix 89.35|91.50
MixUp 88.11|90.41
AugMix + CutMix |89.15|90.98
AugMix + MixUp |88.3190.36
AugMix + Fmix 89.15|90.86

Data augmentations. The Table [6] and Table [7] show the results of applying
augmentations for MobileNetV3-Large and EffficientNet-B0. As basic augmen-
tations, we adopt random flip, rotate, scale, and color jitter. AugMix reaches the
highest AVG top-1 score, while it’s combination with other *mix augmentations
slightly degrades the quality.
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Table 7: Augmentation influence for the EfficientNet-B0.

Augmentation AVG metrics

top-1 | mAP
AugMix 90.52|92.14
FMix 90.06 | 92.77
CutMix 90.19 {93.12
AugMix + CutMix| 90.06 | 92.79
AugMix + Fmix |90.02|92.72

Table 8: Results of training EfficientNet-B0O and MobileNetV3-large with SAM.
Optimizer AVG metrics| CIFAR100

top-1| mAP |top-1|mAP

MNV3-large 1x + SGD [89.74| 93.34 |85.12|90.39

MNV3-large 1x + SAM|90.56| 93.97 |86.24|91.73

EffNet-B0 + SGD 89.16| 91.78 |85.43|90.13

EffNet-BO + SAM 90.37| 92.20 |86.76|89.69

Optimization. Table [8] shows the results of adopting SAM as optimizer for
EfficientNet-BO and MobileNetV3-Large. We set hyperparameter p = 0.05 for
all our models as it was proposed in [10].

From Table {4 the overall NBD influence on the algorithm could be seen. As
it was mentioned in Section [3.2] in case of NBD we scale the learning rate for
biases by a factor of 2 and use warmup for 5 epochs. In Table [J] the impact of
these settings could be seen.

Table 9: Results of applying NBD to MobileNetV3-small with different settings.
Optimization method |AVG metrics

top-1 | mAP
Raw NBD 86.85 | 90.01
NBD + 2*Ir 86.89 | 90.15
NBD + 2*Ir + warmup|87.15(90.15

Learning Rate Scheduling and Early Stopping. To validate our ReduceLROn-
PlateauV2 scheduler we compare it against cosine schedule for 200 epochs. For
all the cases learning rate was fixed to 0.013, SGD was set as an optimizer. In
this experiment we use all of the 11 datasets for MobileNetV3 and the subset
of 7 datasets (CIFAR-100, FOOD101, DTD, Flowers, Cars, Pets, Caltech101)
for EffficientNet-B0. ReduceLROnPlateauV2 strategy clearly outperforms co-
sine schedule (see Table , while maintaining 2x and less training length on
all the considered datasets. Thus, applying adaptive training controlling allows
us to mitigate computational overhead introduced by SAM or mutual learning
techniques.
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Table 10: Results of applying adaptive training controlling policy.

Loss AVG metrics| AVG # of epochs|Max # of epochs
top-1 | mAP

MNV3-large + Cosine 86.01 | 88.05 200 200

MNV3-large + ReduceLROnPlateauV2|86.89|88.46 81 107

EffNet-BO + Cosine 88.39|91.35 200 200

EffNet-BO + ReduceLROnPlateauV2 |88.67(91.35 82 95

Optimal Learning Rate Estimation. For each of the considered model families we
conduct extensive experiments to find the optimal learning rate on each dataset.
We set the searching space to [0.001,0.1] and use grid search with a uniform grid
of 10 points. A trial in each grid point takes 9 epochs.

We found that in average EfficientNet-B0O requires an order of magnitude
lower learning rate than MobileNetV3 (see Figure . According to our exper-
iments, the most optimal search range for EfficientNet is [0.001,0.01] with the
average 0.003, while for MobileNetV3 the range is [0.005,0.03] with the aver-
age 0.013. We use this information to limit boundaries for learning rate search
algorithms. This helps to save time for learning rate estimation.

[ MobileNetV3
[ EfficientNet

0.000 0.005 0.010 0.015 0.020 0.025 0.030 0.035

Fig. 3: Distribution of optimal learning rates on the considered set of 11 classi-
fication tasks.

For TPE we use discrete searching space with a step size 0.001. We use 6
epochs per trial and restrict the number of trials to 15. Trials are conducted on
all the training data. This number of trials lets the algorithm to find a good value
for learning rate in a reasonable amount of time. In the Table [[T] we provide the
results of all three methods for MobileNetV3-large.

Table 11: Learning rate estimation based on different algorithms.
LR finder method|AVG top-1|AVG mAP|AVG time to estimate Ir, min
Fast-ai 88.27 90.37 2
Grid search 88.44 90.78 36
TPE 91.19 88.91 32
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Mutual Learning. We studied the impact of different DML settings to Mobilenet V3-
large (see Table . Although after applying AM-Softmax to the slow student,
classification accuracy increases by a small margin, mAP increases significantly.
This indicates that the proposed setup of mutual learning indeed generates a
model with more discriminative features and a greater ranking ability.

Table 12: Mutual learning with AM-Softmax validation results.

Model [Method AVG metrics|Cars dataset
top-1 | mAP | top-1 | mAP
MNV3|ML + Softmax 89.03 [90.59(90.92 | 91.64

MNV3|ML + AM-Softmax, s = max(v/2 - log(C — 1),3)|89.082| 92.24 | 91.35 | 93.98
MNV3|ML + AM-Softmax, s =1 89.18|92.42(91.96(94.23
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