
1

Abstract—Despite the stringent requirements of a real-time

system, the reliance of the Robot Operating System (ROS) on the

loopback network interface imposes a considerable overhead on

the transport of high bandwidth data, while the nodelet package,

which is an efficient mechanism for intra-process

communication, does not address the problem of efficient local

inter-process communication (IPC). To remedy this, we propose

a novel integration into ROS of smart pointers and

synchronisation primitives stored in shared memory. These obey

the same semantics and, more importantly, exhibit the same

performance as their C++ standard library counterparts,

making them preferable to other local IPC mechanisms. We

present a series of benchmarks for our mechanism - which we

call LOT (Low Overhead Transport) - and use them to assess its

performance on realistic data loads based on Five’s Autonomous

Vehicle (AV) system, and extend our analysis to the case where

multiple ROS nodes are running in Docker containers. We find

that our mechanism performs up to two orders of magnitude

better than the standard IPC via local loopback. Finally, we

apply industry-standard profiling techniques to explore the

hotspots of code running in both user and kernel space,

comparing our implementation against alternatives.

I. INTRODUCTION

Complex robotic systems typically rely on at least two
main layers of software: the operating system (OS), whose role
is to expose an interface through which the underlying
hardware is managed, and the middleware, which adds
services and capabilities to meet requirements of the
applications. Further layers of abstraction may exist in the
form of, for instance, software being run in containers using
Docker. As too many abstraction layers may hurt performance,
the challenge for developers is to find the right balance
between the amount of abstraction and the inherent overhead
and to tune the software at all levels.

The requirement on real-time robotic systems to be
deterministic in their behaviour [4] can only be honoured if the
communication - both in terms of throughput and latency -
between the system components is bounded and predictable.
This is particularly true for robots with sensors generating
large quantities of data or data at high frequencies.

Five's prototype autonomous vehicle (AV) shown in Fig. 1
is an example of such a system and provides the context and
initial motivation for this work. Its sensor set includes cameras
providing surround vision capability, multiple Lidars, an
industrial grade IMU, a GNSS localisation system and
surround radar. The AV software stack runs in a series of
Docker containers on a high performance computer. Large
quantities of data flow through this system, most of which
comes from a relatively small number of high-bandwidth

1 All authors are with Five AI Ltd, Bristol & Exeter House, Bristol BS1 6QS,

UK. Corresponding author: costin.iordache@five.ai

sensors operating at between 10Hz and 30Hz: principally the
cameras (which can contribute up to 300MB/s each), but also
Lidar and Radar (up to ~10 MB/s in aggregate). A number of
lower bandwidth sensors operate at higher sample rates but are
sensitive to latency, such as the GNSS receiver and IMU.

In this paper, we present a generally applicable approach
to optimising the communication between ROS nodes
deployed in separate OS processes on the same machine, such
as those which together form our software stack capable of
handling all the perception, planning and control systems of an
autonomous vehicle (AV) in real-time. We demonstrate that
the overhead of local inter-process communication can be
considerably reduced by combining Linux shared memory,
C++ smart pointers, and synchronisation primitives such as
mutexes and thread-safe queues, and propose a serialization-
free, zero-copy local IPC mechanism, that is both predictable
and reliable with much smaller communication overhead than
existing solutions.

As communication between ROS nodes depends on both the

OS and the underlying hardware, it is paramount to consider

the strengths and weaknesses of the software layers alongside

those of the hardware architecture. We describe the

background to this work in section II, in which we discuss

overheads first in Linux and then in ROS. Throughout this

section, we review relevant related work. We describe our

LOT mechanism in section III and present an analysis in

section IV. Finally, section V concludes the paper and offers

suggestions for future work.

Smart Pointers and Shared Memory Synchronisation for Efficient

Inter-process Communication in ROS on an Autonomous Vehicle

Costin Iordache1, Stephen M. Fendyke1, Mike J. Jones1, Robert A. Buckley1

Fig. 1: Our prototype autonomous vehicle development platform

includes cameras providing surround stereo vision capability, lidars, an

industrial grade IMU, a GNSS localisation system and surround radar.

II. BACKGROUND AND RELATED WORK

A. Overheads in Linux

The Linux kernel tracks the hardware and software

resources used by each user process, including their address

space and threads. The address space is a contiguous virtual

memory space assigned by the kernel to each user process,

and is divided into memory areas which can be dynamically

added and removed. Programs are loaded from the storage

medium into this address space and executed in user-space.

While user-space code cannot invade the kernel space or other

user processes, special system calls can be invoked to request

the kernel to act on behalf of the user process. Each kernel-

user space context switch, of course, requires extra CPU

cycles.

Threads represent the smallest runnable unit that the kernel

can schedule for execution and an abstraction that the

programmer can use to enable genuine parallelism on

multiprocessor machines. In Linux, threads are implemented

as processes sharing a common address space with other

sibling processes [18, 19]. This has the consequence that

context switches between threads belonging to different

processes incur extra cost because, in addition to swapping

the processor state, they require the process’ virtual address

space to be swapped too.

Communication between threads may thus be intra-process

or inter-process. Intra-process communication has less

overhead, being coordinated with highly efficient primitives

such as mutexes, semaphores and atomics. For the inter-

process case, several options exist. If the processes reside on

different machines then the kernel, the network stack and

network interface controller (NIC) must all be involved in the

data communication process. However, when processes are

hosted on the same machine they can communicate locally

through the network loopback interface, Unix domain sockets

(UDS) or shared memory, as well as by using synchronisation

primitives, pipes, files and signals, though not all these

mechanisms are conceptually suitable for real-time robotics

systems or give good performance. In the case of the loopback

interface mechanism, for instance, the communication

overhead becomes significant for data blocks larger than 64K

bytes as reported by Maruyama et al. [1]. To understand this,

we consider the architecture of the network stack and briefly

explore the path of data flow.

Conceptually the TCP/IP protocol suite comprises

application, transport, internet, link and physical layers [14,

15]. The transport layer exposes TCP and UDP sockets, which

act as endpoints for the transmission of data across the

network to processes which may be hosted either by the same

or a different machine. We note that data transmission

requires copying data from user to kernel space. From there

data is passed to the link layer which further copies it to the

physical layer by means of NIC driver calls. At the receiver,

the reverse operation takes place resulting in data being

copied from the NIC into kernel space, and then from kernel

to user space. Finally, at the application layer, data is copied

one more time into the user’s buffer by the tcp_recvmsg()

system call.

Before structured data can reach the transport layer to be

transmitted, either locally or remotely, it needs to be flattened

into a string of bytes at the sending end, a process known as

serialisation. At the receiving end the inverse process takes

place (deserialisation). These operations that are often

functionally equivalent to a data copy may occur multiple

times if there is more than one subscriber. For example, under

the above model, three copies of an 8MB Image may be

transmitted to the perception, object detection and persistence

modules of an AV stack.

In addition to the overhead incurred by copying data

multiple times, further performance degradation can be

caused by data fragmentation at the IP layer. The largest size

of IP datagram which can be transferred in one transaction is

defined by the maximum transmission unit (MTU), which is

typically up to 64KB [10, 11] for the loopback interface, and

1500 bytes for other interfaces. Packets larger than the MTU

are fragmented into multiple datagrams for transmission and

reassembled at the receiver.

These three processes - (de)serialisation, data copies

between user and kernel space and data fragmentation at the

IP layer - are the major sources of performance overhead as

data is moved through the network layers. Additional

overhead is then contributed by the physical layer when data

is transmitted between processes hosted by different

machines.

Efficient local data transport is also possible without using

the network stack, by leveraging other features of the OS. In

their performance evaluation of pipes, local sockets and

shared memory, for instance, Venkataraman et al. [16]

conclude that a shared memory mechanism is by far the most

effective, both in terms of latency and throughput, except for

data payloads smaller than 64KB where they found

performance to be comparable. Unix domain sockets (UDS)

facilitate local IPC by means of the OS kernel without using

the network stack and all the associated overhead that comes

with it: ACKs, encapsulation, flow control, routing, MTU and

context switches in network interrupt service routines [17].

We note that these overheads are incurred regardless of the

type of network interface being used, loopback or remote.

Zhang et al. [27] and Redis [26] report a significant

throughput improvement when switching from TCP/IP

loopback to UDS.

B. Overheads in ROS

The ROS framework [6] design encourages software to be

split into components, or ROS nodes, each in its own OS

process. Each ROS node communicates by publishing or

subscribing to any number of strongly typed, unidirectional

messaging channels known as topics. ROS is well-suited for

use in distributed systems with ROS nodes on multiple

compute nodes communicating over a network. Such systems

are attractive when operating in constrained environments,
providing good CPU performance where it is impractical to

deploy a single powerful computer for reasons of space,

power, or manufacturing cost. However, where such

constraints do not exist, all the ROS nodes in a system may

be run on a single machine. In this case, it is reasonable to

consider whether the overhead of moving data between nodes

could not be significantly smaller than in a distributed system

given the absence of the network as the facilitator of data

transmission. The ROS nodelet package [5] was introduced to

improve performance in this scenario. It allows several ROS

nodes to be run within a single OS process. However, this

strategy still leaves some unsolved problems in that the

implementation of the nodelet callback queue is not fully

optimised [24], and the use of multiple processes may be

required for other reasons, as in the case we discuss below.

The use of ROS nodelets for efficient intra-process

communication via shared pointers is also not possible in any

robotic system that makes use of Docker2 for containerisation,

running system components in separate containers.

Fujita [12] extends ROS, adding a new topic transport

protocol UDSROS which uses UDS (Unix domain sockets,

discussed in section III) in place of TCP loopback. Although

UDS shows some improvements over TCP sockets in terms

of latency and throughput, the implementation still incurs

overheads from message (de)serialisation and from copies

between user and kernel space.
Wang et al. [2] propose a hybrid approach which they term

TZC where large messages are split into two parts. A

lightweight descriptor is transmitted over a ROS topic in the

usual way, via TCPROS, while the main message payload is

placed in shared memory. TZC’s bespoke double reference

counted scheme relies on a double-linked list stored in shared

memory with reference counted nodes, and on Boost’s

shared_ptr to deliver the payload in the standard ROS way.

However, the reliance of TZC on TCP makes the approach

sensitive to the connection establishment order and is the

cause of unnecessary overhead compared to a standard

solution [3]. We also note that the lack of a reliable abstraction

to manage the lifetime of the message could cause a payload

to dangle, resulting in a memory leak if its descriptor is not

delivered.

Many robotic systems have relied since their inception on

ROS. For such use cases, this paper proposes a serialisation

free, zero copy local IPC mechanism via shared pointers

stored in memory segments shared by several ROS nodes, that

is one or two orders of magnitude faster than the standard

ROS mechanisms.

III. LOW OVERHEAD TRANSPORT (LOT)

In this section, we introduce our LOT mechanism, which

we show schematically in Fig. 2.

A. C++ Smart Pointers

The C++ standard library (STL) includes smart pointers

which “enable automatic, exception-safe, object lifetime

management” [21] with different types of ownership

semantics. In this paper, we are interested in the exclusive

(unique_ptr) and shared (shared_ptr) ownership semantics.

The unique_ptr’s performance and size are equivalent to

those of raw pointers, as described by Meyers [20]. The

shared_ptr encapsulates two raw pointers to keep track of the

resource and a control block. The control block is by default

allocated in the heap alongside the owned resource, and holds

housekeeping data such as the reference counter, weak

counter and (de)allocator [20]. Its size is typically a few bytes

and because it is allocated in tandem with the managed object,

the added overhead required by the extra allocation is close to

zero. Similarly, because atomic updates of the reference

counter are delegated to the hardware, the incurred runtime

overhead is negligible. The destruction of the managed

resource is accomplished via a virtual method whose dynamic

dispatch overhead is also tiny. We conclude that these modest

costs of smart pointers pale in comparison with the benefits,

i.e. automatic lifetime management of dynamically allocated

resources, preventing memory leaks.

B. Placing C++ Objects in Shared Memory

Sharing memory between several processes requires

mapping a memory segment from the OS into the address

space of each process requiring access. As the memory

segment gets mapped to a different virtual address range in

each process, subtle restrictions on C++ objects storing

pointers to other objects arise: the pointed-to objects must be

available in the same memory segment as their parent, while

processes consuming a pointer must map it into their own

address space before the first use. This makes raw pointers

and STL smart pointers unsuitable for shared memory. To

address this shortcoming, we use the offset_ptr from the

industry-standard Boost.Interprocess library which refines

the semantics such that pointers stored in objects placed in

shared memory denote a relative offset with respect to their

Fig. 2: LOTROS architecture

2 Docker is a containerisation platform in which each container hosts one
or more processes, and is run from an image built and tested ahead of time,

which contains all required runtime dependencies. This provides benefits

in terms of software development and reliable deployment.

parent object rather than an absolute address in the process

address space [22]. This additionally avoids impractical and

error-prone manipulation of raw pointers in shared memory.

Whilst offset_ptr allows the user to place pointers in shared

memory, we note that it cannot be used for objects with virtual

(polymorphic) functions, since the virtual dispatch

mechanism used to implement them is unaware of the

offset_ptr, being fixed in the C++ compiler implementation.

Although this limitation can be overcome [29, 30], no such

modification is required in our mechanism, as our ROS

messages are not dependent on virtual methods or other

compiler specific immutable features.

C. Integrating shared memory with ROS

In addition to using Boost.Interprocess to make ROS

messages shared memory compliant as described in the

previous section, inspired by Williams [23] we combine

shared memory compliant mutexes and condition variables to

create a generic, shared memory compliant queue -

ShmQueue - the purpose of which is to provide thread safe

access to the data it owns from multiple processes through a

standard interface with well defined behaviour. In this

context, thread safeness refers to the fact that multiple threads

- which may be in different processes - can access the data

owned by instances of ShmQueue such that the following

conditions are met concomitantly: (a) each thread sees a

consistent view of the data, (b) no data is lost or corrupted, (c)

no race conditions arise and (d) threads can perform the same

or distinct operations independently on the same or different

instances of the queue.

To accommodate communication through shared memory,

we have extended ROS’s transport protocols by adding our

LOT mechanism as LOTROS, under which ROS nodes rely

on the XMLRPC [24] protocol and OS sockets to establish

connections, and ShmEngine to transmit data. Each ROS node

incorporates one ShmEngine. The LOTROS protocol settings,

e.g. the names of ShmQueues, are exchanged via XMLRPC

during the connection setup. All ROS nodes using LOTROS

share a common memory segment with configurable size and

identified by a unique, well known string in the OS file

system; e.g. /dev/shm/LOTROS. When topics are advertised

by the publisher, the ShmEngine assigns one ShmPusher per

topic. When a node subscribes to a topic, a ShmQueue is

created by the corresponding topic's ShmPusher and its name

is returned to the subscriber. The subscriber, in turn, creates a

ShmPuller per publisher and topic the main job of which is to

spawn a thread, attach itself to the ShmQueue indicated by the

publisher and start waiting for incoming items on the queue.

Items may be of any shared memory compliant C++ type.

These include the ShmSharedPtr and ShmUniquePtr, two of

Fig. 3: Here we show the difference in latency between benchmark tests run natively on the same host,

run on the same host within the same Docker container and on the same host within separate Docker

containers for the cases of (a) TCP transport and (b) our LOT transport.

Fig. 4: Our execution environments consist of
OS, ROS and Docker software abstractions

which are combined as shown.

Fig. 5: Here we show the latency in the case of five publishers and a single subscriber (5p1s) in the cases of (a) TCP transport, (b) our LOT transport

and (c) TZC transport. In all cases, we enforce connection order. Note that in the TCP case, latency is sensitive to the image size with publishers being

treated fairly except in the 16MB payload case. For LOT and TZC, the latency is not sensitive to the image size and the gap between successive publishers

is around 40us, but the LOT average latency is 235us whilst that of TZC is 385us.

Same Host Same Docker Separate docker
1p

1s

5p

1s

1p

5s

Machine Docker Subscriber Publisher

the shared memory compliant smart pointers we have defined.

The ShmPuller also creates local private topics in order to

forward items popped from the ShmQueue to the ROS

subscriber using its standard interface. Unlike regular topics,

the scope of private topics is limited to the node that created

them, i.e. intra-process, and they are not publicly advertised.

ShmPuller combines private topics and ROS intra-process

message passing [24] by wrapping incoming items in

shared_ptrs and publishing them as though they originated

from another ROS node.

We note that the type of memory an object is allocated in

(shared memory or otherwise) is irrelevant to that object’s

layout in memory, with the consequence that object

serialisation - for instance, when message traffic on a ROS

topic is saved to disk in a so-called ROS bag - is not impacted

by our LOT data transport mechanism.

IV. EVALUATION

In this section we present the robustness, latency and

determinism characteristics of our LOT mechanism. We

describe the results from a set of experiments inspired by our

AV stack introduced in section I. Fig. 4 presents the execution

environments that have been considered, with ROS nodes

running in either same or separate Docker containers, or

directly in the same host OS. The execution environments

have been deployed on the computer described in section II.

Within these environments we considered ROS graphs with a

single publisher with a single subscriber (1p1s), a single

publisher with five subscribers (1p5s) and five publishers

with a single subscriber (5p1s). The ROS ecosystem does not

allow the graph nodes to be started up in a deterministic order

[9], so we built an ad-hoc system to enforce connection order

establishment with the purpose of making the experiment

results comparable. The end-to-end latencies are evaluated by

transferring either sensor_msgs::Images or lot_msgs::Images

with payload sizes ranging from 128B to 16MB. Each

experiment consists of broadcasting 2000 Images of fixed size

at 30Hz and is discussed in the following subsections. Unless

otherwise specified, ROS nodes have been executed in

separate Docker containers. For clarity in Figs. 3, 5, 6 and 7

we do not show payload sizes of 512B, 1KB, 2Kb, 4KB and

8KB for which results are consistent with those shown.

Furthermore, we refer to TCP/IP local IPC simply as TCP

unless otherwise specified.

A. UDP vs TCP vs UDS vs TZC vs LOT

Fig. 6(a) shows the distribution of latencies measured for a

graph with one publisher and one subscriber (1p1s). For TCP

and UDS transport mechanisms we see similar latency trends

with values ranging from 200us to 26ms. For payload sizes up

to 8KB the protocols exhibit a consistent performance pattern

- LOT, UDS, UDP, TCP, TZC - with LOT having the smallest

latency. The largest and smallest gap between median

latencies of consecutive protocols is around 100us and 5us,

respectively. For larger payloads, the protocol ranking

changes to LOT, TZC, UDS, TCP, UDP and the latencies of

TCP and UDS increase proportionally with the size of the

Fig. 6: We show the latency in the case of one publisher with one subscriber (1p1s) for various payload sizes. In (a) we present the UDP, TCP, UDS, LOT

and TZC transports. In (b) we show the effect of pinning to the same vs different processors for TCP transport and the same in (c) for our LOT transport;
note that pinning to the same processor core results in lower latency for TCP, especially for data larger than 32KB, only a tiny effect is observed in the

LOT case, which also shows a negligible latency difference between small and large data. Finally in (d) we show the behaviour of TCP in buffering small

data sending it in bursts and demonstrate the absence of this behaviour in the LOT case.

Image. This trend is also followed by UDP with the maximum

being attained for 8MB and 16MB Images where latencies of

up to 6 seconds have been observed. Furthermore, because

UDP provides no guarantees for message delivery, fewer than

2,000 Images reached the subscriber. By contrast, LOT

outperforms the other protocols except TZC by a few orders

of magnitude, both in terms of the median latency, which is

approximately 235us, and latency variance with Image size.

In particular, LOT outperforms UDS, TCP and UDP by one

order of magnitude for a 1MB payload, increasing to around

two orders of magnitude for 16MB payloads, and TZC by

approximately 57% - which corresponds to 170us - at all

 payload sizes.

B. Late Joiners incur Higher Latency

The boxplots in Fig. 7 show the latencies incurred in a 1p5s

graph. Figs. 7(a) and 7(b) show TCP with the connection

order undetermined and enforced, respectively. They reveal

two patterns. Firstly, as the Image size increases so does the

latency. By contrast, Fig. 7(c) shows that LOT is not sensitive

to the image size. Secondly, when the connection order is

enforced, it becomes apparent that the time it takes each

subscriber to receive a given Image depends not only on the

Image size but also how many subscribers have previously

established a connection with the publisher. The latter is also

observed for TZC in Fig. 7(d) where the connection order was

also enforced. We define this behaviour as the late subscribers

being treated unfairly. We also note that, in spite of the

unfairness pattern still being visible, the gap between the

median latencies of the most deprived and favoured siblings

is much smaller for LOT, e.g. 60 microseconds vs 7

milliseconds for 16MB TCP image payloads and 80

microseconds for TZC at all payload sizes.

We conclude that since LOT, TZC and TCP rely on items

being pushed and removed from queues - placed in shared

memory and/or kernel space - the unfairness pattern is present

in all cases (as expected), but with a negligible latency gap for

the LOT protocol.

C. TCP Buffering Delays Small Payloads

In order to minimise network traffic at the transport layer,

TCP transport may make use of Nagle’s algorithm [15] which

allows data to be buffered and transmitted together. This

effect is shown in Fig. 6(d), where data packets smaller than

the TCP buffer size (512B and 1KB in our case) are buffered

and sent in bursts, resulting in the latencies being grouped in

diamond-like clusters. However, the diamond effect is not

observed with LOT, which exhibits steady behaviour and thus

fulfills the determinism requirement for real-time systems

without requiring Nagle’s algorithm to be disabled (i.e. via

the TCP_NODELAY socket option). Buffering delays may

have an adverse effect on hybrid communication mechanisms

such as TZC [2] where one part of the message is transmitted

through TCP and the other through shared memory.

D. Multiple subscribers vs multiple publishers

Fig. 7(b) and Fig. 5(a) compare the TCP latencies between

two symmetric ROS graphs, 1p5s and 5p1s. The order of

connection establishment has been enforced in both cases to

interpret the results more easily. We repeat the analysis of the

Fig. 7: We show the latency in the case of one publisher with five subscribers (1p5s) for various payload sizes in the case of (a) TCP transport with an
undetermined connection order; (b) TCP transport, (c) our LOT transport and (d) TZC transport with enforced connection order. We note that while late

TCP joiners incur higher latency of up to 7ms for 16MB, this latency is only 60us with LOT and 200us with TZC.

two symmetric ROS graphs for LOT (Figs 7(c) and 5(b)) and

TZC (Figs 7(d) and 5(c)). As expected, the TCP and TZC

1p5s graph confirms the expected unfairness to late joiners.

The 5p1s case, shown in Fig. 5(a), reveals an interesting fact:

all the publishers treat the subscriber fairly, with no obvious

periodicity pattern, except for 16MB Image size where delays

in the order of seconds have been observed. The LOT and

TZC counterparts, in Figs 5(b) and 5(c), display much smaller

variation in latency of about 50us between publishers.

However, the average absolute delay is 225us in the case of

LOT, compared to 375us for TZC.

Both the LOT and TZC 1p5s graphs in Fig. 7 show the same

subscriber unfairness seen for TCP, but on a vastly smaller

scale - tens of microseconds vs tens of milliseconds - with the

LOT unfairness visibly smaller than that of TZC. We

therefore conclude that the LOT plots show fairness

regardless of the Image size and ROS graph. In addition to

this the latencies are much smaller and so is their variance.

E. Host vs Same vs Separate Container

 Fig. 3 compares the latency incurred by a 1p1s graph in

different execution environments. The TCP plots reveal a

slightly bigger median latency of about 1-2 milliseconds

when ROS nodes are run in separate Docker containers

instead of within the same container. Completely removing

the Docker abstraction results in better performance except

for 2MB and 4MB Image sizes. The LOT plots reveal that the

median latency is on average 220 microseconds regardless of

the size of the Images as well as the execution environment.

Furthermore, in this case the native OS environment is

consistently better than the other two, whilst the same Docker

container case outperforms that of nodes running in separate

Docker environments.

F. Pinned vs OS Processor Allocation

On multi-processor machines with a Non-Uniform Memory

Access (NUMA) architecture, performance is also influenced

by the allocation by the OS of processes to physical processor

cores in an attempt to balance the overall load. When the

communicating processes happen to be executed on different

NUMA nodes, additional hardware mechanisms are required

to move data between memory banks [28] resulting not only

in increased latency but also unpredictability.

This may be avoided by fixing - pinning - processes to

physical processors in the same NUMA node. Fig. 6(b)

illustrates the effect of OS vs pinned processor allocation for

the TCP case. While for payloads up to 32KB the pinned

benchmarks outperform the free running ones by a couple of

tens of microseconds, for larger payloads the discrepancy

generally becomes more pronounced. For the LOT case in Fig

6(c), the effect of pinning the processor allocation is much

reduced.

G. CPU Utilisation

In this section we inspect the code of the above experiments

by means of Intel's VTune Profiler [25] in order to verify our

understanding of the system behaviour. For brevity, we select

the most relevant results to include in this paper and make the

full reports available - alongside our source code - via our

public repo at github.com/fiveai/ros_comm. We run each

experiment for the same duration of 60 seconds and with the

same payload of 16MB to ensure a meaningful comparison.

Fig. 8 compares the CPU activity for TCP and LOT

transport protocols and demonstrates that the overall activity

is far more intense and less effective in the former case, with

tens of seconds spent copying Images multiple times. We also

Case Spin Time

(secs)

Most active functions CPU time

(secs)

TCP

1p1s

26.40 send

memcpy

recv

14.10

13.44

11.14

LOT

1p1s

0.39 pthread_cond_timedwait

pthread_mutex_unlock

0.47

0.26

TCP
1p5s

78.34 recv
memcpy

send

45.05
43.37

32.31

LOT

1p5s

2.16 pthread_cond_timedwait

pthread_mutex_unlock

1.32

0.51

TCP

5p1s

103.15 send

memcpy

recv

56.19

48.26

45.67

LOT

5p1s

2.63 pthread_cond_timedwait

pthread_mutex_unlock

pthread_cond_broadcast

1.44

0.65

0.15

Fig. 8: Activity timeline broken down per protocol and ROS graph

demonstrating the utilisation of the twin processors. For clarity only 40

samples have been selected in each plot. The Y axis denotes the utilisation
level of the 56 cores. Percentages higher than 100% indicate the

utilisation of more than one core. The CPU (blue) line denotes the

cumulative utilization of the cores while the code has been executed. This
includes the time used for spinning which is also depicted in red. Note the

difference in vertical scale between the TCP and LOT cases, and that the

CPU utilisation is significantly smaller in the LOT case.

TABLE 1. SUMMARY OF HOTSPOTS

measure time spent on network related kernel calls; these are

shown in Table 1, which lists the most active functions in the

system, as measured by spin time and CPU time. In contrast,

in the LOT experiments, CPU activity is greatly reduced,

demonstrating that LOT is able to move the same amount of

data with far fewer CPU cycles and less contention.

V. CONCLUSION AND FUTURE WORK

In this work, we have proposed a serialisation-free, zero

copy local IPC mechanism implemented using shared

pointers stored in a shared memory segment accessed by

several ROS nodes. Our work is informed by a careful review

of local IPC mechanisms and the key software abstractions

that influence their performance. We have evaluated our

mechanism with a series of experiments informed by our

experience of building a working runtime AV system.

Compared to existing IPC mechanisms within ROS we

have demonstrated that our proposed LOT mechanism is the

fastest and the least disruptive in terms of determinism for our

needs. Coordinated access to the shared memory regions has

been accomplished by introducing higher level, shared

memory compatible synchronisation primitives with well

understood cost and consistent behaviour. In addition to this,

we ported the STL’s smart pointers semantics to shared

memory via Boost.Interprocess library and used them

consistently to minimise the data copies and facilitate human

reasoning.

ROS2 uses the well established Data Distribution Service

(DDS) standard [7] for local IPC, though DDS is bypassed for

intra-process communication [8]. In future work, we plan to

integrate our LOT mechanism with ROS2 and carry out a

similar analysis, comparing it with the FastDDS shared

memory transport of eProsima [13]. Further attention should

also be paid to the case of shared memory management during

system shutdown.

 REFERENCES

[1] Y. Maruyama, S. Kato, T. Azumi, “Exploring the Performance of

ROS2”, Proceedings of the 13th International Conference on
Embedded Software, 2016, pp. 1-10.

[2] Y. Wang, W. Tan, X. Hu, D. Manocha, S. Hu, “TZC: Efficient Inter-

Process Communication for Robotics Middleware with Partial

Serialization”, 2019, International Conference on Intelligent Robots

and Systems.

[3] A. Soragna, J. Oxoby, D. Goel, “Intra-process Communications in

ROS2”, [Website].

https://design.ros2.org/articles/intraprocess_communications.html

[Accessed: Feb. 2021]

[4] J. Kay, “Introduction to Real-time Systems”, [Website]

https://design.ros2.org/articles/realtime_background.html [Accessed:

Feb. 2021]

[5] T. Foote, R. Bogdan Rusu, “Nodelet Package”, [Website]

http://wiki.ros.org/nodelet [Accessed: Feb. 2021]

[6] M. Quigley, K. Conley, Brian P Gerkey, J. Faust, “ROS: an open-

source Robot Operating System”, 2009, ICRA Workshop on Open

Source Software

[7] W. Woodall, “ROS on DDS”, [Website]

https://design.ros2.org/articles/ros_on_dds.html [Accessed: Feb. 2021]

[8] A. Soragna, J. Oxoby, D. Goel, “Intra-process Communications in

ROS 2”, [Website]

https://design.ros2.org/articles/intraprocess_communications.html
[Accessed: Feb. 2021]

[9] “ROS 2 Launch System, Deterministic Startup”, [Website]

https://design.ros2.org/articles/roslaunch.html#deterministic-startup

[Accessed: Feb. 2021]

[10] “Network Devices, the Kernel, and You!”, [Website]

https://www.kernel.org/doc/html/latest/networking/netdevices.html,

[Accessed: Feb. 2021]

[11] “Set default mtu to 64K”, [Website]

https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/comm
it/?id=0cf833aefaa85bbfce3ff70485e5534e09254773, [Accessed: Feb.

2021]

[12] T. Fujita, “Unix Domain Socket communication in ROS”,

https://roscon.ros.org/2018/presentations/ROSCon2018_Aibo.pdf,

2018, RosCon

[13] eProxima FastDDS, [Website] https://fast-

dds.docs.eprosima.com/en/latest/fastdds/transport/shared_memory/sha
red_memory.html [Accessed: Feb. 2021]

[14] A. K. Chimata, “Path of a packet in the Linux kernel stack”, 2005,

University of Kansas,
https://www.cs.dartmouth.edu/~sergey/netreads/path-of-

packet/Network_stack.pdf [Accessed: Feb. 2021]

[15] S. Seth, M. Ajaykumar Venkatesulu, “TCP⁄IP Architecture, Design,

and implementation in Linux”, 2009, ISBN: 978-0-470-37784-0

[16] A. Venkataraman, K. K. Jagadeesha, “Evaluation of Inter-Process

Communication Mechanisms”, 2015,

http://pages.cs.wisc.edu/~adityav/Evaluation_of_Inter_Process_Com
munication_Mechanisms.pdf

[17] R. Watson, “Unix domain sockets vs. internet sockets”, 2005,

https://lists.freebsd.org/pipermail/freebsd-performance/2005-
February/001143.html [Accessed: Feb. 2021]

[18] R. Love, “Linux Kernel Development” 3rd ed., 2010.

 ISBN-10: 0-672-32946-8

[19] R. Love, “Linux System Programming”, 2013,

 ISBN: 978-1-449- 34154-1

[20] S. Meyers, “Effective Modern C++”, 2014,

 ISBN: 978-1-491- 90399-5

[21] “Dynamic memory management”, [Website]

https://en.cppreference.com/w/cpp/memory [Accessed: Feb. 2021]

[22] Boost Interprocess, 2016, [Website]

https://www.boost.org/doc/libs/1_63_0/doc/html/interprocess.htm
[Accessed: Feb. 2021]

[23] A. Williams, “C++ Concurrency in Action”, 2012,

 ISBN: 978-1- 933988-77-1

[24] ROS Internals, Website: http://wiki.ros.org/roscpp/Internals

[25] Intel® VTune™ Profiler, [Website] https://software.intel.com/

content/www/us/en/develop/tools/oneapi/components/vtune-

profiler.html [Accessed: Feb. 2021]

[26] Redis Benchmark, Website: https://redis.io/topics/benchmarks

[Accessed: Feb. 2021]

[27] X. Zhang, S. McIntosh, P. Rohatgi, J. L. Griffin, “XenSocket: A High-

Throughput Interdomain Transport for Virtual Machines”,
ACM/IFIP/USENIX International Conference on Distributed Systems

Platforms and Open Distributed Processing, 2007, pp 184-203.

[28] Intel Corporation, 2011. “Optimizing Applications for NUMA”,

[Website]

https://software.intel.com/content/www/us/en/develop/articles/optimiz

ing-applications-for-numa.html [Accessed: Feb. 2021]

[29] Izzat El Hajj, Thomas B. Jablin, Dejan S. Milojicic, Wen-Mei W.

Hwu. SAVI objects: sharing and virtuality incorporated. Proc. ACM
Program. Lang. 1(OOPSLA): 45:1-45:24 (2017)

[30] Yu-Ping Wang, Xu-Qiang Hu, Zi-Xin Zou, Wende Tan, Gang Tan.

IVT: an efficient method for sharing subtype polymorphic objects.

Proc. ACM Program. Lang. 3(OOPSLA): 130:1-130:22 (2019)

