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Abstract—Despite the stringent requirements of a real-time 

system, the reliance of the Robot Operating System (ROS) on the 

loopback network interface imposes a considerable overhead on 

the transport of high bandwidth data, while the nodelet package, 

which is an efficient mechanism for intra-process 

communication, does not address the problem of efficient local 

inter-process communication (IPC). To remedy this, we propose 

a novel integration into ROS of smart pointers and 

synchronisation primitives stored in shared memory. These obey 

the same semantics and, more importantly, exhibit the same 

performance as their C++ standard library counterparts, 

making them preferable to other local IPC mechanisms. We 

present a series of benchmarks for our mechanism - which we 

call LOT (Low Overhead Transport) - and use them to assess its 

performance on realistic data loads based on Five’s Autonomous 

Vehicle (AV) system, and extend our analysis to the case where 

multiple ROS nodes are running in Docker containers. We find 

that our mechanism performs up to two orders of magnitude 

better than the standard IPC via local loopback. Finally, we 

apply industry-standard profiling techniques to explore the 

hotspots of code running in both user and kernel space, 

comparing our implementation against alternatives. 

I. INTRODUCTION 

Complex robotic systems typically rely on at least two 
main layers of software: the operating system (OS), whose role 
is to expose an interface through which the underlying 
hardware is managed, and the middleware, which adds 
services and capabilities to meet requirements of the 
applications. Further layers of abstraction may exist in the 
form of, for instance, software being run in containers using 
Docker. As too many abstraction layers may hurt performance, 
the challenge for developers is to find the right balance 
between the amount of abstraction and the inherent overhead 
and to tune the software at all levels. 

The requirement on real-time robotic systems to be 
deterministic in their behaviour [4] can only be honoured if the 
communication - both in terms of throughput and latency - 
between the system components is bounded and predictable. 
This is particularly true for robots with sensors generating 
large quantities of data or data at high frequencies. 

Five's prototype autonomous vehicle (AV) shown in Fig. 1 
is an example of such a system and provides the context and 
initial motivation for this work. Its sensor set includes cameras 
providing surround vision capability, multiple Lidars, an 
industrial grade IMU, a GNSS localisation system and 
surround radar. The AV software stack runs in a series of 
Docker containers on a high performance computer. Large 
quantities of data flow through this system, most of which 
comes from a relatively small number of high-bandwidth 
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sensors operating at between 10Hz and 30Hz: principally the 
cameras (which can contribute up to 300MB/s each), but also 
Lidar and Radar (up to ~10 MB/s in aggregate). A number of 
lower bandwidth sensors operate at higher sample rates but are 
sensitive to latency, such as the GNSS receiver and IMU. 

In this paper, we present a generally applicable approach 
to optimising the communication between ROS nodes 
deployed in separate OS processes on the same machine, such 
as those which together form our software stack capable of 
handling all the perception, planning and control systems of an 
autonomous vehicle (AV) in real-time. We demonstrate that 
the overhead of local inter-process communication can be 
considerably reduced by combining Linux shared memory, 
C++ smart pointers, and synchronisation primitives such as 
mutexes and thread-safe queues, and propose a serialization-
free, zero-copy local IPC mechanism, that is both predictable 
and reliable with much smaller communication overhead than 
existing solutions. 

As communication between ROS nodes depends on both the 

OS and the underlying hardware, it is paramount to consider 

the strengths and weaknesses of the software layers alongside 

those of the hardware architecture. We describe the 

background to this work in section II, in which we discuss 

overheads first in Linux and then in ROS. Throughout this 

section, we review relevant related work. We describe our 

LOT mechanism in section III and present an analysis in 

section IV. Finally, section V concludes the paper and offers 

suggestions for future work. 
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Fig. 1: Our prototype autonomous vehicle development platform 

includes cameras providing surround stereo vision capability, lidars, an 

industrial grade IMU, a GNSS localisation system and surround radar.  



  

II. BACKGROUND AND RELATED WORK 

A. Overheads in Linux 

The Linux kernel tracks the hardware and software 

resources used by each user process, including their address 

space and threads. The address space is a contiguous virtual 

memory space assigned by the kernel to each user process, 

and is divided into memory areas which can be dynamically 

added and removed. Programs are loaded from the storage 

medium into this address space and executed in user-space. 

While user-space code cannot invade the kernel space or other 

user processes, special system calls can be invoked to request 

the kernel to act on behalf of the user process. Each kernel-

user space context switch, of course, requires extra CPU 

cycles.  

Threads represent the smallest runnable unit that the kernel 

can schedule for execution and an abstraction that the 

programmer can use to enable genuine parallelism on 

multiprocessor machines. In Linux, threads are implemented 

as processes sharing a common address space with other 

sibling processes [18, 19]. This has the consequence that 

context switches between threads belonging to different 

processes incur extra cost because, in addition to swapping 

the processor state, they require the process’ virtual address 

space to be swapped too.  

Communication between threads may thus be intra-process 

or inter-process. Intra-process communication has less 

overhead, being coordinated with highly efficient primitives 

such as mutexes, semaphores and atomics. For the inter-

process case, several options exist. If the processes reside on 

different machines then the kernel, the network stack and 

network interface controller (NIC) must all be involved in the 

data communication process. However, when processes are 

hosted on the same machine they can communicate locally 

through the network loopback interface, Unix domain sockets 

(UDS) or shared memory, as well as by using synchronisation 

primitives, pipes, files and signals, though not all these 

mechanisms are conceptually suitable for real-time robotics 

systems or give good performance. In the case of the loopback 

interface mechanism, for instance, the communication 

overhead becomes significant for data blocks larger than 64K 

bytes as reported by Maruyama et al. [1]. To understand this, 

we consider the architecture of the network stack and briefly 

explore the path of data flow. 

Conceptually the TCP/IP protocol suite comprises 

application, transport, internet, link and physical layers [14, 

15]. The transport layer exposes TCP and UDP sockets, which 

act as endpoints for the transmission of data across the 

network to processes which may be hosted either by the same 

or a different machine. We note that data transmission 

requires copying data from user to kernel space. From there 

data is passed to the link layer which further copies it to the 

physical layer by means of NIC driver calls. At the receiver, 

the reverse operation takes place resulting in data being 

copied from the NIC into kernel space, and then from kernel 

to user space. Finally, at the application layer, data is copied 

one more time into the user’s buffer by the tcp_recvmsg() 

system call. 

Before structured data can reach the transport layer to be 

transmitted, either locally or remotely, it needs to be flattened 

into a string of bytes at the sending end, a process known as 

serialisation. At the receiving end the inverse process takes 

place (deserialisation). These operations that are often 

functionally equivalent to a data copy may occur multiple 

times if there is more than one subscriber. For example, under 

the above model, three copies of an 8MB Image may be 

transmitted to the perception, object detection and persistence 

modules of an AV stack. 

In addition to the overhead incurred by copying data 

multiple times, further performance degradation can be 

caused by data fragmentation at the IP layer. The largest size 

of IP datagram which can be transferred in one transaction is 

defined by the maximum transmission unit (MTU), which is 

typically up to 64KB [10, 11] for the loopback interface, and 

1500 bytes for other interfaces. Packets larger than the MTU 

are fragmented into multiple datagrams for transmission and 

reassembled at the receiver. 

These three processes - (de)serialisation, data copies 

between user and kernel space and data fragmentation at the 

IP layer - are the major sources of performance overhead as 

data is moved through the network layers. Additional 

overhead is then contributed by the physical layer when data 

is transmitted between processes hosted by different 

machines.  

Efficient local data transport is also possible without using 

the network stack, by leveraging other features of the OS. In 

their performance evaluation of pipes, local sockets and 

shared memory, for instance, Venkataraman et al. [16] 

conclude that a shared memory mechanism is by far the most 

effective, both in terms of latency and throughput, except for 

data payloads smaller than 64KB where they found 

performance to be comparable. Unix domain sockets (UDS) 

facilitate local IPC by means of the OS kernel without using 

the network stack and all the associated overhead that comes 

with it: ACKs, encapsulation, flow control, routing, MTU and 

context switches in network interrupt service routines [17]. 

We note that these overheads are incurred regardless of the 

type of network interface being used, loopback or remote. 

Zhang et al. [27] and Redis [26] report a significant 

throughput improvement when switching from TCP/IP 

loopback to UDS. 

B. Overheads in ROS 

The ROS framework [6] design encourages software to be 

split into components, or ROS nodes, each in its own OS 

process. Each ROS node communicates by publishing or 

subscribing to any number of strongly typed, unidirectional 

messaging channels known as topics. ROS is well-suited for 

use in distributed systems with ROS nodes on multiple 

compute nodes communicating over a network. Such systems 

are attractive when operating in constrained environments, 
providing good CPU performance where it is impractical to 

deploy a single powerful computer for reasons of space, 



  

power, or manufacturing cost. However, where such 

constraints do not exist, all the ROS nodes in a system may 

be run on a single machine. In this case, it is reasonable to 

consider whether the overhead of moving data between nodes 

could not be significantly smaller than in a distributed system 

given the absence of the network as the facilitator of data 

transmission. The ROS nodelet package [5] was introduced to 

improve performance in this scenario. It allows several ROS 

nodes to be run within a single OS process. However, this 

strategy still leaves some unsolved problems in that the 

implementation of the nodelet callback queue is not fully 

optimised [24], and the use of multiple processes may be 

required for other reasons, as in the case we discuss below. 

The use of ROS nodelets for efficient intra-process 

communication via shared pointers is also not possible in any 

robotic system that makes use of Docker2 for containerisation, 

running system components in separate containers. 

Fujita [12] extends ROS, adding a new topic transport 

protocol UDSROS which uses UDS (Unix domain sockets, 

discussed in section III) in place of TCP loopback. Although 

UDS shows some improvements over TCP sockets in terms 

of latency and throughput, the implementation still incurs 

overheads from message (de)serialisation and from copies 

between user and kernel space.  
Wang et al. [2] propose a hybrid approach which they term 

TZC where large messages are split into two parts. A 

lightweight descriptor is transmitted over a ROS topic in the 

usual way, via TCPROS, while the main message payload is 

placed in shared memory. TZC’s bespoke double reference 

counted scheme relies on a double-linked list stored in shared 

memory with reference counted nodes, and on Boost’s 

shared_ptr to deliver the payload in the standard ROS way. 

However, the reliance of TZC on TCP makes the approach 

sensitive to the connection establishment order and is the 

 
 

cause of unnecessary overhead compared to a standard 

solution [3]. We also note that the lack of a reliable abstraction 

to manage the lifetime of the message could cause a payload 

to dangle, resulting in a memory leak if its descriptor is not 

delivered. 

Many robotic systems have relied since their inception on 

ROS. For such use cases, this paper proposes a serialisation 

free, zero copy local IPC mechanism via shared pointers 

stored in memory segments shared by several ROS nodes, that 

is one or two orders of magnitude faster than the standard 

ROS mechanisms. 

III. LOW OVERHEAD TRANSPORT (LOT) 

In this section, we introduce our LOT mechanism, which 

we show schematically in Fig. 2. 

A. C++ Smart Pointers  

The C++ standard library (STL) includes smart pointers 

which “enable automatic, exception-safe, object lifetime 

management” [21] with different types of ownership 

semantics. In this paper, we are interested in the exclusive 

(unique_ptr) and shared (shared_ptr) ownership semantics. 

The unique_ptr’s performance and size are equivalent to 

those of raw pointers, as described by Meyers [20]. The 

shared_ptr encapsulates two raw pointers to keep track of the 

resource and a control block. The control block is by default 

allocated in the heap alongside the owned resource, and holds 

housekeeping data such as the reference counter, weak 

counter and (de)allocator [20]. Its size is typically a few bytes 

and because it is allocated in tandem with the managed object, 

the added overhead required by the extra allocation is close to 

zero. Similarly, because atomic updates of the reference 

counter are delegated to the hardware, the incurred runtime 

overhead is negligible. The destruction of the managed 

resource is accomplished via a virtual method whose dynamic 

dispatch overhead is also tiny. We conclude that these modest 

costs of smart pointers pale in comparison with the benefits, 

i.e. automatic lifetime management of dynamically allocated 

resources, preventing memory leaks. 

B. Placing C++ Objects in Shared Memory 

Sharing memory between several processes requires 

mapping a memory segment from the OS into the address 

space of each process requiring access. As the memory 

segment gets mapped to a different virtual address range in 

each process, subtle restrictions on C++ objects storing 

pointers to other objects arise: the pointed-to objects must be 

available in the same memory segment as their parent, while 

processes consuming a pointer must map it into their own 

address space before the first use. This makes raw pointers 

and STL smart pointers unsuitable for shared memory. To 

address this shortcoming, we use the offset_ptr from the 

industry-standard Boost.Interprocess library which refines 

the semantics such that pointers stored in objects placed in 

shared memory denote a relative offset with respect to their 

Fig. 2: LOTROS architecture 

2 Docker is a containerisation platform in which each container hosts one 
or more processes, and is run from an image built and tested ahead of time, 

which contains all required runtime dependencies. This provides benefits 

in terms of software development and reliable deployment. 



  

parent object rather than an absolute address in the process 

address space [22]. This additionally avoids impractical and 

error-prone manipulation of raw pointers in shared memory. 

Whilst offset_ptr allows the user to place pointers in shared 

memory, we note that it cannot be used for objects with virtual 

(polymorphic) functions, since the virtual dispatch 

mechanism used to implement them is unaware of the 

offset_ptr, being fixed in the C++ compiler implementation. 

Although this limitation can be overcome [29, 30], no such 

modification is required in our mechanism, as our ROS 

messages are not dependent on virtual methods or other 

compiler specific immutable features. 

C. Integrating shared memory with ROS 

In addition to using Boost.Interprocess to make ROS 

messages shared memory compliant as described in the 

previous section, inspired by Williams [23] we combine 

shared memory compliant mutexes and condition variables to 

create a generic, shared memory compliant queue - 

ShmQueue - the purpose of which is to provide thread safe 

access to the data it owns from multiple processes through a 

standard interface with well defined behaviour. In this 

context, thread safeness refers to the fact that multiple threads 

- which may be in different processes - can access the data 

owned by instances of ShmQueue such that the following 

conditions are met concomitantly: (a) each thread sees a 

consistent view of the data, (b) no data is lost or corrupted, (c) 

no race conditions arise and (d) threads can perform the same 

or distinct operations independently on the same or different 

instances of the queue. 

To accommodate communication through shared memory, 

we have extended ROS’s transport protocols by adding our 

LOT mechanism as LOTROS, under which ROS nodes rely 

on the XMLRPC [24] protocol and OS sockets to establish 

connections, and ShmEngine to transmit data. Each ROS node 

incorporates one ShmEngine. The LOTROS protocol settings, 

e.g. the names of ShmQueues, are exchanged via XMLRPC 

during the connection setup. All ROS nodes using LOTROS 

share a common memory segment with configurable size and 

identified by a unique, well known string in the OS file 

system; e.g. /dev/shm/LOTROS. When topics are advertised 

by the publisher, the ShmEngine assigns one ShmPusher per 

topic. When a node subscribes to a topic, a ShmQueue is 

created by the corresponding topic's ShmPusher and its name 

is returned to the subscriber. The subscriber, in turn, creates a 

ShmPuller per publisher and topic the main job of which is to 

spawn a thread, attach itself to the ShmQueue indicated by the 

publisher and start waiting for incoming items on the queue. 

Items may be of any shared memory compliant C++ type. 

These include the ShmSharedPtr and ShmUniquePtr, two of 

Fig. 3: Here we show the difference in latency between benchmark tests run natively on the same host, 

run on the same host within the same Docker container and on the same host within separate Docker 

containers for the cases of (a) TCP transport and (b) our LOT transport. 

Fig. 4: Our execution environments consist of 
OS, ROS and Docker software abstractions 

which are combined as shown. 

Fig. 5: Here we show the latency in the case of five publishers and a single subscriber (5p1s) in the cases of (a) TCP transport, (b) our LOT transport 

and (c) TZC transport. In all cases, we enforce connection order. Note that in the TCP case, latency is sensitive to the image size with publishers being 

treated fairly except in the 16MB payload case. For LOT and TZC, the latency is not sensitive to the image size and the gap between successive publishers 

is around 40us, but the LOT average latency is 235us whilst that of TZC is 385us. 
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the shared memory compliant smart pointers we have defined. 

The ShmPuller also creates local private topics in order to 

forward items popped from the ShmQueue to the ROS 

subscriber using its standard interface. Unlike regular topics, 

the scope of private topics is limited to the node that created 

them, i.e. intra-process, and they are not publicly advertised. 

ShmPuller combines private topics and ROS intra-process 

message passing [24] by wrapping incoming items in 

shared_ptrs and publishing them as though they originated 

from another ROS node. 

We note that the type of memory an object is allocated in 

(shared memory or otherwise) is irrelevant to that object’s 

layout in memory, with the consequence that object 

serialisation - for instance, when message traffic on a ROS 

topic is saved to disk in a so-called ROS bag - is not impacted 

by our LOT data transport mechanism. 

IV. EVALUATION 

In this section we present the robustness, latency and 

determinism characteristics of our LOT mechanism. We 

describe the results from a set of experiments inspired by our 

AV stack introduced in section I. Fig. 4 presents the execution 

environments that have been considered, with ROS nodes 

running in either same or separate Docker containers, or 

directly in the same host OS. The execution environments 

have been deployed on the computer described in section II. 

Within these environments we considered ROS graphs with a 

single publisher with a single subscriber (1p1s), a single 

publisher with five subscribers (1p5s) and five publishers 

with a single subscriber (5p1s). The ROS ecosystem does not 

allow the graph nodes to be started up in a deterministic order 

[9], so we built an ad-hoc system to enforce connection order 

establishment with the purpose of making the experiment 

results comparable. The end-to-end latencies are evaluated by 

transferring either sensor_msgs::Images or lot_msgs::Images 

with payload sizes ranging from 128B to 16MB. Each 

experiment consists of broadcasting 2000 Images of fixed size 

at 30Hz and is discussed in the following subsections. Unless 

otherwise specified, ROS nodes have been executed in 

separate Docker containers. For clarity in Figs. 3, 5, 6 and 7 

we do not show payload sizes of 512B, 1KB, 2Kb, 4KB and 

8KB for which results are consistent with those shown. 

Furthermore, we refer to TCP/IP local IPC simply as TCP 

unless otherwise specified. 

A. UDP vs TCP vs UDS vs TZC vs LOT 

Fig. 6(a) shows the distribution of latencies measured for a 

graph with one publisher and one subscriber (1p1s). For TCP 

and UDS transport mechanisms we see similar latency trends 

with values ranging from 200us to 26ms. For payload sizes up 

to 8KB the protocols exhibit a consistent performance pattern 

- LOT, UDS, UDP, TCP, TZC - with LOT having the smallest 

latency. The largest and smallest gap between median 

latencies of consecutive protocols is around 100us and 5us, 

respectively. For larger payloads, the protocol ranking 

changes to LOT, TZC, UDS, TCP, UDP and the latencies of 

TCP and UDS increase proportionally with the size of the 

Fig. 6: We show the latency in the case of one publisher with one subscriber (1p1s) for various payload sizes. In (a) we present the UDP, TCP, UDS, LOT 

and TZC transports. In (b) we show the effect of pinning to the same vs different processors for TCP transport and the same in (c) for our LOT transport; 
note that pinning to the same processor core results in lower latency for TCP, especially for data larger than 32KB, only a tiny effect is observed in the 

LOT case, which also shows a negligible latency difference between small and large data. Finally in (d) we show the behaviour of TCP in buffering small 

data sending it in bursts and demonstrate the absence of this behaviour in the LOT case. 



  

Image. This trend is also followed by UDP with the maximum 

being attained for 8MB and 16MB Images where latencies of 

up to 6 seconds have been observed. Furthermore, because 

UDP provides no guarantees for message delivery, fewer than 

2,000 Images reached the subscriber. By contrast, LOT 

outperforms the other protocols except TZC by a few orders 

of magnitude, both in terms of the median latency, which is 

approximately 235us, and latency variance with Image size. 

In particular, LOT outperforms UDS, TCP and UDP by one 

order of magnitude for a 1MB payload, increasing to around 

two orders of magnitude for 16MB payloads, and TZC by 

approximately 57% - which corresponds to 170us - at all 

 payload sizes. 

B. Late Joiners incur Higher Latency 

The boxplots in Fig. 7 show the latencies incurred in a 1p5s 

graph. Figs. 7(a) and 7(b) show TCP with the connection 

order undetermined and enforced, respectively. They reveal 

two patterns. Firstly, as the Image size increases so does the 

latency. By contrast, Fig. 7(c) shows that LOT is not sensitive 

to the image size. Secondly, when the connection order is 

enforced, it becomes apparent that the time it takes each 

subscriber to receive a given Image depends not only on the 

Image size but also how many subscribers have previously 

established a connection with the publisher. The latter is also 

observed for TZC in Fig. 7(d) where the connection order was 

also enforced. We define this behaviour as the late subscribers 

being treated unfairly. We also note that, in spite of the 

unfairness pattern still being visible, the gap between the 

median latencies of the most deprived and favoured siblings 

is much smaller for LOT, e.g. 60 microseconds vs 7 

milliseconds for 16MB TCP image payloads and 80 

microseconds for TZC at all payload sizes. 

We conclude that since LOT, TZC and TCP rely on items 

being pushed and removed from queues - placed in shared 

memory and/or kernel space - the unfairness pattern is present 

in all cases (as expected), but with a negligible latency gap for 

the LOT protocol. 

C. TCP Buffering Delays Small Payloads 

In order to minimise network traffic at the transport layer, 

TCP transport may make use of Nagle’s algorithm [15] which 

allows data to be buffered and transmitted together. This 

effect is shown in Fig. 6(d), where data packets smaller than 

the TCP buffer size (512B and 1KB in our case) are buffered 

and sent in bursts, resulting in the latencies being grouped in 

diamond-like clusters. However, the diamond effect is not 

observed with LOT, which exhibits steady behaviour and thus 

fulfills the determinism requirement for real-time systems 

without requiring Nagle’s algorithm to be disabled (i.e. via 

the TCP_NODELAY socket option). Buffering delays may 

have an adverse effect on hybrid communication mechanisms 

such as TZC [2] where one part of the message is transmitted 

through TCP and the other through shared memory. 

D. Multiple subscribers vs multiple publishers 

Fig. 7(b) and Fig. 5(a) compare the TCP latencies between 

two symmetric ROS graphs, 1p5s and 5p1s. The order of 

connection establishment has been enforced in both cases to 

interpret the results more easily. We repeat the analysis of the 

Fig. 7: We show the latency in the case of one publisher with five subscribers (1p5s) for various payload sizes in the case of (a) TCP transport with an 
undetermined connection order; (b) TCP transport, (c) our LOT transport and (d) TZC transport with enforced connection order. We note that while late 

TCP joiners incur higher latency of up to 7ms for 16MB, this latency is only 60us with LOT and 200us with TZC. 



  

two symmetric ROS graphs for LOT (Figs 7(c) and 5(b)) and 

TZC (Figs 7(d) and 5(c)). As expected, the TCP and TZC 

1p5s graph confirms the expected unfairness to late joiners. 

The 5p1s case, shown in Fig. 5(a), reveals an interesting fact: 

all the publishers treat the subscriber fairly, with no obvious 

periodicity pattern, except for 16MB Image size where delays 

in the order of seconds have been observed. The LOT and 

TZC counterparts, in Figs 5(b) and 5(c), display much smaller 

variation in latency of about 50us between publishers. 

However, the average absolute delay is 225us in the case of 

LOT, compared to 375us for TZC. 

Both the LOT and TZC 1p5s graphs in Fig. 7 show the same 

subscriber unfairness seen for TCP, but on a vastly smaller 

scale - tens of microseconds vs tens of milliseconds - with the 

LOT unfairness visibly smaller than that of TZC. We 

therefore conclude that the LOT plots show fairness 

regardless of the Image size and ROS graph. In addition to 

this the latencies are much smaller and so is their variance. 

E. Host vs Same vs Separate Container 

 Fig. 3 compares the latency incurred by a 1p1s graph in 

different execution environments. The TCP plots reveal a 

slightly bigger median latency of about 1-2 milliseconds 

when ROS nodes are run in separate Docker containers 

instead of within the same container. Completely removing 

the Docker abstraction results in better performance except 

for 2MB and 4MB Image sizes. The LOT plots reveal that the 

median latency is on average 220 microseconds regardless of 

the size of the Images as well as the execution environment. 

Furthermore, in this case the native OS environment is 

consistently better than the other two, whilst the same Docker 

container case outperforms that of nodes running in separate 

Docker environments. 

F. Pinned vs OS Processor Allocation 

On multi-processor machines with a Non-Uniform Memory 

Access (NUMA) architecture, performance is also influenced 

by the allocation by the OS of processes to physical processor 

cores in an attempt to balance the overall load. When the 

communicating processes happen to be executed on different 

NUMA nodes, additional hardware mechanisms are required 

to move data between memory banks [28] resulting not only 

in increased latency but also unpredictability. 

This may be avoided by fixing - pinning - processes to 

physical processors in the same NUMA node. Fig. 6(b) 

illustrates the effect of OS vs pinned processor allocation for 

the TCP case. While for payloads up to 32KB the pinned 

benchmarks outperform the free running ones by a couple of 

tens of microseconds, for larger payloads the discrepancy 

generally becomes more pronounced. For the LOT case in Fig 

6(c), the effect of pinning the processor allocation is much 

reduced. 

G. CPU Utilisation 

In this section we inspect the code of the above experiments 

by means of Intel's VTune Profiler [25] in order to verify our 

understanding of the system behaviour. For brevity, we select 

the most relevant results to include in this paper and make the 

full reports available - alongside our source code - via our 

public repo at github.com/fiveai/ros_comm. We run each 

experiment for the same duration of 60 seconds and with the 

same payload of 16MB to ensure a meaningful comparison. 

Fig. 8 compares the CPU activity for TCP and LOT 

transport protocols and demonstrates that the overall activity 

is far more intense and less effective in the former case, with 

tens of seconds spent copying Images multiple times. We also 

Case Spin Time 

(secs) 

Most active functions CPU time 

(secs) 

TCP 

1p1s 

26.40 send 

memcpy 

recv 

14.10 

13.44 

11.14 

LOT 

1p1s 

0.39 pthread_cond_timedwait 

pthread_mutex_unlock 

0.47 

0.26 

TCP 
1p5s 

78.34 recv 
memcpy 

send 

45.05 
43.37 

32.31 

LOT 

1p5s 

2.16 pthread_cond_timedwait 

pthread_mutex_unlock 

1.32 

0.51 

TCP 

5p1s 

103.15 send 

memcpy 

recv 

56.19 

48.26 

45.67 

LOT

5p1s 

2.63 pthread_cond_timedwait 

pthread_mutex_unlock 

pthread_cond_broadcast 

1.44 

0.65 

0.15 

Fig. 8: Activity timeline broken down per protocol and ROS graph 

demonstrating the utilisation of the twin processors. For clarity only 40 

samples have been selected in each plot. The Y axis denotes the utilisation 
level of the 56 cores. Percentages higher than 100% indicate the 

utilisation of more than one core. The CPU (blue) line denotes the 

cumulative utilization of the cores while the code has been executed. This 
includes the time used for spinning which is also depicted in red. Note the 

difference in vertical scale between the TCP and LOT cases, and that the 

CPU utilisation is significantly smaller in the LOT case. 

TABLE 1. SUMMARY OF HOTSPOTS 



  

measure time spent on network related kernel calls; these are 

shown in Table 1, which lists the most active functions in the 

system, as measured by spin time and CPU time. In contrast, 

in the LOT experiments, CPU activity is greatly reduced, 

demonstrating that LOT is able to move the same amount of 

data with far fewer CPU cycles and less contention. 

V. CONCLUSION AND FUTURE WORK 

In this work, we have proposed a serialisation-free, zero 

copy local IPC mechanism implemented using shared 

pointers stored in a shared memory segment accessed by 

several ROS nodes. Our work is informed by a careful review 

of local IPC mechanisms and the key software abstractions 

that influence their performance. We have evaluated our 

mechanism with a series of experiments informed by our 

experience of building a working runtime AV system. 

Compared to existing IPC mechanisms within ROS we 

have demonstrated that our proposed LOT mechanism is the 

fastest and the least disruptive in terms of determinism for our 

needs. Coordinated access to the shared memory regions has 

been accomplished by introducing higher level, shared 

memory compatible synchronisation primitives with well 

understood cost and consistent behaviour. In addition to this, 

we ported the STL’s smart pointers semantics to shared 

memory via Boost.Interprocess library and used them 

consistently to minimise the data copies and facilitate human 

reasoning. 

ROS2 uses the well established Data Distribution Service 

(DDS) standard [7] for local IPC, though DDS is bypassed for 

intra-process communication [8]. In future work, we plan to 

integrate our LOT mechanism with ROS2 and carry out a 

similar analysis, comparing it with the FastDDS shared 

memory transport of eProsima [13]. Further attention should 

also be paid to the case of shared memory management during 

system shutdown. 
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