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Free-Will Arbitrary Time Consensus Protocols with
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and Hyo-Sung Ahn, Senior Member, IEEE

Abstract—In this technical note, we first clarify a technical
issue in the convergence proof of a free-will arbitrary time
(FwAT) consensus law proposed recently in Pal et al. IEEE
Trans. Cybern. (2020) [1], making the results questionable.
We then propose free-will arbitrary time consensus protocols
for multi-agent systems with first- and second-order dynamics,
respectively, and with (possibly switching) connected interaction
graphs. Under the proposed consensus laws, we show that an
average consensus is achieved in a free-will arbitrary prespecified
time. Further, the proposed consensus laws are distributed in
the sense that information is only communicated locally between
neighboring agents; unlike the average consensus in [1] that uses
a deformed Laplacian.

I. INTRODUCTION

Many problems involving multiagent systems (MASs), in-

cluding orientation localization [2], [3] and coordination con-

trol [4], [5], require the agents’ states to reach a consensus

within a finite time. Thus, finite-time control and estimation in

MASs have attracted tremendous research attention in recent

years [2], [6]–[9]. However, an upper bound, namely tf , of

the convergence time in finite-time (FT) consensus in general

depends on the initial conditions and other design parameters

[2], [6]–[9], which means that tf cannot be chosen freely.

Fixed-time (FxT) consensus schemes have been proposed in

[3], [10]–[12]. But, the bound of the settling time in fixed-

time control is still dependent on the design parameters and

hence cannot be assigned arbitrarily. Consensus laws with

prespecified convergence time using an auxiliary time-varying

gain are proposed in [5]. An extension of [5] to prespecified

time bearing-only formation control is given in [13]. Recently,

free-will arbitrary time (FwAT) consensus protocols, built

upon the results in [14], are presented in [1], [15]. In FwAT

consensus, the settling time is bounded by a preset finite time

tf , which does not depend on the initial condition nor any

system parameter. The settling time bound tf is explicitly

available in the designed consensus laws and can be pre-

specified arbitrarily [1], [15]. Furthermore, the design and

convergence analysis of FwAT consensus laws [1], [15] are

simpler than those in [5], [13]. However, existing works in

prespecified time consensus [1], [5], [15] have been proposed

for only first-order integrator dynamics.
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In this technical note, we first clarify a technical issue in the

convergence proof of a FwAT consensus protocol proposed re-

cently in [1], leaving the FwAT consensus result questionable.

Our objective is then to investigate FwAT consensus schemes

for systems of single- and double-integrator modeled agents,

respectively.

The specific contributions of this note are as follows. First, a

FwAT consensus law for systems of single-integrator modeled

agents is proposed to overcome the technical issue in [1].

Second, we devise a FwAT consensus scheme for multi-agent

systems with a more realistic dynamics of double-integrator,

which can approximately model multicopter drones, ground

vehicles, etc. In particular, we propose a FwAT tracking

control scheme to reduce the second order system to the first

order counterpart. We show that the agents’ states are bounded

during the transient time of the tracking error system. Third,

all the proposed FwAT consensus protocols are smooth and

distributed in the sense that information is only communicated

locally between neighboring agents; unlike the average con-

sensus in [1] that uses a deformed Laplacian. Fourth, the bound

of the convergence time of the proposed consensus schemes

is explicitly available and can be chosen arbitrarily regardless

of the initial condition or any other parameter. Finally, an

application to FwAT formation control of mobile agents is

presented and simulation results are also provided.

The remainder of this note is organized as follows. Prelim-

inaries are given in Section II. Sections III and IV propose

FwAT protocols for single- and double-integrator modeled

agents, respectively. An application to FwAT formation control

of mobile agents is presented in Section V. Section VI

concludes this note.

II. PRELIMINARIES

Notation: The set of nonnegative real number is R+. Let

R
n and R

n×m be the n-dimensional Euclidean space and

the n × m real matrix set, respectively. The vector of all

ones is 1n and the n × n identity matrix is In. For any

x = [x1, . . . , xn]
⊤ ∈ R

n, we define ex = [ex1 , . . . , exn ]⊤

and ln(x) = [ln(x1), . . . , ln(xn)]
⊤.

A. Graph theory

Let G = (V , E) be an undirected graph containing a node

set V = {1, . . . , n}, and an edge set E ⊂ V × V with the

cardinality |E| = m. If (i, j) ∈ E then agents i and j are

neighbors. The set of neighbors of agent i is denoted as Ni =
{j ∈ V : (i, j) ∈ E}. The Laplacian matrix L(G) = [lij ] ∈

http://arxiv.org/abs/2108.07150v1
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R
n×n associated with the graph G is defined as lij = −1 for

(i, j) ∈ E , i 6= j, lii = −∑

j∈Ni
lij , ∀i ∈ V , and lij = 0

otherwise.

For an undirected and connected graph G, the Laplacian

L(G) is symmetric, positive semidefinite with eigenvalues

being λ1 = 0 < λ2 ≤ . . . ≤ λn. In addition, the eigenvector

corresponding to the zero eigenvalue of L is 1n [16].

B. Fixed-time stability theory

Consider the following nonlinear dynamical system

ẋ = f(t,x,α), x(t0) = x0, (1)

where x ∈ R
n denotes the system state, α ∈ R

l contains

adjustable parameters of (1), and f : R+ × R
n → R

n is a

vector of nonlinear functions. Let x = 0 be an equilibrium

point of (1) and x(t,x0) the solution of (1) starting from an

initial state x0 ∈ R
n. We now have some definitions.

Definition 1. The origin of (1) is said to be

1) [8] Finite-time (FT) stable if it is asymptotic stable and

for any x0 ∈ R
n there exists 0 ≤ T (x0,α) < ∞, called

the settling time function, such that x(t,x0) = 0 for all

t ≥ t0 + T (x0,α).
2) [10] Fixed-time (FxT) stable if it is finite-time stable and

there exists Tmax(α) < ∞ independent of x0 such that

T (x0,α) ≤ Tmax(α).
3) [1] Free-will arbitrary time (FwAT) stable if it is fixed-

time stable and there exists 0 < Ta < ∞, which does not

depend on x0 nor α and can be arbitrarily prespecified,

such that T (x0,α) ≤ Ta.

The following lemmas are useful to study free-will arbitrary

stability of the origin of (1).

Lemma 1. [14, Thm. 1] Consider the nonlinear system (1)

and let D ⊆ R
n be a set containing the origin. Let β1(x)

and β2(x) be two continuous positive definite functions on D.

Assume that there exists a real-valued continuously differential

function V (t,x) : [t0, tf ) × D → R+ and a constant η > 1
such that

(i) β1(x) ≤ V (t,x) ≤ β2(x), ∀t ∈ [t0, tf )
(ii) V (t,0) = 0, ∀t ∈ [t0, tf )

(iii) V̇ (t,x) ≤ − η

tf − t

(

1− e−V (t,x)
)

, ∀x ∈ D, ∀t ∈ [t0, tf )

then the origin is FwAT stable and Ta = tf − t0 with tf being

an arbitrary prespecified time instant.

Lemma 2. [1] For any x, y ∈ R satisfying 0 < x ≤ y, there

holds

− x(1 − e−x) ≥ −y(1− e−y). (2)

Lemma 3. [1, Lem. 1] For any vector x ∈ R
n, the following

holds

− ||x||
(

1− e−||x||) ≥ −x⊤ (

1n − e−x
)

. (3)

III. CONSENSUS WITH FREE-WILL ARBITRARY

CONVERGENCE TIME

In this section, we first identify a technical issue in the

convergence analysis of the FwAT consensus protocol in

[1, Theorem 2], leaving the proof questionable. To remedy

the technical issue, we then modify the consensus protocol

and show that the multi-agent system achieves an average

consensus in an arbitrary prespecified time.

Consider a system of n agents with each agent i maintaining

a state scalar xi. Let x = [x1, . . . , xn]
⊤ ∈ R

n be the stacked

vector of the states of the n agents. We adopt the single-

integrator model for the dynamics of the agents as follows

ẋ = u, x(t0) = x0, (4)

where u ∈ R
n denotes the control input. We impose the

following assumption on the system graph.

Assumption 1. The graph G of the system is undirected and

connected.

In [1] a consensus protocol is proposed as

u =

{

− η
tf−t

[

In − e− diag(Lx)
]

1n, if t0 ≤ t < tf

0, otherwise
(5)

where η is a positive constant such that η > 1/λ2(L).

A. Comments on ”Free-will arbitrary time consensus for

multiagent systems” [1]

It is stated in [1, Theorem 2] that under Assumption 1

and consensus law (5), the agents achieve a consensus at an

arbitrary chosen time tf . The proof of [1, Theorem 2] relies

on the following inequality

λ2||x||2 ≤ x⊤Lx. (6)

This inequality is however not correct since the Laplacian

matrix L is only positive semidefinite. Indeed, by selecting

x = 1n and using the relation L1n = 0, one has

λ2||1n||2 = λ2n > 0 = 1⊤
nL1n,

which is a contradiction. If for any vector y ∈ R
n such that

y ⊥ null(L) = 1n we can only have a corresponding relation

λ2||y||2 ≤ y⊤Ly.

To achieve an average consensus, [1] proposes an alternative

consensus law in [1, Eq. (24)]. It is noted that the deformed

Laplacian used in the average consensus law [1, Eq. (24)]

is not for diffusive coupling. Moreover, the consensus law

requires that all agents know the average of their initial states

x∗ := 1⊤
nx(0)/n. This requirement is restrictive since x∗ is

not readily available to the agents and the initial state vector

x(0) might be initialized arbitrarily. The distributed nature

of the average consensus scheme [1, Eq. (24)] is therefore

questionable.

Motivated by the aforementioned observations, we propose

below a (distributed) average consensus scheme with free-will

arbitrary prespecified settling time.

B. Proposed Average Consensus Laws

We propose the following FwAT average consensus

u =

{

η
tf−t

Le−Lx, if t0 ≤ t < tf

0, otherwise,
(7)
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for a positive constant η > 1/λ2
2. It can be verified that

the preceding consensus law is modified from (5) by left-

multiplying by L on the right hand side of (5). Indeed, we

have that

− η
tf−t

L
(

In − e− diag(Lx)
)

1n

= − η
tf−t

(

L1n − Le− diag(Lx)1n

)

= η
tf−t

Le−Lx,

which is identical to (7). Furthermore, the control law for each

agent i in (7) is explicitly given as

ui =
η

tf−t

∑

j∈Ni

(

e
∑

j∈Ni
(xj−xi) − e

∑
k∈Nj

(xk−xj)
)

Thus, each agent i needs to communicate a sum of the relative

states zi :=
∑

j∈Ni
(xj − xi) to its neighbors. In many

coordination control scenarios related to multiagent systems,

the agents sense relative states, such as relative positions and

relative bearing vectors, to their neighbors. Each agent i then

simply broadcasts zi to its neighbors j ∈ Ni in order to carry

out (7).

Denote x̄ := 1⊤
nx(0)/n as the average of the agents’ initial

states. Let δi := xi − x̄ and δ := [δ1, . . . , δn]
⊤ = x− x̄1n. It

then follows that ẋ = δ̇, and Lδ = L(x − x̄1n) = Lx since

L1n = 0 due to Assumption 1. We study the convergence of

the proposed consensus protocol in the following subsection.

C. Convergence analysis

We note that the average of the agent states 1⊤
nx(t)/n along

the trajectory of (7) is time-invariant.

Lemma 4. Assume that Assumption 1 holds. Under the

consensus law (7), the average of the agent states 1⊤
nx(t)/n

is time-invariant.

Proof. Since 1⊤
nL = 0 we have that 1⊤

n ẋ = 0 along the

trajectory of (7). It follows that the average of the agent states

1⊤
nx(t)/n is time-invariant.

The dynamics of the error vector δ is given as

δ̇ =

{

− η
tf−t

L
(

1n − e−Lδ
)

, if t0 ≤ t < tf

0, otherwise
(8)

We can now prove the following result.

Theorem 1. Assume that Assumption 1 holds. Under the

consensus law (7) with η > 1/λ2
2, x(t) converges to 1nx̄

within the chosen settling time Ta = tf − t0.

Proof. Consider the Lyapunov function

V = δ⊤δ, (9)

which is positive definite and continuously differentiable in

t0 ≤ t < tf . The derivative of V along a trajectory of (8) is

given as

V̇ = 2δ⊤δ̇

= − 2η
tf−t

δ⊤L
(

1n − e−Lδ
)

= − 2η
tf−t

(Lδ)⊤
(

1n − e−Lδ
)

≤ − 2η
tf−t

||Lδ||
(

1− e−||Lδ||), (10)

where the third equality follows from the symmetry of Lapla-

cian matrix L⊤ = L due to the undirected nature of the graph,

and in the last inequality we have used Lemma 3.

Since 1⊤
nx(t) is time-invariant (Lemma 4) one has 1⊤

n δ =
1⊤
n (x−x̄1n) = 0 for all t ≥ 0. In other words, δ is orthogonal

to the eigenvector 1n corresponding to the zero eigenvalue of

L for all time t ≥ 0. Consequently, we have that

λ2(L)||δ||2 ≤ δ⊤Lδ
≤ ||δ||||Lδ||

⇔ λ2(L)
√
V ≤ ||Lδ||, (11)

where the second inequality follows from Holder’s inequality.

From the preceding inequality, Lemma 2 and (10), we obtain

V̇ ≤ − 2ηλ2

tf−t

√
V
(

1− e−λ2

√
V
)

. (12)

Let ξ := λ2

√
V . Then, one obtains

ξ̇ = λ2
V̇

2
√
V

≤ − ηλ2
2

tf−t
(1− e−ξ). (13)

If η > 1/λ2
2 it then follows from (13) and Lemma 1 that

ξ converges to zero within a free-will arbitrary settling time

Ta = (tf − t0) and so does V . As a result, δ = 0 or x = 1nx̄
for all t ≥ tf .

D. FwAT consensus under switching graph topologies

This subsection considers FwAT consensus of multiagent

systems under switching graphs. Let us assume that the graph

of the system is time-varying and is denoted by Gσ(t) =
(V , Eσ(t)) with Eσ(t) ⊂ V × V and σ(t) : R

+ → P =
{1, 2, . . . , ρ} being a piecewise constant switching signal.

It is assumed that there exists a sequence of time instants

{tk}, k ∈ Z
+ such that σ(t) is a constant for tk ≤ t < tk+1,

tk+1 − tk > τs > 0, ∀tk. We assume the following uniform

connectedness condition.

Assumption 2 (Uniform Connectedness). Each graph topol-

ogy Gk, ∀k ∈ P is undirected and connected.

As a result, the Laplacian Lσ(t) associated with the graph

Gσ(t) remains positive semidefinite with λ2(Lσ(t)) being

strictly positive, for all t ≥ t0. Let λ̄2 := min{λ2(Lσ)}σ∈P .

Then, for any δ ∈ R
n such that δ ⊥ 1n, the following holds

λ̄2||δ||2 ≤ δ⊤Lσ(t)δ, ∀t ≥ t0.

Thus, we obtain the following corollary whose proof can be

shown by following similar lines as in Proofs of Theorem 1.

Corollary 1. Consider the multi-agent system (4) with switch-

ing graph topologies Gσ(t) satisfying Assumption 2. Under the

consensus law 7 with η > 1/λ̄2
2, x(t) converges to 1nx̄ in fixed

time with the prespecified settling time Ta = tf − t0.

Since the consensus law is fixed time convergent and tf is

independent of the initial state, we may allow the graph to

be empty for some time interval [t1, t2] ⊂ [t0, tf ). That is

sometimes, all nodes may be disconnected from the network

for a short amount of time and then reconnected. The fixed-

time convergence property allows the consensus to be still

achieved at some time t ≤ tf .
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Fig. 1: FwAT consensus under switching graphs.

Example 1: Consider a system of four agents whose

communication graph switches every 0.5s between the three

graph topologies {Gσ}σ=1,2,3 given in Fig. 1a. The agents’

initial states are chosen in [0, 1]. Simulation results for FwAT

consensus of the agents under the FwAT consensus law (7)

with tf = 4s are given in Fig. 1b. We observe that the agents

achieve the average consensus within the chosen time tf .

IV. DOUBLE INTEGRATOR MODELED AGENTS

This section proposes a FwAT consensus protocol for sys-

tems of double-integrator modeled agents.

Consider the system of n agents whose dynamics is modeled

as the second order system

ẋ = v, v̇ = u, (14)

where v ∈ R
n denotes the velocity vector and u ∈ R

n is the

control vector. We consider the change of variable

z = v + φ1, (15)

where

−φ1 =
η

tf − t
Le−Lx

is the time-varying desired vector that we want the velocity

vector v ∈ R
n to track. A possible approach is first steering

v(t) to track −φ1(t) in a free will arbitrary prespecified time

t1 > 0 (t1 < tf ), and then treating (14) as the reduced single-

integrator model ẋ = −φ1 thereafter, provided that the system

state is bounded in t ∈ [t0, t1].

A. Proposed consensus law

To proceed, the time derivative of z is given as

ż = v̇ +
∂φ1

∂x
v +

∂φ1

∂t
(16)

= v̇ +
η

tf − t
Ldiag(e−Lx)Lv − η

(tf − t)2
Le−Lx. (17)

We design the control input as

u =











−∂φ1

∂x
v − ∂φ1

∂t
− η2

t1−t
(1n − e−z), if t0 ≤ t < t1

−∂φ1

∂x
v − ∂φ1

∂t
, if t1 ≤ t < tf

0, otherwise,
(18)

where 0 < t1 < tf and η2 > 1. From (17) and (18),

each agent i needs to communicate the sum of the relative

states
∑

j∈Ni
(xj − xi) and the sum of the relative velocities

∑

j∈Ni
(vj−vi) to its neighbors. Thus, the proposed consensus

law (18) for second order system (14) is distributed.

We can now state the main result of this section.

Theorem 2. Consider the system of double-integrator modeled

agents (14) with connected communication graph G. Under the

consensus law (18) with η > 1/λ2
2 and η2 > 1, v(t) → 0 and

x(t) converges to a consensus in fixed time with the settling

time Ta = tf − t0.

Proof. Let us consider the Lyapunov function

V2(z) = z⊤z. (19)

The derivative of V2 along the trajectory of (18) is given as

V̇2 = 2z⊤ż

= −2
η2

t1 − t
z⊤(1n − e−z)

(3)

≤ −2
η2

t1 − t
||z||(1 − e−||z||)

≤ −2
η2

t1 − t

√

V2(1− e−
√
V2).

Let ξ =
√
V 2 = ||z||. Then, one has

ξ̇ =
V̇2

2
√
V2

≤ − η

tf − t
(1 − e−ξ), (20)

which implies that z = 0 is FwAT stable (Lemma 1) or

equivalently v(t) = −φ1 for all time t ≥ t1. Further, the state

vector x(t) is bounded for all time t ∈ [t0, tf ] (see Lemma 7

below). Therefore, the system (14) is reduced to the following

single-integrator dynamics

ẋ =
η

tf − t
Le−Lx, ∀t ≥ t1, (21)

of which the average of the agents’ states at t = t1, namely

x̄ := 1⊤
nx(t1)/n, is FwAT stable if η > 1/λ2

2 (Theorem 1).

Since v(t) = −φ1 for all t ≥ t1, and φ1 → 0 as x → x̄, we

conclude that v → 0 at the same time as x → x̄.

For the sake of completeness, we clarify below that (18) is

smooth at t = t1, and investigate the system behavior during

the time interval [t0, t1] in the following subsection.

Lemma 5. For any η2 > 0, the FwAT consensus law (18) is

smooth at t = t1.

Proof. By (16) and (18) we have ż = ψ(t) := − η2

t1−t
(1n −

e−z) and hence z = ln(1n + c(t1 − t)η2), where c =
[c1, . . . , cn]

⊤ := (ez(t0) − 1n)/(t1 − t0)
η2 . Therefore, it can
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be verified that

ψ̇(t) =
∂ψ

∂z
ż+

∂ψ

∂t

= − η22
(t1 − t)2

diag(1n − e−z)(1n − e−z)

= −η22

[

c21(t1−t)2(η2−1)

(1+c1(t1−t)η2)2 , . . . ,
c2n(t1−t)2(η2−1)

(1+cn(t1−t)η2)2

]⊤
.

It follows that for any η2 > 1, ψ̇(t = t1) = 0. Consequently,

(18) is smooth at t = t1 since limt→t1−(d/dt)u(t) =
limt→t1+(d/dt)u(t).

B. Boundedness of the system state

Let us consider the following perturbed system

ẋ = −φ1(t,x) + z(t), t ∈ [t0, t1] (22)

with z(t) being a perturbed signal. The perturbed input z(t)
converges to zero in a free-will arbitrary prespecified time t1
(Theorem 2). Thus, ||z(t)|| is also absolutely integrable as the

area under the curve ||z(t)|| between t ∈ [t0, tf ] is finite, i.e.,
∫ t

t0
||z(τ)||dτ < ∞, ∀t ≥ 0.

Let P = (In − 1n1
⊤
n /n) be the orthogonal projection onto

span(1n)
⊥. Note that we can write x = Px + (In − P)x.

Thus, we bound these two components of x in what follows.

By left-multiplying by P on both sides of (22) and letting

x‖ = Px, we have

ẋ‖ =
η

tf − t
PLe−Lx +Pz(t)

=
η

tf − t
Le−Lx

‖

+Pz(t), (23)

where we have used the relations PL = LP = L. Note

importantly that 1⊤
n ẋ

‖ = 0 for all time t. Thus, we obtain

the following lemma whose proof is given in Appendix A.

Lemma 6. The average point x̄‖ :=
(

1⊤
nx

‖(t0)/n
)

1n of the

nominal system ẋ‖ = −φ1(t,x
‖) of (23) is free-will arbitrary

time stable, and the perturbed system (23) is input to state

stable w.r.t. the vanishing input Pz(t).

Let x⊥ := (In−P)x. Left-multiplying by (In−P) on both

sides of (22) yields

ẋ⊥ = (In −P)z, (24)

where we have used the relation (In−P)L = 1n1
⊤
nL/n = 0.

Then, it follows from the preceding equation that
∫ t

t0
ẋ⊥ = (In −P)

∫ t

t0
z(τ)dτ

x⊥(t)− x⊥(t0) = (In −P)
∫ t

t0
z(τ)dτ

⇔ ||x⊥(t)− x⊥(t0)|| ≤
∫ t

t0
||z(τ)||dτ < ∞.

It follows that x⊥(t) is bounded for all time t ∈ [t0, t1].
Thus, the following result is obtained directly from the above

analysis.

Lemma 7. Consider the system of double-integrator modeled

agents (14) with connected communication graph G. Under

the consensus law (18) with η > 1/λ2
2 and η2 > 1, the state

vector x(t) is bounded for all time t ∈ [t0, t1].

Example 2: An example of FwAT consensus of four agents

under (18) with η = η2 = 2, t1 = 3s and tf = 6s is given in

Fig. 2. The communication graph of the agents is a ring graph.

In the simulation, the states of the agents xi(0), i = 1, 2, 3, 4,
are initialized randomly in [0, 1] and vi(0), i = 1, 2, 3, 4, are

chosen randomly in [0, 0.5]. It is observed that the tracking

vector z = v + φ1 converges to zero within t1 = 3s and the

agent states achieve a consensus within the prespecified time

tf = 6s.

V. APPLICATION TO FWAT FORMATION CONTROL OF

MOBILE ROBOTS

In this section, we present an application of the proposed

free-will arbitrary time consensus scheme (18) in formation

control of mobile agents in the plane.

A. Two-wheeled mobile robots

The motion of each mobile robot at the kinematic level is

given as (see Fig. 3)

ṗi =

[

ẋi

ẏi

]

=

[

cos(θi)
sin(θi)

]

vi, θ̇i = ωi, (25)

where pi = [xi, yi]
⊤ denotes the coordinates of the robot i’s

center location, θi is the robot i’s heading angle, and vi and ωi

are respectively the linear and angular velocity of the robot.

The hand position (or tool position) hi ∈ R
2 (see Fig. 3) is

given as

hi =

[

hix

hiy

]

= pi +

[

cos(θi)
sin(θi)

]

Li, (26)

where Li is the distance from the hand location to the robot

i’s center point. The second derivative of hi can be obtained

as

ḧi =

[

cos(θi) −Li sin(θi)
sin(θi) Li cos(θi)

] [

v̇i
ω̇i

]

+ gi, (27)

where gi :=

[

− sin(θi)viωi − Li cos(θi)ω
2
i

cos(θi)viωi − Li sin(θi)ω
2
i

]

.

By using the following change of variable [4] and feedback

linearization
[

v̇i
ω̇i

]

=

[

cos(θi) sin(θi)
− 1

Li
sin(θi)

1
Li

cos(θi)

]

(ui − gi), (28)

where ui ∈ R
2 is to be designed, we obtain

ḧi = ui, (29)

which is in the form of (14).

B. Formation control protocol

Consider a system of four mobile robots in R
2 whose

local interaction is described by a ring graph G = (V =
{1, 2, 3, 4}, E = {(1, 2), (2, 3), (3, 4), (4, 1)}). The system

aims to form a square of side length of 1m, which is specified

by the set of desired displacements of the robots’ relative hand

positions {h∗
12 = h∗

42 = [1, 0]⊤,h∗
41 = h∗

32 = [0, 1]⊤}, where

h∗
ij = h∗

j − h∗
i . The robots start at rest and from locations

chosen in [0, 3]× [0, 3] (m). The initial heading angles of the

agents are θ1 = 0, θ2 = π/2, θ3 = π/3, and θ4 = π/6 (rad).
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Fig. 2: Consensus of four double-integrator modeled agents under (18) with η = η2 = 2, t1 = 3s and tf = 6s.

y

x

hi

Li

yi

xi

Fig. 3: A mobile robot in R
2.

Define u = [u⊤
1 ,u

⊤
2 ,u

⊤
3 ,u

⊤
4 ]

⊤, h = [h⊤
1 ,h

⊤
2 ,h

⊤
3 ,h

⊤
4 ]

⊤,

L̄ = L ⊗ I2, φ1 = − η
tf−t

L̄e−L̄(h−h
∗),

and z = ḣ+ φ1 with

ḣi =

[

cos(θi) − sin(θi)Li

sin(θi) cos(θi)Li

] [

vi
ωi

]

. (30)

Then, we design the control input as

u =











−∂φ1

∂h
ḣ− ∂φ1

∂t
− η2

t1−t
(1n − e−z), if t0 ≤ t < t1

−∂φ1

∂h
ḣ− ∂φ1

∂t
, if t1 ≤ t < tf

0, otherwise,
(31)

where the partial derivative terms are given as

∂φ1

∂h
=

η

tf − t
L̄diag(e−L̄x)L̄,

∂φ1

∂t
= − η

(tf − t)2
L̄e−L̄x.

Simulation results of formation control of four mobile

robots under the control law (31) with η = η2 = 2, t1 = 4s

and tf = 8s are provided in Fig. 4. A video of the simulation

can be found in https://youtu.be/rVPExz7qbGk. It can be seen

that the robots’ hand positions form a square within the

prespecified time tf = 8s.

VI. CONCLUSION

In this note, free-will arbitrary time consensus schemes were

presented for multiagent systems with both single- and double-

integrator modeled agents. The average consensus protocol for

systems of single-integrator modeled agents was introduced

to remedy the technical issues associated with the consensus

protocol in [1]. All the proposed consensus schemes possess

distributed nature which is favored in problems related to mul-

tiagent systems where only local communication and sensing

0.5 1 1.5 2 2.5 3 3.5 4 4.5
x (m)

0.5

1

1.5

2

2.5

3

3.5

4

y 
(m

)

1

1

2

2

3

3 4

4

0 1 2 3 4 5 6 7 8
Time (s)

0

5

Fig. 4: Formation control of four mobile robots under (31)

with η = η2 = 2, t1 = 4s and tf = 8s. Trajectories of the

robots (upper). Total displacement error (lower).

between neighboring agents are employed. Further, an appli-

cation of the proposed consensus scheme in FwAT formation

control of mobile agents is presented and simulation results

are also provided to validate the theoretical development.

APPENDIX A

PROOF OF LEMMA 6

The free-will arbitrary time stability of x̄‖ of the nominal

system ẋ‖ = −φ1(t,x
‖) follows from a similar argument as

in Theorem 1.

Let δ = x‖ − x̄‖; it follows that 1⊤
n δ = 0 along the tra-

jectory of (23). Thus, the derivative of the Lyapunov function

https://youtu.be/rVPExz7qbGk
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V = δ⊤δ is given as

V̇ = − 2η

tf − t
δ⊤L(1n − e−Lδ) + 2δ⊤Pz(t)

≤ − 2η

tf − t
||Lδ||(1n − e−||Lδ||) + 2||δ||||z(t)||, (32)

where the inequality follows from (3) and ||Pz(t)|| ≤ ||z(t)||.
Since 1⊤

n δ = 0 we have λ2(L)
√
V ≤ ||Lδ||. As a result, it

follows from (32) that

V̇ ≤ − 2η

tf − t
λ2

√
V (1 − e−λ2

√
V ) + 2

√
V ||z(t)||.

Now, let ξ = λ2

√
V ; one has

ξ̇ = λ2V̇ /(2
√
V )

≤ − ηλ2
2

tf − t
(1− e−ξ) + λ2||z(t)||.

≤ λ2||z(t)||.
From the comparison lemma [17], we have

ξ(t) ≤
∫ t

t0
||z(τ)||dτ + ξ(0) < ∞,

for all t ∈ [t0, t1]. This shows that V is bounded and so is

x‖(t) for all t ∈ [t0, t1]. Thus, the perturbed system (23) is

input to state stable w.r.t. the vanishing input z(t).
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