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Abstract

We look for the origins of the single equation, which is a peculiar combination of W-constrains, which
provides the non-abelian W-representation for generalized Kontsevich model (GKM), i.e. is enough to fix
the partition function unambiguously. Namely we compare it with the scalar projection of the matrix Ward
identity. It turns out that, though similar, the two equations do not coincide, moreover, the latter one is
non-polynomial in time-variables. This discrepancy disappears for the cubic model if partition function is
reduced to depend on odd times (belong to KdV sub-hierarchy of KP), but in general such reduction is
not enough. We consider the failure of such direct interpretation of the ”single equation” as a new kind of
anomaly, which should be explained and eliminated in the future analysis of GKM.

1 Introduction

This is going to be a rather technical paper, targeted at clarification of the long-standing puzzles of Gen-
eralized Kontsevich model (GKM) [1]– [8]. It is not fully successful, still it can attract attention to potentially
important aspects of the story. No doubt, at technical level these observations are well known to people who
worked with GKM, but we make an attempt to summarize them and promote to a more conceptual level. This
is needed because of the new accents introduced into the GKM theory quite recently, in [9] and [10]– [12], and
the need to explain the origins and the form of the ”single equation” [11] and the character expansion in terms
of Hall-Littlewood polynomials [9]. We do not achieve these goals in the present paper, but we try to better
explain the difficulties of one particularly promising suggestion from [12] – with the hope that it gains attention
and will be somehow resolved in the near future.

GKM [4] is an eigenvalue matrix model [6] with the partition function

ZV [L] =

∫

N×N

dXe−tr (V (X)+LX) =
etrMV ′(M)−V (M)

√

detV ′′(M)
· ZV {pk} := Zcl

V [M ] · ZV {pk} (1)

with V ′(M) = L, which depends on the matrix variable L and satisfies the obvious matrix-valued Ward
identity [2, 13]

{

V ′

(
∂

∂Ltr

)

− L

}

ZV [L] = 0 (2)

We further restrict attention to the monomial case, V (X) = Xr+1

r+1 and label Zr and Zr by integer r. Qualitatively
the properties of monomial GKM are well known [4, 6]:

1) the ”quantum” pieces Zr are KP τ -functions of the ”time variables” pk = trM−k (which are r-dependent
in terms of L, pk = trL−k/r),

2) they are independent of all pkr and belong to the r-reduction of KP [14],
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3) the shape of Zr{p} is independent of the size N of the matrix M , only the locus pk = trM−k where the
particular integral is actually defined, depends on N ,

4) the ”classical” pieces Zcl
r [M ] also can be expressed through pk, but their shapes do depend on N – this

was the reason why these formulas are not very popular, and we discuss them in a special section 2 below,
5) Ward identities (2) can be rewritten as an infinite set of W -constraints on Zr{pk} [4, 6, 14],

Ŵ
(i+1)
nr−r+i · Zr = 0, i = 1, . . . , r − 1, n ≥ 1 (3)

and, as established recently,
6) Zr has a peculiar non-Abelian W -representation [12,16], i.e. can be unambiguously described by a single

combination of W -constraints,

Single Equation (SE) :
r−1∑

i=1

(−)i
∑

n

pnr−r+iŴ
(i+1)
n−i−1 · Zr{p} = 0 (4)

nicknamed ”single equation” (SE) in what follows,
7) Zr possesses character expansion in terms of Hall-Littlewood polynomials [9].

While rather well established in the case of the ordinary cubic (r = 2) Kontsevich model [1], these issues
are quite difficult to address for r > 2. It is the purpose of this paper to make one more technical step in this
direction.

Namely, we study a scalar implication of matrix Gross-Newmann equation (2),

Main Equation (ME) : tr

(

M

{(
∂

∂Ltr

)r

− L

})

Zr[L] = 0 (5)

and the suggestion of [12] to use it as SE – a basic equation which provides Zr as a unique solution in the form
of the non-Abelian W -representation. In this paper we call it ”the main equation”, or just ME to simplify the
reference. In other words, the main question of the present paper is if

ME
?
= SE (6)

and, if not, what is the difference.
Substitution of a badly controlled system of matrix equations (2), which is believed to be equivalent to an

infinite set of W -constraints (3), by a single equation SE [11] is a big simplification – surprisingly this is possible
without a loss of information. However, to make it fully satisfactory, we need a maximally simple origin if this
SE – and ME would be just a dream. Unfortunately, as anticipated in [12], the story is not just so simple – and
details, though seemingly technical, are quite interesting. The fact that the simplest Ward identity ME is not
quite the same as SE, which controls the solution, is an interesting twist of the story and this is what we call
anomaly in the title of this paper:

SE = ME mod anomaly (7)

The actual calculation consists of three steps. First one needs to express matrix derivatives through eigen-
values, this is discussed in a separate section 3). Then one needs to act on the product Zr[L] = Zcl

r [M ] · Zr{p}
and convert the equation w.r.t. eigenvalues into the one for the ”quantum” Zr{p}, depending on time variables.
And afterwards one should interpret the results. We demonstrate that ”anomaly” has two origins. The first
is that the coefficients of the terms with derivatives over pkr are ugly and, actually, non-polynomial in time
variables. This can serve as a possible interpretation of the need for the r-reduction, i.e. the need for these
derivatives to vanish – what looks particularly convincing in the case of cubic (r = 2) model, when this is
the only manifestation of the anomaly. Unfortunately, for r > 2 the situation gets more obscure. The second
phenomenon is that for r > 2 this non-polynomiality shows up also in the coefficients of other derivatives – and
ME is not sufficient to explain the vanishing of these unwanted contributions. Of course, other constituents of
(3) should imply this nullification, but this brings us back to the complicated form of (3) and SE (4).
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2 Strong dependence on N : the classical piece of partition function

Usually in discussion of GKM we emphasize the remarkable property 3) from above list – that the essential
(”quantum”) part of partition function depends on the matrix size N only through the choice of the locus
{

pk = trM−k
}

– an N -dimensional non-linear subspace in the infinite-dimensional space of time-variables

{pk}. The shape of Z{pk} is, however, independent of N , and in this sense the N -dependence of Z{p} on N is
weak.

In this paper we switch the accent to another side of the story: to the ”classical” part of partition function,
which is much simpler, but depends on N much stronger – and this will have a serious impact on the Ward
identities (3) and (4), making their simplest treatment through the otherwise appealing ”main equation” (5)
less straightforward – if not totally meaningless.

For monomial potential V (M) = Mr+1

r+1 the classical part of partition function can also be easily expressed

through the time variables pk = trM−k, though expressions are a little lengthy. They are naturally written
through the Schur functions SR{p}, where R denotes the Young diagrams (for example, S[1] = p1, S[2] =
p2+p2

1

2 , S[1,1] =
−p2+p2

1

2 an so on). Most important, these formulas have strong and explicit dependence on N :

Zcl
r :=

etrMV ′(M)−V (M)

√

detV ′′(M)
=

e
r

r+1

∑N
i=1 µr+1

i

∏N
i=1 µ

r−1
2

i

∏N
i<j

µr
i
−µr

j

µi−µj

= (8)

=
S

(2N−1)(r−1)
2

[1,1,...,1]

S[(N−1)(r−1),...,2(r−1),r−1]
exp

(

r

r + 1

S[r+1,r+1,r+1,...,r+1] − S[r+1,...,r+1,r,1] + S[r+1,...,r+1,r,r,2] − . . .± S[r,r,...,r,r,N−1]

Sr+1
[1,1,...,1]

)
)

Two Young diagrams in Schur functions have N−1 columns, S[r + 1, r + 1, r + 1, . . . , r + 1
︸ ︷︷ ︸

N−1

] in the exponent and

S
[(N − 1)(r − 1), . . . , 2(r − 1), r − 1]
︸ ︷︷ ︸

N−1

in the denominator. All the rest have N columns: from S[r + 1, . . . , r + 1, r, 1]
︸ ︷︷ ︸

N

to S[r, . . . , r, r,N − 1
︸ ︷︷ ︸

N

] in the exponent and also S[1, . . . , 1
︸ ︷︷ ︸

N

] =
∏N

i=1 µ
−1
i . For N = 2 eq.(8) becomes just

e
r

r+1 (µ
r+1
1 +µr+1

2 )

(µ1µ2)
r−1
2

µr
1−µr

1

µ1−µ2

=
S

3(r−1)
2

[1,1]

S[r−1]
exp

(

r

r + 1

S[r+1] − S[r,1]

Sr+1
[1,1]

)

(9)

while for N = 3 and N = 4 it is

e
r

r+1 (µ
r+1
1 +µr+1

2 +µr+1
3 )

(µ1µ2µ3)
r−1
2

µr
1−µr

1

µ1−µ2

µr
1−µr

3

µ1−µ3

µr
2−µr

3

µ2−µ3

=
S

5(r−1)
2

[1,1,1]

S[r−1,2r−2]
exp

(

r

r + 1

S[r+1,r+1] − S[r+1,r,1] + S[r,r,2]

Sr+1
[1,1,1]

)

(10)

e
r

r+1
(µr+1

1 +µr+1
2 +µr+1

3 +µr+1
4 )

(µ1µ2µ3µ4)
r−1
2

µr
1−µr

1
µ1−µ2

µr
1−µr

3
µ1−µ3

µr
1−µr

4
µ1−µ4

µr
2−µr

3
µ2−µ3

µr
2−µr

4
µ2−µ4

µr
3−µr

4
µ3−µ4

=

=
S

7(r−1)
2

[1,1,1,1]

S[r−1,2r−2,3r−3]

exp




r

r + 1

S[r+1,r+1,r+1] − S[r+1,r+1,r,1] + S[r+1,r,r,2] − S[r,r,r,3]

Sr+1
[1,1,1,1]





As we will see, non-trivial Schur functions in the pre-exponent survive in the main equation (5) and make it
non-polynomial in time variables. The only case when this does not matter at all, is r = 1, which we will briefly
mention in section 4 below. In conventional cubic model at r = 2 the non-polynomiality can be eliminated by
r-reduction (from KP to KdV in this case) – this we will see in s.5. Starting from r = 3, however, the problem
(anomaly) is far more difficult to cure, and the corrected form of ME – and thus the simple derivation of SE –
still needs to be found.
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3 From matrices to eigenvalues

As already mentioned, GKM (1) is an eigenvalue model, the integral is reduced to eigenvalues of X and
the answer depends on the eigenvalues of L = M r. Still the reason for the special properties of GKM is that
originally it depends on the matrix variable, and the natural Ward identities [17]) are matrix-valued – given
by (2). Since they contain matrix derivatives, it is separate exercise to convert them to the eigenvalue form.

What we need are diagonal elements of ∂rZ[L]
∂Lr

tr
, evaluated at diagonal matrix L = diag(λi) = diag(µr

i ). They

do not arise from just a substitution of diagonal L into Z[L]. Still the answer is well known from perturbation
theory in quantum mechanics [18] (where one diagonalizes the Hamiltonian and obtains corrections to the wave
functions): according to [2],

(
∂rF

∂Lr
tr

)

ii

=
∑

j1,...,jr−1




∑

permutations of i,j1,...,jr−1

∂F
∂λi

∏r−1
s=1(λi − λjs)



 (11)

Note that λjs can coincide, also with λi – then one should apply the l’Hopitale rule, and this gives rise to more
sophisticated structures. In [19] a special technique was developed on this occasion. We, however, just work
with explicit formulas, without going into details of the derivations. In particular,

(
∂F

∂Ltr

)

ii

=
∂F

∂λi
,

(
∂2F

∂L2
tr

)

ii

=
∑

j

∂F
∂λi

− ∂F
∂λj

λi − λj
=
∑

j 6=i

∂F
∂λi

− ∂F
∂λj

λi − λj
+

∂2F

∂λ2
i

,

(
∂3F

∂L3
tr

)

ii

=
∑

j,k

∂F
∂λi

(λi − λj)(λi − λk)
+

∂F
∂λj

(λj − λi)(λj − λk)
+

∂F
∂λk

(λk − λi)(λk − λj)
=

=

N∑

k 6=j 6=i

(
∂F
∂λi

(λi − λj)(λi − λk)
+

∂F
∂λj

(λj − λi)(λj − λk)
+

∂F
∂λk

(λk − λi)(λk − λj)

)

−

N∑

j 6=i

∂F
∂λi

− ∂F
∂λj

(λi − λj)2
+

+

N∑

j 6=i

2∂2F
∂λ2

i

− ∂2F
∂λi∂λj

− ∂2F
∂λ2

j

λi − λj
+

∂3F

∂λ3
i

,

. . . (12)

For example, at N = 2, for a function F (λ1, λ2) :=F

(
L11+L22±

√
(L11−L22)2+4L12L21

2

)

one can explicitly check, that

{(
∂3F

∂  L3
tr

)

11

:=
∂3F

∂  L3
11

+ 2
∂3F

∂  L11∂L12∂L21
+

∂3F

∂  L12∂L21∂L22

}∣
∣
∣
∣
L=diag(λ1,λ2)

= −
F,1 − F,2

(λ1 − λ2)2
+

2F,11 − F,12 − F,22

λ1 − λ2
+ F1,1,1

in accordance with this general prescription.

4 A toy example at r = 1

This is a special case, where equation (2) has a ”wrong” power of ∂/∂L. It was used as a training example

in [2]. For Z{pk} = Z
{
∑N

i=1 λ
−k
i

}

we have:

N∑

i=1

(
∂2Z

∂L2
tr

)

ii

=

N∑

i6=j

∂Z
∂λi

− ∂Z
∂λj

λi − λj
+

N∑

i=1

∂2Z

∂λ2
i

=

∞∑

n=1

n+1∑

a=1

npapn+2−a
∂Z

∂pn
+

∞∑

n1,n2=1

n1n2pn1+n2+2
∂2Z

∂pn1∂pn2

=

=

∞∑

n=−1

pn+2

(
∑

(k + n)pk
∂Z

∂pk+n
+
∑

a+b=n

ab
∂2Z

∂papb

)

=

∞∑

n=1

pnL̂
(1)
n−2Z (13)

where

L̂(1)
n =

∞∑

k=1

(k + n)pk
∂Z

∂pk+n
+
∑

a+b=n

ab
∂2Z

∂papb
(14)
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and superscript label (1) refers to r = 1. This is the ordinary Virasoro operator, which defines Virasoro
constraints in Hermitian matrix model, and it appears here because this model can be also treated as GKM
with additional insertion of a power of detX in the integral, what causes also an increase of r by one [6, 20].

5 Original cubic (r = 2) Kontsevich model

5.1 Implication from the known Z2

We now proceed to the study of the true main equation (5), beginning from the first case of cubic Kontsevich
model. What we need is to substitute

Z2 =

Zcl
2

︷ ︸︸ ︷

e
2
3

∑
µ3
i

√∏

i µi

∏

i<j(µi + µj)
·Z2{pk} (15)

into (5):

1

Zcl
2

N∑

i=1

√

λi

(

(∂2Z2/∂L
2
tr)ii

︷ ︸︸ ︷

∂2Z2

∂λ2
i

+

N∑

j 6=i

∂Z2

∂λi
− ∂Z2

∂λj

λi − λj
−λiZ2

)

=

N∑

i=1

√

λi




∂2Z2

∂λ2
i

+

N∑

j 6=i

∂Z2

∂λi
− ∂Z2

∂λj

λi − λj



+

+

N∑

i=1

√

λi




∂2 logZcl

2

∂λ2
i

+

(
∂ logZcl

2

∂λi

)2

+
∑

j 6=i

∂ logZcl
2

∂λi
−

∂ logZcl
2

∂λj

λi − λj
− λi



Z2 + 2

N∑

i=1

√

λi
∂ logZcl

2

∂λi

∂Z2

∂λi
(16)

First of all we can substitute the known series for Z2{pk} (last time cited in the Appendix to [12]),

Z2{pk} = 1 +

(
p2p

2
1

6
+

p4
36

)

+

(
13

216
p4p2p

2
1 +

13

2592
p24 −

1

216
p42 +

1

72
p22p

4
1 +

1

27
p5p

3
1 +

1

27
p7p1

)

+ . . . (17)

and we expect to get zero. It is instructive to see how this really works. If we substitute instead of Z2 just 1 –

the first term in the series,– we get a polynomial of grading 3:
p3+4p3

1

16 , if 1 +
(

p2p
2
1

6 + p4

36

)

, then a polynomial of

grading 6 and so on: the more gradings we include into Z2{p}, the higher is the grading of (21): if gradings up
to 3m are included into Z2{p}, then (21) is of grading 3(m+ 1). Thus we obtain zero for (21) in the sense that
every particular grading vanishes is we include appropriately many terms into Z2{p}. Also at every stage the
answer is not just of definite grading, it is actually a polynomial in time variables.

One can wonder, what happens to S[1] factor in (9) – why does not it produce non-polynomial contributions?

It turns out to be a rather delicate adjustment. Already the quadratic singularity S−2
[1] = (µ1 +µ2)−2 drops out

from the sum
∑

i µi
∂2(µ1+µ2)

α

∂λ2
i

because of the peculiar property µ1

µ2
1

+ µ2

µ2
2
∼ µ1 + µ2. The linear singularity is

even more miraculous: potentially relevant terms in (9) are

∑

i

µi







∂2 log 1
S[1]

∂λ2
i

+









∂

(

log
S

3β
2

[1,1]

S[1]
+

2α(S[3]−S[2,1])

3S3
[1,1]

)

∂λi









2

+ γ
∑

j 6=i

∂ log 1
S[1]

∂λi
−

∂ log 1
S[1]

∂λj

λi − λj







(18)

and the term 1
µ1+µ2

is independent of α, but depends in β. It vanishes when γ = 3β − 2, what includes the
true values β = γ = 1, but clearly demonstrates the delicate balance between various contributions. Therefore
it is not surprising that thus balance will be often violated – the surprise is that it continues to hold (anomaly
is lacking) for r = 2 for arbitrary N , and also for the coefficients of odd derivatives ∂Z

∂p2n+1
– as we will explain

in the next sections.
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5.2 r = 2, all times

The next exercise is to convert (21) into an equation for Z2{pk}, similar to what we considered above in s.4.
Assume first that Z2{pk} depends on all the time-variables pk. Then, once again substituting (15) into (21) we
get:

0
(5)
=

1

Zcl
2

N∑

i=1

√

λi

(

(∂2Z2/∂L
2
tr)ii

︷ ︸︸ ︷

∂2Z2

∂λ2
i

+

N∑

j 6=i

∂Z2

∂λi
− ∂Z2

∂λj

λi − λj
−λiZ2

)

= (19)

=
1

4

∞∑

n1,n2=1

n1n2pn1+n2+3
∂2Z

∂pn1∂pn2

+

∞∑

n=1

n



−pn +
1

2

n−1
2 +2
∑

a=1

p2a−1pn+4−2a + ξ(N)
n ·

frac
(
n−1
2

)

2




∂Z

∂pn
+

p3 + 4p31
16

Z

The last term is of course the same as we got from substitution of 1 into (21). However, with the first derivatives
of Z there is a trouble (underlined): for derivatives w.r.t. even p2k the coefficients are not polynomial in p.
Moreover, they depend on N , with somewhat sophisticated self-consistency/reduction relations between different
N . In terms of Schur functions SR

ξ(2)n =
pn+4 + (p21 − p2)pn+2

p1
=

S[n+4] + 2S[n+3,1] − 3S[n+2,2]

S[1]

ξ(3)n =
S[n+5,1] + 2S[n+4,2] + 2S[n+4,1,1] − 3S[n+3,3] − S[n+2,3,1] − 2S[n+2,2,2] + 5S[n+1,3,2]

2S[2,1]

ξ
(4)
n =

S[n+6,2,1] + 2S[n+5,3,1] + 2S[n+5,2,2] + 2S[n+5,2,1,1] − 3S[n+4,4,1] − 2S[n+3,4,2] − 2S[n+3,3,3] − 2S[n+3,2,2,2] − 2S[n+3,4,1,1] + 5S[n+2,4,3]

S[3,2,1]

+

+
1

S[3,2,1]

·







9S[n+1,3,3,2] for n = 2

2S[n+1,3,3,2] + 2S[n+1,4,3,1] + 2S[n+1,4,2,2] − 7S[n,4,3,2] for n ≥ 4

. . . (20)

i.e. denominator is equal to S[N−1,...,3,2,1].
This problem of non-polynomiality is cured (the underlined terms are absent) in the action on functions

Z2{p1, p3, p5, . . .}, which depend only on odd times p2k−1.

5.3 r = 2, odd times = cubic Kontsevich model

Assume now that Z{pk} depends on all the odd time-variables p2k−1. Then the terms with ξ(N) drop out
of (19) and we get a differential equation for Z − 2{p} with polynomial coefficients in p:

0
(5)
=

N∑

i=1

λ
1/r
i

(

(∂2Z/∂L2
tr)ii

︷ ︸︸ ︷

N∑

j 6=i

∂Z
∂λi

− ∂Z
∂λj

λi − λj
+

∂2Z

∂λ2
i

−λiZ
)

=

=
1

4

∞∑

n1,n2=1

(2n1 − 1)(2n2 − 1)p2n1+2n2+1
∂2Z

∂p2n1−1∂p2n2−1
+

∞∑

n=1

(2n− 1)

(

−p2n−1 +
1

2

n∑

a=1

p2a−1p2n+3−2a

)

∂Z

∂p2n−1
+

p3 + 4p31
16

Z =

= −l̂0Z +

∞∑

n=1

p2n−1L̂
(2)
n−2Z (21)

where

L̂(2)
n =

1

4
δn,0 +

p21
16

δn,−1 +
1

2

∞∑

k=1

(2k + 2n− 1)p2k−1
∂

∂p2k+2n−1
+

1

4

∑

a+b=2n

(2a− 1)(2b− 1)
∂2

∂p2a−1∂p2b−1
(22)
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and the grading-counting operator

l̂0 =

∞∑

n=1

(2n− 1)p2n−1
∂

∂p2n−1
(23)

Note that elimination of derivatives ∂Z
∂p2k

automatically eliminates all even times p2k from the coefficients of

(21): for r = 2 the r-reduction is necessary and sufficient for ME to reproduce SE.

6 The first non-standard case: quartic model r + 1 = 4

6.1 Solution to projected Ward identity

Now we can repeat all the same steps in the first non-trivial case of quartic GKM with r = 3. We will see
that the non-polynomiality gets now even more pronounced.

In terms of µ-variables (λi = µr
i ) the main equation in this case looks as follows:

N∑

i=1

λ
1/3
i







N∑

k 6=j 6=i

(
∂Z
∂λi

(λi − λj)(λi − λk)
+

∂Z
∂λj

(λj − λi)(λj − λk)
+

∂Z
∂λk

(λk − λi)(λk − λj)

)

+

+

N∑

j 6=i



−

∂Z
∂λi

− ∂Z
∂λj

(λi − λj)2
+

2∂2Z
∂λ2

i

− ∂2Z
∂λi∂λj

− ∂2Z
∂λ2

j

λi − λj



+
∂3Z

∂λ3
i

− λiZ







(5)
= 0 (24)

Conversion to µ-variables (λ = µr
i ) is easy: ∂

∂λi
= 1

rµr−1
j

∂
∂µi

. For r > 3 denominators get larger and degenerations

provide higher derivatives of Z.
The next step is to substitute

Z3 =
e

3
4 trM

4

√

det (M2 ⊗ 1 + M ⊗M + 1 ⊗M2)
· Z3{pk} =

e
3
4

∑
i
µ4
i

∏

i µi

∏

i<j(µ
2
i + µiµj + µ2

j)
· Z3{pk} (25)

and obtain an equation ME (5) for Z3 with time-derivatives instead of the µ-ones.
Then we can compare it to SE (4), which in the case of r = 3 involves two operators [12]:

Ŵ (2)
n =

1

3

∞∑

k=1

(k + 3n)Pk
∂

∂pk+3n
+

1

6

∑

a+b=3n

ab
∂2

∂pa∂pb
+

p1p2
3

δn,−1 +
1

9
δn,0 (26)

Ŵ
(3)
n =

1

9

∞∑

k,l=1

(k + l+ 3n)PkPl
∂

∂pk+l+3n
+

1

9

∞∑

k=1

∑

a+b=k+3n

abPk
∂2

∂pa∂pb
+

1

27

∑

a+b+c=3n

abc
∂3

∂pa∂pb∂pc
+

1

27

∑

a+b+c=−3n

PaPbPc

with Pk = pk − 3δk,4 and a, b, c, k, l not divisible by 3. Note that the sums are restricted more than it would

follow from omission of derivatives w.r.t. p3k, for example, there are no terms ∂3

∂p2
1∂p2

and ∂3

∂p1∂p2
2

in Ŵ (3), only

∂3

∂p3
1

and ∂3

∂p3
2
. This will be one of the apparent differences from the ME, which contains third derivatives of all

the four kinds.

6.2 Non-trivial denominators

The other striking difference will be non-polynomiality. In fact, one can observe it at the very early stage.
For r > 2 it is enough to look at the derivative-free term in ME. Namely, if Z3 = 1 the l.h.s. of (24) is
non-vanishing, but contains contributions of just two (r− 1) gradings: −4 and 0. In the simplest case of N = 2

Z = 1
(24)
=⇒

7S[4] + 5S[3,1]

9
−

4
(
7S[10] + 7S[9,1] + 10S[8,2]

)

27S[2]
(27)

The first is polynomial in times, the second is not. In other words we observe the same phenomenon as in (19),
but now it is present already for the item Z, without derivatives.
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Adding appropriate p-dependent pieces to Z3{p} [12] preserves the pattern – just shifts it to higher and
higher gradings:

Z = 1 +

(
p4

36
+

p2p
2
1

6

)

=⇒
35p4

(
11S[4] + 13S[3,1]

)

324
−

35
(
32S[13,1] + 38S[12,2] + S[2](22S[12] − 22S[11,1] + 35S[9,3] − 36S[8,4] + 35S[6,6])

)

243S[2]

and so on. For generic N denominator becomes S[2N−2,...,6,4,2]:

Z3 = 1
(24)
=⇒

p4+6p2p21
9

︷ ︸︸ ︷

7S[4] + 5S[3,1] − 5S[2,1,1] − 7S[1,1,1,1]

9
− (28)

−







4

(

7S[10]+7S[9,1]+10S[8,2]

)

27S[2]
= 1

27

(

(p2 + p21)(4p
3
2 + 21p22p

2
1 − 12p2p41 + p61)−

12p[2]S4
[1,1]

S[2]

)

N = 2

1
27S[4,2]

(

28S[12,2] + 28S[11,3] + 28S[11,2,1] + 40S[10,4] + 18S[10,3,1] + 40S[10,2,2] + 30S[9,4,1] + 30S[9,3,2]−

−16S[8,5,1] + 42S[8,4,2] − 16S[8,3,3] + 3S[7,6,1] − 13S[7,5,2] − 22S[7,4,3] + 3S[6,6,2] − 19S[6,5,3] − 6S[6,4,4] + 12S[5,5,4]

)

N = 3

1
27S[6,4,2]

(

. . .
)

N = 4

. . .

While the first polynomial piece is stabilized and does not vary anymore for N > r, the shape of non-polynomial
terms is not stable – it varies with N .

Building up the true Z3{p} results into the shift of the two non-vanishing pieces to infinite gradings p∞, p∞

– and in this sense the answer, understood as the contributions at every particular grading, gets vanishing.
The moral is that now the non-polynomiality is less related to r-reduction: a function can be independent

of prk (like Z3 = 1), still (24) does not convert it into a polynomial – non-trivial denominators occur. However,
the proper Z3{p} is converted to zero. Together with occurrence of the underlined term in (27) this implies that
at least some terms in the main equation with derivatives of Z3{pk} w.r.t. pk should be non-polynomial, even if
k is not divisible by r. Since such non-polynomiality does not appear in the highest-derivative terms ∂rZr

∂pi1 ...∂pir
,

the natural guess after that is that these additional terms are made from the lower W -constraints, i.e. from the
complements of the main equation (5) – the other corollaries of the matrix Ward identity (2).

6.3 ME for r = 3, all times

As we already know from the previous subsection, there will be problems with relating SE to ME. In addition
to the two nice terms at the r.h.s. of

0
(5)
=

N∑

i=1

λ
1/r
i

(

(∂3Z/∂L3
tr)ii

︷ ︸︸ ︷

N∑

k 6=j 6=i

∂Z
∂λi

(λi − λj)(λi − λk)
−

N∑

j 6=i

∂2Z
∂λ2

i

λi − λj
+

∂3Z

∂λ3
i

− λiZ
)

=

=
1

27

∞∑

n1,n2,n3=1

n1n2n3pn1+n2+n3+8
∂3Z

∂pn1∂pn2∂pn3

+
1

3

∞∑

n1,n2

n1n2pn1+n2+4
∂2Z

∂pn1∂pn2

+ . . . (29)

the non-polynomial terms will appear, which depend on N . In the simplest case of N = 2 the full expression is:
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0
(5)
= −

∞∑

n1,n2,n3=1

n1n2n3pn1+n2+n3+8

27

∂3Z

∂pn1∂pn2∂pn3

+

+
∞∑

n1,n2=1

n1n2

(
pn1+n2+4

3
−

(n1 + n2 + 8)pn1+n2+8

18
−

2pn1+n2+6S[1,1] + 4pn1+n2+4S[2,2] + 2pn1+n2S[4,4] + 4pn1+n2−2S[5,5]

18
+

+
S7
[1,1]

·
(
S[n1+n2−4] + 2S[n1+n2−5,1] + S[n1−2,n2−2]

)
− S([1,1])n2+5

2
p1S[n1−n2−1] + S6

[1,1]
S[n1−1]δn2,1

9S[2]

−

−
2S7

[1,1]
·
(
δn1,3δn2,1 + δn1,2δn2,2

)
+ S6

[1,1]

(
2p1δn1,2 + δn1,1

)
δn2,1

9S[2]

)

∂2Z

∂pn1∂pn2

+

+
∑

n

n

(
(n+ 4)

(
S[n+6] − S[n+3,2]

)
+ 3
(
S[n+5,1] + S[n+4,2]

)

3S[2]

−

−
(n2 + 12n+ 39)S[n+10] + 3(n + 7)S[n+9,1] + 6(n+ 6)S[n+8,2] − (n2 + 12n+ 27)S[n+7,3] − 3(1− δn,1)S[n+4,6]

27S[2]

)

∂Z

∂pn
−

−npn
∂Z

∂pn
+

(
7S[4] + 5S[3,1]

9
−

4
(
7S[10] + 7S[9,1] + 10S[8,2]

)

27S[2]

)

Z

6.4 ME versus SE

This should be compared to the operator in (4), which after substitution of (3) becomes

−
∑

a+b+c=3n−9

abcpa+b+c+8

27

∂3Z

∂pa∂pb∂pc
+

(

1

3

∑

a+b=3n−5

+
1

6

∑

a+b=3n−6

)

abpa+b+4
∂2Z

∂pa∂pb
−

∑

a+b=3n−1

abpkpa+b−k+8

9

∂2Z

∂pa∂pb
+

+
2

3
p3n−1(k + 3n− 5)pk

∂Z

∂pk+3n−5
+

1

3
p3n−2(k + 3n− 6)pk

∂Z

∂pk+3n−6
−

1

9
p3n−1(k + l + 3n− 9)pkpl

∂Z

∂pk+l+3n−9
−

−npn
∂Z

∂pn
+

(
p4 + 6p2p

2
1

9
−

p5p
3
1 + 3p4p2p

2
1 + p42

27

)

Z
(4)
= 0 (30)

Like it was for r = 2, in (29) there are items with the derivatives ∂/∂p3k, which are absent in (30). They
can be eliminated by asking Z3 to belong to the 3-reduction – exactly like it happened in the previous section
for r = 2. This is the positive part of the story: cancellation of anomaly requires the r-reduction. But
is the r-reduction sufficient for deriving SE from ME?

Unfortunately, the answer is ”no”: now there are a few more striking differences between (29) and (30), e.g.
i) already in (29) there are items with p3k in the sums, which are absent in (30),
ii) the full expression at the r.h.s. of (29) contains non-polynomial terms with denominators S[...,2],
iii) terms like ∂3

112Z, ∂3
122Z and ∂2

11Z, ∂2
22Z are present already in (29), while only ∂3

111Z, ∂3
222Z and ∂2

12Z
are allowed in (30).

These are the qualitative deviations, as to the quantitative details of the two formulas, they look even
more different. Still both are true. The only way out of this apparent discrepancy is that the anomalous

difference between the two formulas is made from some other W -constraints (3), not incorporated into the
simple equation (30). This would mean that literally SE 6= ME even for r-reduced Zr, still the anomaly is
canceled by r-reduction plus some additional information – superficial for the scalar projection ME of the Ward
identity (2), still implied by the entire (2). This is indeed the case, but it is quite difficult to see. We show how
it works for contributions from a few lowest gradings 4m to Z4 =

∑∞
m=0 z4m.

In grading four we have exact matching: both (29) and (30) contribute

−npn
∂z4
∂pn

+
p4 + 6p2p

2
1

9
z0 =

(

−
4

4
+ 1

)

·
p4 + 6p2p

2
1

9
= 0 (31)
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In grading eight:

SE : −npn
∂z8
∂pn

+
p4 + 6p2p

2
1

9
z4 −

p5p
3
1 + 3p4p2p

2
1 + p42

27
z0 +

+
∑

n

∑

k 6=0 mod 3

(
2

3
p3n−1(k + 3n− 5)pk

∂z4
∂pk+3n−5

+
1

3
p3n−2(k + 3n− 6)pk

∂z4
∂pk+3n−6

)

+

+
( 1

3

∑

a+b=3n−5
︸ ︷︷ ︸

does not contribute

+
1

6

∑

a+b=3n−6

)

abpa+b+4
∂2z4

∂pa∂pb
= 0 (32)

while (for N = 2)

ME : −npn
∂z8
∂pn

+
p4 + 6p2p

2
1

9
z4 −

4(7S[10] + 7S[9,1] + 10S[8,2])

27S[2]
z0 + (33)

+
1

S[2]

∑

n

n

(
n + 4

3
(S[n+6] − S[n+3,3]) + (S[n+5,1] + S[n+4,2])

)
∂z4
∂pn

+
1

3

∑

n1,n2

n1n2pn1+n2+4
∂2z4

∂pn1∂pn2

= 0

Already at this level the difference between the two correct formulas looks quite pronounced – and it only
increases at the next levels. Some new ideas are needed to express the (vanishing) difference in terms of the
W-constraints (3) and, hopefully, find a concise and universal expression for this discrepancy. Since it relates
two clearly distinguished quantities – the SE which is a single polynomial equation, which defines Z{pk}, and
ME which is the distinguished scalar projection of the fundamental matrix Ward-identity (2) – there should be
some simple relation between them. We see that the hope of [12], that this relation is just an identity, fails. But
in the simplest cases (like the basic Kontsevich model r = 2) it is true – and thus the discrepancy is an anomaly,
in the sense which still remains to be formulated. Anyhow, so far anomalies were always comprehensible –
hopefully this will be the case with this new one as well.

7 Conclusion

In this paper we studied the properties of the main equation (5) from [12]. This is important because this
equation seems to somehow accumulate the power of all the W -constraints in monomial GKM and fully define
the time dependence of its partition function Zr{p}. In particular it should imply that this partition function is
independent of prk (of time-variables with the numbers divisible by r). We demonstrated that it does so in an
elegant way: if there was a prk-dependence in Zr, we would not get an equation for it, which is polynomial in
time-variables pk. Since Zr is known from [2,4] to be a KP τ -function (this is relatively simple to demonstrate),
independence of prk means that it belongs to the r-reduction of KP hierarchy. In fact, one can consider our
calculation as a new kind of a proof of this statement (that Zr is an r-reduced τ -function), but still a rather
sophisticated and undirect one. A concise, clear and direct proof remains highly desirable.

Also desirable is a direct relation of our calculation with the elegant description [14] of the W -constraints
for r-reductions as a normal ordering of ”circular formula”

∏r
m=1 J

(
z · e2πim/r

)
. There are now few doubts

that the W -constraints are implied by the single main equation – but the way it works remains unclear. One
can only hope that if this is clarified, the constraints will also come in some clever form – probably, provided
by the circular formula.

Our main result is that the main equation (5), directly following from the matrix Ward identity (2), is not
exactly the same as the ”single equation” (SE) of [11, 12], but differs from it by additional non-polynomial (!)
terms, which presumably are proportional to

(a) some lower W -constraints and
(b) the terms with derivatives over pkr , which do not contribute for r-reduced partition functions:

for a matrix M = diag(µ1, . . . , µN ) of the size N and on the locus pk =
∑N

i=1 µ
−k
i

ME
︷ ︸︸ ︷

tr

(

M

{(
∂

∂Ltr

)r

− L

})

=

SE
︷ ︸︸ ︷

−l̂0 +

r−1∑

i=1

∞∑

n=1

prn−iŴ
r+1−i
n−r−1+i +

O
(

Ŵ (2), . . . , Ŵ (r−1), ∂
∂pkr

)

S[(r−1),2(r−1),...,(N−1)(r−1)]
(34)

The fact that some other W constraints emerge in addition to the single equation in the truly-first-principle
approach (based on [13]) can be important for better understanding of its surprising predictive power – a
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possibility for a single equation to substitute the entire set of the W -constraints (which has more than one
generator: already two, L−1 and L2, for r = 2). As a byproduct of our calculation we found an amusing
structure of non-polynomial terms, with a peculiar embedded dependence on N . Since non-polynomial terms
are coefficients of ∂Zr/∂pkr which actually vanish for the GKM partition function, the true significance of these
formulas, at least in the case (b), remain unclear – still they look interesting by themselves and can show up in
some other contexts.

The observation of ”anomaly” SE 6= ME even for r-reduced τ -functions leaves the puzzle of W -constraints
and the origin of W -representation for GKM with r > 2 [12] unsolved. This adds to the equally puzzling
complication of superintegrability formulas and character calculus for r > 2: at least the appropriate basis of
Q-functions [9] remains unknown. It is unclear if there is a direct connection between these two complications
– anyhow, the story of GKM is still incomplete and at least one additional idea is still lacking. Of course the
previous ideas, like ”circular formula” [14] and non-abelian W-representation [11, 12], also need to be polished
and brought to the same level of clarity as determinantal representation and KP integrability [4], – but this
is hard to do before the ”anomaly” issue is fixed, which controls the puzzle of r-reduction and the very origin
of sophisticated W -constraints and the way they follow from the apparent original Ward identity [13]. If
superintegrability and character expansion will also get clarified by the resolution of this puzzle, or need to wait
for additional insights, remains to be seen.

Last but not the least – all the formulas in this paper are obtained for particular low values of r and
N , what is enough to reveal the emerging structures and phenomena. Still general consideration and proofs
remain to be given. They can also bring new ideas and further develop and clarify the theory of GKM, which
remains mysteriously complicated and transcendent – perhaps a little less now, but still far from simplicity and
transparency achieved for the other eigenvalue matrix models (including the cubic GKM).
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