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Abstract: Disordered systems are interesting for many physical reasons. In this article,

we study the renormalization group property of quenched disorder systems in the presence

of a boundary. We construct examples of scalar field theories in various dimensions with

both classical and quantum disorder localized at the boundary. We study these theories in

ε-expansion and discuss properties of fixed points of the renormalization group flow.
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1 Introduction

Disorder systems are of many physical interests. They are relevant in statistical physics,

condensed matter and high energy physics. The physical reason for considering disorder

is that, in practice, real systems are not pure, and they come with either impurities or

inhomogeneous background fields. The presence of impurities or non-constant background

fields affects the microscopic interactions of the pure system. As a result, it is clearly

of interest to understand the effect of impurities on the large distance properties of the

system, particularly the critical behaviour of the system.

In many situations, the impurities are frozen in time, i.e. these can be treated as

non-dynamical. These kinds of disorders are called quench disorders. Assuming that the

scale of variation of the disorders is much smaller than the size of the system, we can treat

them as a field varying independently and randomly at every point in space and taking

values from a probability distribution. A given profile of a disorder breaks the translational

invariance of the pure system. The Hamiltonian of the system is no longer homogeneous

and involves inhomogeneous coupling constants that couple to one or more local operators.

In this paper, we will focus on disorders of this type. Such disorder systems have been

studied previously with different motivation [1–10]
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A quench disorder comes in two flavours. A d-dimensional classical statistical mechan-

ical system near a second-order phase transition is described by a d-dimensional Euclidean

field theory. A quench disorder, in this case, is called a classical disorder. The classical

disorder field h(x) is function of spatial coordinates and takes values from a probability

distribution P [h]. On the other hand, a disorder in a quantum mechanical system, which

has an extra time direction, is called the quantum disorder. In this case the disorder field

h(x) is only function of spatial coordinates and takes values from a probability distribution

P [h]. We will analytically continue the time direction and work with a Euclidean theory to

treat classical and quantum disorders uniformly. In that case, the quantum disorder field

h(x) will be independent of the Euclidean time coordinate.

A disordered system is specified by the knowledge of various thermodynamical quanti-

ties and correlation functions of local operators. These properties of the system depend on

the disorder profile h(x), which takes values from the probability distribution P [h]. Often,

most notably near the critical point, it is not sufficient to know the property of the system

for a given realization of the disorder. To characterize the disorder system, one needs an

ensemble of many different systems with the different realizations of the disorder profile

(with the given probability distribution). As a result, the free energy and thermodynamic

quantities obtained by differentiating the free energy are averaged over the probability

distribution.

The present paper aims to compute the disordered averaged correlation function of

local operators, and critical exponents near the critical point of the renormalization group

flow. These are relevant in the context of the second-order phase transition in the disordered

system. It is important to emphasize that typically, even a small amount of disorder can

lead to a significant change in the critical behaviour of the system. A disorder perturbation

can grow at long distances leading to a nontrivial fixed point or no nontrivial fixed point.

In this paper, we study the effect of a random quench disorder on a conformal field

theory. More precisely, we begin with a pure system described by a conformal field theory

and deform it by one or more interactions. For simplicity, we will consider one of the

interactions to be a disorder interaction that couples to a scalar operator and leads to

a renormalization group flow in the space of coupling constant to a new fixed point (or

no fixed point). The conformal field theories of our interests will be boundary conformal

field theories (bCFTs). Specifically, we will consider a special class of boundary conformal

field theories obtained by a free scalar field theory in (d+ 1)-dimensional Euclidean space.

These classes of bCFTs have been studied before in many different contexts with various

motivations; see for example [11–15]. We will investigate the critical properties of these

bCFTs deformed by disorder interaction localized at the d-dimensional planar boundary.

Our computations will be in the framework of ε-expansion. We will find examples where, to

leading order in ε, weakly coupled disorder Wilson-Fisher fixed point exists together with

weakly coupled pure Wilson-Fisher fixed point. These provide examples of field theories

with IR disorder fixed points. Another property of this class of bCFTs, is the existence of

an infinite number of higher spin currents. These currents are conserved in bulk with the

partial breaking of conservation law at the boundary, i.e., a delta function source localized

at the boundary for the divergence of these currents. These sources define boundary oper-
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ators, which are called higher spin displacement operators. These operators are protected,

i.e. they do not receive anomalous dimension even though there are interactions local-

ized at the boundary. We find that the statement is true even in the presence of disorder

interactions.

The organization of this paper is as follows: In section 2, we introduce the replica

treatment of quench disorder in field theory in the presence of a boundary. We then discuss

the renormalization group flow and the generalization of the Callan-Symanzik equation in

disordered quantum field theory. In section 3, we briefly discuss the salient features of a

free scalar field theory in the presence of a planar boundary. In section 4, we study a few

examples of free bulk scalar field theory in the presence of a planar boundary with Neumann

boundary condition. The scalar field is interacting with boundary degrees of freedom in

the presence of classical disorder interactions localized at the boundary. We find the fixed

point of the boundary renormalization group flow, and calculate the anomalous dimension

of (mass)2 operator at the fixed point. Section 5 discusses the anomalous dimension of the

higher spin displacement operator localized at the boundary. In section 6, we study an

example of field theory in the presence of quantum disorder localized at the boundary and

look for the quantum disorder fixed point. Finally, in section 7, we conclude with a brief

discussion.

2 Disorder in quantum field theory, replica trick and renormalization

group flow

This section will discuss the quenched disorder in Euclidean field theory in the presence of

a planar boundary. Our discussion follows very closely the work of [9, 10] where the authors

examined the renormalization group flow in Euclidean field theory (without boundary) in

the presence of quench disorder. We will apply their work in our set up where we will have

a Euclidean field theory in the presence of a boundary with a disorder interaction localized

at the boundary. The analysis in the present section uses the replica trick, which is a very

practical approach to dealing with quench disorder.

Our conventions are as follows. We will take d-number of spatial coordinates denoted

by ~x to be the boundary coordinates and y ≥ 0 is the direction normal to the boundary, i.e.

the bulk is labelled by x ≡ (~x, y) and the boundary is at y = 0. Thus, for the discussion of

the classical disorder, the bulk dimension is (d+1) and the boundary dimension is d. When

we discuss a quantum disorder, we also need to introduce an extra time coordinate t. In this

case, the bulk coordinates are (t, ~x, y) and the boundary coordinates are (t, ~x). Accordingly,

the bulk and boundary dimensions are (d+ 2) and (d+ 1), respectively. A quench disorder

localized at the boundary will be denoted by h(~x), i.e. the coupling constant varies as a

function of spatial coordinates ~x. In particular, in the case of a quantum disorder, the

disorder field is independent of the time coordinate and varies only spatially.

We will further make the disorder random with a probability distribution that we

denote by P [h]. We will assume that probability distribution given by a Gaussian function,

P [h] = N exp
(
− 1

2v

∫
dd~x h2(~x)

)
, (2.1)
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where N is a constant determined by the normalization condition∫
[Dh]P [h] = 1 . (2.2)

For the Gaussian distribution, we have

h(~x) = 0, h(~x)h(~x′) = v δd(~x− ~x′) , (2.3)

and higher moments are obtained by Wick’s contraction.

Now, consider a (pure) Euclidean field theory in the presence of boundary described by

an action S0. The action S0 will consist of bulk fields interacting with degrees of freedom

localized at the boundary. For example, our case of interests will be where the bulk fields

are free scalar fields having nontrivial interactions with degrees of freedom propagating on

a boundary. We introduce the disorder at the boundary by coupling the field h(~x) to a

boundary operator O0(~x). Assuming that the operator is a scalar operator, the action for

the classical disordered theory is

S = S0 +

∫
dd~x h(~x)O0(~x) . (2.4)

In the case of the quantum disorder the corresponding action is

S = S0 +

∫
dd~x dt h(~x)O0(t, ~x) . (2.5)

Note that one can consider a more general situation where there are more than one disor-

dered coupling constant. Next, we want to compute the correlation function of operators

in a disordered theory.

We will begin with the case of classical disorder. The partition function for a given

profile of the disorder is

Z[h, Ji] = eW [h,Ji] =

∫
Dφ e−S−

∫
dd~x h(~x)O0(~x)+

∑
i

∫
dd+1x JiOi . (2.6)

Here W [h, Ji] is the generating functional for the connected correlation function for a given

profile of the disorder field 1. We are interested in the disorder averaged connected correla-

tion function. The generating functional for the disordered average connected correlation

function is given by

WD[Ji] =

∫
[Dh]P [h]W [h, Ji] , (2.7)

and the disordered averaged connected correlation functions are

< O1(x1)O2(x2)....On(xn) >conn. =

∫
DhP [h] < O1(x1)O2(x2)....On(xn) >h,conn. ,

=
δnWD[Ji]

δJ1(x1)....δJn(xn)

∣∣∣
Ji=0

. (2.8)

1Here, we have turned on the sources for the bulk operators. It is just for the presentation. We could

also turn on sources for the operators localized on the boundary.
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We calculate the disordered average free energy using the replica trick. In the replica

approach, we compute the partition function of n-copies of the original theory maintaining

the replica symmetry i.e.

Zn[h, J ] =

∫ n∏
A=1

DφA e
−

∑n
A=1 SA−

∑n
A=1

∫
dd~x h(~x)O0,A(~x)+

∑
i,A

∫
dd+1x JiOi,A . (2.9)

Next, we introduce the replica functional

Wn[J ] =

∫
[Dh]P [h]Zn[h, J ] ,

=

∫ n∏
A=1

DφA e
−Srepl.+

∑
i

∑
A

∫
dd+1x JiOi,A , (2.10)

where Srepl. is the replica action obtained after integrating over the disorder field and is

given by

Srepl. =
n∑

A=1

SA −
v

2

n∑
A,B=1

∫
dd~xO0,A(~x)O0,B(~x) . (2.11)

Note that the replicated action has translation and rotation invariance. The disordered

free energy is then obtained as

WD[Ji] = lim
n→0

∂Wn[J ]

∂n
. (2.12)

A generalization of the above discussion to the case of quantum disorder is straightforward.

However, there are some modifications to the replica action, which is essential to emphasize.

As we stated above, the quantum system is defined on the (d+ 1)-dimensional space where

fields are a function of (d+1)-spatial coordinates and a time coordinate. The disorder field

h(~x) at the boundary is the only function of the d-spatial coordinates. Therefore, for a

specific profile of the disorder field the translation and rotation invariances of the boundary

are broken but the time translational invariance is maintained. In this case, the partition

function is

Z[h, Ji] = eW [h,Ji] =

∫
Dφ e−S−

∫
dt dd~x h(~x)O0(t,~x)+

∑
i

∫
dt ddx dy JiOi(t,~x,y) , (2.13)

and the replica functional is

Wn[J ] =

∫ n∏
A=1

DφA e
−Srepl.+

∑
i,A

∫
dt ddx dy JiOi,A(t,~x,y) , (2.14)

where Srepl. is the replica action obtained after integrating over the disorder field and is

given by

Srepl. =

n∑
A=1

SA −
v

2

n∑
A,B=1

∫
dt dt′ dd~xO0,A(t, ~x)O0,B(t′, ~x) . (2.15)

We see from the replica action that it is non-local in time. As we will see later, this fact

brings an extra complication of infrared divergence in our computations. Since we will be
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interested in calculating fixed points in the renormalization group flow, we will ignore the

issues related to infrared divergences.

The generating functional for the quantum disordered correlation function is

WD[Ji] = lim
n→0

∂Wn[J ]

∂n
. (2.16)

Unlike the classical case, the averaging over the quantum disorder does not restore the full

invariance of the original (pure) action.

Using the relations (2.12) and (2.16), we see that the disordered connected correlation

function is given in terms of correlation functions in the replicated theory as

< O1(x1)O2(x2)....On(xn) >conn. = lim
n→0

∂

∂n
<
∑
A1

O1,A1(x1)....
∑
An

On,An(xn) >rep. .

(2.17)

Note that the correlation function that appears on the right hand side is not necessarily

a connected one. We can further simplify the right hand side using the replica symmetry.

Assuming that the replica symmetry is not spontaneously broken, we have

<
∑
A1

O1,A1(x1)....
∑
An

On,An(xn) >rep.= n < O1,1(x1)....
∑
An

On,An(xn) >rep. . (2.18)

Thus, we get

< O1(x1)O2(x2)....On(xn) >conn. = lim
n→0

< O1,1(x1)
∑
A2

O2,A2(x2)....
∑
An

On,An(xn) >rep. .

(2.19)

Harris criteria: Thinking of the disorder as an interaction in perturbation theory, it is

important to know when the interaction is relevant at long distance. It is clear that it

should depend on the dimension of the operator O0(x) the disorder couples to. Harris

criteria [1] provides a useful way to organize the disorder interactions in terms of relevant,

irrelevant and marginal perturbations. Let us suppose the dimension of the operator O0(x)

is ∆0. From the Gaussian distribution, the disorder has dimension [v] = 2[h] − d. Now,

for the classical disorder the dimension of h is [h] = d − ∆0. Then the classical disorder

is relevant if ∆0 <
d
2 , irrelavant for ∆0 >

d
2 and marginal for ∆0 = d

2 . For the quantum

disorder, we have a slightly different condition. In this case, the dimension of the disorder

field is [h] = d+1−∆0. Therefore, the quantum disorder is relevant if ∆0 <
d+2
2 , marginal

for ∆0 = d+2
2 and irrelevant for ∆0 >

d+2
2 .

Renormalization group equation: In a standard quantum field theory, where cou-

pling constants are homogeneous in spacetime, a renormalized correlation function satisfies

Callan-Symanzik equation. A generalization of the Callan-Symanzik equation exists for

the disordered case. In the case of a classical disorder, the replicated action describes a

standard quantum field theory. The replicated action has an extra coupling constant com-

pared to pure theory which is proportional to the disorder strength. Therefore, we expect
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that a k-point renormalized correlation function in the replicated theory to satisfy(
µ
∂

∂µ
+
∑
i

βλi
∂

∂λi
+ βv

∂

∂v

)
< OA1(x1)OA2(x2)... >rep.

+
∑
B1

γA1B1 < OB1(x1)OA2(x2)... >rep. +... = 0 . (2.20)

Here Ai’s and Bi’s are replica index, µ is the renormalization scale and λi’s are coupling

constants of the pure theory. Note that there is a beta function, βv, for the disorder

strength. Also, in the above equation, we have assumed that OA(x) are lowest dimension

operators in which case these operators mix among themselves. As a result, the anomalous

dimension has the form

γAB = γ δAB + γ′ , (2.21)

where γ′ is a constant and independent of replica index. Using the relation (2.17), we

obtain the Callan-Symanzik equation satisfied by the k-point disordered average connected

correlation function(
µ
∂

∂µ
+
∑
i

βλi
|n=0

∂

∂λi
+ βv|n=0

∂

∂v
+ k γ|n=0

)
< O(x1)O(x2)... >conn. = 0 . (2.22)

The above equation describes the beta and gamma functions for the disordered theory.

Similar Callan-Symanzik equation exists for the quantum disorder case. However, the

Callan-Symanzik equation for the case with quantum disorder differs from the classical

disorder. Note that the presence of quantum disorder breaks the isotropy between space

and time. As a result, even though we start with a pure theory, where space and time have

the same scaling, the disordered theory at the quantum critical point may not respect the

scaling symmetry of space and time; for example the correlation function of the boundary

operators may not respect the scaling symmetry of the boundary coordinates (~x, t) →
(λ~x, λ t). In this case, the Lifshitz scaling may emerge. It was shown in [9, 10] that the

disordered averaged k-point connect correlation function satisfies

(
µ
∂

∂µ
+
∑
i

βλi

∣∣∣
n=0

∂

∂λi
+ βv

∣∣∣
n=0

∂

∂v
+ γt

k∑
i=1

ti
∂

∂ti
+ k γ

∣∣∣
n=0

)
< O(x1)O(x2)... >conn. = 0 .

(2.23)

The critical exponent γt gives the Lifshitz scaling exponent

z = 1 + γ∗t , (2.24)

with γ∗t evaluated at the quantum disorder fixed point.

3 Scalar field theory in the presence of boundary

Our goal in this article is to study the renormalization group flow in a scalar field theory

when one of the interactions at the boundary is a disorder interaction. More specifically,

we will focus on a class of models where bulk interactions have been switched off i.e. the
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scalar fields in the bulk are free fields and having interactions localized at the boundary.

For example in the case of classical disorder, the general action of our interests would be

S =

∫
dd~x dy

1

2
∂µφ

I∂µφI +

∫
dd~xLint +

∫
dd~xLdis.int , (3.1)

where I = 1, ..., N , and Lint and Ldis.int are relevant/marginal and disorder interactions,

respectively. Furthermore, because of the presence of boundary, the scalar fields need

to satisfy either Dirichlet or generalized Neumann condition. In this paper, we will be

focussing on examples with generalized Neumann boundary condition.

A free scalar field theory is a conformal field theory. In the dimensions, d+ 1, the con-

formal group is SO(d + 2, 1). The presence of co-dimension one planar boundary breaks

the conformal symmetry to the conformal group of the boundary, i.e. SO(d + 1, 1). The

energy-momentum tensor is not conserved in all directions, and the divergence of the

energy-momentum tensor along the direction perpendicular to the boundary defines a dis-

placement operator,

∂µT
µy = D(~x)δ(y) . (3.2)

Since the displacement operator is obtained from the energy-momentum tensor, which is

conserved in the bulk, one would expect it to be a protected operator, i.e. the scaling

dimension of the displacement operator is the same as the energy-momentum tensor. We

will see that this is true in the presence of disorder interactions at the boundary.

A free field theory has also an infinite number of higher spin conserved currents. These

currents are bilinear in fields and constructed out by acting derivatives on them. For

example in the case of a free scalar field theory, a spin s-current is given by [16]

Jsµ1...µs =
s∑

k=0

ask ∂{µ1...µkφ
I ∂µk+1...µs}φ

I . (3.3)

Here ask’s are constants determined by the conservation condition, and curly brackets

ensure traceless symmetrization condition. The dimension of a spin s-current is ∆s = d−
1+s. The presence of interactions localized at the boundary has an interesting consequence

on the conservation of higher spin currents. These currents are conserved in bulk, where

fields are free; however, the conservation law is broken at the boundary. Following the

definition of the displacement operator (3.2), one can define the higher spin analog of the

displacement operator [15]. More precisely, we define

∂µJsµµ1...µs−2y = Dµ1..µs−2(~x)δ(y) . (3.4)

Note that the boundary operator Dµ1..µs−2(~x) carries bulk index µ = (i, y), where i is the

boundary index. When all µ’s equal to y, we obtain a spin zero boundary operator whereas

all µ’s different from y corresponds to a spin (s−2)-operator. Thus, the boundary operator

Dµ1..µs−2(~x) gives rise operators of all spins between 0 and s−2. The classical dimensions of

these boundary operators are the same as the dimension of the current, i.e. ∆ = d− 1 + s.

One would expect that the scaling dimension of the higher spin displacement operators

will not renormalize in the perturbation theory. As we will see later, the higher spin

displacement operator does not have an anomalous dimension due to disorder interaction

at the boundary.
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4 Classical disorder at boundary

This section discusses examples of free scalar field theories with classical disorder interaction

turned on on the boundary. We will restrict ourselves to the cases where the disorder

interaction is marginal. We will then look for the fixed point of the renormalization group

flow.

4.1 Single scalar field with a classical disorder at boundary

We start with a simplest example of a scalar field theory with a classical disorder interaction

at the boundary. The action is given by

S =

∫
dd~x dy

1

2
∂µφ∂

µφ+

∫
dd~x h(x)φ2(x) +

λ

4!

∫
dd~xφ4(x) . (4.1)

The strength of the disorder is marginal in the dimension d = 2 and is relevant for d < 2.

We have also added φ4 interaction since it is a marginal in d = 2 dimensions. We will

therefore study the above theory in the dimensions d = 2− ε. The action for the replicated

theory is given by

Srepl. =
n∑

A=1

SA −
v

2

∫
ddx

n∑
A,B=1

φ2A(x)φ2B(x) ,

=

∫
ddx dy

1

2

n∑
A=1

∂µφA∂
µφA +

λ

4!

n∑
A=1

∫
ddxφ4A −

v

2

∫
ddx

n∑
A,B=1

φ2A(x)φ2B(x) .

(4.2)

Thus, the replicated theory is a standard quantum field theory and we will treat the disorder

in a perturbation theory.

Since there are no bulk interactions, we expect the anomalous dimension of the scalar

field to be zero. We see this by noting that there is no wave function renormalization. We

compute the bulk 2-point function < φA(~p, y1)φB(−~p, y2) >. When we fine tune the mass

term to zero, the first non trivial contributions to the 2-point function comes from 2-loop

diagrams, shown in figure. 1. The contributions of these Feynman diagrams are

e−p|y1−y2| + e−p(y1+y2)

2p
δAB +

(
8v2(n+ 1) +

λ2

6
− 4λ v

)e−p(y1+y2)
p2

δAB ×

×
∫
dd~k1d

d~k2
(2π)2d

1

|~k1||~k2||~k1 + ~k2 + ~p|
,

=
e−p|y1−y2| + e−p(y1+y2)

2p
δAB +

(
8v2(n+ 1) +

λ2

6
− 4λ v

)e−p(y1+y2)
p2

δAB
Γ(d−12 )3Γ(3−d2 )

(4π)dπ3/2Γ(3d−32 )(p2)
3−2d

2

.

(4.3)
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~p
+

~k1

~k2

~k1 + ~k2 + ~p

+

~k1

~k2

+

~k1

~k2

~k1 + ~k2 + ~p ~k1 + ~k2 + ~p

Figure 1: Bulk 2-point function at 2-loop order. The blue dot represents the disorder

vertex.

For d = 2− ε, we see that there is no divergence. Thus, the disordered averaged connected

2-point function at the fixed point is given by

< φ(~p, y1)φ(−~p, y2) >conn. = lim
n→0

∂

∂n
<
∑
A

φA(~p, y1)
∑
B

φB(−~p, y2) > ,

=
e−p|y1−y2| + e−p(y1+y2)

2p
+
(

8v2∗ +
λ2∗
6
− 4λ∗ v∗

)e−p(y1+y2)
8π2 p

.

(4.4)

Here λ∗ and v∗ are the values of the coupling constants at the fixed point of the disordered

theory.

Next, we compute the 4-point function of the boundary value of scalar fields. In

particular, we compute < φA(~p1)φB(~p2)φC(~p3)φD(~p4) > upto 2-loop order. The diagrams

are shown in the figure 2. The contributions are

−λ(1 + δλ)δA,B,C,D + 4v(1 + δv)δABδCD +
(

8v2(1 + δv)
2(n+ 8)δABδCD +

3

2
λ2(1 + δλ)2δA,B,C,D

−4λv(1 + δλ)(1 + δv)(δABδCD + 6δA,B,C,D)
)
I1(~p)

+
(

16v3δABδCD(n2 + 6n+ 20)− 12v2λδABδCD(n+ 4)− 144v2λ δA,B,C,D + 3vλ2δABδCD

+18vλ2δA,B,C,D −
3λ3

4
δA,B,C,D

)
I2(~p)

+
(

64v3(5n+ 22)δABδCD − 48v2λ(n+ 14)δA,B,C,D − 192v2λ δABδCD + 96vλ2δA,B,C,D

+4vλ2δABδCD − 3λ3δA,B,C,D

)
I3(~p, ~q) . (4.5)
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+
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+

++ +

+

+ + + +

++

Figure 2: Boundary 4-point function at 2-loop order. The blue dot represents the disorder

vertex.

In the above the notation δA,B,C,D is defined as

δA,B,C,D =

{
1, if A = B = C = D ,

0, otherwise .
(4.6)

The integrals I1,2,3 are given in the appendix A. These integrals are divergent. Expanding

near d = 2− ε, and requiring that the 4-point function to be finite determines the counter

terms δλ and δv. These are given by

δλ =
3(λ− 16v)

4πε
− 48(n+ 14)v2 − 96vλ+ 3λ2

4π2ε
ln 2 +

96(20 + n)v2 − 264vλ+ 9λ2

16π2ε2
,

δv =
λ− 2(n+ 8)v

2πε
− 16(22 + 5n)v2 − 48vλ+ λ2

4π2ε
ln 2 +

16(8 + n)2v2 − 12(n+ 12)vλ+ 5λ2

16π2ε2
.

(4.7)

The beta function equations are given by

ελ+ βλ +
λ

1 + δλ

(∂δλ
∂λ

βλ +
∂δλ
∂v

βv

)
= 0 , εv + βv +

v

1 + δv

(∂δv
∂λ

βλ +
∂δv
∂v

βv

)
= 0 .(4.8)

In the above we have included the fact that in d = 2 − ε, both λ and v carries the mass

dimension ε, whereas δλ and δv are dimensionless.
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Solving the above two, we obtain

βλ = −ελ+
3λ(λ− 16v)

4π
− 3λ(16(n+ 14)v2 − 32vλ+ λ2) ln 2

2π2

βv = −εv +
v(λ− 2(n+ 8)v)

2π
− v(16(22 + 5n)v2 − 48vλ+ λ2) ln 2

2π2
(4.9)

Thus, the beta functions of the disordered theory are

βλ

∣∣∣
n=0

= −ελ+
3λ(λ− 16v)

4π
− 3λ(224v2 − 32vλ+ λ2) ln 2

2π2

βv

∣∣∣
n=0

= −εv +
v(λ− 16v)

2π
− v(352v2 − 48vλ+ λ2) ln 2

2π2
(4.10)

Next, we look at the fixed points which are solutions of the equations βλ|n=0 = 0 and

βv|n=0 = 0. We find three fixed points upto O(ε2):

1. Gaussian fixed point: This corresponds to the fixed point λ = 0 = v.

2. Pure fixed point: This corresponds to the fixed point λ = 4πε
3 + 32πε2

9 ln 2 and

v = 0.

3. Disorder fixed point: This corresponds to the fixed point λ = 0 and v = −πε
8 −

11πε2

32 ln 2. For 0 < |ε| << 1, this gives rise to a UV fixed point. Note that the

fixed point disappears for ε < −0.52. Therefore, it is crucial to go higher-order in

perturbation expansion to see if the fixed point survives.

Next, we compute the anomalous dimension of the operator φ2(x) in the disordered theory.

This would require computing the correlation function <
∑n

A=1 φ
2
A(x)... > in the replicated

theory. However, this will not be sufficient since in the replicated theory the operator∑n
A=1 φ

2
A(x) can mix with the double replicated operator

∑n
A 6=B=1 φAφB(x). In general,

the renormalized correlation function <
∑n

A=1 φ
2
A(x)φC(y)φD(z) > satisfies the Callan-

Symanzik equation(
µ
∂

∂µ
+ βλ

∂

∂λ
+ βv

∂

∂v
+ γφ2

)
<

n∑
A=1

φ2A(x)φC(y)φD(z) >rep.

+γ′φφ <
n∑

A 6=B=1

φAφB(x)φC(y)φD(z) >rep.= 0 . (4.11)

To determine the anomalous dimension γφ2 and the mixing coefficient γ′φφ, we compute the

3-point functionsG2,1
φ2

=<
∑n

A=1 φ
2
A(x)φC(y)φD(z) > andG2,1

φφ =<
∑n

A 6=B=1 φAφB(x)φC(y)φD(z) >

up to a 2-loop order. The Feynman diagrams are given in figure 3. These are given by

G2,1
φ2

= δCD

[
2(1 + δφ2) +

(
4v(n+ 2)(1 + δv)(1 + δφ2)− λ(1 + δλ)(1 + δφ2)

)
I1(~p)

+
(λ2

2
− 4vλ(n+ 2) + 8v2(n+ 2)2

)
I21 (~p) +

(
λ2 − 24vλ+ 48v2(n+ 2)

)
I3(~p, ~q)

]
,

(4.12)
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Figure 3: Anomalous dimension computation for φ2 operator. The blue dot represents

the disorder vertex.

and

G2,1
φφ = (1− δCD)

[
2(1 + δφφ) + 8v(1 + δv)(1 + δφφ)I1(~p) + 32v2I21 (~p)

+
(
− 8vλ+ 16v2(n+ 6)

)
I3(~p, ~q)

]
. (4.13)

Requiring that the divergences to cancel, we obtain

δφ2 =
λ− 4v(n+ 2)

4πε
− (48(n+ 2)v2 − 24vλ+ λ2) ln 2

8π2ε
+

8(n+ 2)(n+ 5)v2 − 4(n+ 5)vλ+ λ2

8π2ε2

δφφ = −2v

πε
+
v(λ− 2(n+ 6)v) ln 2

π2ε
+
v(2(n+ 10)v − λ)

2π2ε2
(4.14)

Using the above relation and the Callan-Symanzik equation (4.11), we obtain γ′φφ = 0 and

γφ2 =
λ∗ − 4v∗(n+ 2)

4π
− (48(n+ 2)v2∗ − 24v∗λ∗ + λ2∗) ln 2

4π2
, (4.15)

where λ∗ and v∗ are coupling constants at the fixed point. Thus, the anomalous dimesnion

of the (mass)2 operator in the disordered theory is

γφ2 =
λ∗ − 8v∗

4π
− (96v2∗ − 24v∗λ∗ + λ2∗) ln 2

4π2
. (4.16)

4.2 O(N) invariant field theory with a disorder interaction at boundary

We can generalize the analysis in the previous section to the O(N) invariant scalar field

theory in ε-expansion. In this case, we will find that we have a non-trivial IR disorder fixed
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point for the values 1 < N < 4. The starting action is

S =

∫
dd~x dy

1

2
∂µφ

I∂µφI +

∫
dd~x h(x)φIφI(x) +

λ

4!

∫
dd~x (φIφI(x))2 , (4.17)

where I, J.. run from 1 to N . In this case, the replicated action is given by

Srep. =

n∑
A=1

SA −
v

2

∫
ddx

n∑
A,B=1

φ2Aφ
2
B(x) , (4.18)

where

SA =

∫
dd~x dy

1

2
∂µφ

I
A∂

µφIA +
λ

4!

∫
dd~x (φIAφ

I
A(x))2 . (4.19)

Next, we look for the fixed point of the renormalization group flow in d = 2−ε-dimensions.

We compute the 4-point function < φI1A1
φI2A2

φI3A3
φI4A4

>. The contributions to the 4-point

function to 2-loop order are (we have the same Feynman diagrams as shown in the figure 2)

δI1I2δI3I4δA1A2δA3A4

(
4v(1 + δv) + 8v2(1 + δv)

2(nN + 8)I1(~p)

−4λv(1 + δλ)(1 + δv)

3
(N + 2)I1(~p) + 16v3(N2n2 + 6Nn+ 20)I2(~p)

−4v2λ(N2n+ 2Nn+ 4N + 8)I2(~p) +
vλ2

3
(N + 2)2I2(~p) + 64v3(5Nn+ 22)I3(~p, ~q)

−64v2λ (N + 2)I3(~p, ~q) +
4vλ2

3
(N + 2)I3(~p, ~q)

)
+δI1I2δI3I4δA1A2A3A4

(
− λ(1 + δλ)

3
+
λ2(1 + δλ)2

18
(N + 8)I1(p)− 8λv(1 + δλ)(1 + δv)I1(p)

−48v2λI2(~p) +
2vλ2

3
(N + 8)I2(~p)−

λ3

108
(N2 + 6N + 20)I2(~p)

−16v2λ (Nn+ 14)I3(~p, ~q) +
16vλ2

3
(N + 5)I3(~p, ~q)−

λ3

27
(5N + 22)I3(~p, ~q)

)
. (4.20)

Requiring the divergences to cancel, we obtain

δv =
1

2πε

(λ
3

(N + 2)− 2v(nN + 8)
)
− 1

12π2ε

(
48(22 + 5nN)v2 − 48vλ(2 +N) + (2 +N)λ2

)
ln 2

+
1

48π2ε2

(
48(8 + nN)2v2 − 12vλ(N + 2)(12 + nN) + (2 +N)(4 +N)λ2

)
δλ =

1

2πε

(N + 8

6
λ− 24v

)
− 1

36π2ε

(
432(14 + nN)v2 − 144(5 +N)vλ+ (22 + 5N)λ2

)
ln 2

+
1

144π2ε2

(
864(20 + nN)v2 − 72(28 + 5N)vλ+ (8 +N)2λ2

)
. (4.21)

Solving the Callan-Symanzik equation(
µ
∂

∂µ
+ βλ

∂

∂λ
+ βv

∂

∂v

)
< φI1A1

φI2A2
φI3A3

φI4A4
>= 0, (4.22)

– 14 –



we obtain the beta functions of the replicated theory. These are

βv = −εv −
v
(

6(8 + nN)v − (2 +N)λ
)

6π
−
v
(

48(22 + 5nN)v2 − 48(2 +N)vλ+ (2 +N)λ2
)

ln 2

6π2
,

βλ = −ε λ− λ(144v − (8 +N)λ)

12π
−
λ
(

432(14 + nN)v2 − 144(5 +N)vλ+ (22 + 5N)λ2
)

ln 2

18π2
.

(4.23)

From the above, we obtain the following fixed point in the disordered theory:

1. Gaussian fixed point: λ = 0, v = 0 .

2. Pure fixed point: λ = 12πε
N+8 + 96(22+5N)πε2 ln 2

(N+8)3
, v = 0 .

3. Disorder fixed point: λ = 0, v = −πε
8 −

11ε2

32 π ln 2 .

4. Mixed disorder fixed point: λ = 3πε
N−1 +

3

(
32+N(15N−128)

)
πε2 ln 2

16(N−1)3 , v = (4−N)επ
16(N−1) +(

128−N(512−(196−55N)N)

)
πε2 ln 2

256(N−1)3 .

Note that the mixed disorder fixed point is an IR fixed point for the sufficiently small values

of ε and N ∈ (1, 4). The fixed point disappears for N = 1.

Next, we calculate the anomalous dimension of the operator (mass)2 in the disordered

theory. We compute the anomalous dimension to one loop. For this, we compute the three

point correlation function <
∑

A φ
I
Aφ

I
A(x)φKBφ

L
C > at one loop order. In this case, we get

δLKδBC

[
2(1 + δφ2) +

(
− λ

4!
8(N + 2) +

v

2
8(nN + 2)

)∫ ddk

(2π)d
1

|~k||~k − ~p|

]
. (4.24)

Cancellation of the divergence requires

δφ2 =
λ

6

N + 2

2πε
− 2v(nN + 2)

2πε
. (4.25)

Solving the Callan Symanjik equation, we obtain

γφ2 =
λ(N + 2)

12π
− v(nN + 2)

2π
. (4.26)

In the limit n→ 0, the anomalous dimension is

γφ2 =
λ(N + 2)

12π
− v

π
. (4.27)

At the mixed disorder fixed point, the anomalous dimension becomes (for d = 2− ε)

∆φ2 = d− 1 + γφ2 = 1 +
(20− 11N)ε

16(N − 1)
. (4.28)
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4.3 Mixed σφ theory

Next, we consider a model where the bulk-free scalar fields interact with matter degrees

of freedom at the boundary. We focus here on the case where the boundary degrees of

freedom consists of a single scalar field σ. As we will see below, this provides another

example of disorder field theory with an IR fixed point with a non zero value of disorder

strength when ε << 1. The action is given by,

S =

∫
dd+1x

1

2
∂µφ

I∂µφI +

∫
ddx

(1

2
∂µσ∂

µσ + h(x)σ2 +
λ1
2
σφIφI +

λ2
4!
σ4
)
. (4.29)

In the above I = 1, .., N . Harris criteria dictate that the disorder is marginal in the

dimensions d = 4. We will, therefore, work in the dimensions d = 4− ε. Note that we have

also included boundary interactions which are marginal in the dimensions d = 4.

After averaging over the disorder, we obtain the replicated action given by

Srepl. =

n∑
A=1

SA −
v

2

n∑
A,B=1

∫
ddxσ2Aσ

2
B , (4.30)

where

SA =

∫
dd+1x

1

2
∂µφ

I
A∂

µφIA +

∫
ddx

(1

2
∂µσA∂

µσA +
λ1
2
σAφ

I
Aφ

I
A +

λ2
4!
σ4A

)
. (4.31)

The replicated theory is a standard local quantum field theory. We will analyze the renor-

malization flow in the theory and look for the perturbative fixed point. To obtain this, we

will compute 2, 3 and 4-point functions involving the scalar field σ. The relevant Feynman

diagrams are shown in figure 4. We first begin with the 2-point function of the σ field. The

2-point function is divergent at one-loop, and there is a wave function renormalization for

the σ field. The one loop contribution to the 2-point functions are

< σA(p)σB(−p) >= NδAB
λ21
2

∫
dd~k

(2π)d
1

|~p||~k + ~p|
− δAB p2δσ . (4.32)

The counter term δσ is determined by requiring that the derivative of the above contribution

with respect to p2 at some renormalization scale µ is finite. Cancelling the divergence

requires that

δσ = − Nλ21
128π2ε

. (4.33)

Next, we look for the 3-point function < σA1φ
I
A2
φJA3

> at one loop order. The result is

given by

δIJδA1A2A3

[
− λ1(1 + δλ1)− λ31

∫
dd~k

(2π)d
1

~k2|~k − ~q||~k + ~p|

]
. (4.34)

Cancelling the divergence requires that

δλ1 = − λ21
8π2ε

. (4.35)
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2-point function :

3-point function :

4-point function :

Figure 4: Boundary 2, 3 and 4-point function at one loop order. The blue dot represents

the disorder vertex. Solid and dotted lines represent the φ-propagator and σ-propagator,

respectively.

Finally, we calculate the 4-point function of σ field i.e. < σA1σA2σA3σA4 >. In this case,

we get

−λ2(1 + δλ2) δA1A2A3A4 + 4v(1 + δv)δA1A2δA3A4 +
1

2

[
3λ22δA1A2A3A4

−8λ2v
(
δA1A2δA3A4 + 6δA1,A2,A3,A4

)
+ 16v2(n+ 8)δA1A2δA3A4

]
×
∫

dd~k

(2π)d
1

k2(~k + ~p)2

+3Nλ41

∫
dd~k

(2π)d
1

|~k||~k + ~p||~k + ~p+ ~q||~k − ~r|
δA1A2A3A4 . (4.36)

Cancellation of divergences implies that

λ2δλ2 =
3λ22 − 48vλ2 + 6Nλ41

16π2ε
, δv =

λ2 − 2v(n+ 8)

8π2ε
. (4.37)
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Thus, we obtain the following β-function equations

β1 = −ελ1
2

+
(N − 32)λ31

256π2
,

β2 = −λ2ε+
3λ22
16π2

+
Nλ21λ2
64π2

− 3vλ2
π2

+
3Nλ41
8π2

,

βv = −εv − (8 + n)v2

4π2
+
Nλ21v

64π2
+
vλ2
8π2

. (4.38)

The β-function for the disorderd theory is obtained by substituting n→ 0 limit

β1 = −ελ1
2

+
(N − 32)λ31

256π2
,

β2 = −λ2ε+
3λ22
16π2

+
Nλ21λ2
64π2

− 3vλ2
π2

+
3Nλ41
8π2

,

βv = −εv − 2v2

π2
+
Nλ21v

64π2
+
vλ2
8π2

. (4.39)

Next, we solve the β-function equation to find the fixed points. We find the following fixed

points:

1. Gaussian fixed point: λ1 = λ2 = v = 0 for any value of N .

2. Decoupled pure fixed point: λ1 = v = 0, λ2 = 16π2ε
3 for any value of N .

3. Coupled pure fixed point: v = 0, λ21 = 128π2ε
N−32 ,

λ2 = 8π2ε
3(N−32)

(
− (N + 32) +

√
1024 +N(N − 4544)

)
. The fixed point exists for

N > 4544. However, the coupling constant λ2 is negative and, therefore, the fixed

point is nonperturbatively unstable.

4. Coupled mixed disorder fixed point: λ21 = 128π2ε
N−32 , v = (1024+1600N+N2)π2ε

2(N−32)(N+32) , λ2 =
12288Nπ2ε

(N−32)(N+32) . The fixed point is non-perturbatively stable as long as N > 32.

We can also compute the anomalous dimension of the field σ at the fixed point at

one-loop order. It is given by

γσ =
µ

2(1 + δσ)

d

dµ
(1 + δσ) =

Nλ21
256π2

=
Nε

2(N − 32)
. (4.40)

5 Anomalous dimensions of displacement operators at one loop

This section discusses the effect of classical disorder on the one-loop computation of anoma-

lous dimensions of higher spin displacement operators. It was shown in [15] that in the pure

theory with φ4 interaction at the boundary, describe by the action (4.1) with vanishing

disorder coupling, the higher spin displacement operators do not have anomalous dimen-

sions at two-loop order. Here, we repeat their analysis in the presence of classical disorder

and find that the anomalous dimension is not affected, i.e. the displacement operators do

not have anomalous dimensions.

– 18 –



We will compute the anomalous dimension of the displacement operator at one loop

for a single scalar field with action given in (4.1). The corresponding replicated action is

given in (4.2). The energy-momentum tensor of the replicated theory is

TRepl.
µν =

∑
A

TAµν , (5.1)

where

TAµν = ∂µφA∂νφA −
δµν
2
∂ρφA∂

ρφA −
d− 1

4d
(∂µ∂ν − δµν∂2)φ2A , (5.2)

Note that we have considered only the bulk contributions to the energy-momentum tensor.

The boundary terms in the energy-momentum tensor are proportional to the coupling

constant and, therefore, in the anomalous dimension computation at one loop, these will

be higher-order contributions in the powers of the coupling constant. The displacement

operator of the replicated theory is

DRepl.(~x) = lim
y→0

TRepl.
yy . (5.3)

Following the calculation of [15], we see that at one loop we do not have any divergences

for d = 2. In particular, at one loop the contribution is proportional to the integral∫
dd~k

(2π)d
1

|~k||~k + ~p|

(d
2

(~k2 + (~k + ~p)2)− ~p2

2

)
(5.4)

which evaluates to zero for d = 2. Thus, at one-loop, we do not have anomalous dimensions.

The calculation proceeds similarly for the higher spin displacement operators. Basically, up

to an overall factor, which depends on the coupling constants and some numerical factors,

the one loop integrals are the same as in [15]. In the paper, authors have shown that

those integrals, appearing at one-loop order, are finite for d = 2 and thus, there are no

divergences. We conclude, therefore, that the disorder does not have any effect on the

scaling dimension.

6 Quantum disorder

Finally, we consider an example of a scalar field theory with the quantum disorder localized

at the boundary. As we have explained before, there is an extra time coordinate and the

disorder field h(~x) is homogeneous in time. We consider the theory of a single scalar field

with action

S =

∫
dd~x dt dy

1

2
∂µφ∂

µφ+

∫
dd~x dt h(~x)φ2(~x, t) . (6.1)

For d = 2, the disorder coupling at the boundary is marginal. The only other operator

which is marginal in d = 2 is φ3. However, we will assume the coupling constant of the φ3

term to be zero.

After averaging over the disorder, we obtain the replicated action, which is

Srepl. =

n∑
A=1

∫
dd~x dt dy

1

2
∂µφA∂

µφA −
v

2

n∑
A,B=1

∫
ddx dt dt′φAφA(~x, t)φBφB(~x, t′) . (6.2)
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Note that it is not a standard local quantum field theory. However, we can analyze the

theory in powers of disorder strength in perturbation expansion. To find the fixed point of

the theory, we compute the correlation function of boundary operators

< φA1(~p1, E1)φA2(~p2, E2)φA3(~p3, E3)φA4(~p4, E4) >. It is given by (upto an overall factor

which enforces conservation of momenta)

8
v(1 + δv)

2
δA1A2δA3A4δ(E1 + E2)δ(E3 + E4) + 128

v2

8
δA1A2δA3A4δ(E1 + E2)δ(E3 + E4)∫

dd~k

(2π)d

[ 1√
(~k2 + E2

3)((~p− ~k)2 + E2
3)

+
1√

(~k2 + E2
1)((~p− ~k)2 + E2

1)

+
2√

(~k2 + E2
1)((~p ′ − ~k)2 + E2

3)

]
. (6.3)

In the above ~p = ~p1 + ~p2 and ~p ′ = ~p1 + ~p3. Note that in the above, we have excluded

the infrared divergent contribution. Now, in the dimensions, d = 2 + ε, each of above the

integral is UV divergent and the divergence is given by∫
dd~k

(2π)d
1√

(~k2 + E2
3)((~p− ~k)2 + E2

3)
∼ − 1

2πε
. (6.4)

Cancellation of divergence requires that

δv =
8v

πε
. (6.5)

Solving the Callan-Symanizik equation, we obtain the beta function

βv = εv − 8v2

π
. (6.6)

Thus, it has a UV fixed point given by

v∗ =
πε

8
. (6.7)

From the Callan-Symanizik equation, we can compute the dynamical exponent γt at the

fixed point. At the one-loop order in perturbation theory, we find that γ∗t vanishes, i.e.

γ∗t = O(v2∗). Thus, the correlation function at one-loop order does not have Lifshitz scaling.

7 Discussion

In this article, we study the renormalization group property of a disordered quantum field

theory in the presence of a boundary. We constructed examples of boundary field theory

with both classical and quantum disorder localized at the boundary. In these theories, we

found fixed points of renormalization group flow and computed the anomalous dimension

of certain operators.

There are many interesting questions and directions which have not been addressed

in the paper. One of the questions which will be interesting to understand is whether the
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disorder fixed point, if it exists, exhibits (or under what conditions) conformal symmetry.

It will be very interesting since it will lead to examples of disorder conformal field theory,

and one can use various tools of conformal field theory, see for example [17] to study the

disordered theory at the fixed point.

In another direction, it will be interesting to find an analogous monotonicity theorem

that exists in boundary quantum field theory [18–23]. It requires finding a quantitative

measure that decreases along with the renormalization group flow in a disordered theory.

In the present article, we have studied quench disorder in scalar field theories. It will

also be interesting to consider examples with fermions and gauge fields. In this direction,

the most interesting model to study would be the mixed dimensional QED and possibly

generalization to non-abelian theories.
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A Some useful integration

In the main text, we encounter integrals of the form∫
ddq

(2π)d
1

q2α(p+ q)2β
. (A.1)

We can evaluate the above integral using the Feynman parametrization

1

q2α(p+ q)2β
=

Γ(α+ β)

Γ(α)Γ(β)

∫ 1

0
dx

xα−1(1− x)β−1

(xq2 + (1− x)(p+ q)2)α+β
,

=
Γ(α+ β)

Γ(α)Γ(β)

∫ 1

0
dx

xα−1(1− x)β−1

(`2 + x(1− x)p2)α+β
, (A.2)
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where `µ = qµ + (1− x)pµ. The final integral can be evaluated as follows:∫
ddq

(2π)d
1

q2α(p+ q)2β
=

∫
ddq

(2π)d
Γ(α+ β)

Γ(α)Γ(β)

∫ 1

0
dx

xα−1(1− x)β−1

(q2 + x(1− x)p2)α+β

=

∫
ddq

(2π)d
1

Γ(α)Γ(β)

∫ 1

0
dxxα−1(1− x)β−1

∫ ∞
0

dt tα+β−1 e−t(q
2+x(1−x)p2)

=
Vd−1Γ(d2)

2(2π)dΓ(α)Γ(β)

∫ 1

0
dxxα−1(1− x)β−1

∫ ∞
0

dt tα+β−1−
d
2 e−tx(1−x)p

2

=
Vd−1Γ(d2)

2(2π)dΓ(α)Γ(β)

∫ 1

0
dxxα−1(1− x)β−1

Γ(α+ β − d
2)

(x(1− x)p2)α+β−
d
2

=
Vd−1Γ(d2)Γ(α+ β − d

2)

2(2π)dΓ(α)Γ(β)(p2)α+β−
d
2

∫ 1

0
dxx

d
2
−β−1(1− x)

d
2
−α−1

=
Vd−1Γ(d2)Γ(α+ β − d

2)

2(2π)dΓ(α)Γ(β)(p2)α+β−
d
2

Γ(d2 − β)Γ(d2 − α)

Γ(d− α− β)

=
Γ(α+ β − d

2)

(4π)
d
2 Γ(α)Γ(β)(p2)α+β−

d
2

Γ(d2 − β)Γ(d2 − α)

Γ(d− α− β)
(A.3)

Using the above integration formula, some of the integrals used in the main text are given

below.

I1(~p) =

∫
dd~k

(2π)d
1

|~k||~k + ~p|
=

Γ(d−12 )2Γ(1− d
2)

(4π)
d
2π(p2)1−

d
2 Γ(d− 1)

,

I2(~p) =

∫
dd~k1 d

d~k2
(2π)2d

1

|~k1 + ~p||~k1||~k2 + ~p||~k2|
= I1(~p)

2 ,

I3(~p, ~q) =

∫
dd~k1 d

d~k2
(2π)2d

1

|~k1 + ~p||~k1||~k1 − ~k2 − ~q||~k2|

∣∣∣
~q=0

=
Γ(1− d

2)Γ(d−12 )3Γ(2− d)Γ(d− 3
2)

(4π)dπ
3
2 Γ(3−d2 )(p2)2−dΓ(d− 1)Γ(3d2 − 2)

.

(A.4)
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