
ar
X

iv
:2

10
8.

07
05

3v
3

 [
m

at
h.

O
C

]
 2

5
Se

p
20

22

Geometric duality results and approximation algorithms

for convex vector optimization problems

Çağin Ararat∗ Simay Tekgül† Firdevs Ulus‡

September 27, 2022

Abstract

We study geometric duality for convex vector optimization problems. For a primal
problem with a q-dimensional objective space, we formulate a dual problem with a
(q+1)-dimensional objective space. Consequently, different from an existing approach,
the geometric dual problem does not depend on a fixed direction parameter and the
resulting dual image is a convex cone. We prove a one-to-one correspondence between
certain faces of the primal and dual images. In addition, we show that a polyhedral
approximation for one image gives rise to a polyhedral approximation for the other.
Based on this, we propose a geometric dual algorithm which solves the primal and dual
problems simultaneously and is free of direction-biasedness. We also modify an existing
direction-free primal algorithm in a way that it solves the dual problem as well. We
test the performance of the algorithms for randomly generated problem instances by
using the so-called primal error and hypervolume indicator as performance measures.

Keywords: Convex vector optimization, multiobjective optimization, approximation algo-
rithm, scalarization, geometric duality, hypervolume indicator.
Mathematics Subject Classification (2020): 90B50, 90C25, 90C29.

1 Introduction

Vector optimization is a generalization of multiobjective optimization (MO) where the order
relation over the objective vectors is determined by a general ordering cone. It has been ap-
plied in many fields including risk-averse dynamic programming [34], financial mathematics
[2, 18, 27, 36], economics [48, 50], game theory [19, 28].

In vector optimization, generating efficient solutions which correspond to minimal el-
ements in the objective space can be done either by solving single-objective optimization
problems formed by the structure of the original problem, called scalarizations (see [17] and

∗Bilkent University, Department of Industrial Engineering, Ankara, 06800 Turkey, cararat@bilkent.edu.tr
†The University of Edinburgh, School of Mathematics, Edinburgh, EH9 3FD United Kingdom,

s.tekgul@ed.ac.uk
‡Corresponding author, Bilkent University, Department of Industrial Engineering, Ankara, 06800 Turkey,

firdevs@bilkent.edu.tr

1

http://arxiv.org/abs/2108.07053v3

references therein), or by iterative algorithms which work directly in the decision space (see
e.g. [8, 14, 20, 21, 22]). The overall aim for many applications is however to generate either
(an approximation of) the whole set of minimal elements in the objective space [5, 49] or the
set of all efficient solutions in the decision space [3]. Since the dimension of the decision space
is in general much higher than that of the objective space and consequently many efficient
solutions might map into a single objective value, the former is usually a more affordable
goal.

By this motivation, Benson [5] introduced an outer approximation algorithm in 1998
that aims to generate the Pareto frontier of linear multiobjective optimization problems.
This has led to vast literature in vector optimization. In the linear case, many variations
of Benson’s algorithm have been proposed [9, 15, 29, 35, 53, 54]. We discuss the objective
space-based algorithms in the literature for convex vector optimization problems (CVOPs)
in more detail below. For non-convex vector optimization problems with special structure,
we refer the reader to the recent works [10, 41, 44].

1.1 Literature review on objective space-based CVOP algorithms

For CVOPs, there are various approximation techniques in the literature, see e.g. [51]. Here,
we focus on the approaches which generate approximations to the entire minimal set in the
objective space. In 2011, Ehrgott, Shao and Schöbel [16] proposed an extension of Benson’s
algorithm for convex MO problems. Later Löhne, Rudloff and Ulus [37] generalized this
algorithm for CVOPs and recently, different variants have been proposed in [13, 33]. These
algorithms solve a Pascoletti-Serafini [45] scalarization and a vertex enumeration problem in
each iteration. This scalarization problem depends on two parameters: a direction vector and
a reference point. Specifically, given a point v in the objective space, it determines the closest
point (along a direction c) to v in the objective space as well as a corresponding feasible
solution in the decision space. In [37], the reference point v is selected arbitrarily among the
vertices of the current approximation and c is fixed throughout the algorithms, whereas in
[13], the reference point v and a corresponding direction vector c are selected based on an
additional procedure. In [33], several additional rules for selecting the two parameters of the
Pascoletti-Serafini scalarization for the same algorithmic setup are proposed and compared.

Recently, for CVOPs, Ararat, Ulus and Umer [1] considered a norm-minimizing scalariza-
tion which requires only a reference point but no direction parameter, and proposed an outer
approximation algorithm for CVOPs. As the proposed algorithm does not require a direction
parameter, direction-biasedness is not a concern. However, the norm-minimizing scalariza-
tion has a nonlinear convex objective function, which is not the case for the Pascoletti-Serafini
scalarization that is used in the primal algorithm in [37].

Apart from these primal algorithms, in [37], the authors also proposed a geometric dual
variant of their primal algorithm, which is based on a geometric duality theory. The general
theory of convex polytopes indicates that two polytopes are dual to each other if there
exists an inclusion-reversing one-to-one mapping between their faces [26]. Similar to the
duality relation between polytopes, a duality relation between the polyhedral image of the
primal problem and the polyhedral image of a dual problem was introduced in [31] for
multiobjective linear programming problems. Later, Luc [40] introduced parametric duality
for these problems and studied the relationship between the parametric and geometric duality

2

notions. More recently, the equivalence between the two duality notions has been shown in
[12].

In [30], a general duality theory is developed for the epigraph of a closed convex function
and that of its conjugate function. As a special case, this theory is applied for CVOPs to
obtain a duality relation between the primal and dual images; hence, the geometric duality
theory in [31] is generalized to the non-polyhedral case. The geometric dual algorithm that
is proposed in [37] is based on the duality relation in [30]. Accordingly, the fixed direction
c that is used within the primal solution concept and algorithm is also used in the design
of the geometric dual problem and the algorithm. Different from the primal algorithms,
in the geometric dual algorithm of [37], instead of Pascoletti-Serafini or norm-minimizing
scalarizations, only the well-known weighted sum scalarizations, which may be easier to deal
with because of their simple structure, are solved.

1.2 The proposed approach and contributions

In this paper, we establish a direction-free geometric duality theory and a dual algorithm to
solve CVOPs. More precisely, after recalling the primal solution concept in [1], we propose
a direction-free geometric dual problem and a solution concept for it. Then, we prove a
geometric duality relation between the images of the primal and dual problems, which is
based on an inclusion-reversing one-to-one duality mapping. The proof of this relation is
based on the general duality theory for epigraphs in [30]. We also prove that a polyhedral
approximation for the primal image yields a polyhedral approximation for the dual image,
and vice versa. Different from [30], the proposed geometric dual image does not depend on
a fixed direction; but in order to handle this issue, the dimension of the objective space for
the dual problem is increased by one. In this sense, it can also be seen as a generalization
of the parametric duality for linear MO from [40] to CVOPs. Accordingly, the image of
the proposed dual problem is not only a convex set but a convex cone. Due to this conic
structure of the dual image, the dimension increase compared to [30] is not an additional
source of computational burden, as also confirmed by the numerical results.

Based on the geometric duality theory, we propose a dual algorithm which solves the pri-
mal and dual problems simultaneously by solving only weighted sum scalarization problems.
More precisely, the algorithm gives a finite ǫ-solution to the dual problem; moreover, it gives
a finite weak ǫ̃-solution to the primal problem, where ǫ̃ is determined by ǫ and the structure
of the underlying ordering cone. We also modify the primal algorithm in [1] in a way that it
returns a finite ǫ-solution to the dual problem as well.

We compare the proposed geometric duality and the dual algorithm with the ones in [30]
and [37], respectively. In particular, we show that the proposed dual image and the dual
image in [30] can be recovered from each other. Moreover, by fixing a suitable norm, we show
that the dual algorithm in [37] can be seen as a special case of the proposed dual algorithm.

Finally, we test the performance of the proposed algorithm in comparison to the existing
ones using two performance measures: primal error (PE) and hypervolume indicator (HV).
While PE simply measures the Hausdorff distance between the primal image and its returned
polyhedral approximation, novel to this work, we define HV as a hypervolume-based perfor-
mance metric for convex vector optimization. Our definition is similar to hypervolume-based
metrics for MO, see e.g. [4, 56, 57, 58]. The computational results suggest that the proposed

3

dual algorithm has promising performance.
The rest of the paper is structured as follows. Section 2 presents the basic concepts and

notation. Section 3 introduces the primal problem, dual problem, and solution concepts for
these problems. The geometric duality between the primal and dual problems is studied in
Section 4. Section 5 provides the primal and dual algorithms. In Section 6, we compare the
proposed approach with the existing ones in the literature. In Section 7, we provide some
test results for performance comparisons.

2 Preliminaries

In this section, we provide the definitions and notations used throughout the paper. Let
q ∈ N := {1, 2, . . .} be a positive integer. We denote the q-dimensional Euclidean space by
Rq. Let ‖·‖ be an arbitrary norm on Rq. The associated dual norm is denoted by ‖·‖∗, that
is, ‖z‖∗ = sup{zTx | ‖x‖ ≤ 1} for each z ∈ Rq. Throughout, B(0, ǫ) := {z ∈ Rq | ‖z‖ ≤ ǫ}
denotes the norm ball centered at 0 ∈ Rq with radius ǫ > 0.

For a set A ⊆ Rq, we denote the convex hull, conic hull, interior, relative interior and
closure of A by convA, coneA, intA, riA and clA, respectively. Recall that coneA := {λa |
a ∈ A, λ ≥ 0}. The closed convex cone defined by A+ = {y ∈ Rq | ∀a ∈ A : yTa ≥ 0} is
called the dual cone of A. It is well-known that the dual cone of A+ is given by A++ :=
(A+)+ = cl cone convA whenever A is nonempty. The recession cone of A is defined by
reccA = {c ∈ Rq | ∀λ ≥ 0, a ∈ A : a + λc ∈ A}. An element d ∈ reccA is a (recession)
direction of A. Let A ⊆ Rq be convex and F ⊆ A be a convex subset. If λy1+(1−λ)y2 ∈ F
for some 0 < λ < 1 holds only if both y1 and y2 are elements of F , then F is called a face of
A. A zero-dimensional face is called an extreme point and a one-dimensional face is called
an edge of A. If A is q-dimensional, then a (q− 1)-dimensional face is called a facet of A. A
face of A that is not the empty set and not A itself is called a proper face of A. We call F an
exposed face of A if it can be written as the intersection of A and a supporting hyperplane
of A. If A is q-dimensional, then an exposed face of A is also a proper face; the converse
does not hold in general [30, Section 2.2].

Given nonempty sets A,B ⊆ Rq, their Minkowski sum is defined by A + B := {a + b |
a ∈ A, b ∈ B}. For λ ∈ R, we also define λA := {λa | a ∈ A}. In particular, we have
A− B = A + (−1)B.

Let C ⊆ Rq be a cone. It is called pointed if C ∩ −C = {0}, solid if it has nonempty
interior, and nontrivial if C 6= ∅ and C 6= Rq. If C ⊆ Rq is a convex pointed cone, then the
relation ≤C := {(x, y) ∈ Rq × Rq | y − x ∈ C} is an antisymmetric partial order on Rq [32,
Theorem 1.18]; we write x ≤C y whenever (x, y) ∈≤C .

Let m ∈ N and X ⊆ Rm be a nonempty convex set. A function f : X → Rq is said to
be C-convex on X if f(λx1 + (1− λ)x2) ≤C λf(x1) + (1− λ)f(x2) for every x1, x2 ∈ X and
λ ∈ [0, 1] [32, Definition 2.4]. Given a function g : Rq → R, the function g∗ : Rq → [−∞,+∞]
defined by g∗(w) := supz∈Rq(wTz−g(z)), w ∈ Rq, is called the conjugate function of g. For a
set A ⊆ Rq, the function IA defined by IA(z) := 0 for z ∈ A, and by IA(z) := +∞ for z /∈ A
is called the indicator function of A. In this case, taking g = IA gives g∗(w) = supz∈AwTz
for each w ∈ Rq; g∗ is called the support function of A; we also define the polar of A as the
set A◦ := {w ∈ Rq | g∗(w) ≤ 1}.

4

Let A ⊆ Rq and let C ⊆ Rq be a closed convex pointed cone. The sets MinC A :=
{y ∈ A | ({y} − C \ {0}) ∩ A = ∅}, wMinC A := {y ∈ A | ({y} − intC) ∩ A = ∅},
MaxC A := {y ∈ A | ({y} + C \ {0}) ∩ A = ∅} are called the sets of C-minimal, weakly
C-minimal, C-maximal elements of A, respectively [35, Definition 1.41]. An exposed face of
A that only consists of (weakly) C-minimal elements is called a (weakly) C-minimal exposed
face. An exposed face of A that consists of only C-maximal elements is called a C-maximal
exposed face [35, Section 4.5].

Remark 2.1. Let A ⊆ Rq be a nonempty convex set and C ⊆ Rq be a convex cone. If
A = A+C and w ∈ Rq such that infa∈A wTa > −∞, then w ∈ C+. Note that A = A+reccA
holds [55, Theorem 5.6]. If A ⊆ H := {z ∈ Rq | wTz ≥ r} for some w ∈ Rq and r ∈ R, then
we have w ∈ (reccA)+.

3 Primal and dual problems

In this paper, we consider a convex vector optimization problem and its geometric dual. The
primal problem is defined as

minimize f(x) with respect to ≤C subject to x ∈ X , (P)

where the ordering cone C ⊆ Rq is nontrivial, pointed, solid, closed and convex; the vector-
valued objective function f : X → Rq is C-convex and continuous; and the feasible set
∅ 6=X ⊆ Rm is compact and convex. The upper image of (P) is defined as

P := cl(f(X) + C),

where f(X) := {f(x) | x ∈ X} is the image of X under f . The following proposition collects
some basic facts about the problem structure. Its proof is straightforward from the fact that
X is compact, hence we omit it.

Proposition 3.1. The upper image P is a closed convex set, the image f(X) is a compact
set, and it holds P = f(X) +C. Moreover, the primal problem (P) is bounded in the sense
that {y}+ C ⊆ P for some y ∈ Rq.

For a parameter vector w ∈ C+, the convex program

minimize wTf(x) subject to x ∈ X (WS(w))

is called the weighted sum scalarization of (P). Let pw be the optimal value of (WS(w)),
that is, pw := infx∈X wTf(x). Since X is a nonempty compact set and f is a continuous
function, it follows that pw ∈ R. The next proposition is a well-known result that will be
used in the design of the geometric dual problem.

Proposition 3.2. [32, Corollary 5.29] Let w ∈ C+ \ {0}. Then, an optimal solution xw of
(WS(w)) is a weak minimizer of (P). The converse also holds: for each weak minimizer
x ∈ X of (P), there exists w ∈ C+ \ {0} such that x is an optimal solution of (WS(w)).

5

Now, let us define the geometric dual problem of (P) as

maximize ξ(w) with respect to ≤K subject to w ∈ W. (D)

In this problem, the objective function ξ : Rq → Rq+1 is defined by

ξ(w) := (w1, . . . , wq, p
w)T, w ∈ W; (1)

the ordering cone K is defined by K := cone{eq+1} = {λeq+1 | λ ≥ 0}, where eq+1 =
(0, . . . , 0, 1)T ∈ Rq+1; and the feasible set is W := C+. The lower image of (D) is defined as

D := ξ(W)−K = {(wT, α)T ∈ Rq+1 | w ∈ W, α ≤ pw}.

Remark 3.3. Note that the decision space of the dual problem has dimension q, which in
general is much less than n, the number of variables of the primal problem. However, the dual
objective function involves solving another optimization problem. Indeed, if the feasible region
X of (P) is given by explicit constraints, then it is also possible to define a geometric dual
problem which includes additional dual variables corresponding to these explicit constraints.
In particular, the last component of the dual objective function can be defined using the
Lagrangian of (WS(w)) instead of its value directly. This construction would lead to the
same lower image, see also [37, Remark 3.6].

The following proposition follows from the definition of D, we omit its proof.

Proposition 3.4. The lower image D is a closed convex cone.

We define exact and approximate solution concepts for the primal problem (P).

Definition 3.5. [35, Definition 2.20, Proposition 4.7] A point x̄ ∈ X is said to be a (weak)
minimizer for (P) if f(x̄) is a (weakly) C-minimal element of f(X). A nonempty set X̄ ⊆ X
is called an infimizer of (P) if cl conv(f(X̄) + C) = P. An infimizer X̄ of (P) is called
(weak) solution to (P) if it consists of only (weak) minimizers.

Since the upper image of a convex vector optimization problem is not a polyhedral set in
general, a finite set X̄ may not satisfy the exact solution concept in Definition 3.5. Hence,
we give an approximate solution concept for a fixed ǫ > 0 below.

Definition 3.6. [1, Definition 3.5] A nonempty finite set X̄ ⊆ X is called a finite ǫ-infimizer
of (P) if conv f(X̄)+C+B(0, ǫ) ⊇ P. A finite ǫ-infimizer X̄ of (P) is called a finite (weak)
ǫ-solution to (P) if it consists of only (weak) minimizers.

Note that if X̄ is a finite (weak) ǫ-solution, then we have the following inner and outer
approximations of the upper image:

conv f(X̄) + C +B(0, ǫ) ⊇ P ⊇ conv f(X̄) + C.

Now, similar to Definition 3.5, we provide an exact solution concept for the dual problem
(D).

6

Definition 3.7. [35, Definition 2.53, Corollary 2.54] A point w̄ ∈ W is called a maximizer
for (D) if ξ(w̄) is a K-maximal element of ξ(W). A nonempty set W̄ ⊆ W is called a
supremizer of (D) if cone conv ξ(W̄)−K = D. A supremizer W̄ of (D) is called a solution
to (D) if it consists of only maximizers.

As for the upper image, in general, the lower image cannot be represented by a finite
set W̄ using the exact solution concept in Definition 3.7. In the next definition, we propose
a novel approximate solution that is tailor-made for the lower image D, which is a convex
cone; see Remark 3.9 below for the technical motivation.

Definition 3.8. A nonempty finite set W̄ ⊆ W ∩ Sq−1 is called a finite ǫ-supremizer of (D)
if cone(conv ξ(W̄) + ǫ{eq+1})−K ⊇ D, where Sq−1 := {z ∈ Rq | ‖z‖∗ = 1} denotes the unit
sphere in Rq with respect to the dual norm. A finite ǫ-supremizer W̄ of (D) is called a finite
ǫ-solution to (D) if it consists of only maximizers.

If W̄ is a finite ǫ-solution of (D), then one obtains the following inner and outer approx-
imations of the lower image:

cone(conv ξ(W̄) + ǫ{eq+1})−K ⊇ D ⊇ cone conv ξ(W̄)−K.

Remark 3.9. Let us comment on the particular structure of Definition 3.8. Since the lower
image D is a convex cone by Proposition 3.4, we evaluate the conic hull of the Minkowski
sum conv ξ(W̄) + ǫ{eq+1} so that the error values are scaled properly. With this operation,
we ensure that the resulting conic hull is comparable with D (up to the subtraction of the
ordering cone K).

The next proposition will be used later to prove some geometric duality results.

Proposition 3.10. Let w ∈ W\{0}. Then, ξ(w) is a K-maximal element of D.

Proof. Let ε > 0. We prove that ξ(w) + εeq+1 /∈ D = ξ(W) − K. To get a contradiction,
assume the existence of w̄ ∈ W and ε̄ ≥ 0 with ξ(w) + εeq+1 = ξ(w̄) − ε̄eq+1. By (1), we
have (w1, . . . , wq, p

w)T + εeq+1 = (w̄1, . . . , w̄q, p
w̄)T − ε̄eq+1, that is, (w1, . . . , wq, p

w + ε)T =
(w̄1, . . . , w̄q, p

w̄ − ε̄)T. Hence, infx∈X wTf(x) = infx∈X w̄Tf(x) and ε = −ε̄. This contradicts
ε > 0 and ε̄ ≥ 0. Hence, ξ(w) + εeq+1 /∈ D. Since ε > 0 is arbitrary, ξ(w) is a K-maximal
element of D.

4 Geometric duality

In this section, we will investigate the duality relation between the primal and dual problems,
(P) and (D). First, we will provide the main duality theorem which relates the weakly C-
minimal exposed faces of P and the K-maximal exposed faces of D. Then, we will establish
some duality properties regarding P and D, as well as their polyhedral approximations.

7

4.1 Geometric duality between P and D

We will prove that there is a one-to-one correspondence between the set of all weakly C-
minimal exposed faces of the upper image P and the set of all K-maximal exposed faces of
the lower image D. We will also show that the upper and lower images can be recovered
from each other.

Let us start by defining

ϕ : Rq × Rq+1 → R, ϕ(y, w, α) := wTy − α, (2)

and the following set-valued maps:

H, H : Rq+1
⇒ Rq,H(w, α) := {y ∈ Rq | ϕ(y, w, α) ≥ 0}, H(w, α) := bdH(w, α),

H∗, H∗ : Rq
⇒ Rq+1,H∗(y) := {(wT, α)T ∈ Rq+1 |ϕ(y, w, α) ≥ 0}, H∗(y) := bdH∗(y).

These functions are essential to define a duality map between P and D. Moreover, for
arbitrary y ∈ Rq and (wT, α)T ∈ Rq+1, we have the following statement:

(wT, α)T ∈ H∗(y) ⇐⇒ y ∈ H(w, α). (3)

With the next proposition we show that, by solving a weighted sum scalarization, one
finds supporting hyperplanes to the upper and lower images.

Proposition 4.1. Let w ∈ W\{0} and xw be an optimal solution to (WS(w)). Then,
H(ξ(w)) is a supporting hyperplane of P at f(xw) such that P ⊆ H(ξ(w)), and H∗(f(xw))
is a supporting hyperplane of D at ξ(w) such that D ⊆ H∗(f(xw)).

Proof. To prove the first statement, we show that f(xw) ∈ H(ξ(w)) and P ⊆ H(ξ(w)). As
ξ(w) = (wT, wTf(xw))T, we have ϕ(f(xw), ξ(w)) = 0, which implies that f(xw) ∈ H(ξ(w)).
To prove P ⊆ H(ξ(w)), let x ∈ X , c ∈ C be arbitrary. Then, ϕ(f(x) + c, ξ(w)) = wTf(x) +
wTc − wTf(xw) ≥ 0 as w ∈ C+ and xw is an optimal solution of (WS(w)). Therefore,
H(ξ(w)) ⊇ f(X) + C = P, where the equality follows by Proposition 3.1. On the other
hand, having ϕ(f(xw), ξ(w)) = wTf(xw)−wTf(xw) = 0 also implies that ξ(w) ∈ H∗(f(xw)).
To complete the proof, it is enough to show that D ⊆ H∗(f(xw)). Let (wT, α)T ∈ D be
arbitrary. It follows from the definition of D that α ≤ infx∈X wTf(x) = wTf(xw). Hence,
ϕ(f(xw), w, α) = wTf(xw)− α ≥ 0, that is, (wT, α)T ∈ H∗(f(xw)).

The following propositions show the relationship between the weakly C-minimal elements
of P and theK-maximal exposed faces of D, as well as that between theK-maximal elements
of D and the weakly C-minimal exposed faces of P. Their proofs are based on elementary
arguments, hence omitted for brevity.

Proposition 4.2. (a) Let y ∈ Rq. Then, y is a weakly C-minimal element of P if and only
if H∗(y) ∩ D is a K-maximal exposed face of D. (b) For every K-maximal exposed face F ∗

of D, there exists some y ∈ P such that F ∗ = H∗(y) ∩ D.

Proposition 4.3. (a) Let (wT, α)T ∈ Rq+1\{0}. Then, (wT, α)T is a K-maximal element of
D if and only if H(w, α)∩P is a weakly C-minimal exposed face of P satisfying H(w, α) ⊇ P.
(b) For every C-minimal exposed face F of P, there exists some (wT, α)T ∈ D such that
F = H(w, α) ∩ P.

8

We now proceed with the main geometric duality result. Let FP be the set of all weakly
C-minimal exposed faces of P and F∗

D be the set of all K-maximal exposed faces of D.
Consider the set-valued function

Ψ: F∗
D ⇒ Rq, Ψ(F ∗) :=

⋂

(wT,α)T∈F ∗

H(w, α) ∩ P. (4)

Theorem 4.4. Ψ is an inclusion-reversing one-to-one correspondence between F∗
D\{{(0

T, 0)T}}
and FP . The inverse map is given by Ψ∗(F) :=

⋂

y∈F H∗(y) ∩ D.

Proof. We use the geometric duality theory for the epigraphs of closed convex functions
developed in [30]. To be able to use this theory, we express P and D as the epigraphs of
closed convex functions, up to transformations. Observe that

D={(wT, α)T ∈ Rq+1 | pw ≥ α,w ∈ C+}=−{(wT, α)T ∈ Rq+1 | p̃(w) ≤ α}=− epi p̃,

where p̃ : Rq → R∪{+∞} is the support function of P, i.e., p̃(w) = supy∈P wTy for every w ∈
Rq. Then, the well-known duality between support and indicator functions ([46, Theorem
13.2]) yields that p̃ = g∗, where g := IP is the indicator function of P. We also have
epi g = P × R+ and P = P (epi g), where P : 2R

q+1

⇒ Rq is defined by P (F ∗) = {y ∈ Rq |
(yT, 0)T ∈ F ∗} for F ∗ ⊆ Rq+1. Let us define a set-valued function Ψ̃ : 2R

q+1

⇒ Rq+1 by

Ψ̃(F ∗) :=
⋂

(wT,g∗(w))T∈F ∗

{(yT, g(y))T ∈ Rq × R | w ∈ ∂g(y)}.

Then, by [30, Theorem 3.3], Ψ̃ is an inclusion-reversing one-to-one correspondence between
the set of all K-minimal exposed faces of epi g∗ = −D and the set of all K-minimal exposed
faces of epi g = P × R+. Clearly, a K-minimal exposed face of −D is of the form −F ∗,
where F ∗ ∈ F∗

D; the converse holds as well. The one-to-one correspondence here is inclusion-
preserving.

Next, we show that P (F̃) ∈ FP ∪ {P} whenever F̃ is a K-minimal exposed face of epi g.
Note that a point (yT, r)T ∈ Rq+1 is a K-minimal element of epi g = P × R+ if and only if
y ∈ P and r = 0. Let F̃ be a K-minimal exposed face of epi g. The previous observation
implies that F̃ ⊆ P×{0}. By definition, we may write F̃ = (P×R+)∩H̃ for some supporting
hyperplane H̃ ⊆ Rq+1 of P × R+. Then, P (F̃) = P (P × R+) ∩ P (H̃) = P ∩ P (H̃). By [30,
Lemma 3.1(ii)], there exist w ∈ Rq and α ∈ R such that H̃ = {(yT, r) ∈ Rq+1 | wTy−r = α}.
If w = 0, then F̃ ⊆ P × {0} implies that α = 0 and we have H̃ = Rq × {0} and P (F̃) = P.
Suppose that w 6= 0. Then, P (H̃) 6= Rq is a supporting hyperplane of P (F̃) since H̃ is a
supporting hyperplane of F̃ . It follows that P (F̃) = P ∩ P (H̃) ∈ FP .

Conversely, we define a function G on 2R
q

which maps FP ∪ {P} into the set of all K-
minimal exposed faces of epi g. LetG(F) := F×{0} for every F ⊆ Rq. By the definitions of P
and G, we obtain P (G(F)) = F for every F ⊆ Rq and G(P (F̃)) = F̃ for every F̃ ⊆ Rq×{0}.
In particular, P (G(F)) = F for every F ∈ FP ∪{P} and G(P (F̃)) = F̃ for every K-minimal
exposed face F̃ of epi g. It remains to show that G(F) is a K-minimal exposed face of epi g
for all F ∈ FP ∪ {P}. First, note that G(P) = P × {0} = epi g ∩ (Rq ×{0}) is a K-minimal
exposed face of epi g. Next, suppose that F ∈ FP . Then, by Proposition 4.3(b), there

9

exists at least one (wT, α)T ∈ D such that F = H(w, α) ∩ P. Moreover, since H(w, α) is a
supporting hyperplane of P, it follows that H̃(w, α) := {(yT, r)T ∈ Rq+1 | wTy − r = α} is
a supporting hyperplane of epi g and F̃ := H̃(w, α) ∩ epi g is a K-minimal exposed face of
epi g by [30, Lemma 3.1(ii)]. Note that P (F̃) = P (H̃(w, α)) ∩ P (epi g) = H(w, α) ∩ P = F .
Hence, G(F) = G(P (F̃)) = F̃ is a K-minimal exposed face of epi g.

Let F ∗ ∈ F∗
D. Then, −F

∗ is a K-minimal exposed face of epi g∗, Ψ̃(−F ∗) is a K-minimal
exposed face of epi g, and P (Ψ̃(−F ∗)) ∈ FP ∪ {P}. Moreover, we have

P (Ψ̃(−F ∗)) =
⋂

(wT,g∗(w))T∈−F ∗

P ({(yT, g(y))T ∈ Rq+1 | w ∈ ∂g(y)})

=
⋂

(−wT,−p̃(w))T∈F ∗

P ({(yT, 0)T ∈ Rq+1 | y ∈ P, w ∈ NP(y)})

=
⋂

(wT,pw)T∈F ∗

{y ∈ P | w ∈ −NP(y)}

=
⋂

(wT,α)T∈F ∗

H(w, α) ∩ P = Ψ(F ∗).

By [30, Theorem 3.3], the inverse of Ψ̃ is given by

Ψ̃−1(F̃) =
⋂

(yT,g(y))T∈F̃

{(wT, g∗(w))T ∈ Rq × R | w ∈ ∂g(y)}.

Let F ∈ FP ∪ {P}. Then, −Ψ̃−1(G(F)) ∈ F∗
D by the above constructions. Moreover, we

have

−Ψ̃−1(G(F)) =
⋂

(yT,g(y))T∈G(F)

{(−wT,−g∗(w))T ∈ Rq × R | w ∈ ∂g(y)}

=
⋂

(yT,0)T∈F×{0}

{(−wT,−p̃(w))T ∈ Rq × R | w ∈ NP(y)}

=
⋂

y∈F

{(wT, pw)T ∈ Rq × R | w ∈ −NP(y)} (5)

=
⋂

y∈F

{(wT, pw)T ∈ Rq × R | y ∈ H(w, pw)}

=
⋂

y∈F

{(wT, pw)T ∈ Rq × R | (wT, pw)T ∈ H∗(y)}

=
⋂

y∈F

H∗(y) ∩ D = Ψ∗(F).

Finally, note that Ψ({(0T, 0)T}) = P. Then, by combining the three one-to-one correspon-
dences established above and excluding the pair formed by {(0T, 0)T} and P, we conclude
that Ψ is an inclusion-reversing one-to-one correspondence between F∗

D \ {{(0
T, 0)T}} and

FP , and Ψ∗ is its inverse mapping.

10

Remark 4.5. Using the notions of second-order subdifferential and indicatrix for convex
functions, one can obtain the following polarity relationship between the curvatures of P and
D, which is in the spirit of [30, Theorem 5.7]. Suppose that the function g = IP (see the proof
of Theorem 4.4) is twice epi-differentiable ([47, Definition 2.2]). Then, for every K-maximal
exposed face F ∗ of D, (wT, pw)T ∈ F ∗, y ∈ Ψ(F ∗), we have

IndD((w
T, pw) | (yT, 1)) := Ind g∗(−w | y) = (Ind g(y | −w))◦ =: (IndP(y | −w))

◦.

Here, Ind g, Ind g∗ are defined as the polars of the corresponding second-order subdifferentials
of g, g∗, respectively; see [30, Section 4.1], [43, Proposition 4.1], [52, Section 4]. Moreover,
we define IndP , IndD as indicatrices of P,D (with suitable dimensions) by using Ind g, Ind g∗,
similar to the construction in [30, Section 5]. The result is a direct consequence of [52,
Lemma 4.6(b)], where it is needed to work with (w, y) such that −w ∈ ∂g(y). In our case,
this condition is verified thanks to the structure of Ψ(F ∗) in (??) whenever (wT, pw)T ∈ F ∗,
y ∈ Ψ(F ∗). We verify the twice epi-differentiability of g for the problem that will be considered
in Example 7.1. To that end, let us take f(x) = ATx and X = {x ∈ Rn | xTPx − 1 ≤ 0},
where P ∈ Rn×n is a symmetric positive definite matrix, and A ∈ Rn×q

+ . By [52, Lemma
4.6(a)], g is twice epi-differentiable at y relative to −w if and only if g∗ is so at −w relative
to y. To check the latter, note that, for w ∈ C+, we have

g∗(−w) = sup
z∈P
−wTz = sup

x∈X
−wTf(x) = sup{−wTATx | xTPx ≤ 1}

=
√

(Aw)TP−1Aw =
√

wT(ATP−1A)w,

which follows from standard calculations for finding the support function of an ellipsoid. It
follows that (g∗)2 on Rq is a piecewise linear-quadratic function in the sense of [47, Definition
1.1], which is twice epi-differentiable by [47, Theorem 3.1]. Hence, g∗ is also twice epi-
differentiable.

Now, we will see that the upper and dual images P and D can be recovered from each
other using the function ϕ introduced in (2). The following definition will be used to simplify
the notation in later steps.

Definition 4.6. For closed and convex sets P̄ and D̄, we define

DP̄ := {(wT, α)T ∈ Rq+1 | ∀y ∈ P̄ : ϕ(y, w, α) ≥ 0},

PD̄ := {y ∈ Rq | ∀(wT, α)T ∈ D̄ : ϕ(y, w, α) ≥ 0}.

Remark 4.7. In view of (2), the sets in Definition 4.6 can be rewritten as

DP̄ = {z ∈ Rq+1 | ∀y ∈ P̄ : (yT,−1)z ≥ 0} = (P̄ × {−1})+,

PD̄ = {y ∈ Rq | ∀z ∈ D̄ : (yT,−1)z ≥ 0} = {y ∈ Rq | (yT,−1)T ∈ D̄+}.

Proposition 4.8. It holds (a) DP = D, (b) PD = P.

11

Proof. (a) follows directly from the definitions, Remark 2.1 and Proposition 3.1. To prove
(b), let y ∈ P be arbitrary. By Proposition 3.1, y = f(x) + c ∈ P for some x ∈ X , c ∈ C.
For every (wT, α)T ∈ D, we have ϕ(f(x) + c, w, α) ≥ 0, which follows from w ∈ C+ and
(wT, α)T ∈ D. This implies f(x) + c ∈ PD, hence, PD ⊇ P. For the reverse inclusion, let
y ∈ PD. By Remark 4.7 and the definition of D, we have (yT,−1)T ∈ D+ = (ξ(W)−K)+.
Hence, for every w ∈ W and α ≤ pw, we have (yT,−1)(wT, α)T = wTy−α ≥ 0. In particular,
by choosing w ∈ C+ \{0} and setting α = pw, we get wTy ≥ pw for every w ∈ C+ \{0}. Note
that pw = infx∈X wTf(x) = infy∈P wTy for every w ∈ C+ \{0}. Since P is a nonempty closed
convex set such that P = P + C, having wTy ≥ pw for every w ∈ C+ \ {0} is equivalent to
y ∈ P. Hence, PD ⊆ P.

4.2 Geometric duality between the approximations of P and D

In Theorem 4.4, we have seen that the upper and lower images can be recovered from each
other. In this section, we show that similar relations hold for polyhedral approximations
of these sets. Throughout, we call a set A ⊆ Rq (A ⊆ Rq+1) an upper set (a lower set)
if A = A + C (A = A − K). We start by showing that a closed convex upper set can be
recovered using the transformations introduced in Definition 4.6.

Proposition 4.9. Let ∅ 6= P̄ (Rq be a closed convex set. Then, P̄ = PD
P̄
.

Proof. Let y ∈ Rq. Remark 4.7 implies that y ∈ PD
P̄
is equivalent to (yT,−1)T ∈ (DP̄)

+ =
(P̄ × {−1})++. By the convexity of P̄ and [46, Theorem 8.2], we have

(P̄ × {−1})++ = cl cone(P̄ × {−1}) = cone(P̄ × {−1}) ∪ (recc P̄ × {0}).

Hence, (yT,−1)T ∈ (P̄ × {−1})++ is equivalent to (yT,−1)T ∈ cone(P̄ × {−1}), which is
equivalent to y ∈ P̄ . Therefore, PD

P̄
= P̄.

Next, for a closed convex lower set D̄, we want to investigate the relationship between
D̄ and DP

D̄
. While the equality of these sets may not hold in general, the next proposition

shows that it holds if D̄ is a cone.

Proposition 4.10. Let ∅ 6= D̄ ⊆ Rq+1 be a closed convex lower set. Suppose further that D̄
is a cone and PD̄ 6= ∅. Then, DP

D̄
= D.

Proof. By Remark 4.7, we have

DP
D̄
= (PD̄ × {−1})

+ = ({y ∈ Rq | (yT,−1)T ∈ D̄+} × {−1})+

=
(

D̄+ ∩ (Rq × {−1})
)+

.

From this observation, it follows that DP
D̄
⊇ D̄++ = D̄ since D̄ is a nonempty closed convex

cone. To prove the reverse inclusion, let (wT, α)T ∈ DP
D̄
. Then, by the above observation,

we have
(yT,−1)(wT, α)T = wTy − α ≥ 0 (6)

for every y ∈ Rq such that (yT,−1)T ∈ D̄+. We show that (wT, α)T ∈ D̄ = D̄++. To that
end, let (yT, β)T ∈ D̄+. We claim that (yT, β)(wT, α)T = wTy + βα ≥ 0. First, note that

12

β ≤ 0 since (yT, β)T ∈ D̄+ and D̄ is a lower set. We consider the following cases.
Case 1: Suppose that β < 0. Then, we have (− 1

β
yT,−1)T ∈ D̄+ since D̄+ is a cone. In

particular, applying (6) for this point yields − 1
β
wTy−α ≥ 0, that is, wTy+ βα ≥ 0. Hence,

the claim follows.
Case 2: Suppose that β = 0. Since D̄+ is a convex cone, (yT, 0)T is a recession direction
of D̄+. In particular, for every ȳ ∈ PD̄ 6= ∅, we have (ȳT,−1)T ∈ D̄+ by Remark 4.7,
which implies that (ȳT,−1)T + t(yT, 0)T = ((ȳ + ty)T,−1)T ∈ D̄+ for every t ∈ R+. Hence,
by Remark 4.7 again, ȳ + ty ∈ PD̄ for every ȳ ∈ PD̄ and t ∈ R+, that is, y ∈ reccPD̄.
Furthermore, the proof of [46, Theorem 8.2] states that reccPD̄ × {0} consists of the limits
of all sequences of the form (λn((y

n)T,−1)T)n∈N, where (λn)n∈N is a decreasing sequence in
R+ whose limit is 0, and ((yn)T)n∈N is a sequence in PD̄. Since (yT, 0)T ∈ reccPD̄ × {0},
such (λn)n∈N and ((yn)T)n∈N exist with the additional property that limn→∞ λny

n = y. For
each n ∈ N, having yn ∈ PD̄ implies that ((yn)T,−1)T ∈ D̄+ by Remark 4.7, and hence
wTyn − α ≥ 0 by (6). Then, wTλny

n − λnα ≥ 0 for each n ∈ N. Letting n→∞ yields that
wTy = wTy + βα ≥ 0. Hence, the claim follows.
Therefore, (wT, α)T ∈ D̄++ = D̄, which completes the proof of DP

D̄
⊆ D̄.

The next lemma shows that, when computing PD̄, considering the extreme directions of
D̄ is sufficient under a special structure for D̄. Its proof is quite routine, we omit it.

Lemma 4.11. Let D̄ = cone conv ξ(W̄) − K for some W̄ ⊆ W. Then, PD̄ = {y ∈ Rq |
∀(wT, α)T ∈ ξ(W̄) : ϕ(y, w, α) ≥ 0}.

The next corollary provides two special cases of Proposition 4.10 which will be used later.

Corollary 4.12. Let W̄ ⊆ W be a nonempty finite set. Then, D̄ = DP
D̄

in each of the
following cases.
(a) D̄ = cone conv ξ(W̄)−K. (b) 0 /∈ W̄ and D̄ = cone(conv ξ(W̄) + ǫ{eq+1})−K.

Proof. Since W̄ is finite, D̄ is a closed convex lower set that is also a cone in each case. Next,
we show that PD̄ 6= ∅.
(a) Let x̄ ∈ X . We have wTf(x̄) ≥ infx∈X wTf(x) = pw for every w ∈ W, in particular, for
every w ∈ W̄. Hence, f(x̄) ∈ PD̄ by Lemma 4.11.
(b) By the definition of PD̄ and simple algebraic manipulations, we have

PD̄ = {y ∈ Rq | ∀(wT, α)T ∈ D̄ : wTy ≥ α}

= {y ∈ Rq | ∀(wT, α)T ∈ conv ξ(W̄) + ǫ{eq+1} : wTy ≥ α}

= {y ∈ Rq | ∀(wT, α)T ∈ conv ξ(W̄) : wTy ≥ α + ǫ}

= {y ∈ Rq | ∀(wT, α)T ∈ ξ(W̄) : wTy ≥ α+ ǫ}.

Since 0 /∈ W̄ and W̄ is finite, there exists c̄ ∈ intC such that wTc̄ ≥ ǫ for every w ∈ W̄ . Let
x̄ ∈ X . Then, wT(f(x̄) + c̄) ≥ pw + ǫ for every w ∈ W̄ . Hence, f(x̄) + c̄ ∈ PD̄.

13

5 Algorithms

In this section, we will present two approximation algorithms, namely the primal and dual
algorithms, for solving the primal and dual problems, (P) and (D), simultaneously. First, we
will explain the primal algorithm, which is proposed in [1] for solving (P) only, and show that
by simple modifications, this algorithm also yields a solution to the dual problem (D). Next,
we will describe the dual algorithm which uses the geometric duality results from Section 4.

Recall that C is assumed to be a nontrivial, pointed, solid, closed and convex cone; the
vector-valued objective function f : X → Rq is C-convex and continuous; and the feasible
set X ⊆ Rm is compact and convex. We further assume the following from now on.

Assumption 5.1. (a) The feasible region of (P) has nonempty interior, that is, intX 6= ∅;
and (b) the ordering cone C is polyhedral.

Under Assumption 5.1 (b), it is known that C+ is polyhedral. We denote the generating
vectors of C+ by w1, . . . , wJ and assume without loss of generality that ‖wj‖∗ = 1 for each
j ∈ {1, . . . , J}.

5.1 Primal algorithm

The primal algorithm in [1] is an outer approximation algorithm, that is, it works with
polyhedral outer approximations of the upper image P. In particular, it starts by find-
ing a polyhedral outer approximation P0 of the upper image and iterates by updating the
outer approximation with the help of supporting halfspaces of P until the approximation is
sufficiently fine.

In each iteration of the primal algorithm (Algorithm 1), the following norm-minimizing
scalarization problem is solved:

minimize ‖z‖ subject to f(x)− z − v ∈ −C, z ∈ Rq, x ∈ X , (P(v))

where v ∈ Rq is a parameter to be set by the algorithm. The Lagrangian dual of (P(v)) is
given by

maximize inf
x∈X

wTf(x)− wTv subject to ‖w‖∗ ≤ 1, w ∈ C+. (D(v))

Before explaining the details of the algorithm, we present some results regarding (P(v))
and (D(v)); see [1] for details and further results.

Proposition 5.2. Let v ∈ Rq. The following statements hold under Assumption 5.1: (a)
[1, Proposition 4.2] There exist optimal solutions (xv, zv) and wv to (P(v)) and (D(v)),
respectively, and the optimal values coincide. (b) [1, Proposition 4.6] If v /∈ intP, then xv is
a weak minimizer for (P). (c) [1, Remark 4.4] xv is an optimal solution to (WS(wv)), i.e.,
infx∈X (w

v)Tf(x) = (wv)Tf(xv).

The primal algorithm is initialized by solving the weighted sum scalarization problem
(WS(w)) for each generating vector of the dual ordering cone C+. Let xj ∈ X denote the
optimal solution of (WS(wj)) for each j ∈ {1, . . . , J}. By Proposition 3.2, each xj is a
weak minimizer for (P). Moreover, from Proposition 3.10 and Definition 3.8, it is known

14

that each wj is a maximizer for (D). Hence, we initialize the set to be returned as a weak
ǫ-solution for (P) as X̄ = {x1, . . . , xJ}; and the set to be returned as an ǫ-solution to (D) as
W̄ = {w1, . . . , wJ}. Note that by Proposition 4.1, for each j ∈ {1, . . . , J}, the setH(ξ(wj)) is
a supporting halfspace of P such that H(ξ(wj)) ⊇ P. Then, the initial outer approximation
of P is defined as P0 :=

⋂J
j=1H(ξ(w

j)). As part of the initialization, we introduce a set
Vknown, which stores the set of vertices that have already been considered by the algorithm
and initialize it as Vknown = ∅, see lines 1-3 of Algorithm 1. We later introduce a set Vunknown,
which stores the set of vertices of the current approximation that are not yet considered, see
line 7.

In each iteration k, the first step is to compute the vertices Vk of the current outer ap-
proximation Pk by solving a vertex enumeration problem (line 6). Then, for each vertex in Vk
which have not been considered before, optimal solutions for (P(v)) and (D(v)) are found; the
respective solutions are added to sets X̄ and W̄ (see Proposition 5.2(b) and Proposition 3.10);
and Vknown is updated (lines 7-10). Note that by Proposition 5.2(c) and Proposition 4.1,
H(ξ(wv)) is a supporting halfspace of P. If the distance of a vertex v to the upper image,
namely ‖zv‖, is not sufficiently small, then H(ξ(wv)) = {y ∈ Rq | ϕ(y, wv, (wv)Tf(xv)) ≥ 0}
is stored in order to be used in updating the current outer approximation. After each ver-
tex in Vk is considered, then the current approximation is updated by intersecting it with
those halfspaces (lines 11-16). The algorithm terminates when all the vertices of Pk are in ǫ
distance to the upper image (lines 5 and 18).

Algorithm 1 Primal algorithm

1: Compute an optimal solution xj of (WS(wj)) for each j ∈ {1, . . . , J};
2: Let P0 =

⋂J

j=1H(ξ(w
j));

3: k ← 0, X̄ ← {x1, . . . , xJ}, W̄ ← {w1, . . . , wJ},Vknown = ∅;
4: repeat
5: M ← Rq;
6: Compute the set Vk of vertices of Pk;
7: Vunknown ← Vk \ Vknown;
8: for v ∈ Vunknown do
9: Compute optimal solutions (xv, zv) and wv to (P(v)) and (D(v));
10: X̄ ← X̄ ∪ {xv}, W̄ ← W̄ ∪ { wv

‖wv‖
∗

},Vknown ← Vknown ∪ {v};

11: if ‖zv‖ > ǫ then
12: M ←M ∩ H(ξ(wv));
13: end if
14: end for
15: if M 6= Rq then
16: Pk+1 = Pk ∩M, k ← k + 1;
17: end if
18: until M = Rq

19: return

{

X̄ : A finite weak ǫ-solution to (P);
W̄ : A finite ǫ-solution to (D);

15

Remark 5.3. A ‘break’ command can be placed between lines 12 and 13 in the algorithm.
In the current version, the algorithm goes over all the vertices of the current outer approx-
imation without updating it. With the ‘break’ command, the algorithm updates the outer
approximation as soon as it detects a vertex v with ‖zv‖ > ǫ.

The next proposition states that Algorithm 1 gives a finite weak ǫ-solution to (P).

Proposition 5.4. [1, Theorem 5.4] If the primal algorithm terminates, then it returns a
finite weak ǫ-solution X̄ to (P).

Next, we show that the primal algorithm yields also a finite ǫ-solution, W̄ , for the dual
problem (D). To that end, we provide the following lemma which shows that inner and outer
approximations of the lower image D can be obtained by using a finite ǫ-solution X̄ of (P).
Then, this lemma will be used in order to prove the main result of this section.

Lemma 5.5. For ǫ > 0, let X̄ be a finite weak ǫ-solution of (P), and Pǫ := conv f(X̄) +
C +B(0, ǫ). Then, Dǫ := DPǫ

is an inner approximation of D and

cone
((

Dǫ ∩ (Sq−1 × R)
)

+ ǫ{eq+1}
)

−K ⊇ D ⊇ Dǫ. (7)

Proof. Since X̄ is a finite weak ǫ-solution of (P), Pǫ is an outer approximation of the upper
image P by Definition 3.6, that is, Pǫ ⊇ P. By Proposition 4.8(a), D ⊇ Dǫ.

In order to show the first inclusion in (7), we first note that P ′ := conv f(X̄) + C ⊆ P
and, by Proposition 4.8(a), we have

D′ := DP ′ = {(wT, α)T ∈ Rq+1 | ∀y ∈ P ′ : ϕ(y, w, α) ≥ 0} ⊇ D. (8)

We claim that
(Dǫ ∩ (Sq−1 × R)) + ǫ{eq+1} ⊇ D′ ∩ (Sq−1 × R) (9)

holds. Indeed, observe that

(Dǫ ∩ (Sq−1 × R)) + ǫ{eq+1}

= {(wT, α)T ∈ Rq+1 | ‖w‖∗ = 1, ∀y ∈ Pǫ : ϕ(y, w, α− ǫ) ≥ 0}

= {(wT, α)T ∈ Rq+1 | ‖w‖∗ = 1, ∀y ∈ P ′, ∀γ ∈ B(0, 1) : ϕ(y + γǫ, w, α− ǫ) ≥ 0}.

On the other hand, we have

D′ ∩ (Sq−1 × R) = {(wT, α)T ∈ Rq+1 | ‖w‖∗ = 1, ∀y ∈ P ′ : ϕ(y, w, α) ≥ 0}.

Let (wT, α)T ∈ D′ ∩ (Sq−1 × R) be arbitrary. Note that ϕ(y, w, α) = wTy − α ≥ 0 for every
y ∈ P ′ and ‖w‖∗ = 1. Moreover, for every γ ∈ B(0, 1) we have |wTγ| ≤ ‖γ‖ ‖w‖∗ ≤ 1,
hence wTγ ≥ −1. Then, ϕ(y + γǫ, w, α − ǫ) = wTy + ǫwTγ − α + ǫ ≥ 0 holds, that is,
(wT, α)T ∈ (Dǫ ∩ (Sq−1 × R)) + ǫ{eq+1}, which implies (9).

The next step is to show that

cone(D′ ∩ (Sq−1 × R))−K = D′. (10)

16

The inclusion ⊆ is straightforward. For the reverse inclusion, let (wT, α)T ∈ D′. First,
suppose that w 6= 0. Let λ := 1

‖w‖∗
> 0. Clearly, ‖λw‖∗ = 1 and ϕ(y, λw, λα) = λwTy −

λα ≥ 0 holds for each y ∈ P ′. Hence, (λwT, λα)T ∈ D′ ∩ (Sq−1 × R) and (wT, α)T ∈
cone(D′ ∩ (Sq−1 × R)) − K. Now, suppose that w = 0. By the definition of D′, we have
α ≤ 0. Note that 0 ∈ cone(D′∩ (Sq−1×R)) and (w, α) = (0, α) ∈ cone(D′∩ (Sq−1×R))−K.
Therefore, (10) holds.

Finally, (8), (9) and (10) imply cone((Dǫ ∩ (Sq−1 × R)) + ǫ{eq+1})−K ⊇ D.

Proposition 5.6. If the primal algorithm terminates, then it returns a finite ǫ-solution W̄
to (D).

Proof. By the structure of the algorithm, W̄ 6= ∅ and it consists of maximizers by Proposi-
tion 3.10. Also the inclusion W̄ ⊆ W ∩ Sq−1 holds, see line 10 of Algorithm 1. To prove the
statement, it is sufficient to show that D ⊆ cone(conv ξ(W̄) + ǫ{eq+1})−K.

Let D̄ := cone conv ξ(W̄) − K, P̄ := PD̄. By Lemma 4.11, P̄ = {y ∈ Rq | ∀(wT, α)T ∈
ξ(W̄) : ϕ(y, w, α) ≥ 0}. Though not part of the original algorithm, we introduce an alterna-
tive for W̄ that is updated only when the current vertex v is sufficiently far from the upper
image, i.e., when ‖zv‖ > ǫ. More precisely, let us introduce a set ¯̄W that is initialized as
¯̄W = {w1, . . . , wJ} in line 3 of Algorithm 1 and updated as ¯̄W ← ¯̄W ∪ { wv

‖wv‖∗
} in line 12

throughout the algorithm. Observe that ¯̄W ⊆ W̄ .
Suppose that the algorithm terminates at the k̄th iteration and let Pk̄ denote the resulting

outer approximation of the upper image. By the construction of ¯̄W, Pk̄ = {y ∈ Rq |
∀(wT, α)T ∈ ξ(¯̄W) : ϕ(y, w, α) ≥ 0}. Since ¯̄W ⊆ W̄ , we get P̄ ⊆ Pk̄.

Let us define Pǫ := conv f(X̄)+C+B(0, ǫ). By the structure and the termination criterion
of the algorithm, for every vertex v ∈ Vk̄ of Pk̄, the scalarization problem (P(v)) is solved;
xv is added to X̄ ; and we have ‖zv‖ ≤ ǫ. Moreover, v + zv ∈ {f(xv)}+ C ⊆ conv f(X̄) + C
holds for every v ∈ Vk̄. Thus, Vk̄ ⊆ Pǫ. From [1, Lemma 5.2], the recession cone of Pk̄ is the
ordering cone; hence, Pk̄ = conv Vk̄ + C. Moreover, Pǫ is a convex upper set. As a result,
we have Pk̄ ⊆ Pǫ. Together with P̄ ⊆ Pk̄, the last inclusion implies that P̄ ⊆ Pǫ.

Define Dǫ := DPǫ
= {(wT, α)T ∈ Rq+1 | ∀y ∈ Pǫ : ϕ(y, w, α) ≥ 0}. By Corollary 4.12(a)

and since P̄ ⊆ Pǫ, we have D̄ ⊇ Dǫ. Moreover, using Proposition 5.4 and Lemma 5.5,
cone((Dǫ ∩ (Sq−1 × R)) + ǫ{eq+1})−K ⊇ D. With D̄ ⊇ Dǫ, this implies

cone
((

D̄ ∩ (Sq−1 × R)
)

+ ǫ{eq+1}
)

−K ⊇ D. (11)

It is straightforward to check that (D̄∩(Sq−1×R))+ǫ{eq+1} ⊆ cone(conv ξ(W̄)+ǫ{eq+1})−K,
which implies that

cone
((

D̄ ∩ (Sq−1 × R)
)

+ ǫ{eq+1}
)

−K ⊆ cone(conv ξ(W̄) + ǫ{eq+1})−K.

By (11), cone(conv ξ(W̄) + ǫ{eq+1})−K ⊇ D; hence, W̄ is a finite ǫ-solution to (D).

5.2 Dual algorithm

In this section, we describe a geometric dual algorithm for solving problems (P) and (D).
The main idea is to construct outer approximations of the lower image D, iteratively. Recall

17

that, by Proposition 3.4, D is a closed convex cone; similarly, we will see that the outer
approximations found through the iterations of the dual algorithm are polyhedral convex
cones.

The dual algorithm (Algorithm 2) is initialized by solving a weighted sum scalarization
for some weight vector from intC+. In particular, we solve (WS(w0)) by taking w0 :=
∑J

j=1w
j/‖
∑J

j=1w
j‖∗. By Propositions 3.2 and 3.10, an optimal solution x0 of (WS(w0)) is

a weak minimizer for (P) and w0 is a maximizer for (D). Hence, we set X̄ = {x0}, W̄ = {w0}.
Moreover, using Proposition 4.1 and the definition of the lower image D, we define the initial
outer approximation of D as D0 := H∗(f(x0))∩ (C+×R) ⊇ D; see lines 1-3 of Algorithm 2.
Note that D0 satisfies D0 = D0 −K and, under Assumption 5.1, it is a polyhedral convex
cone.

Throughout the algorithm, weighted sum scalarizations will be solved for some weight
vectors from W. In order to keep track of the already used w ∈ W, we keep a list Wknown

and initialize it as the empty set.
In each iteration k, first, the set Ddir

k of extreme directions of the current outer approxi-
mation Dk is computed (line 6). The extreme directions in Ddir

k \ ({0} × R) are normalized
such that ‖w‖∗ = 1, and Ddir

k is updated such that it is a subset of Sq−1 × R (line 7). It
will be seen that Dk is constructed by intersecting D0 with a set of halfspaces of the form
H∗(f(x)), where x is a weak minimizer. Then, by the definitions of D0 and H∗(·), it is clear
that Dk = Dk −K; moreover, eq+1 is not a recession direction for Dk. Hence, we have

Dk = cone conv(Ddir
k ∪ {−e

q+1}) = cone convDdir
k −K. (12)

For each unknown extreme direction (wT, α)T, an optimal solution xw and the optimal
value pw of (WS(w)) are computed (lines 8-10). Recall that xw is a weak minimizer by
Proposition 3.2 and ξ(w) = (w, pw) is a K-maximal element of D by Proposition 3.10; we
update X̄ and W̄ accordingly, and add (wT, α)T to the set of known extreme directions (line
11). Since (wT, α)T ∈ Dk and Dk ⊇ D, we have α ≥ pw. If the difference between α and
pw is greater than the allowed error ǫ, then the supporting halfspace H∗(f(xw)) of D is
computed and stored. Once all unknown extreme directions are explored, the current outer
approximation is updated by using the stored supporting halfspaces (lines 12-14 and 17).
The algorithm terminates when every unknown extreme direction (wT, α)T is sufficiently
close to the lower image in terms of the “vertical distance” α− pw (line 19).

Remark 5.7. A ‘break’ command can be placed between lines 13 and 14 in the algorithm.
With the current version, the algorithm goes through all the extreme directions of the current
outer approximation without updating it. With the ‘break’ command, the algorithm would
update the outer approximation as soon as it detects an extreme direction w with α−pw > ǫ.

The following lemma will be useful in proving Propositions 5.9 and 5.13.

Lemma 5.8. For ǫ > 0, suppose that the algorithm terminates at the k̄th iteration, returns
sets X̄ , W̄. Let P̄ := conv f(X̄) + C, D̄ := DP̄ and Dǫ := cone(conv ξ(W̄) + ǫ{eq+1}) −K.
Then, Dǫ ⊇ Dk̄ ⊇ D̄ ⊇ D, where Dk̄ denotes the resulting outer approximation of D at
termination.

18

Algorithm 2 Dual algorithm

1: Compute an optimal solution x0 to (WS(w0)) for w0 =
∑J

j=1 w
j

‖
∑J

j=1
wj‖

∗

;

2: Let D0 = H∗(f(x0)) ∩ (C+ × R);
3: k ← 0, X̄ ← {x0}, W̄ ← {w0},Dknown = ∅;
4: repeat
5: M ← Rq+1;
6: Compute the set Ddir

k of extreme directions of Dk;

7: Ddir
k ← {

(wT,α)T

‖w‖
∗

∈ Rq+1 | (wT, α)T ∈ Ddir
k \ ({0} × R)};

8: Dunknown ← Ddir
k \ Dknown;

9: for (wT, α)T ∈ Dunknown do
10: Compute an optimal solution xw to (WS(w)) and let pw := wTf(xw);
11: X̄ ← X̄ ∪ {xw}, W̄ ← W̄ ∪ {w}, Dknown ← Dknown ∪ {(wT, α)T};
12: if α− pw > ǫ then
13: M ←M ∩ H∗(f(xw));
14: end if
15: end for
16: if M 6= Rq+1 then
17: Dk+1 = Dk ∩M, k ← k + 1;
18: end if
19: until M = Rq+1

20: return

{

X̄ : A finite weak ǫ̃-solution to (P);
W̄ : A finite ǫ-solution to (D);

Proof. First observe that P̄ ⊆ P implies D̄ ⊇ D from Proposition 4.8. Moreover, D̄ ⊆
{(wT, α)T ∈ Rq+1 | ∀y ∈ f(X̄) : ϕ(y, w, α) ≥ 0} holds since P̄ ⊇ f(X̄). Consider an
artificial set ¯̄X that is initialized in line 3 of Algorithm 2 as the empty set, and updated
in line 13 as ¯̄X ← ¯̄X ∪ {xw}. By the definition of ¯̄X , we have Dk̄ = {(wT, α)T ∈ Rq+1 |
∀y ∈ f(¯̄X) : ϕ(y, w, α) ≥ 0} and ¯̄X ⊆ X̄ . Therefore, Dk̄ ⊇ {(w

T, α)T ∈ Rq+1 | ∀y ∈
f(X̄) : ϕ(y, w, α) ≥ 0}. Note that for every (wT, α)T ∈ Ddir

k̄
⊆ Sq−1 × R, the scalarization

problem (WS(w)) is solved; w is added to W̄ and we have α − pw ≤ ǫ. Then, we have
Ddir

k̄
⊆ ξ(W̄) + ǫ{eq+1} −K. On the other hand, Dk̄ = cone convDdir

k̄
−K, see (12). These

imply Dk̄ ⊆ cone conv(ξ(W̄) + ǫ{eq+1})−K = Dǫ. Therefore, D̄ ⊆ {(wT, α)T ∈ Rq+1 | ∀y ∈
f(X̄) : ϕ(y, w, α) ≥ 0} ⊆ Dk̄ ⊆ Dǫ.

Next, we prove that the dual algorithm returns a finite ǫ-solution to problem (D).

Proposition 5.9. If Algorithm 2 terminates, then it returns a finite ǫ-solution W̄ to (D).

Proof. By the structure of the algorithm and Proposition 3.10, W̄ is nonempty and consists
of maximizers. Also the inclusion W̄ ⊆ W ∩ Sq−1 holds. From Lemma 5.8, we have D ⊆
cone(conv ξ(W̄) + ǫ{eq+1})−K, which implies that W̄ is a finite ǫ-solution to (D).

The next step is to prove that the algorithm returns also a solution to the primal problem
(P). In order to prove this result, the following lemma and propositions will be useful. To

19

that end, for each n ∈ {2, 3, . . .}, let us define

∆n−1 :=

{

λ ∈ Rn
+ |

n
∑

j=1

λj = 1

}

, ∆n−1
+ :=

{

λ ∈ Rn
+ |

n
∑

j=1

λj ≥ 1

}

.

Lemma 5.10. Let d1, . . . , dn be the generating vectors of a pointed convex polyhedral cone
D ⊆ Rq, where n ≥ 2. (a) For every λ ∈ ∆n−1,

∑n
j=1 λjd

j 6= 0 holds. (b) It holds

minλ∈∆n−1 ‖
∑n

j=1 λjd
j‖∗ > 0. (c) It holdsminλ∈∆n−1 ‖

∑n
j=1 λjd

j‖∗ = minλ∈∆n−1

+
‖
∑n

j=1 λjd
j‖∗.

Proof. To prove (a), let λ ∈ ∆n−1. Assume to the contrary that
∑n

j=1 λjd
j = 0. Since

∑n

j=1 λj = 1, we have λj > 0 for at least one j ∈ {1, . . . , n}. Without loss of general-

ity, we may assume that j = 1. Hence, 1
λ1

∑n

j=2 λjd
j = −d1. Since D is a convex cone,

1
λ1

∑n

j=2 λjd
j ∈ D. Therefore, d1,−d1 ∈ D, contradicting the pointedness of D [6, Section

2.4.1]. Therefore,
∑n

j=1 λjd
j 6= 0.

By (a), ‖
∑n

j=1 λjd
j‖∗ > 0 for every λ ∈ ∆n−1. Since the feasible set ∆n−1 is compact,

the minimum of the continuous function λ 7→ ‖
∑n

j=1 λjd
j‖∗ is attained at some λ̄ ∈ ∆n−1.

Hence, the minimum ‖
∑n

j=1 λ̄jd
j‖∗ is also strictly positive. This proves (b).

Finally, we prove (c). Since ∆n−1 ⊆ ∆n−1
+ , we have minλ∈∆n−1 ‖

∑n
j=1 λjd

j‖∗ ≥ infλ∈∆n−1
+
‖
∑n

j=1 λjd
j‖∗.

To prove the reverse inequality, assume to the contrary that there exists λ̄ ∈ ∆n−1
+ such that

‖
∑n

j=1 λ̄jd
j‖∗ < minλ∈∆n−1 ‖

∑n
j=1 λjd

j‖∗. Then, using λ̄ ∈ ∆n−1
+ , we have

∥

∥

∥

∥

∥

n
∑

j=1

λ̄jd
j

∥

∥

∥

∥

∥

∗

≥
1

∑n
i=1 λ̄i

∥

∥

∥

∥

∥

n
∑

j=1

λ̄jd
j

∥

∥

∥

∥

∥

∗

=

∥

∥

∥

∥

∥

n
∑

j=1

λ̄j
∑n

i=1 λ̄i

dj

∥

∥

∥

∥

∥

∗

≥ min
λ∈∆n−1

∥

∥

∥

∥

∥

n
∑

j=1

λjd
j

∥

∥

∥

∥

∥

∗

,

a contradiction. Therefore, minλ∈∆n−1 ‖
∑n

j=1 λjd
j‖∗ = infλ∈∆n−1

+
‖
∑n

j=1 λjd
j‖∗. Since the

minimum is attained on the left and ∆n−1 ⊆ ∆n−1
+ , the infimum on the right is also a

minimum.

Next, we show that an inner ǫ̃-approximation of the upper image P can be obtained by
using a finite ǫ-solution W̄ of (D).

Proposition 5.11. For ǫ > 0, let W̄ be a finite ǫ-solution of (D), and define Dǫ :=
cone(conv ξ(W̄) + ǫ{eq+1}) − K. Then, Pǫ := PDǫ

is an inner approximation of P and
Pǫ +B(0, ǫ̃) ⊇ P ⊇ Pǫ, where ǫ̃ = ǫ/minλ∈∆J−1 ‖

∑J

j=1 λjw
j‖∗.

Proof. Since W̄ is a finite ǫ-solution of (D), Dǫ is an outer approximation of the lower image
D by Definition 3.8, that is, Dǫ ⊇ D. Therefore, by Proposition 4.8(b), the inclusion P ⊇ Pǫ

holds.
Next, we show that Pǫ + B(0, ǫ̃) ⊇ P. Assume that there exists ȳ ∈ P \ (Pǫ + B(0, ǫ̃)).

Hence, there exists w̄ ∈ Rq \ {0} such that w̄Tȳ < infy∈Pǫ
w̄Ty + infγ∈B(0,1) ǫ̃w̄

Tγ. Without
loss of generality, we may assume that ‖w̄‖∗ = 1 so that infγ∈B(0,1) ǫ̃w̄

Tγ = −ǫ̃ ‖w̄‖∗ = −ǫ̃.
Hence, we have

w̄Tȳ + ǫ̃ < inf
y∈Pǫ

w̄Ty =: ᾱ. (13)

20

The definition of ᾱ ensures that ϕ(y, w̄, ᾱ) = w̄Ty−ᾱ ≥ 0 for each y ∈ Pǫ, that is, (w̄
T, ᾱ)T ∈

DPǫ
. By Corollary 4.12(b), we have DPǫ

= DPDǫ
= Dǫ. Therefore, (w̄T, ᾱ)T ∈ Dǫ. Hence,

there exist δ ≥ 0, k ≥ 0, n ∈ N and µ ∈ ∆n−1, ((w̄i)T, αi)
T ∈ ξ(W̄) for each i ∈ {1, . . . , n}

such that

(w̄T, ᾱ)T = δ

(

n
∑

i=1

µi((w̄
i)T, αi)

T + ǫeq+1

)

− keq+1. (14)

Using (14), we have w̄ = δ
∑n

i=1 µiw̄
i and ᾱ = δ(

∑n

i=1 µiαi + ǫ) − k. In particular, having
‖w̄‖∗ = 1 implies that δ = 1

‖
∑n

i=1 µiw̄i‖∗
.

Next, we claim that (w̄T, ᾱ− ǫ̃) ∈ D. Since W = C+ is a convex cone, we have w̄ ∈ W.
Therefore, using the definition of D, proving the inequality

ᾱ− ǫ̃ ≤ inf
x∈X

w̄Tf(x) (15)

is enough to conclude that (w̄T, ᾱ− ǫ̃) ∈ D. Since ((w̄i)T, αi) ∈ ξ(W̄), αi = infx∈X (w̄
i)Tf(x)

for each i ∈ {1, . . . , n}. Hence, using (14) and k ≥ 0, we have

ᾱ = δ

(

n
∑

i=1

µiαi + ǫ

)

− k ≤ δ

(

n
∑

i=1

µi inf
x∈X

(w̄i)Tf(x) + ǫ

)

= inf
x∈X

w̄Tf(x) + δǫ.

Hence, we have ᾱ− δǫ ≤ infx∈X w̄Tf(x).
Let us show that δǫ ≤ ǫ̃ so that (15) follows. For each i ∈ {1, . . . , n}, since w̄i ∈ W̄ ⊆

W ∩ (Sq−1 × R), there exists (γi1, . . . , γiJ)
T ∈ ∆J−1 such that w̄i =

∑J
j=1

γij

‖
∑J

j′=1
γij′w

j′‖∗
wj,

where w1, . . . , wJ are the generating vectors of C+. It follows that
∑n

i=1 µiw̄
i =

∑J
j=1 λjw

j,

where λj :=
∑n

i=1 µi
γij

‖
∑J

j′=1
γij′w

j′‖∗
≥ 0 for j ∈ {1, . . . , J}. Note that

∑J
j=1 λj ≥ 1 since

‖
∑J

j=1 γijw
j‖∗ ≤

∑J
j=1 ‖γijw

j‖∗ =
∑J

j=1 γij‖w
j‖∗ = 1,

∑J
j=1 γij = 1 for each i ∈ {1, . . . , n}

and
∑n

i=1 µi = 1. Therefore, λ = (λ1, . . . , λJ)
T ∈ ∆J−1

+ . Since the dual cone C+ is convex
and pointed, we may use Lemma 5.10 to write

δǫ =
ǫ

∥

∥

∥

∑J
j=1 λjwj

∥

∥

∥

∗

≤
ǫ

min
λ′∈∆J−1

+

∥

∥

∥

∑J
j=1 λ

′
jw

j

∥

∥

∥

∗

=
ǫ

min
λ′∈∆J−1

∥

∥

∥

∑J
j=1 λ

′
jw

j

∥

∥

∥

∗

= ǫ̃.

Therefore, (15) follows and we have (w̄T, ᾱ− ǫ̃)T ∈ D. However, by (13), we have ϕ(ȳ, w̄, ᾱ−
ǫ̃) = w̄Tȳ − ᾱ + ǫ̃ < 0 for ȳ ∈ P and (w̄T, ᾱ − ǫ̃)T ∈ D, a contradiction to Proposition 4.8.
Hence, Pǫ +B(0, ǫ̃) ⊇ P.

The next proposition provides a better bound on the realized approximation error com-
pared to Proposition 5.11; however, it requires post-processing the finite ǫ-solution of (D)
provided by the algorithm. We omit its proof for brevity.

Proposition 5.12. For ǫ > 0, let W̄ be a finite ǫ-solution of (D). Define Dǫ := cone(conv ξ(W̄)+
ǫ{eq+1}) − K. Let F = {F1, . . . , FT} be the set of K-maximal facets of Dǫ. For each
i ∈ {1, . . . , T}, let {((wi1)T, αi1)

T, . . . , ((wiJi)T, αiJi)
T} be the set of extreme directions of

Fi and define f i
min := minλ∈∆Ji−1 ‖

∑Ji
j=1 λjw

ij‖∗. Then, Pǫ := PDǫ
is an inner approximation

of P and Pǫ +B(0, ǫ̃) ⊇ P ⊇ Pǫ, where ǫ̃ = ǫ/min{f 1
min, . . . , f

T
min}.

21

Proposition 5.13. If the algorithm terminates, then it returns a finite weak ǫ̃-solution X̄
to (P), where ǫ̃ is either as in Proposition 5.11 or as in Proposition 5.12.

Proof. Note that every element of X̄ is of the form xw which is an optimal solution to
(WS(w)) for some w ∈ C+ \ {0}; by Proposition 3.2, xw is a weak minimizer of (P). To
prove the statement, we need to show that conv f(X̄)+C+B(0, ǫ̃) ⊇ P holds. Let us define
P̄ := conv f(X̄) + C, D̄ := DP̄ . From Lemma 5.8, we have D̄ ⊆ Dǫ = cone(conv ξ(W̄) +
ǫ{eq+1}) − K. Then, Proposition 4.9 implies P̄ = PD̄ ⊇ PDǫ

. By Proposition 5.9 and
Proposition 5.11 (or Proposition 5.12), we have PDǫ

+ B(0, ǫ̃) ⊇ P. As P̄ ⊇ PDǫ
, we get

P̄ +B(0, ǫ̃) = conv f(X̄) + C +B(0, ǫ̃) ⊇ P, i.e., X̄ is a finite ǫ̃-solution to (P).

6 Relationships to similar approaches from literature

In this section, we compare our approach with the approaches in two closely related works.

6.1 Connection to the geometric dual problem by Heyde [30]

In [30], a geometric dual image, which corresponds to the upper image P of problem (P), is
constructed in Rq as follows. For a fixed c ∈ intC, a matrix E ∈ Rq×(q−1) is taken such that
T = [E c] ∈ Rq×q is orthogonal. Then, the dual image is defined as

DH := {(tT, s)T ∈ Rq−1 × R | c∗(t) ∈ C+, s ≤ inf
x∈X

(c∗(t))Tf(x)},

where c∗ : Rq−1 → Rq is given by c∗(t) := T−T(tT, 1)T. Throughout, we denote the identity
matrix in Rn×n by In ∈ Rn×n. Observe from TTT−T = Iq that cTT−T = eq and ETT−T =
[Iq−1 0] ∈ R(q−1)×q hold true.

We will show that DH and the dual image D constructed in Section 3 are related. For
this purpose, we define T̂ ∈ R(q+1)×(q+1), S ∈ R(q+1)×(q+1) and P ∈ Rq×(q+1) as

T̂ :=

[

T 0
0 1

]

, S :=





Iq−1 0 0
0 0 1
0 1 0



 , P :=
[

Iq 0
]

, (16)

where 0 is the matrix or vector of zeros with respective sizes. The following lemma will be
useful for proving the next proposition.

Lemma 6.1. Let Hy := {(tT, s)T ∈ Rq−1 × R | c∗(t) ∈ C+, s ≤ (c∗(t))Ty}, where y ∈ Rq is
fixed. Then,

H̄y := {(w
T, α)T ∈ C+ × R | α ≤ wTy} = T̂−TS [cone(Hy × {1})] .

Proof. Note that for any (tT, s)T ∈ Hy, we have T̂−TS(tT, s, 1)T = (c∗(t)T, s)T, c∗(t) ∈ C+

and s ≤ (c∗(t))Ty. Hence, T̂−TS[Hy × {1}] ⊆ H̄y holds. As H̄y is a cone, we obtain

T̂−TS[cone(Hy × {1})] = cone T̂−TS[Hy × {1}] ⊆ H̄y.

22

For the reverse inclusion, let (wT, α)T ∈ H̄y. Consider t =
ETw
cTw

, s = α
cTw

. Then,

c∗(t) =
1

kTw
T−T(wTE,wTc)T =

1

cTw
T−TTTw =

w

cTw
∈ C+.

Moreover, s ≤ (c∗(t))Ty holds. Hence, (tT, s)T ∈ Hy. Similar to the previous case, we have

T̂−TS(tT, s, 1)T = (c∗(t)T, s)T =
1

cTw
(wT, α)T ∈ T̂−TS[DH × {1}],

which implies (wT, α)T ∈ cone T̂−TS[DH × {1}].

The next proposition shows that D and DH can be recovered from each other.

Proposition 6.2. The following relations hold true for D and DH:

(a)DH = P
[

ST̂T[D] ∩ {z ∈ Rq+1 | zq+1 = 1}
]

, (b) D = T̂−TS
[

cone(DH × {1})
]

.

Proof. To see (a), let (tT, s)T ∈ P [ST̂T[D]∩{z ∈ Rq+1 | zq+1 = 1}] be arbitrary. There exists

(wT, α)T ∈ D such that (tT, s)T = PST̂T(wT, α)T = (wTE, α)T together with cTw = 1. In
particular, t = ETw, s = α. We have wTT = (wTE,wTc) = (tT, 1) and c∗(t) = T−T(tT, 1)T =
T−TTTw = w ∈ C+ as (wT, α)T ∈ D. Moreover, s ≤ infx∈X (c

∗(t))Tf(x) holds. Hence,
(tT, s)T ∈ DH. For the reverse inclusion, let (tT, s)T ∈ DH . Then, (c∗(t)T, s)T ∈ D and
ST̂T(c∗(t)T, s)T = ((c∗(t))TE, s, cTc∗(t))T = (tT, s, 1)T. Hence, (tT, s)T ∈ P [ST̂T[D] ∩ {z ∈
Rq+1 | zq+1 = 1}].
To see (b), let Hy, H̄y be defined as in Lemma 6.1. Noting that DH =

⋂

x∈X Hf(x) and
D =

⋂

x∈X H̄f(x), Lemma 6.1 implies

T̂−TS
[

cone(DH × {1})
]

= T̂−TS

[

cone
(

⋂

x∈X

(Hf(x) × {1})
)

]

=
⋂

x∈X

T̂−TS
[

cone
(

Hf(x) × {1}
)]

=
⋂

x∈X

H̄f(x) = D.

Remark 6.3. For DH and D, one can check that the following results hold: (i) A subset
F ⊆ DH is an exposed face of DH if and only if T̂−TS[cl cone(F × {1})] is an exposed face
of D. (ii) For every exposed face G of D, not lying in the hyperplane T̂−TS[Rq ×{0}], there
is an exposed face F of DH such that T̂−TS[cl cone(F × {−1})] = G. The proof relies on
a generalization of [40, Lemma 3.1] for the exposed faces of (possibly nonpolyhedral) closed
convex sets.

6.2 Connection to the geometric dual algorithm by Löhne, Rudloff

and Ulus [37]

The geometric dual algorithm proposed in [37] is based on the geometric duality results
from [30]. We will now show that by considering a special norm ‖·‖ used in Algorithm 2,

23

we recover the dual algorithm from [37]. In particular, assume that the dual norm satisfies
‖w‖∗ = cTw for all w ∈ C+, where c ∈ intC is fixed.1

We denote by DH
k , k ≥ 0 the outer approximations of DH that is obtained in the

kth iteration of [37, Algorithm 2]. Let w0, x0 be as defined in Section 5.2. Noting that
‖w0‖∗ = cTw0 = 1 and x0 ∈ argminx∈X (w

0)Tf(x), in [37, Algorithm 2], the initial outer
approximation for DH is

DH
0 = {(tT, s)T ∈ Rq−1 × R | c∗(t) ∈ C+, s ≤ c∗(t)Tf(x0)} = Hf(x0).

By Lemma 6.1, we obtain D0 = T̂−TS
[

cone(DH
0 × {1})

]

. Now, assume for some k ≥ 1,

Dk = T̂−TS
[

cone(DH
k × {1})

]

holds. Then, for any vertex (tT, s)T of DH
k , T̂

−TS(tT, s, 1)T is
an extreme direction of Dk. Moreover, for an extreme direction (wT, α) of Dk, there exists a

vertex v = (tT, s)T of DH
k such that (wT,α)T

‖w‖
∗

= T̂−TS(tT,s,1)T

‖P T̂−TS(tT,s,1)T‖
∗

.

In Algorithm 2, we consider an extreme direction of Dk, say (wT, α)T with ‖w‖∗ = 1
and solve (WS(w)). Assume that v = (tT, s)T ∈ DH

k is a vertex satisfying (wT, α)T =
T̂−TS(vT,1)T

‖P T̂−TS(vT ,1)T‖
∗

. Note that with the specified norm, we have
∥

∥

∥
P T̂−TS(tT, s, 1)T

∥

∥

∥

∗
= cTP T̂−TS(tT, s, 1)T =

cTT−T(tT, 1)T = eTq (t
T, 1)T = 1. Then, we have T̂−TS(tT, s, 1)T = (wT, α)T, hence (tT, 1, s)T =

S(tT, s, 1)T = T̂T(wT, α)T = (wTT, α)T. In particular, (tT, 1)T = TTw holds. This implies
c∗(t) = T−T(tT, 1)T = w and s = α. In particular, both algorithms solve the same weighted
sum scalarization problem (WS(w)), hence may find the same minimizer xw. Moreover, both
update the current outer approximation if α−pw > ǫ holds. In that case, the updated outer
approximations are DH

k+1 = DH
k ∩ Hf(xw)and Dk+1 = Dk ∩ H̄f(xw), respectively. Then, by

Lemma 6.1, we have

T̂−TS
[

cone(DH
k+1 × {1})

]

= T̂−TS [cone((DH
k ∩Hf(xw))× {1})]

= T̂−TS [cone((DH
k × {1}) ∩ (Hf(xw) × {1}))]

= T̂−TS
[

cone
(

DH
k × {1}

)

∩ cone
(

Hf(xw) × {1}
)]

= Dk ∩ H̄f(xw) = Dk+1.

We have shown by induction that Dk = T̂−TS
[

cone(DH
k × {1})

]

hold for all k ≥ 0 as long
as the algorithms consider the extreme directions, respectively the corresponding vertices,
in the same order. In that case, X̄ returned by both algorithms would also be the same. We
conclude that by considering a norm satisfying ‖w‖∗ = cTw, the proposed geometric dual
algorithm recovers [37, Algorithm 2].

7 Numerical examples

We implement the primal and dual algorithms given in Section 5 using MATLAB.2 For
problems (P(v)) and (WS(w)), we employ CVX, a framework for specifying and solving
convex programs [24, 25]. For solving vertex enumeration problems within the algorithms,
we use bensolve tools [7, 38, 39].

1For instance, ‖w‖
∗
:= inf{cT(v + u) | v, u ∈ C+, v − u = w} would satisfy this.

2We run the experiments in Section 7.2 on a computer with i5-8265U CPU and 8 GB RAM, and the ones
in Section 7.3 on a computer with i5-10310U CPU and 16 GB RAM.

24

7.1 Proximity measures

We measure the performance of the primal and dual algorithms using two indicators. The
distance between P and the furthest point from the outer approximation Po returned by the
algorithm to P is referred to as the primal error indicator. If the recession cone of Po is C,
then the primal error indicator is nothing but the Hausdorff distance between Po and P, see
[1, Lemma 5.3]. The primal error indicator of an algorithm is calculated by solving (P(v))
for the set Vo of the vertices of Po. For each v ∈ Vo, we find an optimal solution zv and
the corresponding optimal value ‖zv‖ by solving (P(v)). Then, the primal error indicator is
calculated by PE := max{‖zv‖ | v ∈ Vo}.

Note that the norm used in the definition of PE is the same (primal) norm that is used
in the algorithm. Hence, this indicator depends on the choice of the norm. Motivated by
this, we define a hypervolume indicator for CVOPs which is free of norm-biasedness. Recall
that, for a multiobjective optimization problem, the hypervolume of a set S ⊆ Rq of points
with respect to a reference point r ∈ Rq is computed as Λ({y ∈ Rq | s ≤Rq

+
y ≤Rq

+
r, s ∈ S}),

where Λ is the Lebesgue measure on Rq [58]. Different from this hypervolume measure,
which can be used for convex as well as nonconvex multiobjective optimization problems,
we use the fact that (P) is a convex problem and the underlying order relation is induced by
cone C. To that end, we define the hypervolume of a set S ⊆ Rq with respect to a bounding
polytope Q ⊆ Rq as HV(S,Q) := Λ((conv S +C)∩Q). Let Po,Pi be, respectively, the outer
and inner approximations of P returned by an algorithm and Vo,Vi be the set of vertices
of them. Then, we compute the hypervolume indicator by HV := (HV(Vo,Q)−HV(Vi,Q)

HV(Vo,Q)
) × 100,

where Q ⊆ Rq is a polytope satisfying Vo ∪ Vi ⊆ Q. Suppose that the problem is solved
by finitely many algorithms and let A ⊆ Rq be the set of all vertices of the outer and
inner approximations returned by all algorithms. For our computational tests, in order
to have a fair comparison, we fix the polytope Q such that A ⊆ Q. For this, we set
Q :=

⋂J

j=1{y ∈ Rq | (wj)Ty ≤ maxa∈A(w
j)Ta}, where w1, . . . , wJ are the generating vectors

of C+. Note that a smaller hypervolume indicator is more desirable in terms of an algorithm’s
performance since it means less of a difference between the inner and outer sets.

7.2 Computational results on Algorithms 1 and 2

We assess the performance of the primal and dual algorithms by solving randomly generated
problem instances. A problem structure that is simple and versatile is required for scaling
purposes, in terms of both the decision space and the image space. To this end, we work
with a linear objective function and a quadratic constraint as described in Example 7.1.

Example 7.1. Consider the problem

minimize f(x) = ATx with respect to ≤Rq
+

subject to xTPx− 1 ≤ 0,

where P ∈ Rn×n is a symmetric positive definite matrix, and A ∈ Rn×q
+ . In the computational

experiments, we generate A and P as instances of random matrices.3

3More precisely, we generate A as the instance of a random matrix with independent entries having the
uniform distribution over [0, 50]. To construct P , we first create a matrix U ∈ Rn×n following the same

25

7.2.1 Results for multiobjective problem instances

This subsection provides the results obtained by solving randomly generated instances of
Example 7.1. The computational results are presented in Table 1, which shows the stopping
criteria (Stop), number of optimization problems solved (Opt), time taken to solve opti-
mization problems (Topt), number of vertex enumeration problems solved (En), time taken
to solve vertex enumeration problems (Ten), and total runtime of the algorithm (T) in terms
of seconds. As a measure of efficiency for the algorithms, we also provide the average run-
time spent per optimization problem (Topt/Opt) and total runtime per weak minimizer in
X̄ (T/|X̄ |).

The performance indicators for the tests are primal error (PE) and hypervolume (HV).
For the computations of these, we take the following: For Algorithm 1, Po = Pk̄, where k̄ is
the iteration number at which the algorithm terminates; for Algorithm 2, Po =

⋂

w∈W̄ H(w, p
w)

where W̄ is the solution to (D) that Algorithm 2 returns. For both algorithms, Pi =
conv f(X̄) + C, where X̄ is the solution to (P) that the corresponding algorithm returns.

We take q = 3. The results for various choices of the dimension of the decision space (n)
can be found in Table 1. For each value of n, 20 random problem instances are generated
using the structure of Example 7.1 and solved by both Algorithms 1 and 2 twice with different
stopping criteria. The averages of the results and performance indicators of the 20 instances
are presented in the table in corresponding cells.

n Alg Stop Opt Topt Topt/Opt En Ten T T/|X̄ | PE HV

10

1 ǫ1 = 0.5000 52.35 19.92 0.3801 5.05 0.09 46.41 0.91 0.4209 3.5805
2 ǫ2 = 0.2887 86.25 29.03 0.3363 4.40 0.20 71.36 70.84 0.1106 1.1973
1 ǫ3 = 0.1106 232.80 85.32 0.3655 6.90 0.16 200.13 0.92 0.1052 1.2846
2 T = 46.41 60.70 20.32 0.3336 4.05 0.24 48.43 0.80 0.2244 1.8735

15

1 ǫ1 = 0.5000 70.85 26.98 0.3777 5.60 0.09 63.54 0.93 0.4694 2.6458
2 ǫ2 = 0.2887 105.15 34.87 0.3311 4.70 0.26 84.58 0.80 0.1033 0.7146
1 ǫ3 = 0.1033 295.30 108.74 0.3677 7.45 0.21 251.56 0.91 0.0991 0.5690
2 T = 63.54 81.75 27.01 0.3307 4.40 0.36 65.51 0.81 0.2022 1.0703

20

1 ǫ1 = 0.5000 65.45 24.62 0.3797 5.50 0.09 57.12 0.92 0.4569 3.4845
2 ǫ2 = 0.2887 101.95 33.66 0.3302 4.65 0.24 81.31 0.80 0.1052 1.0783
1 ǫ3 = 0.1052 284.25 104.18 0.3672 7.35 0.19 238.73 0.91 0.1020 0.7881
2 T = 57.12 74.40 24.63 0.3324 4.30 0.29 59.06 0.80 0.1996 1.5307

25

1 ǫ1 = 0.5000 85.95 32.63 0.3786 5.95 0.12 82.51 0.98 0.4650 2.3063
2 ǫ2 = 0.2887 139.25 46.13 0.3306 4.95 0.34 112.65 0.81 0.1071 0.6154
1 ǫ3 = 0.1071 368.60 137.91 0.3736 7.70 0.26 340.28 1.01 0.1034 0.5063
2 T = 82.51 106.10 35.02 0.3297 4.80 0.56 84.55 0.80 0.1878 0.8167

30

1 ǫ1 = 0.5000 95.70 36.59 0.3818 6.00 0.12 91.27 0.99 0.4690 2.2715
2 ǫ2 = 0.2887 150.70 51.13 0.3386 5.15 0.43 131.15 0.87 0.1066 0.6110
1 ǫ3 = 0.1066 452.70 170.22 0.3751 8.05 0.32 419.02 1.02 0.1046 0.5420
2 T = 91.27 109.00 36.89 0.3381 4.60 0.48 93.41 0.86 0.2272 0.8947

Table 1: Results of randomly generated problems.

In Table 1, the first two rows for each value of n show the results of the primal and dual
algorithms when the given ǫi value is fed to the algorithms as stopping criterion. It can be
seen that the ǫi values that are used in the algorithms are different. We run Algorithm 1
and obtain a weak ǫ1-solution to problem (P). When working with Algorithm 2, to obtain

procedure as for A. We assume that U has at least one nonzero entry, which occurs with probability one.
Then, S := (U + UT)/2 is a symmetric matrix and we calculate its diagonalization as S = QD̄QT, where
D̄ ∈ Rn×n is the diagonal matrix of the eigenvalues of S, and Q is the orthogonal matrix of the corresponding
eigenvectors. Denoting by D ∈ Rn×n the diagonal matrix whose entries are the absolute values of the entries
of D̄, we let P := QDQT, which is guaranteed to be symmetric and positive definite.

26

also a weak ǫ1-solution to problem (P), we take ǫ2 = ǫ1minλ∈∆J−1 ‖
∑J

j=1 λjw
j‖∗ based

on Proposition 5.11. As a result, we take ǫ1 = 0.5 for Algorithm 1 and ǫ2 = 0.2887 for
Algorithm 2 as stopping criteria. We observe from the first two rows for each n in Table 1
that Algorithm 1 stops in shorter runtime; however, Algorithm 2 returns smaller primal error
and hypervolume indicators.

For further comparison of the algorithms, we also run each algorithm with different
stopping criteria. In the third row, we aim to observe the runtime it takes for Algorithm 1 to
reach similar primal error that Algorithm 2 returns. Therefore, the PE value in the second
row is fed to Algorithm 1 as stopping criterion. Finally, in the fourth row, we aim to observe
the primal error and hypervolume indicators of Algorithm 2 when it is terminated after a
similar runtime as of Algorithm 1 from the first row. Therefore, T from the first row is fed
to Algorithm 2 as stopping criterion.4

From Table 1, one can observe that Algorithms 1 and 2 in the first two rows are not
comparable. Indeed, while Algorithm 1 in the first row has shorter runtime for each n value,
it also gives larger hypervolume results, which indicates worse performance in comparison
with Algorithm 2 in the second row. The main reason is that, when Algorithm 2 is run with
a stopping criterion that guarantees obtaining a weak ǫ1-solution to (P), the solution that
it returns has much higher proximity, for instance, compare ǫ2 = 0.2887 and PE= 0.1106 in
the second row of Table 1.5 On the other hand, when we set ǫ3 in a way that Algorithms
1 and 2 return similar PE values, Algorithm 1 may return slightly better HV results but it
requires higher runtime.

In order to have further insights, we analyze the results of Algorithm 1 from the first
row and Algorithm 2 from the fourth row in more detail, since they have similar runtimes.
Similarly, as they yield similar PE values, we analyze the results of Algorithm 1 from the
third row and Algorithm 2 from the second row. In Figure 1, the plots of the PE and HV
values for rows one and four of Table 1 are shown (first two figures). One can see that
Algorithm 2 has consistently better performance for each value of n in terms of both primal
error and hypervolume indicator. Moreover, the plots of total runtimes and HV values
corresponding to rows two and three of Table 1 can be seen together with the PE values on
the right vertical axis (last two figures). We observe that the difference between the primal
error indicators of both algorithms are very similar to each other, although, Algorithm 1 has
smaller primal error as expected. With very similar primal error indicators, we observe that
Algorithm 2 has around half of the runtime of Algorithm 1. In line with the primal error
results, Algorithm 1 has a better HV value than Algorithm 2.

7.2.2 Results for different ordering cones and norms

In order to test the performance of the algorithms on problems with different ordering cones
and with different norms employed in (P(v)) and (D(v)), we design some additional experi-

4Note that the actual termination time is slightly higher than the predetermined time limit as we check
the time only at the beginning of the loop in the implementation and it takes a couple of more seconds to
terminate the algorithm afterwards.

5After running Algorithm 2 with the predetermined ǫ2 value (to get a weak ǫ1-solution for (P)), in order
to compute the realized PE for (P), we solve (P(v)) problems as explained in Section 7.1. Instead, in order
to compute an upper bound for the PE value (which would be a better bound than ǫ1), one can also use
Proposition 5.12.

27

10 15 20 25 30
0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

P
E

45

50

55

60

65

70

75

80

85

90

95

C
P

U
 ti

m
e

Algorithm 1
Algorithm 2

10 15 20 25 30
0.5

1

1.5

2

2.5

3

3.5

4

H
V

45

50

55

60

65

70

75

80

85

90

95

C
P

U
 ti

m
e

Algorithm 1
Algorithm 2

10 15 20 25 30
50

100

150

200

250

300

350

400

450

C
P

U
 ti

m
e

0.098

0.1

0.102

0.104

0.106

0.108

0.11

0.112

P
E

Algorithm 1
Algorithm 2

10 15 20 25 30
0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

H
V

0.098

0.1

0.102

0.104

0.106

0.108

0.11

0.112

P
E

Algorithm 1
Algorithm 2

Figure 1: Example 7.1: Average PE (first) and HV (second) values of 20 random instances
under nearly equal runtime (rows one and four of Table 1); average CPU time (third) and
HV (fourth) values of these instances when the dual algorithm uses the PE of the primal
algorithm as approximation error (rows two and three of Table 1).

ments. Although the original stopping criteria in Algorithms 1 and 2 are based on ǫ-closeness,
we implement an alternative stopping criterion for the rest of our analysis. In particular,
motivated by our analysis in Section 7.2.1, we set a predefined time limit for the algorithms.
Note that since ǫ-closeness depends on the choice of the norm used in the scalarization mod-
els, using runtime as the stopping criterion results in a fair comparison of the algorithms
when considering different norms.

We denote the nonnegative cone by C1 = R3
+. The non-standard ordering cones that will

be used throughout are6:
C2 = conv cone{(4, 2, 2)T, (2, 4, 2)T, (4, 0, 2)T, (1, 0, 2)T, (0, 1, 2)T, (0, 4, 2)T},
C3 = conv cone{(−1,−1, 3)T, (2, 2,−1)T, (1, 0, 0)T, (0,−1, 2)T, (−1, 0, 2)T, (0, 1, 0)T}.

We consider the 20 instances of Example 7.1 that were generated randomly for our
analysis in Section 7.2.1. We solve all instances under the runtime limit of 50 seconds. We
consider ordering cones C1, C2, C3 and ℓp norms for p ∈ {1, 2,∞}. While solving some of the
instances with different ordering cones or different norms, we encountered some errors in the
solvers that we have employed in the algorithms. Hence, we consider a subset of instances
which can be solved in all settings and we indicate the size of this subset in a separate column
in Table 2 (Size).

First, we fix the ℓ2 norm and solve the problem instances with respect to the ordering
cones C1, C2 and C3; second, we fix the ordering cone as C1 and solve the problem instances
where we take the norms in (P(v)) as ℓ1, ℓ2 and ℓ∞, see the left and the right columns of
Table 2, respectively. In order to summarize the results, we plot the average PE and HV
values obtained by the algorithms, see Figures 2 and 3. From these figures, we observe that
for all considered ordering cones and norms, Algorithm 2 has better performance in terms
of both PE and HV under time limit.

7.3 Comparison with algorithms from the literature

We compare the performance of Algorithms 1 and 2 with similar ones from the literature;
in particular with the following algorithms which guarantee returning polyhedral inner and
outer approximations to the upper image: the primal (LRU-P) and dual (LRU-D) algorithms

6These cones are taken from [1].

28

n Size Cone Alg Opt Topt Topt/Opt En Ten T/|X̄ | PE HV Size p Alg Opt Topt Topt/Opt En Ten T/|X̄ | PE HV

10 15

C1
1 57.47 21.60 0.3763 5.00 0.09 0.93 0.4024 1.9112

17

1
1 53.71 21.09 0.3931 5.00 0.08 1.00 0.5665 2.1873

2 60.73 20.42 0.3363 4.00 0.16 0.86 0.2527 1.0413 2 57.35 19.79 0.3450 4.00 0.17 0.91 0.3473 1.2154

C2
1 60.60 22.65 0.3743 3.80 0.07 0.92 0.8190 1.5472

2
1 56.00 21.14 0.3777 5.00 0.07 0.95 0.3973 2.0040

2 60.73 20.49 0.3376 3.80 0.35 0.86 0.4035 0.8266 2 57.88 19.98 0.3453 4.00 0.16 0.90 0.2574 1.1113

C3
1 61.20 22.73 0.3719 3.93 0.07 0.91 0.1337 2.5455

∞
1 53.41 21.23 0.3976 5.06 0.07 0.99 0.2826 1.7489

2 60.20 20.40 0.3392 3.93 0.39 0.87 0.0802 1.7527 2 58.18 20.07 0.3450 4.00 0.17 0.90 0.1634 1.0354

15 12

C1
1 54.92 21.38 0.3908 5.00 0.10 0.97 0.5544 2.3338

17

1
1 57.65 22.04 0.3831 5.00 0.08 0.92 0.7394 2.1807

2 60.17 20.44 0.3401 4.00 0.17 0.87 0.2843 1.3300 2 63.24 20.72 0.3278 4.00 0.16 0.82 0.3808 0.8593

C2
1 58.58 22.44 0.3839 3.67 0.07 0.95 1.1556 2.2875

2
1 61.82 22.47 0.3637 5.00 0.07 0.86 0.6205 2.2184

2 60.25 20.49 0.3405 3.92 0.41 0.87 0.4582 0.9734 2 63.88 20.83 0.3261 4.00 0.16 0.82 0.2966 1.0616

C3
1 60.33 22.81 0.3785 4.00 0.07 0.92 0.1754 2.2426

∞
1 60.94 22.54 0.3700 5.18 0.07 0.87 0.3284 2.0562

2 61.33 20.72 0.3380 4.00 0.42 0.85 0.0958 1.6479 2 64.06 20.90 0.3264 4.00 0.16 0.81 0.1807 1.2320

20 15

C1
1 58.40 22.36 0.3837 5.00 0.09 0.91 0.4571 2.8328

18

1
1 61.17 22.51 0.3686 5.00 0.08 0.87 0.7294 3.0080

2 62.67 21.24 0.3390 4.00 0.16 0.83 0.2631 1.5824 2 63.83 20.90 0.3274 4.00 0.15 0.82 0.3499 1.2083

C2
1 60.73 23.10 0.3809 3.80 0.07 0.91 0.9700 2.0552

2
1 60.11 22.12 0.3684 5.00 0.07 0.88 0.4588 2.6591

2 61.80 20.88 0.3382 4.00 0.41 0.85 0.4777 1.3532 2 64.00 20.98 0.3279 4.00 0.16 0.81 0.2757 1.4626

C3
1 62.33 23.39 0.3756 4.00 0.07 0.89 0.1390 1.9080

∞
1 59.28 22.21 0.3753 5.00 0.07 0.90 0.2694 2.6331

2 62.27 21.06 0.3384 4.00 0.41 0.84 0.0953 1.3192 2 64.00 21.10 0.3300 4.00 0.15 0.81 0.1729 1.5567

25 12

C1
1 54.58 21.19 0.3895 5.00 0.08 0.98 0.5988 2.2838

14

1
1 58.79 21.74 0.3703 5.00 0.07 0.90 0.9830 2.3330

2 61.08 20.54 0.3366 4.00 0.16 0.85 0.3339 1.3099 2 64.64 21.23 0.3286 4.00 0.16 0.81 0.4813 0.8697

C2
1 56.67 21.77 0.3845 3.58 0.06 0.98 1.7656 2.6061

2
1 57.93 21.49 0.3714 5.00 0.07 0.91 0.6971 2.3461

2 61.75 20.79 0.3369 4.00 0.41 0.85 0.5857 1.4343 2 64.79 21.25 0.3282 4.00 0.15 0.81 0.3578 1.2700

C3
1 57.67 21.89 0.3799 3.83 0.07 0.96 0.2698 2.4895

∞
1 57.36 21.60 0.3767 5.00 0.06 0.92 0.4166 2.6032

2 62.17 20.88 0.3360 4.00 0.41 0.84 0.1346 1.5884 2 64.71 21.26 0.3286 4.00 0.16 0.81 0.2241 1.4588

30 11

C1
1 55.45 21.11 0.3829 5.00 0.08 0.98 0.6844 2.8334

16

1
1 57.44 21.51 0.3751 5.00 0.08 0.93 1.0316 2.1772

2 59.55 20.08 0.3375 4.00 0.16 0.88 0.4049 1.5810 2 59.75 20.08 0.3363 4.00 0.16 0.88 0.5999 0.8015

C2
1 58.91 22.26 0.3783 3.73 0.07 0.95 1.9284 2.1519

2
1 55.63 20.98 0.3777 5.00 0.07 0.96 0.7395 2.5195

2 59.36 20.03 0.3378 3.91 0.43 0.88 0.7094 1.1776 2 60.00 20.11 0.3355 4.00 0.16 0.87 0.4591 1.3388

C3
1 60.09 22.50 0.3747 3.82 0.07 0.93 0.2666 2.6265

∞
1 56.00 21.35 0.3815 5.00 0.07 0.95 0.4387 2.4787

2 59.73 20.18 0.3382 3.91 0.39 0.87 0.1357 1.6780 2 60.69 20.29 0.3345 4.00 0.16 0.86 0.2922 1.4639

Table 2: Results for randomly generated instances of Example 7.1 with different ordering
cones (left) and with different norms used in (P(v)) (right), when the algorithms are run for
T=50 seconds.

10 15 20 25 30
0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

P
E

Algorithm 1
Algorithm 2

10 15 20 25 30
0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

P
E

Algorithm 1
Algorithm 2

10 15 20 25 30
0.08

0.1

0.12

0.14

0.16

0.18

0.2

0.22

0.24

0.26

0.28

P
E

Algorithm 1
Algorithm 2

10 15 20 25 30
1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

3

H
V

Algorithm 1
Algorithm 2

10 15 20 25 30
0.8

1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

H
V

Algorithm 1
Algorithm 2

10 15 20 25 30
1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

H
V

Algorithm 1
Algorithm 2

Figure 2: Average primal error (first group) and HV (second group) values of random in-
stances of Example 7.1 for ordering cones C1 (left), C2 (middle) and C3 (right) when the
algorithms are run under time limit of 50 seconds.

10 15 20 25 30
0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

P
E

Algorithm 1
Algorithm 2

10 15 20 25 30
0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

P
E

Algorithm 1
Algorithm 2

10 15 20 25 30
0.15

0.2

0.25

0.3

0.35

0.4

0.45

P
E

Algorithm 1
Algorithm 2

10 15 20 25 30
0.5

1

1.5

2

2.5

3

3.5

H
V

Algorithm 1
Algorithm 2

10 15 20 25 30
1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

H
V

Algorithm 1
Algorithm 2

10 15 20 25 30
1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

H
V

Algorithm 1
Algorithm 2

Figure 3: Average primal error (first group) and HV (second group) values of random in-
stances of Example 7.1 with ℓp norms for p = 1 (left), p = 2 (middle) and p = ∞ (right),
when the algorithms are run for 50 seconds.

29

from [37] and the (primal) algorithm (DLSW) from [13].7

For the first set of experiments we use the hundred randomly generated problem instances
from Section 7.2.1. We solve each instance under runtime limits of 50 seconds and 100
seconds and compare the performances of Algorithms 1, 2, LRU-P, LRU-D and DLSW
via empirical cumulative distribution functions of the proximity measures, see Figure 4.
In [11], when comparing different solvers with respect to CPU times, they scale the data
points by the minimum over different solvers and plot the corresponding empirical cumulative
distributions, which are called performance profiles.

-0.5 0 0.5 1 1.5 2 2.5 3 3.5 4
0

0.2

0.4

0.6

0.8

1

Algorithm 1

Algorithm 2

LRU-P

LRU-D

DLSW

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

0.2

0.4

0.6

0.8

1

Algorithm 1
Algorithm 2
LRU-P
LRU-D
DLSW

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
0

0.2

0.4

0.6

0.8

1

Algorithm 1
Algorithm 2
LRU-P
LRU-D
DLSW

0 1 2 3 4
0

0.2

0.4

0.6

0.8

1

Algorithm 1
Algorithm 2
LRU-P
LRU-D
DLSW

Figure 4: Empirical cumulative distribution functions for PE (first row) and HV (second
row) values of random instances from Section 7.2.1 when the algorithms are run under time
limit of 50 seconds (left) and 100 seconds (right).

From Figure 4, we see that the dual algorithms perform better than the primal ones
in HV and PE under fixed run time. Moreover, Algorithm 2 performs slightly better than
LRU-D.

Next, we compare the algorithms over different examples from the literature. Example 7.2
is a special case of Example 7.1, which can be also seen in [16, 37]. In Example 7.3, the
objective functions are nonlinear while the constraints are linear, see [16, Examples 5.8],
[42].We solve these examples for different norms and ordering cones as in Section 7.2.2 under
fixed runtime of 50 seconds. Since the objective function of Example 7.3 is quadratic, it is
not C-convex for C = C2, hence we solve it only with ordering cones C1 and C3.

Example 7.2. We consider the following problem

minimize f(x) = x with respect to ≤C

subject to ‖x− e‖2 ≤ 1, x ∈ R3.

7We use MATLAB implementations of these algorithms that were also used in [37] and [33], respectively.

30

Example 7.3. Let a1 = (1, 1)T, a2 = (2, 3)T, a3 = (4, 2)T. Consider

minimize f(x) = (
∥

∥x− a1
∥

∥

2

2
,
∥

∥x− a2
∥

∥

2

2
,
∥

∥x− a3
∥

∥

2

2
) with respect to ≤C

subject to x1 + 2x2 ≤ 10, 0 ≤ x1 ≤ 10, 0 ≤ x2 ≤ 4, x ∈ R2.

Table 3 shows the Opt, En, |X̄ |, PE and HV values that the algorithms return when run
for 50 seconds. For both examples the minimum HV values are attained by Algorithm 2 in
each setting. The same holds true also for PE values for Example 7.3. However, the PE
values returned by the algorithms are comparable for Example 7.2.

Example 7.2 Example 7.3
Cone p Alg Opt En |X | PE HV Opt En |X | PE HV

C1

1

1 38 5 38 0,0339 1,1788 31 4 31 0,4289 0,00507
2 38 4 38 0,0354 0,9296 36 4 36 0,2046 0,00130

LRU-P 41 5 41 0,0319 2,5017 33 4 33 0,4288 0,353518

LRU-D 40 5 34 0,0354 1,1046 34 4 32 0,2790 0,00174
DLSW 46 11 13 0,0898 3,7211 - - - - -

2

1 39 5 39 0,0267 3,9998 31 4 31 0,3990 0,00451
2 41 4 41 0,0259 3,9608 36 4 36 0,1762 0,00129

LRU-P 44 5 44 0,0266 4,0791 34 4 34 0,3989 0,35351
LRU-D 40 5 34 0,0259 4,7979 33 4 31 0,2672 0,00174
DLSW 44 13 15 0,0824 10,3820 44 8 10 0,8495 0,01205

∞

1 34 5 34 0,0183 3,9642 27 4 27 0,3126 0,00003
2 37 4 37 0,0189 3,6921 36 4 36 0,1206 0,00001

LRU-P 37 5 37 0,0183 4,1461 34 4 34 0,3124 0,04624
LRU-D 37 5 31 0,0189 4,3730 37 5 34 0,1206 0,00001
DLSW 42 9 11 0,0635 12,5425 45 10 12 0,3155 0,00006

C3 2

1 36 3 36 0,0166 2,3381 31 3 31 0,1964 2,08492
2 41 3 41 0,0148 2,1469 36 3 36 0,1346 1,66544

LRU-P 40 3 40 0,0541 4,1121 30 3 30 0,1964 4,38963
LRU-D 35 4 33 0,0274 3,0475 30 4 24 0,3065 3,34918
DLSW 45 9 14 0,0541 4,1913 42 9 14 0,1964 3,58336

C2 2

1 36 3 36 0,1926 6,0955
2 41 3 41 0,1150 4,1466

LRU-P 44 3 44 0,0498 4,5592
LRU-D 36 4 33 0,1393 8,7210
DLSW 43 9 14 0,1064 9,0697

Table 3: Results for Examples 7.2 and 7.3 with different ordering cones and with different
norms used in (P(v)), when the algorithms are run for T=50 seconds.

Acknowledgments

This work is supported by the 3501 program of TÜBİTAK (Scientific & Technological Re-
search Council of Turkey), Project No. 118M479. The authors thank three anonymous
reviewers and an associate editor, as well as Andreas Löhne and Özlem Karsu, for their
valuable feedback and suggestions for improvement on earlier versions of the paper. They
also thank İrem Nur Keskin for sharing MATLAB implementation of DLSW algorithm which
was also used in [33].

8In Example 7.2 with cone C1, the outer approximations returned by LRU-P contain outlier vertices in
the sense that their distances to f(X) are quite large while distances to P are small. This explains high HV
values compared to small PE values.

31

A (Alternative) Proofs of some results

Proof of Proposition 3.4. Let ((wi)T, αi)
T ∈ D and λi ≥ 0 for each i ∈ {1, . . . , n}, where

n ∈ N. Since W = C+ is a convex cone and we have wi ∈ C+ for each i ∈ {1, . . . , n}, we
have

∑n
i=1 λiw

i ∈ W. Moreover, we have αi ≤ infx∈X (w
i)Tf(x) for each i ∈ {1, . . . , n},

which implies that

n
∑

i=1

λiαi ≤
n
∑

i=1

λi inf
x∈X

(wi)Tf(x) ≤ inf
x∈X

(

n
∑

i=1

λiw
i

)T

f(x).

Hence,
∑n

i=1 λi((w
i)T, αi)

T ∈ D. It follows that D is a convex cone.
Note that the function w 7→ pw is continuous as a concave function on W with finite

values. Moreover, D ⊆ W ×R coincides with the hypograph of this function. Hence, D is a
closed set.

Proof of Proposition 4.2. (a) Suppose that y is a weakly C-minimal element of P. By
Proposition 3.1, y = f(x̄) + c̄ for some x̄ ∈ X and c̄ ∈ C. Moreover, as y is a weakly C-
minimal element of P, we have y ∈ bdP [35, Corollary 1.48]. Then, there exist w̄ ∈ Rq

and ᾱ ∈ R such that H := {ỹ ∈ Rq | w̄Tỹ = ᾱ} supports P at y. In particular, we have

inf
ỹ∈P

w̄Tỹ = w̄Ty = ᾱ. (17)

By Remark 2.1, (17) implies that w̄ ∈ C+. Moreover, using Proposition 3.1 and the fact
that y = f(x̄) + c̄, (17) can be rewritten as

inf
x∈X

w̄Tf(x) + inf
c∈C

w̄Tc = w̄Tf(x̄) + w̄Tc̄.

Noting that we have infc∈C w̄Tc = 0, infx∈X w̄Tf(x) ≤ w̄Tf(x̄) and w̄Tc̄ ≥ 0, we obtain
w̄Tc̄ = 0 and w̄Tf(x̄) = infx∈X w̄Tf(x). It follows that H∗(f(x̄)) = H∗(y) since y =
f(x̄)+c̄ and w̄Tc̄ = 0. Moreover, x̄ is an optimal solution to the problem (WS(w̄)). Hence,
H∗(f(x̄)) = H∗(y) is a supporting hyperplane of D at ξ(w̄) such that D ⊆ H∗(f(x̄)) by
Proposition 4.1. Therefore, H∗(f(x̄)) ∩ D is a proper face of D [46, Section 18, page
162].

To show that H∗(f(x̄))∩D is a K-maximal proper face of D, let (w̃T, α̃)T ∈ H∗(f(x̄))∩D
be arbitrary. Note that ϕ(f(x̄), w̃, α̃) = w̃Tf(x̄) − α̃ = 0. On the other hand, the fact
D ⊆ H∗(f(x̄)) implies that ϕ(f(x̄), w, α) = wTf(x̄) − α ≥ 0 for each (wT, α)T ∈ D.
Together, these imply that (w̃T, α̂)T /∈ D for every α̂ > α̃. Hence, (w̃T, α̃)T is a K-
maximal element of D.

Conversely, suppose that H∗(y) ∩ D is a K-maximal proper face of D. Hence, H∗(y) is
a supporting hyperplane of D [46, Section 18, page 162], and we have either D ⊆ H∗(y)
or D ⊆ {(wT, α)T ∈ Rq+1 | ϕ(y, w, α) ≤ 0}. We claim that the former relation holds.
Indeed, letting (w̃T, α̃)T ∈ H∗(y) ∩ D, we have α̃ ≤ infx∈X w̃Tf(x) and ϕ(y, w̃, α̃) =
w̃Ty − α̃ = 0. Then, (w̃T, α̃ − 1)T ∈ D and ϕ(y, w̃, α̃ − 1) = w̃Ty − α̃ + 1 > 0. Hence,
(w̃T, α̃ − 1)T /∈ {(wT, α)T ∈ Rq+1 | ϕ(y, w, α) ≤ 0}. Therefore, the claim holds and we
have D ⊆ H∗(y).

32

Next, we show that y ∈ P. To get a contradiction, suppose that y /∈ P. By separation
theorem, there exists w̄ ∈ Rq \ {0} such that

w̄Ty < inf
ȳ∈P

w̄Tȳ =: ᾱ.

Note that w̄ ∈ C+ by Remark 2.1. Therefore, we have (w̄T, ᾱ)T ∈ D ⊆ H∗(y), which
contradicts w̄Ty − ᾱ < 0. Hence, we have y ∈ P.

Finally, we show that y is a weakly C-minimal element of P. To get a contradiction,
suppose that there exists c ∈ intC with y − c ∈ P. Without loss of generality, assume
that y − c ∈ wMinC P. From the proof of the previous implication, D ⊆ H∗(y − c). Let
(wT, α)T ∈ H∗(y)∩D ⊆ H∗(y− c). Then, we have wT(y− c)−α = wTy−wTc−α ≥ 0.
Note that wTy − α = 0 since (wT, α)T ∈ H∗(y) ∩ D. Hence, we have wTy − wTc− α =
−wTc ≥ 0, which contradicts w ∈ W and c ∈ intC. Therefore, y is a weakly C-minimal
element of P.

(b) Let F ∗ be a K-maximal proper face of D. Then, there exists a supporting hyperplane
H∗ ⊆ Rq+1 of D such that F ∗ = H∗ ∩D [46, Section 18, page 162]. Then, we may write

H∗ = {(wT, α)T ∈ Rq+1 | aT(wT, α) = b}

for some a ∈ Rq+1, b ∈ R. Without loss of generality, we may assume that

H∗ := {(wT, α)T ∈ Rq+1 | aT(wT, α)T ≥ b} ⊇ D.

Since D is a convex cone, F ∗ is also a convex cone [23, Lemma 10.2]. Moreover, F ∗ is
closed as D is closed by Proposition 3.4. Therefore, 0 ∈ F ∗ ⊆ H∗. Hence, b = 0.

Next, we show that aq+1 < 0. For every (w̄T, ᾱ)T ∈ F ∗, the point (w̄T, ᾱ)T is a K-
maximal element of D and it holds aT(w̄T, ᾱ) = 0. Moreover, (w̄T, ᾱ)T ∈ H∗ implies
aT(wT, α) ≥ 0. For every γ > 0, since (w̄T, ᾱ− γ)T ∈ D ⊆ H∗, we have aT(w̄T, ᾱ− γ) =
aT(wT, α)− γaq+1 ≥ 0. Therefore, aq+1 ≤ 0 holds. If aq+1 = 0, then aT(w̄T, ᾱ− 1)T = 0
implies that (w̄T, ᾱ−1)T ∈ F ∗ contradicting the K-maximality of F ∗. Therefore, aq+1 <
0.

By setting

y :=

(

−a1
aq+1

,
−a2
aq+1

, · · · ,
−aq
aq+1

)

T

,

we obtain H∗ = H∗(y) and D ⊆ H∗(y).

Finally, we show that y ∈ P. Assuming otherwise, there exists w̃ ∈ C+ such that w̃Ty <
infx∈X w̃Tf(x) =: α̃ by separation arguments. Then, we obtain (w̃T, α̃)T ∈ D \ H∗(y),
which contradicts with D ⊆ H∗(y).

Proof of Proposition 4.3. (a) Suppose that (wT, α)T is aK-maximal point ofD. Clearly,
w ∈ C+, α = infx∈X wTf(x) and (wT, α)T = ξ(w). Since X is a compact set, there exists
an optimal solution xw ∈ X to (WS(w)). By Proposition 4.1, H(ξ(w)) = H(w, α) is
a supporting hyperplane of P at f(xw) satisfying H(w, α) ⊇ P. Then, H(w, α) ∩ P

33

is a proper face of P [46, Section 18, page 162]. To show that H(w, α) ∩ P is weakly
C-minimal, let ȳ ∈ H(w, α) ∩ P be arbitrary. Since ȳ ∈ H(w, α) and w ∈ C+, we have
ϕ(ȳ− c, w, α) = wTȳ−wTc−α < 0 for every c ∈ intC. Note that each y ∈ P ⊆ H(w, α)
satisfies ϕ(y, w, α) = wTy − α ≥ 0. Then, ({ȳ} − intC) ∩ P = ∅, hence ȳ is weakly
C-minimal.

Conversely, suppose that H(w, α) ∩ P is a weakly C-minimal proper face of P such
that H(w, α) ⊇ P. Then, H(w, α) is a supporting hyperplane of P [46, Section 18,
page 162]. By Remark 2.1, we have w ∈ (reccP)+ ⊆ C+. Moreover, for each y ∈ P,
ϕ(y, w, α) = wTy − α ≥ 0. This implies α ≤ infy∈P wTy, hence (wT, α)T ∈ D. On
the other hand, let y = f(x) + c ∈ H(w, α) ∩ P for some x ∈ X and c ∈ C. Since
ϕ(y, w, α) = wTf(x) +wTc−α = 0, we have ϕ(y, w, α+ ǫ) = wTf(x) +wTc− α− ǫ < 0
for every ǫ > 0. This implies

α+ ǫ > inf
x∈X

wTf(x) + inf
c∈C

wTc = inf
x∈X

wTf(x).

Since ǫ > 0 is arbitrary, we have α ≥ infx∈X wTf(x). Together, we obtain α =
infx∈X wTf(x), which implies that (wT, α)T is K-maximal.

(b) Let F be a C-minimal proper face of P. Then, there exists a supporting hyperplane H
of P such that F = H ∩ P [46, Section 18, page 162]. We may write H = {y ∈ Rq |
wTy = α} for some w ∈ Rq and α ∈ R, and assume that P ⊆ H := {y ∈ Rq | wTy ≥ α}
without loss of generality. By Remark 2.1, we have w ∈ (reccP)+ ⊆ C+. Moreover, as
P ⊆ H, it holds true that α ≤ infx∈X wTf(x). Hence, (wT, α)T ∈ D.

Alternative proof of Theorem 4.4. First, for a K-maximal proper face F ∗ of D, we
show that Ψ(F ∗) is a weakly C-minimal proper face of P. By Proposition 4.3 (a), H(w, α)∩P
is a weakly C-minimal proper face of P for each (wT, α)T ∈ F ∗. From the definition given
by (4), Ψ(F ∗) is a weakly C-minimal proper face of P if it is nonempty. By Proposition 4.2
(b), there exists some y ∈ P such that F ∗ = H∗(y) ∩ D. Therefore, for each (wT, α)T ∈ F ∗,
we have (wTα)T ∈ H∗(y), equivalently, y ∈ H(w, α), see (3). Then, Ψ(F ∗) is nonempty as
y ∈ Ψ(F ∗).

For a weakly C-minimal proper face F of P, define Ψ∗(F) :=
⋂

y∈F (H
∗(y) ∩ D). To

show that Ψ∗(F) is a K-maximal proper face of D, let y ∈ F . By Proposition 4.2 (a),
H∗(y) ∩ D is a K-maximal proper face of D. Therefore, Ψ(F ∗) is a K-maximal proper face
of D, if it is nonempty. From Proposition 4.3 (b), there exists some (wT, α)T ∈ D such
that F = H(w, α) ∩ P. Therefore, for each y ∈ F , we have y ∈ H(w, α), equivalently,
(wT, α)T ∈ H∗(y), see (3). Then, Ψ∗(F) is nonempty as (wT, α)T ∈ Ψ∗(F).

In order to show that Ψ is a bijection and Ψ−1 = Ψ∗, we will show the following two
statements:

(a) Ψ∗(Ψ(F ∗)) = F ∗ for every K-maximal proper face F ∗ of D,

(b) Ψ(Ψ∗(F)) = F for every weakly C-minimal proper face F of P.

34

(a) Let F ∗ be a K-maximal proper face of D. Assume for a contradiction that F ∗ *
Ψ∗(Ψ(F ∗)). Let (wT, α)T ∈ F ∗\Ψ∗(Ψ(F ∗)). Since Ψ(F ∗) is nonempty, (wT, α)T /∈ Ψ∗(Ψ(F ∗))
means that there exists ȳ ∈ Ψ(F ∗) such that (wT, α)T /∈ H∗(ȳ)∩D. This implies (wT, α)T /∈
H∗(ȳ) since (wT, α)T ∈ D. Using (3), we have ȳ /∈ H(w, α). Therefore ȳ /∈ Ψ(F ∗), a
contradiction. Hence, F ∗ ⊆ Ψ∗(Ψ(F ∗)). For the reverse inclusion, first note that, from
Proposition 4.2 (b), there exists ȳ ∈ P such that F ∗ = H∗(ȳ) ∩ D. Therefore, for each
(wT, α)T ∈ F ∗, we have (wT, α)T ∈ H∗(ȳ), equivalently, ȳ ∈ H(w, α), see (3). Hence,

ȳ ∈
⋂

(wT,α)T∈F ∗

(

H(w, α) ∩ P
)

= Ψ(F ∗).

Therefore,

Ψ∗(Ψ(F ∗)) =
⋂

y∈Ψ(F ∗)

(

H∗(y) ∩ D
)

⊆ H∗(ȳ) ∩ D = F ∗.

Hence, the equality Ψ∗(Ψ(F ∗)) = F ∗ holds.
(b) Let F be a weakly C-minimal proper face of P. Assume for a contradiction that F *
Ψ(Ψ∗(F)). Let y ∈ F \ Ψ(Ψ∗(F)). Then, there exists (w̄T, ᾱ)T ∈ Ψ∗(F) such that y /∈
H(w̄, ᾱ) ∩ P. This implies y /∈ H(w̄, ᾱ) since y ∈ P. By (3), (w̄T, ᾱ)T /∈ H∗(y), which
implies (w̄T, ᾱ)T /∈ Ψ∗(F), a contradiction. Hence, Ψ(Ψ∗(F)) ⊇ F . For the reverse inclusion,
first note that, by Proposition 4.3 (b), there exists (w̄T, ᾱ)T ∈ D such that F = H(w̄, ᾱ)∩P.
Then, for each y ∈ F , we have y ∈ H(w̄, ᾱ), equivalently, (w̄T, ᾱ)T ∈ H∗(y), see (3). Hence,

(w̄T, ᾱ)T ∈
⋂

y∈F

(

H∗(y) ∩ D
)

= Ψ∗(F).

Therefore,

Ψ(Ψ∗(F)) =
⋂

(wT,α)T∈Ψ∗(F)

(

H(w, α) ∩ P
)

⊆ H(w̄, ᾱ) ∩ P = F.

Hence, the equality Ψ(Ψ∗(F)) = F holds.

Proof of Lemma 4.11. Let P̃ := {y ∈ Rq | ∀(wT, α)T ∈ ξ(W̄) : ϕ(y, w, α) ≥ 0}. Since
D̄ ⊇ ξ(W̄), we obtain P̃ ⊇ PD̄. To show the reverse inclusion, let us fix y ∈ P̃. Let
(wT, α)T ∈ D̄, that is, there exist n ∈ N, λi ≥ 0, (w̃T

i , α̃i)
T ∈ ξ(W̄) for i ∈ {1, . . . , n},

β ≥ 0 such that (wT, α + β)T =
∑n

i=1 λi(w̃
T

i , α̃i)
T. In particular, w̃T

i y − α̃i ≥ 0 for each
i ∈ {1, . . . , n}. Then,

ϕ(y, w, α) = (wTy − α− β) + β =

n
∑

i=1

λiw̃
T

i y −
n
∑

i=1

λiα̃i + β =

n
∑

i=1

λi(w̃
T

i y − α̃i) + β ≥ 0.

Since ϕ(y, w, α) ≥ 0 for each (wT, α)T ∈ D̄, we conclude that y ∈ PD̄.

Proof of Proposition 5.12. To start with the proof, we have the following observation:

Dǫ = cone conv
(

(ξ(W̄) + ǫ{eq+1}) ∪ {−eq+1}
)

.

35

This implies that the set of extreme directions of Dǫ is a subset of (ξ(W̄)+ǫ{eq+1})∪{−eq+1}.
Let i ∈ {1, . . . , T}. By [46, Section 18, page 162], we also have

{((wi1)T, αi1)
T, . . . , ((wiJi)T, αiJi)

T} ⊆ (ξ(W̄) + ǫ{eq+1}) ∪ {−eq+1}.

In particular, for j ∈ {1, . . . , Ji}, we have wij ∈ W̄ ∪ {0} and αij = infx∈X (w
ij)Tf(x) + ǫ =

pw
ij

+ ǫ if wij 6= 0.
By Proposition 5.11, we have P ⊇ Pǫ. Following similar steps as in the proof of Proposi-

tion 5.11, in order to show that Pǫ +B(0, ǫ̃) ⊇ P, we assume the contrary. Then, we obtain
ȳ ∈ P, w̄ ∈ Rq with ‖w̄‖∗ = 1 such that

w̄Tȳ + ǫ̃ < inf
y∈Pǫ

w̄Ty =: ᾱ,

and we can check that (w̄T, ᾱ)T ∈ Dǫ.
By the construction of Dǫ, there exists k ≥ 0 such that (w̄T, ᾱ)T + keq+1 ∈ bdDǫ is a

K-maximal element of Dǫ. Hence, there exists I ∈ {1, . . . , T} such that FI is a K-maximal
facet of Dǫ and

(w̄T, ᾱ)T + keq+1 ∈ FI = cone conv{((wI1)T, αI1)
T, . . . , ((wIJI)T, αIJI)

T}. (18)

Using the K-maximality of FI , we may assume that wIj 6= 0, hence αIj = pw
Ij

+ ǫ for each
j ∈ {1, . . . , JI}. Then, we can rewrite (18) as

(w̄T, ᾱ)T + keq+1 ∈ FI = cone
(

conv{((wI1)T, pw
I1

)T, . . . , ((wIJI)T, pw
IJI)T}+ ǫ{eq+1}

)

.

Hence, there exist δ ≥ 0 and µ ∈ ∆JI−1 such that

(w̄T, ᾱ)T = δ

(JI
∑

j=1

µj((w
Ij)T, pw

Ij

)T + ǫeq+1

)

− keq+1. (19)

As exactly in the proof of Proposition 5.11, the aim is to show that (w̄T, ᾱ − ǫ̃)T ∈ D in
order to get a contradiction. For this purpose, it is sufficient to show that

ᾱ− ǫ̃ ≤ inf
x∈X

w̄Tf(x). (20)

Following the same steps as in the proof of Proposition 5.11, one can use (19) in order to
obtain ᾱ− δǫ ≤ infx∈X w̄Tf(x) as well as

δǫ ≤
ǫ

min
λ∈∆JI−1

∥

∥

∥

∑JI
j=1 λjwIj

∥

∥

∥

∗

=
ǫ

f I
min

≤
ǫ

min{f 1
min, . . . , f

T
min}

= ǫ̃.

Then, (20) follows from ᾱ− δǫ ≤ infx∈X w̄Tf(x) and δǫ ≤ ǫ̃.

36

References

[1] Ç. Ararat, F. Ulus, and M. Umer. A norm minimization-based convex vector opti-
mization algorithm. Journal of Optimization Theory and Applications, 194(2):681–712,
2022.

[2] Ç. Ararat and N. Meimanjan. Computation of systemic risk measures: a mixed-integer
programming approach. arXiv preprint arXiv:1903.08367, 2019.

[3] P. Armand. Finding all maximal efficient faces in multiobjective linear programming.
Mathematical Programming, 61:357–375, 1993.

[4] A. Auger, J. Bader, D. Brockhoff, and E. Zitzler. Hypervolume-based multiobjective
optimization: Theoretical foundations and practical implications. Theoretical Computer
Science, 425:75–103, 2012.

[5] H. P. Benson. An outer approximation algorithm for generating all efficient extreme
points in the outcome set of a multiple objective linear programming problem. Journal
of Global Optimization, 13:1–24, 1998.

[6] S. Boyd and L. Vandenberghe. Convex Optimization. Cambridge University Press, 2004.

[7] D. Ciripoi, A. Löhne, and B. Weißing. A vector linear programming approach for certain
global optimization problems. Journal of Global Optimization, 72(2):347–372, 2018.

[8] G. Cocchi and M. Lapucci. An augmented Lagrangian algorithm for multi-objective
optimization. Computational Optimization and Applications, 77:29–56, 2020.

[9] L. Csirmaz. Using multiobjective optimization to map the entropy region. Computa-
tional Optimization and Applications, 63(1):45–67, 2016.

[10] M. De Santis, G. Eichfelder, J. Niebling, and S. Rocktäschel. Solving multiobjective
mixed integer convex optimization problems. SIAM Journal on Optimization, 30:3122–
3145, 2020.

[11] E. D. Dolan and J. J. More. Benchmarking optimization software with performance
profile. Mathematical Programming, 91:201–213, 2002.

[12] D. Dörfler and A. Löhne. Geometric duality and parametric duality for multiple ob-
jective linear programs are equivalent. Journal of Nonlinear and Convex Analysis,
19(7):1181–1188, 2018.

[13] D. Dörfler, A. Löhne, C. Schneider, and B. Weißing. A Benson-type algorithm for
bounded convex vector optimization problems with vertex selection. Optimization Meth-
ods and Software, pages 1–21, 2021.

[14] L. G. Drummond and A. N. Iusem. A projected gradient method for vector optimization
problems. Computational Optimization and Applications, 28:5–29, 2004.

37

[15] M. Ehrgott, A. Löhne, and L. Shao. A dual variant of Benson’s “outer approximation
algorithm” for multiple objective linear programming. Journal of Global Optimization,
52(4):757–778, 2012.

[16] M. Ehrgott, L. Shao, and A. Schöbel. An approximation algorithm for convex multi-
objective programming problems. Journal of Global Optimization, 50(3):397–416, 2011.

[17] G. Eichfelder. Adaptive Scalarization Methods in Multiobjective Optimization. Springer,
2008.

[18] Z. Feinstein and B. Rudloff. A recursive algorithm for multivariate risk measures and a
set-valued Bellman’s principle. Journal of Global Optimization, 68:47–69, 2017.

[19] Z. Feinstein and B. Rudloff. Characterizing and computing the set of Nash equilibria
via vector optimization. arXiv preprint arXiv:2109.14932, 2021.

[20] J. Fliege, L. M. Grana Drummond, and B. F. Svaiter. Newton’s method for multiob-
jective optimization. SIAM Journal on Optimization, 20:602–626, 2009.

[21] E. H. Fukuda and L. G. Drummond. Inexact projected gradient method for vector
optimization. Computational Optimization and Applications, 54:473–493, 2013.

[22] E. H. Fukuda and L. G. Drummond. A barrier-type method for multiobjective opti-
mization. Computational Optimization and Applications, 69:2471–2487, 2020.

[23] H. Glöckner. Positive definite functions on infinite-dimensional convex cones. Memoirs
of the American Mathematical Society, 166(789), 2003.

[24] M. Grant and S. Boyd. Graph implementations for nonsmooth convex programs. In
V. Blondel, S. Boyd, and H. Kimura, editors, Recent Advances in Learning and Con-
trol, Lecture Notes in Control and Information Sciences, pages 95–110. Springer-Verlag
Limited, 2008. http://stanford.edu/~boyd/graph_dcp.html.

[25] M. Grant and S. Boyd. CVX: Matlab software for disciplined convex programming,
version 2.1. http://cvxr.com/cvx, 2014.

[26] B. Grünbaum. Convex Polytopes, volume 221. Springer Science & Business Media,
2013.

[27] A. Hamel, A. Rudloff, and M. Yankova. Set-valued average value at risk and its com-
putation. Mathematics and Financial Economics, 7:229–246, 2013.

[28] A. H. Hamel and A. Löhne. A set optimization approach to zero-sum matrix games with
multi-dimensional payoffs. Mathematical Methods of Operations Research, 88:369–397,
2018.

[29] A. H. Hamel, A. Löhne, and B. Rudloff. Benson type algorithms for linear vector
optimization and applications. Journal of Global Optimization, 59(4):811–836, 2014.

38

http://stanford.edu/~boyd/graph_dcp.html
http://cvxr.com/cvx

[30] F. Heyde. Geometric duality for convex vector optimization problems. Journal of
Convex Analysis, 20(3):813–832, 2013.

[31] F. Heyde and A. Löhne. Geometric duality in multiple objective linear programming.
SIAM Journal of Optimization, 19(2):836–845, 2008.

[32] J. Jahn. Vector Optimization: Theory, Applications, and Extensions. Springer, 2004.

[33] İ. N. Keskin and F. Ulus. Outer approximation algorithms for convex vector optimiza-
tion problems. arXiv preprint arXiv:2109.07119, 2021.

[34] G. Kováčová and B. Rudloff. Time consistency of the mean-risk problem. Operations
Research, 69:1100–1117, 2021.

[35] A. Löhne. Vector Optimization with Infimum and Supremum. Springer, 2011.

[36] A. Löhne and B. Rudloff. An algorithm for calculating the set of superhedging portfolios
in markets with transaction costs. International Journal of Theoretical and Applied
Finance, 17:1450012 (33 pages), 2014.

[37] A. Löhne, B. Rudloff, and F. Ulus. Primal and dual approximation algorithms for convex
vector optimization problems. Journal of Global Optimization, 60:713–736, 2014.

[38] A. Löhne and B. Weißing. Equivalence between polyhedral projection, multiple ob-
jective linear programming and vector linear programming. Mathematical Methods of
Operations Research, 84(2):411–426, 2016.

[39] A. Löhne and B. Weißing. The vector linear program solver Bensolve – notes on theo-
retical background. European Journal of Operational Research, 260:807–813, 2017.

[40] D. T. Luc. On duality in multiple objective linear programming. European Journal of
Operational Research, 210:158–168, 2011.

[41] K. Miettinen and M. M. Mäkelä. On generalized trade-off directions in nonconvex
multiobjective optimization. Mathematical Programming, 92:141–151, 2002.

[42] K. Miettinen, M. M. Mäkelä, and K. Kaario. Experiments with classification-based
scalarizing functions in interactive multiobjective optimization. European Journal of
Operational Research, 175(2):931–947, 2006.

[43] J. L. Ndoutoume. Calcul differentiel du second ordre. Publications AVAMAC, University
of Perpignan, 1987.

[44] J. Niebling and G. Eichfelder. A branch–and–bound-based algorithm for nonconvex
multiobjective optimization. SIAM Journal on Optimization, 29:794–821, 2019.

[45] A. Pascoletti and P. Serafini. Scalarizing vector optimization problems. Journal of
Optimization Theory and Applications, 42(4):499–524, 1984.

[46] R. T. Rockafellar. Convex Analysis. Princeton University Press, 1970.

39

[47] R. T. Rockafellar. First- and second-order epi-differentiability in nonlinear program-
ming. Transactions of the American Mathematical Society, 307:75–108, 1988.

[48] B. Rudloff and F. Ulus. Certainty equivalent and utility indifference pricing for in-
complete preferences via convex vector optimization. Mathematics and Financial Eco-
nomics, 15:397–430, 2021.

[49] B. Rudloff, F. Ulus, and R. Vanderbei. A parametric simplex algorithm for linear vector
optimization problems. Mathematical Programming, 163:213–242, 2017.

[50] A. Ruszczyński and R. J. Vanderbei. Frontiers of stochastically nondominated portfolios.
Econometrica, 71:1287–1297, 2003.

[51] S. Ruzika and M. M. Wiecek. Approximation methods in multiobjective programming.
Journal of Optimization Theory and Applications, 126(3):473–501, 2005.

[52] A. Seeger. Second derivatives of a convex function and of its Legendre-Fenchel trans-
formate. SIAM Journal on Optimization, 2:405–424, 1992.

[53] L. Shao and L. Ehrgott. Approximately solving multiobjective linear programmes in
objective space and an application in radiotherapy treatment planning. Mathematical
Methods of Operations Research, 68(2):257–276, 2008.

[54] L. Shao and L. Ehrgott. Approximating the nondominated set of an MOLP by ap-
proximately solving its dual problem. Mathematical Methods of Operations Research,
68(3):469–492, 2008.

[55] V. Soltan. Lectures on Convex Sets. World Scientific, 2015.

[56] E. Zitzler, D. Brockhoff, and L. Thiele. The hypervolume indicator revisited: On the
design of Pareto-compliant indicators via weighted integration. In International Con-
ference on Evolutionary Multi-Criterion Optimization, pages 862–876. Springer, 2007.

[57] E. Zitzler and L. Thiele. Multiobjective evolutionary algorithms: a comparative case
study and the strength Pareto approach. IEEE Transactions on Evolutionary Compu-
tation, 3(4):257–271, 1999.

[58] E. Zitzler, L. Thiele, M. Laumanns, C. M. Fonseca, and V. G. Da Fonseca. Performance
assessment of multiobjective optimizers: An analysis and review. IEEE Transactions
on evolutionary computation, 7(2):117–132, 2003.

40

	1 Introduction
	1.1 Literature review on objective space-based CVOP algorithms
	1.2 The proposed approach and contributions

	2 Preliminaries
	3 Primal and dual problems
	4 Geometric duality
	4.1 Geometric duality between ¶ and D
	4.2 Geometric duality between the approximations of ¶ and D

	5 Algorithms
	5.1 Primal algorithm
	5.2 Dual algorithm

	6 Relationships to similar approaches from literature
	6.1 Connection to the geometric dual problem by Heyde heyde2013
	6.2 Connection to the geometric dual algorithm by Löhne, Rudloff and Ulus ulus2014

	7 Numerical examples
	7.1 Proximity measures
	7.2 Computational results on Algorithms 1 and 2
	7.2.1 Results for multiobjective problem instances
	7.2.2 Results for different ordering cones and norms

	7.3 Comparison with algorithms from the literature

	A (Alternative) Proofs of some results

