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Abstract— The Integrated Probabilistic Data Association Filter
(IPDAF) is a target tracking algorithm based on the Probabilistic
Data Association Filter that calculates a statistical measure that
indicates if an estimated representation of the target properly
represents the target or is generated from non-target-originated
measurements. The main contribution of this paper is to adapt the
IPDAF to constant velocity target models that evolve on connected,
unimodular Lie groups, and where the measurements are also
defined on a Lie group. We present an example where the methods
developed in the paper are applied to the problem of tracking a
ground vehicle on the special Euclidean group SE(2).

Index Terms— Tracking, Estimation, Integrated Probabilistic
Data Association (IPDAF), Lie Group, Multiple Target Tracking

I. Introduction

When tracking a single target whose initial position
is unknown, all real-world sensors produce non-target-
originated measurements (e.g. false measurements or clut-
ter). In the presence of dense clutter, it is a challenge
to locate and track the target since it is difficult to
distinguish between target-originated measurements and
false measurements. The typical approach is to use new
measurements to either improve the estimate of an exist-
ing track (a track is a representation of the target which
consists of at least the state estimate) or initialize new
tracks. If the clutter density is high, numerous tracks that
do not represent the target are initialized from clutter.

An example scenario illustrating the challenge of
tracking in clutter is depicted in Fig. 1, where the black
dots represent measurements, the green car represents
the true target, and the blue cars represent the tracks
currently in memory. The left image represents a time
step when measurements are received for the first time.
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The right image represents a subsequent time step when
previous measurements are used to initialize new tracks
and additional measurements are received. The challenge
is to identify which track represents the target.

Fig. 1: A depiction of the challenge of identifying which
track represents the target. The black dots represent
measurements, the green car represents the target, and
the blue cars represent tracks. The left image represents
the first time step that the measurements are received.
The right image represents the next time step when
previous measurements are used to initialize new tracks
and additional measurements are received.

Identifying which track best represents the target
requires an additional estimate called the track likelihood.
Tracks with a low track likelihood are rejected and pruned
from memory, while tracks with a high track likelihood
are confirmed as good tracks. The confirmed track with
the highest track likelihood can be used as the best
estimate of the target.

Different approaches to calculating the track likeli-
hood depend on the data association algorithm. Data
association is the process of assigning new measurements
to existing tracks so that the associated measurement can
be used to improve the estimates of the tracks. There
are two types of data association: hard data association
and soft data association. Hard data association assigns at
most one new measurement to each track, and soft data
association can assign multiple new measurements to each
track.

Tracking algorithms that use hard data association,
such as the Nearest Neighbor filter (NNF) [1], the Global
Nearest Neighbor filter (GNNF) [2, 3] and track splitting
algorithms, commonly use the likelihood function or
the negative log likelihood function (NLLF) to deter-
mine if a track should be rejected [4]. The likelihood
function measures the joint probability density of all of
the measurements associated with a track. If the track’s
likelihood function falls below some threshold, the track
is rejected. This approach does not indicate which track
best represents the target, only which tracks should be
removed. However, it is common to suppose that the track
with the highest track likelihood best represents the target.

Another approach to quantify the track likelihood
when using hard data association is based on the sequen-
tial probability ratio test (SPRT) [5]. The SPRT uses a
sequence of data to either confirm a null hypothesis or
reject the alternate hypothesis by analyzing the proba-
bility ratio of the two hypotheses. In terms of tracking,
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the SPRT calculates the joint probability density of the
measurements associated to a track for the hypothesis
that all the measurements are target originated and for
the hypothesis that all the measurements are false. It then
takes the ratio of the two probability densities and either
rejects the track if the ratio is below a threshold, confirms
the track if the ratio is above a threshold or continues
to gather more information as new measurements are
received until the track can be confirmed or rejected [6].
The SPRT is used in a variety of tracking algorithms
including the Multiple Hypothesis Tracker (MHT) [7].

Many of the common hard data association algo-
rithms are either computationally inexpensive and not
robust to clutter like the NNF and the GNNF or very
computationally expensive and robust like the MHT and
other track splitting methods. On the other hand, soft
data associations algorithms, like the probabilistic data
association filter (PDAF) [8, 9], offer a good balance
between robustness and computational expense. Similar
to a track splitting method, when multiple measurements
are associated to a track the PDAF makes a copy of
the track for every associated measurement, and then the
copy is updated with one of the associated measurements
resulting in the track splitting for every measurement. The
PDAF differs from the track splitting method in that after
track splitting, the split tracks are fused together into a
single track according to the likelihood of each split track
representing the target.

A nice feature of the PDAF is that it can be used
with many different types of dynamic models including
dynamic models evolving on Lie groups. Using Lie
groups to model rigid body dynamics is a recent ap-
proach [10, 11, 12, 13, 14, 15]. Lie groups are beneficial
since they naturally model the target’s pose and motion
without suffering from the singularities inherent in other
attitude representations like Euler angles, axis-angle, etc.
In addition, Lie group models more realistically model
the uncertainty that exists with physical systems. Because
of these features, Lie groups have shown increased ac-
curacy in estimation [16]. Many physical systems are
more naturally represented using Lie groups including
satellite attitude dynamics, fixed-wing unmanned aircraft
systems, multirotors and other flying objects, cars on road
networks, ground robots and walking pedestrians.

The two aforementioned methods of quantifying the
track likelihood do not work for soft data association
algorithms. For this reason, the PDAF was extended
in [17] to calculate the track likelihood using a novel
approach called the Integrated Probabilistic Data Asso-
ciation Filter (IPDAF). To our knowledge, the IPDAF
has not been adapted to Lie groups. However, the joint
integrated probabilistic data association filter (JIPDAF)
was adapted to the Lie group SE(2) in [18]. The JIPDAF
is the adaptation of the IPDAF to tracking multiple targets.
When tracking only a single target, the JIPDAF reduces
to the IPDAF. However, the reduction would require
understanding the more complicated JIPDAF instead of
the simpler IPDAF. Since the main focus of [18] was not

the adaptation of the JIPDAF to general Lie groups, the
algorithm was not derived and explained in detail.

The purpose of this paper is to present the IPDAF
adapted to connected, unimodular Lie groups in a tutorial
manner by providing enough detail to make it clear how it
can be implemented. We refer to the resulting algorithm as
the Lie group integrated probabilistic data association fil-
ter (LG-IPDAF). Our focus in this paper will be on nearly
constant velocity models, where the velocity is an element
of the Lie algebra. We will primarily consider measure-
ment models where the measurement is an element of
the Lie group, e.g., position and orientation for SE(2).
In addition, we make several unique contributions by
explaining the validation region for Lie groups, showing
how the indirect Kalman filter is used with Lie groups and
by presenting the system model more generally than [18]
by representing the target’s pose as an element of a Lie
group and its velocity as an element of the associated
Lie algebra instead of representing the velocity using
a constrained element of the Lie group. The modeling
approach used in [18] can be problematic when angular
velocities are sufficiently high since the mapping from the
Lie algebra to the Lie group is surjective and not bijective.
Our last contribution is to present the material generically
so that it can be easily applied to any Lie group, whereas
in [18] the algorithm is specifically presented for SE(2).

The rest of this paper is outlined as follows. In
Section II we review basic concepts of Lie group theory
to establish notation and to enable those not familiar
with Lie groups to follow the subsequent development.
In Section III we present an overview of the LG-IPDAF
algorithm. In Section IV we present the system model
used by the LG-IPDAF. In Sections V we give detailed
derivations of the key elements of the LG-IPDA Filter in-
cluding the prediction, data association, and update steps
as well as the track initialization scheme. In Section VI
we present a simple simulation example and conclude in
Section VII. Detailed proofs of some of the results are
given in the Appendices to facilitate the flow of the paper.

II. Lie Group Theory Review

Lie group theory is an extensive topic that we cannot
completely cover in this paper, but excellent tutorials
for robotic applications are given in [13, 19]. We also
recommend [12, 20, 21, 22, 23, 24] for a more rigorous
treatment of Lie group theory. In this paper, we restrict our
discussion to connected, unimodular Lie groups, an as-
sumption that is required by our model of the uncertainty
on the Lie group as will be explained later. The objective
of this section is to provide a brief review and to establish
notation. Even though we illustrate our notation using the
Lie group SE(2), the provided definitions are sufficiently
generic to apply to every connected, unimodular Lie
group.
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A. Lie Group and Lie Algebra

Let G denote a Lie group and g denote its corre-
sponding Lie algebra. We identify the Lie algebra with the
tangent space of G at the identity element. For example,
the special Euclidean group SE(2) is a matrix Lie group
used to model rigid body motion in two dimensions. It is
isomorphic to the set

SE(2) ∼=
{[

R p
01×2 1

]∣∣∣∣R ∈ SO(2), p ∈ R2

}
, (1)

with the group operator being matrix multiplication, R
denoting a 2-dimensional rotation matrix that represents
the attitude of the rigid body, and p denoting the position
of the rigid body. In this work we will use R to denote
the rotation from the body frame to the inertial frame,
and p to denote the position of the body with respect to
the inertial frame expressed in the inertial frame.

The Lie algebra of SE(2) is denoted se(2) and is
isomorphic to the set

se (2) ∼=
{[

[ω]× ρ
01×2 0

]∣∣∣∣ω ∈ R, ρ ∈ R2

}
, (2)

with ρ denoting the translational velocity, ω denoting
the angular velocity, and [·]× being the skew symmetric
operator defined as

[ω]× =

[
0 −ω
ω 0

]
. (3)

In this work we will use ρ to denote the translational
velocity of the body with respect to the inertial frame ex-
pressed in the body frame, and ω to denote the rotational
velocity of the body with respect to the inertial frame
expressed in the body frame.

The Lie algebra can take on various representations.
However, by taking advantage of its algebraic structure,
elements of the Lie algebra can be expressed as the linear
combination of orthonormal basis elements {ei} ⊂ g.
For example, let v ∈ se(2), then v =

∑3
i=1 aiei with

ai denoting the coefficient associated with ei and where

e1 =

0 −1 0
1 0 0
0 0 0

 e2 =

0 0 1
0 0 0
0 0 0

 e3 =

0 0 0
0 0 1
0 0 0

 .
The coefficients form an algebraic space isomorphic to
the Lie algebra that we will refer to as the Cartesian
algebraic space denoted RG, where the subscript indicates
the corresponding Lie group. Elements in the Cartesian
algebraic space can be represented using matrix notation
as v = [a1, a2, . . .]

>. We distinguish elements of the Lie
algebra from elements of the Cartesian algebraic space
using bold font notation for elements of the Lie algebra.

The wedge, ·∧, and vee, ·∨, functions are linear
isomorphisms used to map between the Lie algebra and
the Cartesian algebraic space. We denote these functions
respectively as

·∧ : RG → g; (v) 7→ v

·∨ : g→ RG; (v) 7→ v.

For se(2) the vee map is defined as([
[ω]× ρ
01×2 0

])∨
=

[
ρ
ω

]
= v, (5)

and the wedge map is the inverse.

B. Exponential Map

For Riemannian manifolds, a geodesic is the shortest
path between two points. The exponential function on the
Lie group G, denoted ExpG : G×RG → G, is a geodesic
that starts at a point g1 ∈ G and travels in the direction
of a tangent vector v ∈ RG for unit time to the point
g2 ∈ G as stated in Proposition 2.7 of [25]. We denote
the exponential function and its inverse, LogG, as

ExpG :G×RG → G; (g1, v) 7→ g2

LogG :G×G→ RG; (g2, g1) 7→ v.

When working with Lie groups, it is common to re-
strict the definition of the exponential map to the identity
element of the group; we denote this restriction as

ExpGI :RG → G; (v) 7→ g3

LogGI :G→ RG; (g3) 7→ v.

Lie groups allow the restricted exponential map to be
moved to another element of the group by applying the
left or right group action. Using left-trivialization, in other
words the left group action, we define the relation

ExpG (g1, v) = g1 • ExpGI (v) = g2 (8a)

LogG (g2, g1) = LogGI
(
g−1

1 • g2

)
= v (8b)

with • denoting the group operator that we omit in the
future. A depiction of the exponential map is given in
Fig. 2 where the sphere represents the manifold, the plane
represents the tangent space that extends to infinity, the
arrow in the tangent space represents v, and the arrow
on the manifold represents the geodesic from g1 to g2 in
the direction of v. For matrix Lie groups, the exponential

Fig. 2: A depiction of a geodesic starting at g1, moving
in the direction of v and ending at g2.

and logarithm maps at the identity element of the group
are the matrix exponential and matrix logarithm. These
maps operate on the Lie algebra, but their definitions are
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extended to the Cartesian algebraic space using the wedge
and vee operations. Unfortunately, not every Lie group is
isomorphic to a matrix Lie group, but fortunately most of
Lie groups that appear in robotics and control applications
are [21]. Thus, the matrix exponential can serve as the
exponential map for the majority of the interesting Lie
groups.

Let v = [ρ>, ω]> and g =

[
R p
0 0

]
. For SE(2) the

matrix logarithm and exponential mappings have closed-
form expressions given by

Exp
SE(2)
I (v) =

[
expm

(
[ω]×

)
D (ω) ρ

01×2 1

]
Log

SE(2)
I (g) =

[
logm (R) D−1 (logm (R)) p

01×2 0

]
,

where

expm
(
[ω]×

)
=

[
cosω − sinω
sinω cosω

]
(9)

logm (R) = arctan2 (R21, R11) = θ (10)

D (ω) =
sinω

ω
I +

1− cosω

ω
[1]× (11)

D−1 (θ) =
θ sin θ

2 (1− cos θ)
I − θ

2
[1]× , (12)

and where we note that D(0) and D−1(0) are well defined
since limω→0 sinω/ω = 1, limω→0(1−cosω)/ω = 0, and
limθ→0 θ sin θ/(2(1−cos θ)) = 1. We also note that when
ω is small, D(ω) ≈ I + 1

2 [ω]× and D−1(θ) ≈ I − 1
2 [θ]×.

C. Adjoint

The matrix adjoint of g ∈ G is a representation of g
that acts on RG and is generically defined as

AdGg : RG → RG; (v) 7→ AdGg v,

and represents, for example, a change of coordinates from
one location on the manifold to another. A useful property
of the adjoint is

gExpGI (v) = ExpGI
(
AdGg v

)
g. (13)

For SE(2), the matrix adjoint of g ∈ SE(2) is

AdSE(2)
g =

[
R − [1]× p

01×2 1

]
. (14)

The matrix adjoint of v1 ∈ RG is a representation of
RG that acts on v2 ∈ RG generically defined as

adGv1
: RG → RG; (v2) 7→ adGv1

v2.

For se(2), the matrix representation of the adjoint is

adSE(2)
v =

[
[w]× − [1]× ρ
01×2 0

]
.

D. Jacobian of the Matrix Exponential

When working with Lie groups, we need the differ-
ential of the exponential and logarithm functions. These
differentials are commonly called the right and left Ja-
cobians. The right and left Jacobians and their inverses

are defined to map elements of RG to the general linear
group (set of invertible matrices) that acts on RG. For
matrix Lie groups, they are defined as

JGr (v) =

∞∑
n=0

(
−adGv

)n
(n+ 1)!

, JGl (v) =

∞∑
n=0

(
adGv

)n
(n+ 1)!

,

JG
−1

r (v) =

∞∑
n=0

Bn
(
−adGv

)n
n!

, JG
−1

l (v) =

∞∑
n=0

Bn
(
adGv

)n
n!

,

where Bn are the Bernoulli numbers, the subscripts r/l
indicate the right and left Jacobian, and the superscript
indicates the corresponding Lie group. The derivation
of the left and right Jacobians stems from the Baker-
Campbell-Hausdorff formula [21, 12]. The right Jacobian
has the properties that for any v ∈ RG and any small
ṽ ∈ RG,

ExpGI (v + ṽ) ≈ ExpGI (v)ExpGI
(
JGr (v)ṽ

)
(15a)

ExpGI (v)ExpGI (ṽ) ≈ ExpGI

(
v + JG

−1

r (v)ṽ
)
. (15b)

Similarly for the left Jacobian,

ExpGI (v + ṽ) ≈ ExpGI
(
JGl (v)ṽ

)
ExpGI (v)

ExpGI (ṽ)ExpGI (v) ≈ ExpGI

(
v + JG

−1

l (v)ṽ
)
.

For SE(2), the Jacobians have closed form solutions,
and the right Jacobian for SE(2) is

JSE(2)
r (v) =

[
Wr (ω) Dr (ω) ρ
01×2 1

]
(16)

where

Wr (ω) =
cosω − 1

ω
[1]× +

sinω

ω
I

Dr (ω) =
1− cosω

ω2
[1]× +

ω − sinω

ω2
I,

and where we again note that Wr(0) and Dr(0) are well
defined and that for small ω, Wr(ω) ≈ I − 1

2 [ω]× and
Dr(ω) ≈ 1

2 [1]×.

E. Direct Product Group

In this paper, we assume that the target has nearly
constant velocity, implying that the target’s state is mod-
eled as an element of the Lie group formed from the
direct product of G and RG, denoted x = (g, v) ∈
Gx

.
= G×RG, where the target’s pose is expressed as an

element of G and its velocity is expressed as an element
of RG. The operator of this Lie group is inherited from
its subgroups G and RG. Since RG is an algebraic space,
it has an Abelian group structure with the group operator
being addition. Thus, the group operator and inverse of
Gx are

x1 • x2 = (g1, v1) • (g2, v2) = (g1g2, v1 + v2)

x−1
1 = (g1, v1)−1 =

(
g−1

1 ,−v1

)
.
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Fig. 3: A depiction of the concentrated Gaussian distri-
bution.

The corresponding Cartesian algebraic space of Gx
is Rx

.
= RG ×RG, and its exponential and logarithmic

maps are

ExpGxI (u) = ExpGxI ((ug, uv)) =
(
ExpGI (ug), uv

)
(17a)

LogGxI (x) = LogGxI ((g, v)) =
(
LogGI (g), v

)
, (17b)

where u = (ug, uv) ∈ Rx. The right Jacobian in matrix
notation of Gx is

JGxr (u) = JGxr ((ug, uv)) =

[
JGr (ug) 0

0 I

]
. (18)

For more information about the direct product group see
[26].

F. Uncertainty

In this paper we use Gaussian distributions to model
the uncertainty in the sensor, state estimate, and system
dynamics. As an example, let x̃ ∈ Rx be a zero-mean,
Gaussian random variable with covariance P such that
x̃ ∼ N (µ = 0, P ); i.e.

p (x̃) = η exp

(
−1

2
x̃>P−1x̃

)
(19)

with η denoting the normalizing coefficient. Gaussian
distributions are defined on vector spaces. Since not every
Lie group has a vector space structure (e.g. SE(2) is not a
vector space since scalar multiplication is not defined on
the set) Gaussian distributions cannot be defined directly
on every Lie group. However, they can be defined on
the Cartesian algebraic space at the identity element of
the Lie group and extended to the Lie group using the
exponential map. Thus, the probability of an element of
the Lie group is the probability of the corresponding
element of the Cartesian algebraic space. For example,
let x = ExpGxI (x̃). The probability of x is determined
from the probability of x̃ as depicted in Fig. 3.

In order for the uncertainty to be indirectly defined
over the entire Lie group, the Lie group is required to be
connected (i.e. there exists a geodesic between any two
elements). In other words, the exponential map at identity
is surjective allowing the Gaussian distribution to extend
to every element of the Lie group.

Depending on the connected Lie group, the expo-
nential map may not be injective, which means that
possibly an infinite number of elements of the Cartesian
algebraic space will map to the same element of the
Lie group. In this case, we require the uncertainty to
have a concentrated Gaussian density (CGD) [27]. The
CGD is a zero mean Gaussian distribution that is tightly
focused around the origin of the Cartesian algebraic space,
where by tightly focused we mean that the majority of the
probability mass is in a subset U ⊆ Rx centered around
the origin where the exponential mapping from U to Gx is
injective, and that the probability of an element not being
in U is negligible. This property allows us to ignore the
probability of an element being outside of U .

The CGD can be centered at an element other than
the identity element of the group using the group action
provided that the Lie group is unimodular implying that
the determinant of the group action is one. The unimodu-
lar property combined with the connected property allows
the CGD to be mapped to the Lie group and moved to
any element in the group via the group action without
changing the probability mass density. For example, the
target’s state may be represented as

x = x̂ ExpGxI (x̃), (20)

where x̂ ∈ Gx is the target’s state estimate and x̃ is the
error state whose probability density function is defined
in equation (19). The exponential function at identity
maps the random variable x̃ to the Lie group, and the
state estimate moves the uncertainty to the target’s state
without changing the mass density of the uncertainty.
These properties allow the probability of the state x to
be related to the corresponding probability of the error
state x̃. Thus, the uncertainty distribution of x is defined
by the distribution of x̃ as

p (x)
4
= η exp

(
−1

2
LogGxI

(
x̂−1x

)>P−1LogGxI
(
x̂−1x

))
(21a)

= η exp

(
−1

2
x̃>P−1x̃

)
= p (x̃) . (21b)

With a slight abuse of notation, we denote the probability
density function (PDF) of the state x as x ∼ N (x̂, P )
where x̂ is the state estimate and P is the error covariance
of the error state x̃.

An advantage to representing the uncertainty in the
Cartesian algebraic space is having a minimum repre-
sentation of the uncertainty. For example, an element
of the matrix group SE(2) has three dimensions but
is represented by a 3 × 3 matrix with nine elements.
Representing the uncertainty directly on the set of 3 × 3
matrices with nine elements would require the covariance
to be 9×9, whereas the corresponding Cartesian algebraic
space only has three components and the corresponding
covariance matrix will be 3× 3.

For more information about representing uncertainty
on Lie groups see [28, 16, 29, 30].
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G. First Order Taylor Series and Partial Derivatives

Let g, ĝ ∈ G, and let g̃ ∈ RG be a small perturbation
from the origin with the relation g = ĝExpGI (g̃). Also let
f : G→ G be an arbitrary function. The first order Taylor
series of f evaluated at ĝ is

f (g) ≈ f (ĝ) ExpGI

(
∂f

∂g
(ĝ) g̃

)
,

where ∂f
∂g (ĝ) is the partial derivative of f with respect to

g evaluated at g = ĝ. Using the definition and notation
shown in [13] and the relation defined in (8), the partial
derivative of f with respect to g is defined as

∂f

∂g
= lim
v→0

LogGI

(
f (g)

−1
f
(
gExpGI (v)

))
v

, (22)

where v ∈ RG. In Equations (22), we abuse notation
by denoting the vector of the numerator divided by each
element of v, as the numerator divided by the vector
v. Note that the limit in equation (22) is taken in the
Cartesian algebraic space instead of the Lie group, since
the Cartesian algebraic space is a vector space where
derivatives are well defined.

III. Overview

The Lie group integrated probabilistic data association
filter (LG-IPDAF) is designed to track a single dynamic
target using a single sensor that observes the target. The
target is modeled using a constant-velocity, white-noise-
driven system model defined on Lie groups. The system
model is defined in Section IV.

We call the act of the sensor observing and producing
measurements from the measurement space at a given
instant of time a sensor scan. The sensor is assumed
to detect the target with probability PD ∈ [0, 1] where
PD = 0 means that the target is not in the sensor’s field
of view. It is assumed that a sensor produces at most one
target originated measurement, called a true measurement.
We also assume that every sensor scan and all other mea-
surements are non-target-originated measurements, called
false measurements or clutter. The false measurements are
assumed to be independent identically distributed (iid)
with uniform spatial distribution, where the number of
false measurements per sensor scan is modeled by the
Poisson distribution

µF (φ) = exp (λV)
(λV)

φ

φ!
, (23)

where λ is the spatial density of false measurements, V
is the volume of the sensor’s field of view, and φ is the
number of false measurements.

The LG-IPDAF represents the target mathematically
using tracks. A track is a tuple T = (x̂, P, CS, ε, L), where
x̂ is the state estimate of a target, P is the corresponding
error covariance, CS is the set of measurements associated
to the track called the consensus set, ε denotes the
probability that the track represents a target and is called

the track likelihood, and L is the track label, a unique
numerical label used to identify confirmed tracks.

The LG-IPDAF does not assume that the target’s
initial state is known and relies on a track initialization
and confirmation scheme to locate the target. Tracks are
initialized from measurements. Since the sensor produces
both target-originated measurements and false measure-
ments, tracks generated by the LG-IPDAF can be cre-
ated from true measurements and/or false measurements.
Therefore, an initialized track can either represent a target
or clutter. To identify the track that represents the target,
the LG-IPDAF calculates the track likelihood. A track
with a high track likelihood is confirmed to be a good
representation of the target, and the confirmed track with
the highest track likelihood is assumed to represent the
target.

As time progresses, the target moves and the sensor
produces measurements. When new measurements are
received, the LG-IPADF algorithm performs four steps
in order: (1) the prediction step, (2) the data association
step, (3) the update step, and (4) the track initialization
step.

Let tk denote the current time and tk− denote the
time at the previous iteration. At the beginning of the
prediction step, the track’s state estimate, error covariance
and track likelihood are at time tk− and conditioned on
the measurements up to time tk− . We denote these values
respectively as x̂k−|k− , Pk−|k− , and εk−|k− . During the
prediction step the track’s state estimate, error covariance
and track likelihood are propagated forward in time using
the system model. The propagated state estimate, error
covariance and track likelihood at time tk, conditioned
on the measurement up to time tk− , are denoted x̂k|k− ,
Pk|k− , and εk|k− respectively. The prediction step is
discussed in detail in Section V.A.

During the data association step, the new measure-
ments are associated to an existing track or given to
a database that contains non-track-associated measure-
ments. The data association algorithm is designed so that
a target-originated measurement is associated to the track
that represents the target with probability PG ∈ [0, 1]
provided that the track exists. This probability is used
to construct a volume in the measurement space centered
around the track’s estimated measurement called the vali-
dation region. Any measurement that falls within a track’s
validation region is associated to the track. We denote the
set of measurements associated to a track at time tk as
Zk = {zk,j}mkj=1 where zk,j denotes the jth measurement
at time tk associated with the track and mk denotes the
number of measurements associated with the track at time
tk. The data association step is discussed in detail in
Section V.B.

During the update step, the new measurements as-
sociated with a track are used to update the track. For
every associated measurement {zk,j}mkj=1, the track’s state
estimate x̂k|k− is copied and updated using a distinct
associated measurement to produced what we define to
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Fig. 4: A depiction of a single iteration of the LG-IPDAF.
The large green car represents the target, the smaller
blue cars represent the tracks, the black dots represent
measurements, the gray ellipse represents the validation
region and the small red cars represent the split state
estimates. The top left image depicts the prediction and
data association steps during which new measurements
are received, the track is propagated in time, the vali-
dation region is constructed, and four measurements are
associated to the track. The top right image shows the first
part of the update step where the state estimate is split
into five states: one for each associated measurement, and
one for the null hypothesis that none of the measurements
are target originated. The bottom left shows the rest of
the update step where the split state estimates are fused
together to form a single state estimate. The bottom right
image shows the last step which initializes new tracks
from non-track-associated measurements.

be the split state estimates
{
x̂k|k,j

}mk
j=0

where x̂k|k,j
for j > 0 is the state estimate after being updated
with measurement zk,j and x̂k|k,0 = x̂k|k− is the null
hypothesis that none of the measurements originated from
the target. Then the split state estimates

{
x̂k|k,j

}mk
j=0

are
fused together according to their probability of being the
correct state estimate. In this way, the LG-IPDAF is never
totally correct but never completely wrong as in the case
of hard data association algorithms. After the update step,
the propagated state estimate, error covariance and track
likelihood at time tk, conditioned on the measurements up
to time tk, are denoted x̂k|k, Pk|k, and εk|k respectively.
The update step is discussed in detail in Section V.C.

During the track initialization step, non-track-
associated measurements are used to initialize new tracks.
This step is discussed in detail in Section V.D. A depiction
of a single iteration of the LG-IPDAF is shown in Fig. 4.

A. Assumptions

Our derivation of the LG-IPDAF uses the following
assumptions:

1) There exists a single target that can be observed
by a single sensor and modeled by a constant-
velocity, white-noise-driven system model defined
in equation (24).

2) A sensor scan occurs whenever the sensor ob-
serves the measurement space. At every sensor
scan there are mk validated measurements denoted
{zk,j}mkj=1 = Zk.

3) At every scan there is at most one target originated
measurement and all others are false (i.e. non
target-originated measurements).

4) The sensor detects the target with probability PD ∈
[0, 1].

5) The target originated measurement falls within
the track’s validation region with probability PG
provided that the track represents the target. The
probability PG is discussed in Section V.B.

6) The false measurements are independently identi-
cally distributed (iid) with uniform spatial density
λ.

7) The expected number of false measurements per
sensor scan is modeled using the density function
µF . In this paper, µF denotes a Poisson distribu-
tion defined in equation (23).

8) The past information about a track is summa-
rized as

(
x̂k−|k− , Pk−|k− , εk−|k−

)
where x̂k−|k− ,

Pk−|k− , and εk−|k− denote the track’s state es-
timate, error covariance and track likelihood at
the previous time and conditioned on the previous
track-associated measurements.

The parameters PD and λ can be statistically calcu-
lated from sensor data, and the parameter PG is selected
by the user and discussed in Section V.B.

IV. System Model

In this section we present the system model used in
the LG-IPDAF and also derive the affinization of the
system model that will be necessary when approximating
Gaussian distributions.

A. System Model

Let xk = (gk, vk) ∈ Gx
.
= G × RG denote the

target’s state at time tk, tk− denote the time at the
previous iteration, t∆ = tk − tk− denote the time interval
from the previous iteration to the current time, Rx

.
=

RG × RG 3 q∆ = (qg∆, q
v
∆) ∼ N (0, Q (t∆)) denote the

process noise modeled as a Wiener process [31], zk ∈ Gs
denote the measurement at time tk, Rs 3 rk ∼ N (0, R)
denote the measurement noise, where Gs is the Lie group
for the measurement space and Rs is the corresponding
Cartesian algebraic space. The proposed discrete, time-
invariant model is

xk = f (xk− , q∆, t∆) (24a)
zk = h (xk, rk) , (24b)

: 7



where f is the state transition function defined as

f (xk− , q∆, t∆)

, (gk− , vk−)ExpGxI (t∆vk− + qg∆, q
v
∆) (25a)

=
(
gk−ExpGI (t∆vk− + qg∆), vk− + qv∆

)
. (25b)

This form is similar to the system model defined in [32].
The definition of the observation function h is depen-

dent on the application and further generalization is not
needed. In Section VI, we show how h is defined when
the target of interest is a car restricted to a plane, and
where its pose (position and orientation) is observed. In
that case, the state is the Lie group SE(2)×RSE(2) and the
measurement Lie group is SE(2), where the observation
function is

h (xk, rk) = gkExp
GSE(2)

I (rk), (26)

and where the noise satisfies rk ∼ N (0, R) ∈ RSE(2).

B. System Affinization

A Gaussian random variable applied to an affine func-
tion remains Gaussian while a Gaussian random variable
applied to a nonaffine function is no longer Gaussian.
Depending on the Lie group, the system model can be
affine or nonaffine. In the nonaffine case and under the
assumption that the signal-to-noise ratio (SNR) is high,
the Gaussian structure of the system model uncertainties
can be well preserved with little loss of information
by affinizing the system model when propagating and
updating the uncertainty as is commonly done with the
extended Kalman filter.

The system model is approximated as affine by com-
puting its first order Taylor series at the points

ζf∆

.
= (xk− = x̂k− , q∆ = 0, t∆) (27)

ζhk
.
= (xk = x̂k, rk = 0) , (28)

according to Subsection II.G. What we mean by affine,
is that the propagation of the uncertainty is affine. This
computation requires the calculation of the state tran-
sition function Jacobians and the observation function
Jacobians.

The Jacobians for the state transition function can be
defined generically, and the Jacobians for the observation
function are application dependent. However, we will
define the observation function Jacobians for our running
example.

LEMMA 1. Given the discrete time-invariant model in
Equations (24), (25) and (26) the Jacobians evaluated

at ζf∆ and ζhk are

F∆ =
∂f

∂x

∣∣∣∣
ζf∆

=

[
AdG

ExpGI (t∆v̂k−)−1 JGr (t∆v̂k−)t∆

0n×n In×n

]
(29a)

G∆
.
=
∂f

∂q

∣∣∣∣
ζf∆

=

[
JGr (t∆v̂i) 0n×n

0n×n In×n

]
(29b)

Hk =
∂h

∂x

∣∣∣∣
ζhk

=
[
In×n 0n×n

]
(29c)

Vk =
∂h

∂r

∣∣∣∣
ζhk

= In×n, (29d)

where n is the dimension of the target’s pose, 0n×n is the
n× n zero matrix, and In×n is the n× n identity matrix.

Consequently, if x̂k− ∈ Gx is a state estimate that
is close to xk− , and if the error state between xk− and
x̂k− is defined as x̃k−

.
= LogGxI

(
x̂−1
k−
xk−

)
∈ Rx, then the

evolution of the system can be described by the “affinized
system”

xk ≈ f (x̂k− , 0, t∆) ExpGxI (F∆x̃k− +G∆q∆) (30a)

zk ≈ h (x̂k, 0) ExpGsI (Hkx̃k + Vkrk). (30b)

Proof:
We will prove the expression for F∆, and leave the
derivation of the other Jacobians, which are similar, to
the reader. Let τ = (τg, τv) ∈ Rx denote the perturbation
of the state. Then, using the definition of the derivative
in equation (22)

∂f

∂xk−
= lim
τ→0

LogGxI

(
f (xk− , 0, t∆)−1 f

(
xk−ExpGxI (τ), 0, t∆

))
τ

.

Substituting the definition of the state transition function
in equation (25) yields

∂f

∂xk−
= lim
τ→0

1

τ
LogGxI

[(
gk−ExpGI (t∆vk− ), vk−

)−1

(
gk−ExpGI (τg)ExpGI (t∆vk− + t∆τ

v), vk− + τv
)]

= lim
τ→0

1

τ
LogGxI

[(
ExpGI (t∆vk− )−1g−1

k−
gk−ExpGI (τg)

ExpGI (t∆vk− + t∆τ
v), vk− + τv − vk−

)]
= lim
τ→0

1

τ
LogGxI

[(
ExpGI (t∆vk− )−1ExpGI (τg)

ExpGI (t∆vk− + t∆τ
v), τv

)]

Using the property of the adjoint in equation (13) and
the property of the right Jacobian in equation (15) gives

∂f

∂xk−
= lim
τ→0

1

τ
LogGxI

[(
ExpGI (t∆vk− )−1ExpGI (τg)

ExpGI (t∆vk− )ExpGI

(
JGr (t∆vk− )t∆τ

v
)
, τv
)]

= lim
τ→0

1

τ
LogGxI

[(
ExpGI

(
AdG

ExpG
I (t∆vk− )−1τ

g

)
ExpGI

(
JGr (t∆vk− )t∆τ

v
)
, τv
)]

= lim
τ→0

1

τ

(
LogGI

(
ExpGI

(
AdG

ExpG
I (t∆vk− )−1τ

g

)
ExpGI

(
JGr (t∆vk− )t∆τ

v
))

, τv
)
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The portion of the derivative corresponding to τg is
computed as

∂f

∂gk−
= lim
τg→0

(
LogGI

(
ExpGI

(
AdG

ExpG
I (t∆vk− )−1τ

g

))
, 0

)
τg

= lim
τg→0

(
AdG

ExpG
I (t∆vk− )−1τ

g , 0

)
τg

=

AdG
ExpG

I (t∆vk− )−1

0n×n

 ,
(31)

and the portion of the derivative corresponding to τv is
computed as

∂f

∂vk−
= lim
τv→0

(
LogGI

(
ExpGI

(
JGr (t∆vk−)t∆τ

v
))
, τv
)

τv

= lim
τv→0

(
JGr (t∆vk−)t∆τ

v, τv
)

τv
=

[
JGr (t∆vk−)t∆

In×n

]
.

(32)

Combining equations (31) and (32) yields (29a).

V. The Lie Group Integrated Probabilistic Data
Associate Filter

This section gives detailed derivation of the key ele-
ments of the LG-IPDA filter. In particular, the prediction
step in Section V.A, the data association step in Sec-
tion V.B, the measurement update step in Section V.C,
and new track initialization in Section V.D.

A. Prediction Step

The prediction step of the LG-IPADF is similar to
the prediction step of the indirect Kalman filter with the
addition of propagating the track likelihood [33, 32]. We
begin by introducing additional notation. Let Z0:i denote
the set of track associated measurements from the initial
time to time ti. Let ε denote a Bernoulli random variable
that represents the probability that the track represents the
target. The probability that the track represents a target
conditioned on Z0:k− is the track likelihood and is denoted
at the previous time step as εk−|k−

.
= p (εk− | Z0:k−).

Conversely, we denote the probability that the track
does not represent a target conditioned on Z0:k− as
p (εk− = F | Z0:k−) = 1− p (εk− | Z0:k−).

Define the probability of the track’s previous state con-
ditioned on the previous track-associated measurements
and it representing a target as

p (xk− | εk− , Z0:k−)
.
= η exp

(
−1

2
x̃>k−|k−P

−1
k−|k− x̃k−|k−

)
,

(33)

where x̃k−|k− = LogGxI

(
x̂−1
k−|k−xk−

)
is the error state,

x̂k−|k− is the state estimate and Pk−|k− is the error covari-
ance at time tk− conditioned on the measurements Z0:k− .
The terms x̂k−|k− , Pk−|k− , and εk−|k− are the track’s
state estimate, error covariance and track likelihood at
the beginning of the propagation step.

To derive the prediction step, we need to construct
the Gaussian approximation of the probability of the
track’s current state conditioned on the track’s previous
state, the track representing the target, and the previous
measurements denoted p (xk | xk− , εk− , Z0:k−).

LEMMA 2. Given that Assumptions 1 and 8 hold, then
the Gaussian approximation of p (xk | xk− , εk− , Z0:k−) is

p (xk | xk− , εk− , Z0:k− )

≈ η exp

(
−

1

2

(
x̃k|k− − F∆x̃k−|k−

)>
Q̄∆

(
x̃k|k− − F∆x̃k−|k−

))
,

(34)

where

x̃k|k− = LogGxI

(
x̂−1
k|k−xk

)
x̂k|k− = f

(
x̂k−|k− , 0, t∆

)
Q̄∆ = G∆Q (t∆)G>∆, (35)

and where f is the state transition function defined in
equation (25), Q (t∆) is the process noise covariance, and
the Jacobians F∆ and G∆ are defined in equation (29)
and evaluated at the point ζf∆

=
(
x̂k−|k− , 0, t∆

)
.

Proof:
The probability p (xk | xk− , εk− , Z0:k−) is approximated
as Gaussian by computing the first and second moments
of the propagated error state, using the affinized system
defined in (30). From Equation (30) the affinized state
transition function is

xk ≈ f
(
x̂k−|k− , 0, t∆

)︸ ︷︷ ︸
x̂k|k−

ExpGxI

F∆x̃k−|k− +G∆q∆︸ ︷︷ ︸
x̃k|k−

,
(36)

where xk, x̂k|k− = f
(
x̂k−|k− , 0, t∆

)
, x̃k|k− =

F∆x̃k−|k− + G∆qk are respectively the predicted state,
the predicted state estimate, and the predicted error state
all conditioned on the track’s previous state, the track
representing the target, and the previous measurements.

Since the probability p (xk | xk− , εk− , Z0:k−) is con-
ditioned on a specific value of the previous state, the
previous error state x̃k−|k− is not a random variable. Thus,
the first and second moments of the propagated error state
are

E
[
x̃k|k−

]
= E

[
F∆x̃k−|k− +G∆q∆

]
= F∆x̃k−|k−

cov
[
x̃k|k−

]
= G∆Q (t∆)G>∆ = Q̄∆,

and the approximate Gaussian PDF is given in equa-
tion (34).

LEMMA 3. Suppose that Assumptions 1 and 8 hold, then
the propagation of the track’s state estimate and error
covariance are

x̂k|k− = f
(
x̂k−|k− , 0, t∆

)
, (37a)

Pk|k− = F∆Pk−|k−F
>
∆ +G∆Q (t∆)G>∆ (37b)
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and the probability of the track’s current state conditioned
on the track representing the target and the previous
measurements is

p (xk | εk− , Z0:k−) = η exp

(
−1

2
x̃>k|k−P

−1
k|k− x̃k|k−

)
(38)

where x̃k|k− = LogGxI

(
x̂−1
k|k−xk

)
.

Proof: See Appendix A.
The track likelihood is modeled using a Markov

process as described in [17], and its propagation is

εk|k−
.
= p (εk | Z0:k−) = σ (t∆) p (εk− | Z0:k−) ,

where the probability σ (t∆) ∈ [0, 1] is chosen to represent
how the track likelihood can change in time due the target
being occluded, leaving the sensor surveillance region,
etc.

Therefore, at the end of the prediction step, we
know the state estimate x̂k|k− and error covariance
and Pk|k− , and the probabilities p (xk | εk− , Z0:k−) and
p (εk | Z0:k−).

B. Data Association

In this section we derive the data association algo-
rithm that associates new measurements to tracks. Let ψ
denote a Bernoulli random variable that indicates that the
measurement originated from the target. The estimated
measurement of a track with state estimate x̂k|k− is

ẑk , h
(
x̂k|k− , 0

)
, (39)

where h is the generic observation function defined in
equation (24).

The validation region is a volume in measurement
space centered around the track’s estimated measurement.
The volume is selected such that a target-originated
measurement has probability PG to fall within the track’s
validation region provided that the track represents the
target. A measurement that falls within the validation
region of a track is called a validated measurement and
is associated to the track. Otherwise, the measurement
is given to a database that stores non-track-associated
measurements. Computation of the validation region is
complicated by the fact that the measurements and the
target’s state are elements of Lie groups and do not have
a vector space structure.

LEMMA 4. Suppose that Assumptions 1 and 8 hold, then
the probability of measurement zk conditioned on it being
target-originated, is given by

p (zk | ψ, εk, Z0:k−) ≈ η exp

(
−1

2
z̃>k S

−1
k z̃k

)
, (40)

where the innovation z̃k and the innovation covariance
Sk are given by

ẑk = h
(
x̂k|k− , 0

)
(41a)

z̃k = LogGsI
(
ẑ−1
k zk

)
(41b)

Sk = VkRV
>
k +HkPk|k−H

>
k , (41c)

and where the Jacobians Hk and Vk are defined in (29)
and evaluated at the point ζhk =

(
x̂k|k− , 0

)
.

Proof: Similar to the proof of Lemma 3 in Appendix A.
Using equations (40) and (41), we define the metric

dV : Gs ×Gs → R as
dV (zk, ẑk) = ν>k S

−1
k νk, (42)

where the innovation covariance is used to normalize the
metric. Thus, the metric dV is the sum of m squared
Gaussian random variables where m is the dimension of
the measurement space, and the values of the metric are
distributed according to a chi-square distribution with m
degrees of freedom.

The validation region is defined as the set
val (ẑk, τG)

.
= {z ∈ Gs | dV (z, ẑk) ≤ τG} ,

where the parameter τG is called the gate threshold. A
measurement that falls within this validation region is
associated to the track whose estimated measurement is
ẑk. This implies that a validation region is constructed for
each track.

The volume of the validation region is defined as

Vk = cm |τGSk|1/2 , (43)
where cm is the volume of the unit hypersphere of
dimension m calculated as

cm =
πm/2

Γ (m/2 + 1)
,

with Γ denoting the gamma function [4]. It is worth noting
that the volume of the validation region is dependent on
the error covariance through the innovation covariance Sk.
Therefore, the validation region contains information on
the quality of the state estimate. This concept will be used
in Section V.C.

The gate probability is

PG =

∫
Vk
p (z | ψ, εk, Z0:k−) dz, (44)

and is the value of the chi-square cumulative distribution
function (CDF) with parameter τG [4]. Let θk denote a
Bernoulli random variable that the measurement is target
originated and inside the validation region. Using (40)
and (44), the probability of a measurement conditioned
on the measurement being inside the validation region,
being target-originated, the track representing the target
and the previous measurements is
p (zk | θk, εk, Z0:k−) = P−1

G p (zk | ψ, εk, Z0:k−) . (45)
The data association step of the LG-IPDAF can be

extended to multiple targets and tracks by assigning a
measurement to every track whose validation region the
measurement falls in without taking into account joint
associations. This is done by copying the measurement
for every track it is associated with and giving a copy to
each track the measurement is associated with and treating
track associated measurements of one track independently
of track associated measurements of another track.

At the end of the data association step, we have the
track-associated measurements Zk = {zk,j}mkj=1 for each
track.
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C. Measurement Update Step

According to Assumption 3, at most one measurement
originates from the target every sensor scan. Thus, given
the set of new validated measurements Zk = {zk,j}mkj=1,
either one of the measurements is target originated or
none of them are. This leads to different possibilities.
As an example, all of the measurements could be false,
or the measurement zk,1 could be the target-originated
measurement and all others false, or zk,2 could be the
target-originated measurement and all others false, etc.
These different possibilities are referred to as association
events denoted θk,j where the subscript j > 0 means that
the jth validated measurement is target originated and all
others are false, and where j = 0 means that all of the
validated measurements are false. Hence, there are a total
of mk + 1 association events.

LEMMA 5. Suppose that Assumptions 1-8 hold, and that
Zk = {zk,j}mkj=1 is the set of validated measurements at
time tk, and let PD be the probability of detection, PG
the gate probability, λ the spatial density of false mea-
surements, p (zk,j | ψ, εk, Z0:k−) be defined by Equation
(40), and let

Lk,j
.
=
PD
λ
p (zk,j | ψ, εk, Z0:k−) , (46)

then the probability βk,j
.
= p (θk,j | εk, Z0:k) of an asso-

ciation event θk,j conditioned on the measurements Z0:k,
and the track representing a target, is given by

βk,j =


(1−PGPD)

1−PDPG+
∑mk
j=i Lk,i

j = 0,

Lk,j
1−PDPG+

∑mk
i=1 Lk,i

j = 1, . . . ,mk.
(47)

Proof: See Appendix B.
Using the association events, we can update the track’s

state estimate x̂k|k− and error covariance Pk|k− condi-
tioned on each association event in order to generate the
split tracks. This update step is similar to the Kalman
filter’s update step. The standard Kalman filter algorithm
updates the state estimate directly using vector space
arithmetic. However, since not every Lie group has a
vector space structure, we have to approach the update
step differently.

Recall that p (xk | εk, Z0:k−) = p (x̃k | εk, Z0:k−) with
the relation xk = x̂k|k−ExpGxI

(
x̃k|k−

)
. The error state

x̃k|k− ∼ N
(
µk|k− , Pk|k−

)
has a vector space struc-

ture. This allows us to update the error state using
a method similar to the Kalman filter. We denote the
updated error state and its corresponding mean and er-
ror covariance conditioned on θk,j , the track represent-
ing the target, and all track-associated measurements as
x̃−k|k,j ∼ N

(
µ−k|k,j , P

c−

k|k,j

)
. Using the updated error

state, the probability of the track’s state conditioned
on the association event θk,j and the track representing
the target and all the track associated measurements,
is p (xk | θk,j , εk, Z0:k) = p

(
x̃−k | θk,j , εk, Z0:k

)
where

xk = x̂k|k−ExpGxI

(
x̃−k|k

)
.

The updated error state may have a non-zero mean.
To reset the error state’s mean to zero we add µ−k|k,j
to the state estimate x̂k|k− via the exponential map, and
the error covariance is modified accordingly. We denote
the updated and reset error state and its corresponding
mean and error covariance conditioned on θk,j as x̃k|k,j ∼
N
(
µk|k,j = 0, P ck|k,j

)
. Using the reset error state, we

have p (xk | θk,j , εk, Z0:k) = p (x̃k | θk,j , εk, Z0:k) with
the relation xk = x̂k|kExpGxI

(
x̃k|k

)
. In summary, we

update the mean of the error state, and then reset it to
zero by adding it onto the state estimate. This process
is the update step of the indirect Kalman filter and is
presented in the following lemma.

LEMMA 6. Suppose that Assumptions 1, 3, and 8 hold,
and define Zk = {zk,j}mkj=1 as the set of validated
measurements at time k, then the Gaussian approximation
of the probability of the split track xk,j is

p (xk,j | θk,j , εk, Z0:k) = η exp

(
x̃>k|k,j

(
P ck|k,j

)−1

x̃k|k,j

)
,

(48)
where

x̃k|k,j = LogGxI

(
x̂−1
k|k,jxk,j

)
(49)

x̂k|k,j =

{
x̂k|k−ExpGxI

(
µ−k|k,j

)
, j 6= 0

x̂k|k− , j = 0
(50)

P ck|k,j =

{
JGxr

(
µ−k|k,j

)
P c
−

k|kJGxr

(
µ−k|k,j

)
>, j 6= 0

Pk|k− , j = 0

(51)
µ−k|k,j = Kkνk,j (52)

νk,j = LogGsI

(
h
(
x̂k|k− , 0

)−1
zk,j

)
(53)

Kk = Pk|k−H
>
k S
−1
k (54)

Sk = HkPk|k−H
>
k + VkRV

>
k (55)

P c
−

k|k = (I −KkHk)Pk|k− , (56)

and where R is the measurement noise covariance, and
the Jacobians Hk and Vk are defined in (29) and evalu-
ated at the point ζhk =

(
x̂k|k− , 0

)
.

Proof: See Appendix C.
Equation (52) is the updated mean of the error state

before being reset to zero, Equation (53) is the innovation
term, Equation (54) is the Kalman gain, Equation (55)
is the innovation covariance, and Equation (56) is the
updated error covariance before the updated mean is reset.
Equation (50) adds the mean of the error state to the
state estimate essentially resetting the error state’s mean
to zero, and Equation (51) is the covariance update as a
consequence of resetting the error state’s mean to zero.

Using the probabilities of the split tracks defined in
equation (48) and the probabilities of each association
event defined in equation (47), the probability of the
track’s state conditioned on it representing the target and
all track-associated measurements is calculated using the
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theorem of total probability:

p (xk | εk, Z0:k) =

mk∑
j=0

p (xk,j | θk,j , εk, Z0:k)βk,j . (57)

In essence, the probability of the track’s state is the
weighted average of the split tracks’ state probabilities
where the weight is the probability of the corresponding
association event. The process of splitting tracks could
be repeated every time new measurements are received
which would lead to an exponential growth of split tracks.
This process would quickly become computationally and
memory expensive. To keep the problem manageable,
the split tracks are fused together using the smoothing
property of conditional expectations discussed in [34].

Normally if the track’s state estimate is expressed in
Euclidean space, the smoothing property of conditional
expectations would indicate that the state estimates should
be fused together according to the equation

x̂k|k =

mk∑
j=0

x̂k|k,jβk,j , (58)

as in the original probabilistic data association filter.
However, this approach does not work with arbitrary Lie
groups since not every Lie group has a vector space struc-
ture. Instead we have to solve equation (57) indirectly by
posing the problem in the Cartesian algebraic space. This
is accomplished by using the relation in equation (21) to
note that

p (xk,j | εk, Z0:k) = p
(
x̃−k,j | εk, Z0:k

)
, (59)

where x̃−k,j is the error state conditioned on θk,j after
update but before its mean is reset to zero as discussed
in Lemma 6. We use this version of the error state since
we can fuse the means µ−k|k,j , defined in equation (52),
together in a similar way as in equation (58).

Using the relation in equation (59), an equivalent
expression to equation (57) is

p
(
x̃−k|k | εk, Z0:k

)
=

mk∑
j=0

p
(
x̃−k|k,j | θk,j , εk, Z0:k

)
βk,j ,

(60)
with the relations xk = x̂k|k−ExpGxI

(
x̃−k|k

)
and xk,j =

x̂k|k−,jExpGxI

(
x̃−k|k,j

)
.

In essence, the validated measurements are used to up-
date the mean of the error state for each split track µ−k|k,j
according to Lemma 6. Since the means are elements of
the Cartesian algebraic space (in the same tangent space),
they can be added together using a weighted average to
form a single mean µ−k|k. The mean of the error state is
then reset to zero by adding µ−k|k onto the state estimate
x̂k|k− using the exponential map. This process is depicted
in Fig. 5.

Fig. 5: The error state means for each split track before
reset µ−k|k,j are fused together using the association event
probabilities βk,j in the tangent space to form the error
state mean µ−k|k. The mean is then used to update the
track’s state estimate from x̂k|k− to x̂k|k.

Using the smoothing property of conditional expecta-
tions, the expected value of the error state x̃−k|k is

E
[
x̃−k|k

]
= E

[
E
[
x̃−k|k,j |θk,j , εk

]]
(61a)

=

mk∑
j=0

E
[
x̃−k|k,j |θk,j , εk

]
βk,j (61b)

=

mk∑
j=0

µ−k|k,jβk,j (61c)

= µ−k|k (61d)

where βk,j is defined in Lemma 5 and µ−k|k,j is defined
in Lemma 6.

Using the updated mean of the error state, the covari-
ance is

cov
[
x̃−k|k

]
= E

[(
x̃−k|k − µ

−
k|k

)(
x̃−k|k − µ

−
k|k

)>]
.

From this point the derivation follows from [4] and results
in

P−k|k = βk,0Pk|k− + (1− βk,0)P c
−

k|k + P̃k|k, (62)

where

P c
−

k|k = (I −KkHk)Pk|k− (63a)

Kk = Pk|k−H
>
k S
−1
k (63b)

Sk = HkPk|k−H
>
k + VkRV

>
k (63c)

P̃k|k = Kk

(
mk∑
j=1

βk,jνk,jν
>
k,j − νkν>k

)
K>k (63d)

νk,j = LogGsI

(
h
(
x̂k|k− , 0

)−1
zk,j

)
(63e)

νk =

mk∑
j=1

βk,jνk,j (63f)

µ−k|k = Kkνk, (63g)

and where Pk|k− is the error covariance before the update
step, P c

−

k|k is the error covariance of the error state
x̃−k|k,j derived in Lemma 6, P̃k|k is the covariance that
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captures the "spread of the means", and the Jacobians
Hk and Vk are defined in (29) and evaluated at the point
ζhk =

(
x̂k|k− , 0

)
.

To reset the error state’s mean to zero, the mean µ−k|k is
added onto the state estimate x̂k|k− by forming a geodesic
from x̂k|k− to x̂k|k in the direction of µ−k|k as depicted
in Fig 5. To derive this process, let x̃−k|k = µ−k|k + ak|k

where ak|k ∼ N
(

0, P c−k|k

)
contains the uncertainty in the

error state. Then under the assumption that ak|k is small
and using the property of the right Jacobian defined in
equation (15) we add µ−k|k onto x̂k|k− as follows:

xk|k = x̂k|k−ExpGxI

(
µ−k|k + ak|k

)
(64a)

≈ x̂k|k−ExpGxI

(
µ−k|k

)
︸ ︷︷ ︸

x̂k|k

ExpGxI

JGxr

(
µ−k|k

)
ak|k︸ ︷︷ ︸

x̃k|k

,
(64b)

where x̂k|k = x̂k|k−ExpGxI

(
µ−k|k

)
is the updated state

estimate, and x̃k|k = JGxr

(
µ−k|k

)
ak|k is the updated and

reset error state. The error covariance of the error state
x̃k|k is

cov
(
x̃k|k

)
= cov

(
JGxr

(
µ−k|k

)
ak|k

)
= JGxr

(
µ−k|k

)
cov

(
ak|k

)
JGxr

(
µ−k|k

)
>

= JGxr

(
µ−k|k

)
P−k|kJGxr

(
µ−k|k

)
>

= Pk|k,

and therefore, x̃k|k ∼ N
(
µk|k = 0, Pk|k

)
.

LEMMA 7. Suppose that Assumptions 1-8 hold, and that
Zk is the set of validated measurements, then the update
for the track likelihood is

εk|k
.
= p (εk | Z0:k) =

1− αk
1− αkp (εk | Z0:k−)

p (εk | Z0:k−) ,

(65)
where

αk =

{
PDPG, if mk = 0

PDPG −
∑mk

j=1 Lk,j , otherwise
, (66)

and Lk,j is defined in equation (46).

Proof: See Appendix D.
Using the track likelihood, a track is either rejected

after the update step if the track likelihood is below
the threshold τRT , confirmed to represent a target if the
track likelihood is above the threshold τCT , or neither
rejected nor confirmed until more information is gathered
with new measurements. In the case of tracking a single
target, the confirmed track with the best track likelihood
is assumed to represent the target. In the case of tracking
multiple targets, every confirmed track is assumed to
represent a different target.

Therefore, we have the following main theorem that
summarizes the results.

THEOREM 1. If Assumptions 1-8 hold and Zk =
{zk,j}mkj=1 denotes the set of mk validated measurements
at time tk and x̂k|k− , Pk|k− and p (εk | Z0:k−) denote
the track’s state estimate, error covariance and track
likelihood at time tk and conditioned on the previous
measurements, then the track’s updated state estimate,
error covariance and track likelihood are

x̂k|k = x̂k|k−ExpGxI

(
µ−k|k

)
(67)

Pk|k = JGxr

(
µ−k|k

)
P−k|kJGxr

(
µ−k|k

)
> (68)

p (εk | Z0:k) =
1− αk

1− αkp (εk | Z0:k−)
p (εk | Z0:k−) (69)

where µ−k|k is given in Equation (63), P−k|k is given in
Equation (62), and αk is defined in equation (66).

Proof: Follows directly from Lemmas 1, 4, 5, 6, and 7.

D. Track Initialization

A track can be initialized in a variety of ways. We
refer the reader to [4] for some of the common methods,
and we adapt one of the methods to Lie groups in this
section. We assume that the system model is as defined
by equations (24), (26) and (25).

Let zk and zi denote two non-track-associated mea-
surements from distinct times where zk is a measurement
from the current time and zi is a measurement from a
previous time spatially close to the measurement zk. We
select two measurements that are close together since a
moving target forms a continuous trajectory and produces
measurements spatially close together.

According to the observation function in Equa-
tion (26), the target’s pose is observed. Therefore, we can
estimate that ĝk ≈ zk. According to the state transition
function in equation (25), the target is assumed to have
constant velocity. We solve for the velocity using the
equation

vk ≈
LogGsI

(
z−1
i zk

)
tk − ti

, (70)

where tk − ti is the time interval between the mea-
surements. The tracks current state estimate is set to
x̂k|k ≈

(
ĝk|k, v̂k|k

)
where ĝk|k = zk and v̂k is solved

for by equation (70).
The initial error covariance is specified by the appli-

cation. As an example, for the simple example discussed
in Section VI, we set the initial error covariance to
P = 5I2n×2n to reflect the uncertainty in the initial state
estimate and the high velocity of the moving car. The
initial track likelihood can be set to εk|k = 0.5 to reflect
the fact that the new track is just as likely to represent
clutter as it is to represent the target.

VI. Example

We demonstrate the LG-IPDAF in simulation by
tracking a car that evolves on SE(2) and whose system

: 13



model is described in Section IV. The car is given four
trajectories: a circular trajectory with a 10 meter radius, a
Zamboni-like trajectory consisting of curves and straight
lines, a spiral trajectory, and a straight-line trajectory. In
the first trajectory the car is given a translational velocity
of 10 m/s and an angular velocity of 1 rad/s. In the
second trajectory the car is give a translational velocity of
10 m/s and an angular velocity that varies between zero
to 1.5 rads/s to create the U-turns. In the third trajectory
the target is given an angular velocity of 1 rad/s and a
translational velocity that increases from two to 10 m/s.
In the fourth trajectory the car is given a translational ve-
locity of 7 m/s. We selected these trajectories to compare
how well a constant-velocity model on SE(2) (SE(2)-
CV) implemented using the LG-IPDAF versus a constant-
velocity, linear model on R2 (LTI-CV) implemented using
the IPDAF tracks a target that undergoes straight-line
and non-straight-line motion. The sensor is modeled as
being able to detect the car’s pose with measurement
noise covariance R = diag

(
10−1, 10−1, 10−2

)
and a

surveillance region of 140 by 140 meters.
We set the following LG-IPDAF and IPDAF pa-

rameters: the spatial density of false measurements to
λ = 0.01 implying that there is an average of 196 false
measurements every sensor scan, the car’s probability of
detection to PD = 0.9, gate probability to PG = 0.9,
track likelihood confirmation threshold to τCT = 0.7, and
track likelihood rejection threshold to τRT = 0.1. We
initialize new tracks from two unassociated neighboring
measurements from different times with an initial error
covariance of P = 5I2n×2n and track likelihood to
ε = 0.2. The process noise of the initialized tracks
is Q = diag (1, 1, 0.1, 1, 1, 0.1) dt, where the simulated
time step dt = 0.1. The initialized process noise is
large enough to account for the car’s acceleration, but
small enough to prevent many false measurements from
being associated with the track. We also use a low initial
track likelihood value due to the high number of false
measurements per sensor scan making it more probable
that an initialized track does not represent the target.

For each model (the SE(2)-CV and LTI-CV mod-
els) and trajectory, we conduct a Monte-Carlo simula-
tion consisting of 100 iterations, each 30 seconds long,
and compute three statistical measures: track probability
of detection (TPD), average Euclidean error (AEE) in
position, and average confirmation time (ACT). Track
probability of detection is the probability that the target
is being tracked [35]. The average Euclidean error, is the
confirmed track’s average error in position. The average
confirmation time is the average amount of time until the
first track is confirmed.

A depiction of the simulation for the circular, Zam-
boni, spiral, and straight-line trajectories are shown in
Figs. 6, 7, 8 and 9. The target’s trajectory is shown as
a black line, and the target’s final pose is represented
as the large black arrowhead. The confirmed tracks’
trajectories are shown as piece-wise, green lines and the
confirmed track’s final pose is represented as a large green

arrowhead. The target’s measurements from the initial
to the final time are represented as magenta dots. The
red arrowheads represent different unconfirmed and non-
rejected track’s at the final time step of the simulation. The
blue asterisks represent the false measurements received
at the last time step of the simulation. During non-straight-
line motions, the LTI-CV model struggles to track the
target. This is shown in two ways: first by there not being
a green trajectory (confirmed track’s trajectory) during
parts of the target’s non-straight-line motion, and second
the green trajectories drifting from the black trajectory
(target’s trajectory). The second case is prevalent in the
circular trajectory for the LTI model indicating that many
LTI tracks were initialized and confirmed, but quickly
drifted off the circular trajectory and being pruned once
their track likelihood fell below the pruning threshold..

The statistical measures from the experiment are in Ta-
ble I. As stated in the table, the SE(2)-CV model tracked
the target significantly better for the circular, Zamboni
and spiral trajectories, and about the same as the LTI-
CV model for the straight-line trajectory according to the
track probability of detection measure. This is because the
LTI-CV model struggles to track non-straight-line motion.
In Fig. 7a you can see that during the straight segments,
the LTI-CV model tracks the target well, but looses the
target as it turns. Table I also shows that the SE(2)-
CV had less error than the LTI-CV model. However, on
average the LTI-CV model had faster track confirmation
time. We believe that this is due to the dimension of the
measurement and state space. The smaller the dimension,
the smaller the initial volume of the validation region (i.e.
the initial overall uncertainty in the state estimate was
less). The initial smaller uncertainty allowed the track
likelihood for the LTI-CV model to increase faster than
for the SE(2)-CV model.

Since the main objective of this paper is deriving and
presenting the LG-IPDAF algorithm, we did not do a
detailed simulated analysis on the effects of changing the
parameters used by the algorithm and in the simulation.
The purpose of the experimental result is to show that
there are cases where an LTI-CV model (or the original
IPDAF algorithm) is insufficient. In essence, the LTI-
CV model fails when it is no longer able to properly
associate the correct measurement to the track. This
occurs frequently when the target’s position moves either
outside of the LTI-CV model’s validation region or if a
series of false measurements are deemed more probable
than the correct measurement according to the validation
region. In the case of the circular trajectory, the target’s
position is often outside of the LTI-CV model’s validation
region causing the track to become lost. This is because
the LTI-CV model predicts a straight-line motion that is
tangent to the target’s circular motion, causing the model
to slowly drift away from the target’s true position.

The disadvantage of the LG-IPDAF is that it is more
complex to implement and it is more computationally ex-
pensive compared to the IPDAF. To help demonstrate the
difference in computational complexity we did an analyt-
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ical and experimental analysis of the two algorithms used
in our experiment. On average, a single iteration of the
IPDAF algorithm using the LTI-CV model took 4.4 sec-
onds, whereas the LG-IPDAF algorithm using the SE(2)-
CV model required 13.2 seconds per iteration. For the an-
alytical analysis, let xd denote the dimension of the state,
gd = xd/2 the dimension of the pose, zd the dimension of
the measurement, a the number of measurements received
in a single sensor scan, and m denote the number of
associated measurements, then the approximate computa-
tional complexity of the IPDAF is O

(
z2
d (a+ 3m) + 5x3

d

)
and the approximate computational complexity of the LG-
IPDAF is O

(
z3
d log (zd) (a+m) + 2g3

d log (gd)
)
.

The main difference in complexity between the two
algorithms is the matrix logarithm and exponential func-
tions which have complexity O

(
j3 log (j)

)
where j2 is

the number of elements in the matrix. In the experiment,
the data association step took the longest due to the
number of measurements and dominated the computa-
tional complexity. If we compare just the computational
complexity of the data association step by taking the ratio
of the two we get

33 log (3)a

22a
≈ 3.3,

where 3 is the dimension of the measurement space used
by the SE(2)-CV model since it includes orientation, and
2 is the dimension of the measurement space used by the
LTI-CV model. This ratio is approximately the ratio of
the simulated time 13.2/4.4 = 3 seconds.

This computational complexity analysis is done with-
out any optimization. Some of the more interesting Lie
groups such as SE(n) and SO(n) have much more ef-
ficient methods to calculate the matrix exponential and
logarithm, for example, the Rodriguez formula for SO(3).

Even though the LG-IPDAF is more computationally
complex, as shown by the experiments there are occasions
when the IPDAF is inadequate and cannot properly track
objects that have non-straight-line trajectories. This usu-
ally occurs in the presence of dense clutter or when the
rate of receiving new measurements is too low to compen-
sate for the target’s non-straight-line motion resulting in
the target’s position drifting outside the track’s validation
region. It is in these instances that we recommend the use
of the LG-IPDAF.
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Fig. 6: Plots of the zoomed in circular trajectories for the
LTI-CV and SE(2)-CV models.

-50 0 50
X Pos (m)

-60

-40

-20

0

20

40

60

Y
 P

os
 (

m
)

(a) LTI-CV model

-50 0 50
X Pos (m)

-60

-40

-20

0

20

40

60

Y
 P

os
 (

m
)

(b) SE(2)-CV model

Fig. 7: Plots of the Zamboni-like trajectories for the LTI-
CV and SE(2)-CV models.
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Fig. 8: Plots of the Spiral-like trajectories for the LTI-CV
and SE(2)-CV models.

VII. Conclusion

In this paper we have shown how to adapt the IPDA
filter to connected, unimodular Lie groups. In our ex-
ample, we showed that a constant-velocity target model
on SE(2) is significantly better able to track non-linear
motion in dense clutter than the LTI-CV model. This is
because the LTI-CV model expresses only linear motion
and cannot predict non-linear motion such as curvy and
circular trajectories. However, the SE(2)-CV model ex-
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Fig. 9: Plots of straight-line trajectories for the LTI-CV
and SE(2)-CV models.

TABLE I: Statistical measures from the experiment
Circular Zamboni Spiral Straight

TPD AEE ACT TPD AEE ACT TPD AEE ACT TPD AEE ACT
SE(2) 0.96 0.29 0.90 0.96 0.29 0.87 0.96 0.29 0.83 0.96 0.29 0.74
LTI 0.54 1.32 0.49 0.88 0.45 0.44 0.81 0.39 0.50 0.97 0.34 0.42
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presses non-linear and linear motion, and thus it is able
to predict both types of motion and track them well. We
have also shown that the LG-IPDAF is capable of quickly
rejecting and confirming tracks with high fidelity.

Appendix A
Proof of Lemma 3: Prediction Step

Proof:
According to the theorem of total probability, the prob-
ability of the track’s current state conditioned on the
previous measurements and the track representing the
target is

p (xk | εk− , Z0:k−) =

∫
x̃k−|k−

p (xk | xk− , εk− , Z0:k−)

p (xk− | εk− , Z0:k−) dx̃k−|k− , (71)

where we integrate over the error state instead of the
state by recalling that x̃k−|k− = LogGxI

(
x̂−1
k−|k−xk−

)
, and

using the relation in equation (21).
Using the definitions of p (xk | xk− , εk− , Z0:k−) and

p (xk− | εk− , Z0:k−) in Equations (33) and (34), Equa-
tion (71) becomes

p (xk | εk− , Z0:k−) ≈ η
∫
x̃k−|k−

exp (−L) dx̃k−|k− , (72)

where

L =
1

2

(
x̃k|k− − F∆x̃k−|k−

)>
Q̄−1

∆

(
x̃k|k− − F∆x̃k−|k−

)
+

1

2
x̃>k−|k−P

−1
k−|k− x̃k−|k− ,

and where Q̄∆ is defined in equation (35). After some
algebra we get

L =
1

2

{
x̃>k−|k−(P−1

k−|k− + F>∆ Q̄
−1
∆ F∆)x̃k−|k−

+ x̃>k|k−Q̄
−1
∆ x̃k|k− − x̃k|k−Q̄−1

∆ F∆x̃k−|k−

− x̃>k−|k−F
>
∆ Q̄

−1
∆ x̃k|k−

}
Defining S .

= P−1
k−|k− + F>∆ Q̄

−1
∆ F∆ gives

L =
1

2
(x̃k−|k− − S−1F>∆ Q̄

−1
∆ x̃k|k−)>

S(x̃k−|k− − S−1F>∆ Q̄
−1
∆ x̃k|k−)

+
1

2
x̃k|k−

(
Q̄−1

∆ − Q̄
−1
∆ F∆S

−1F>∆ Q̄
−1
∆

)
x̃k|k− .

Using the matrix inversion lemma

Q̄−1
∆ − Q̄

−1
∆ F∆(F>∆ Q̄

−1
∆ F∆ + P−1

k−|k−)−1F>∆ Q̄
−1
∆

= (F∆Pk−|k−F
>
∆ + Q̄∆)−1

gives

L = L1(x̃k−|k− , x̃k|k−)

+
1

2
x̃k|k−(F∆Pk−|k−F

>
∆ + Q̄∆)−1x̃k|k− ,

and therefore

p (xk | εk− , Z0:k−) = η exp
(
−L2

(
x̃k|k−

))
,

where the integral of exp (−L1) has been absorbed into
the normalizing coefficient η.

Let
Pk|k− = F∆Pk−|k−F

>
∆ + Q̄∆

and recall that x̃k|k− = LogGxI

(
x̂−1
k|k−xk

)
, where from

Lemma 2 we have that x̂k|k− = f
(
x̂k−|k− , 0, t∆

)
.

Therefore, the Lemma follows by noting that
p (xk | εk− , Z0:k−) ≈ N

(
x̂k|k− , Pk|k−

)
.

Appendix B
Proof of Lemma 5: Association Events

Proof:
The probability of an association event conditioned on
the measurements Z0:k and that the track represents the
target is inferred using the location of the validated
measurements with respect to the track’s estimated mea-
surement ẑk = h

(
x̂k|k− , 0

)
and the number of validated

measurements. The basic idea is that the closer a validated
measurement is to the estimated measurement relative
to how close the other validated measurements are to
the estimated measurement, the more likely the validated
measurement is the target-originated measurement, and
therefore the more likely its respective association event
it.

The probability of an association event conditioned on
the measurements and the track representing the target is

p (θk,j | εk, Z0:k) = p (θk,j | εk, Zk, Z0:k− ,mk) , (73)

where we have explicitly written the inference on the
number of validated measurements mk. Using Bayes’
rule, the probability in equation (73) is

p (θk,j | εk, Z0:k) =

p (Zk | θk,j ,mk, εk, Z0:k−) p (θk,j | mk, εk, Z0:k−)

p (Zk | mk, εk, Z0:k−)
, (74)

where

p (Zk | mk, εk, Z0:k−) =
mk∑
j=0

(p (Zk | θk,j ,mk, εk, Z0:k−) p (θk,j | mk, εk, Z0:k−)) .

(75)

Since the validated measurements are independent, the
joint density of the validated measurements is

p (Zk | θk,j ,mk, εk, Z0:k−) =

mk∏
`=1

p (zk,` | θk,j , εk, Z0:k−) .

(76)
Since the false measurements are assumed uniformly
distributed in the validation region with volume Vk,
the probability of a false measurement in the validation
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region is V−1
k . Also, since the target originated measure-

ment is validated with probability PG, the probability
of a target originated measurement being validated is
P−1
G p (zk` | ψ, εk, Z0:k−), which is defined in equations

(40) (44) and (45). Therefore, the probability of each
measurement conditioned on the respective association
event is

p (zk,` | θk,j , εk, Z0:k−)

=

{
V−1
k if j 6= `

P−1
G p (zk,` | ψ, εk, Z0:k−) if j = `

. (77)

Let m−k , mk − 1, and M = {1, . . . ,mk}. Substi-
tuting equation (77) into equation (76) yields the joint
probability of the measurements

p (Zk | θk,j ,mk, εk, Z0:k−)

=

{
V−m

−
k

k P−1
G p (zk,j | ψ, εk, Z0:k−) if j ∈M

V−mkk if j = 0
. (78)

We now proceed to calculate p (θk,j | mk, εk, Z0:k−).
Let φ denote the number of false measurements. Under
the assumption that there is at most one target originated
measurement, there are two possibilities for the number of
false measurements, φ = mk, denoted φmk , or φ = m−k
denoted φm−k

. Therefore, the a priori probability of an
association event conditioned on the number of measure-
ments and previous measurements is

p (θk,j | mk, εk, Z0:k−) =

p
(
θk,j | φm−k ,mk, εk, Z0:k−

)
p
(
φm−k

| mk, εk, Z0:k−

)
+ p (θk,j | φmk ,mk, εk, Z0:k−) p (φmk | mk, εk, Z0:k−)

=

{(
1
mk

)
p
(
φm−k

| mk, εk, Z0:k−

)
j = 1, . . . ,mk

p (φmk | mk, εk, Z0:k−) j = 0,

(79)

where the probability p
(
θk,j | φm−k ,mk, εk, Z0:k−

)
= 1

mk

when j > 0 since each association event, θk,j>0, is just
as likely to be true with the specified conditions, and
p
(
θk,j | φm−k ,mk, εk, Z0:k−

)
= 0 when j = 0 since not

all of the validated measurements can be false according
to the condition φm−k .

Using Bayes’ formula, the conditional probabilities of
the number of false measurements are

p
(
φm−k

| mk, εk, Z0:k−

)
=
p
(
mk | φm−k , εk, Z0:k−

)
p
(
φm−k

| εk, Z0:k−

)
p (mk | εk, Z0:k−)

=
PGPDµF

(
m−k
)

p (mk | εk, Z0:k−)
(80)

and

p (φmk | mk, εk, Z0:k−)

=
p (mk | φmk , εk, Z0:k−) p (φmk | Z0:k−)

p (mk | εk, Z0:k−)

=
(1− PGPD)µF (mk)

p (mk | εk, Z0:k−)
, (81)

where µF is the probability density function
of the number of false measurements, and
p
(
mk | φm−k , εk, Z0:k−

)
= PGPD since

p
(
mk | φm−k , εk, Z0:k−

)
is the probability that the

target is detected and the target originated measurement
is inside the validation region.

According to the theorem of total probability

p (mk | εk, Z0:k−)

=p
(
mk | φm−k , εk, Z0:k−

)
p
(
φm−k

| εk, Z0:k−

)
+ p (mk | φmk , εk, Z0:k−) p (φmk | εk, Z0:k−)

=PGPDµF
(
m−k
)

+ (1− PGPD)µF (mk) . (82)

Substituting equations (80), (81), and (82) into equation
(79) yields

p (θk,j | mk, εk, Z0:k−)

=


1
mk

PDPGµF (m−k )
PGPDµF (m−k )+(1−PGPD)µF (mk)

j ∈M
(1−PGPD)µF (mk)

PGPDµF (m−k )+(1−PGPD)µF (mk)
j = 0

. (83)

Substituting equations (78) and (79), into equation (75)
yields

p (Zk | mk, εk, Z0:k−)

=

V
−m−

k
k

mk
PDµF

(
m−k
)∑mk

`=1 p (zk,` | ψ, εk, Z0:k−)

PDPGµF
(
m−k
)

+ (1− PDPG)µF (mk)

+
V−mkk (1− PDPG)µF (mk)

PDPGµF
(
m−k
)

+ (1− PDPG)µF (mk)
. (84)

Substituting equations (78), (79) and (84) into (74) yields

p
(
θk,j | εk, Z0:k

)
=

PDp(zk,j |ψ,εk,Z0:k− )

PD
∑mk
`=1

p(zk,j |ψ,εk,Z0:k− )+mkV
−1
k

(1−PDPG)
µF (mk)

µF

(
m
−
k

) j ∈ M

mkV
−1
k

(1−PDPG)
µF (mk)

µF

(
m
−
k

)
PD

∑mk
`=1

p(zk,j |ψ,εk,Z0:k− )+mkV
−1
k

(1−PDPG)
µF (mk)

µF

(
m
−
k

) j = 0

(85)

Setting the probability density function of false measure-
ments µF in equation (85) to a Poisson density function
defined in equation (23) yields equation (47).

Appendix C
Proof of Lemma 6: Split Track Update

We begin with the following Lemma.

LEMMA 8. Suppose that Assumptions 1 and 8 hold, then
the probability of measurement zk conditioned on it being
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target-originated and conditioned on the current state, is
given by

p (zk | ψ, xk, εk, Z0:k−) ≈

η exp

(
−1

2

(
z̃k −Hkx̃k|k−

)>
R̄k
(
z̃k −Hkx̃k|k−

))
,

(86)
where

z̃k = LogGsI
(
ẑ−1
k zk

)
(87)

ẑk = h
(
x̂k|k− , 0

)
(88)

R̄k = VkRV
>
k , (89)

x̃k|k− = LogGsI

(
x̂−1
k|k−xk

)
, (90)

R is the measurement noise covariance, and the Jacobians
Hk and Vk are given in equation (29) and evaluated at
the point ζkk =

(
x̂k|k− , 0

)
.

Proof: Similar to the proof of Lemma 2.

Proof of Lemma 6. Using Bayes rule,

p (xk,j | θk,j , εk, Z0:k)

=
p (Zk|θk,j , xk,j , εk, Z0:k−) p (xk,j | εk, Z0:k−)

p (Zk | θk,j , εk, Z0:k−)
. (91)

We solve for the probability p (xk,j | θk,j , εk, Z0:k) by
using the maximum a posterior (MAP) optimization al-
gorithm to find the value of x̃k|k− and its corresponding
error covariance Pk|k− that maximizes the right-hand-side
of equation (91).

Since the MAP does not depend on
p (Zk | θk,j , εk, Z0:k−), it can be absorbed into the
normalizing coefficient simplifying the problem to

max
x̃k|k− ,Pk|k−

ηp (Zk|θk,j , xk,j , εk, Z0:k−) p (xk,j | εk, Z0:k−) .

When j = 0, none of the validated measurements are
target originated, and thus, p

(
Zk|θk,j=0, xk, εk, Z0|k−

)
simplifies to p (Zk|θk,j=0, Z0:k−) and no longer has any
dependency on the track’s state. This reduces the MAP
optimization problem to

max
x̃k|k− ,Pk|k−

ηp (xk,j | εk, Z0:k−) ,

and hence, the solution is p (xk,j=0 | θk,j=0, εk, Z0:k) =
p (xk | εk, Z0:k−).

When j > 0, only the measurement zk,j has any de-
pendency and influence on the track’s state since all other
measurements are false. Using this fact with the relation
in Equation (77), the optimization problem simplifies to

max
x̃k|k− ,Pk|k−

ηP−1
G p (zk,j |ψ, xk,j , εk, Z0:k−)

· p (xk,j | εk, Z0:k−) .

Multiplying together and combining the expo-
nents of the probabilities p (zk,j | ψ, xk, εk− , Z0:k−) and
p (xk | εk− , Z0:k−), defined in equations (86) and (38),
simplifies the MAP optimization problem to

max
x̃k|k− ,Pk|k−

ηP−1
G exp (−L) ,

where

L =
1

2

(
νk,j −Hkx̃k|k−

)>
R̄−1
k

(
νk,j −Hkx̃k|k−

)
+

1

2
x̃>k|k−P

−1
k|k− x̃k|k−

νk,j =LogGsI
(
ẑ−1
k zk

)
ẑk =h

(
x̂k|k− , 0

)
R̄k =VkRV

>
k ,

and where x̃k|k− = LogGxI

(
x̂−1
k|k−xk

)
, h is the observa-

tion function defined in equation (24), and Hk and Vk
are the Jacobians of the observation function defined in
equation (29) and evaluated at ζhk =

(
x̂k|k− , 0

)
.

The MAP is solved by finding the value of x̃k|k− that
minimizes L. Since L is quadratic in x̃k|k− , the value
of x̃k|k− that minimizes L is found by taking the first
derivative of L with respect to x̃k|k− , setting it to zero
and solving for x̃k|k− . This value becomes the new error
state mean µ−k|k. The corresponding covariance is found
by taking the second derivative of L with respect to x̃k|k−
and setting this value to the new covariance P c

−

k|k.
Taking the first and second partial derivatives of L

with respect to x̃k|k− yields

∂L

∂x̃k|k−
= −

(
νk,j −Hkx̃k|k−

)>
R̄−1
k Hk + x̃>k|k−P

−1
k|k−

∂2L

∂x̃2
k|k−

= H>k R̄
−1
k Hk + P−1

k|k− =
(
P c
−

k|k

)−1

.

Setting the first derivative to zero, solving for x̃k|k− and
setting this value to µ−k|k gives

µ−k|k =
(
H>k R̄

−1
k Hk + P−1

k|k−

)−1

H>k R̄
−1
k νk,j .

With algebraic manipulation the updated error covariance
and error state mean are

P c
−

k|k = (I −KkHk)Pk|k−

µ−k|k,j = Kkνk,j ,

where the Kalman gain Kk and innovation term νk,j are

Kk = Pk|k−H
>
k Sk

νk,j = LogGsI
(
ẑ−1
k zk,j

)
ẑk = h

(
x̂k|k− , 0

)
Sk = VkRV

>
k +HkPk|k−H

>
k .

Since the error state’s mean is no longer zero, the error
state no longer has a concentrated Gaussian distribution.
In order to reset the mean of the error state to zero, we
add µ−k|k,j onto the state estimate x̂k|k− and adjust the co-
variance of the error state. In particular, let the error state
after update but before being reset be x̃−k|k,j = µ−k|k,j+ak|k

where ak|k ∼ N
(

0, P c
−

k|k

)
. Then under the assumption

that ak|k is small and using the property of the right
Jacobian defined in equation (15) add µ−k|k,j onto x̂k|k−
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to get

xk|k = x̂k|k−ExpGxI

(
µ−k|k,j + ak|k

)
(92a)

= x̂k|k−ExpGxI

(
µ−k|k,j

)
︸ ︷︷ ︸

x̂k|k,j

ExpGxI

JGxr

(
µ−k|k,j

)
ak|k︸ ︷︷ ︸

x̃k|k,j

,
(92b)

where
x̂k|k,j = x̂k|k−ExpGxI

(
µ−k|k,j

)
(93)

is the updated state estimate, and x̃k|k,j =

JGxr

(
µ−k|k,j

)
ak|k is the updated error state after reset.

Equation (93) can be thought of as moving from x̂k|k−
to x̂k|k,j along the geodesic defined by the tangent vector
µ−k|k,j as depicted in Fig. 10.

The error covariance of the error state x̃k|k,j is

cov
(
x̃k|k,j

)
= cov

(
JGxr

(
µ−k|k,j

)
ak|k

)
= JGxr

(
µ−k|k,j

)
cov

(
ak|k

)
JGxr

(
µ−k|k,j

)
>

= JGxr

(
µ−k|k,j

)
P c
−

k|kJGxr

(
µ−k|k,j

)
>

= P ck|k.

Therefore, x̃k|k,j ∼ N
(
µk|k,j = 0, P ck|k,j

)
.

Fig. 10: A depiction of the state estimate update condi-
tioned on θk,j by using µ−k|k,j to form a geodesic from
x̂k|k− to x̂k|k,j .

Appendix D
Proof of Lemma 7: Track Likelihood

The probability of the track likelihood conditioned on
the measurements Z0:k are inferred using the location of
the validated measurements with respect to the track’s
estimated measurement ẑk = h

(
x̂k|k− , 0

)
and the number

of validated measurements. The basic idea is that the more
likely at least one of the validated measurements is target
originated compared to the likelihood that none of the

validated measurements are target originated, the more
likely the track represents a target. Also, if the number of
validated measurements is more than the expected num-
ber of false measurements inside the validation region,
then the more likely one of the validated measurements
originated from the target and the track represents the
target.

We write the track likelihood conditioned on the
measurements as

p (εk | Z0:k) = p (εk | mk, Zk, Z0:k−) , (94)

where we have separated Zk and Z0:k− from Z0:k and
explicitly written the inference on the number of validated
measurements mk. Using Bayes’ rule, equation (94) can
be written as

p (εk, | Z0:k) =
p (Zk | εk,mk, Z0:k−) p (εk | mk, Z0:k−)

p (Zk | mk, Z0:k−)
,

(95)
where

p (Zk | mk, Z0:k−)

= p (Zk | εk,mk, Z0:k−) p (εk | mk, Z0:k−)

+ p (Zk | εk = F,mk, Z0:k−) p (εk = F | mk, Z0:k−)
(96)

and εk = F denotes that the track does not represent the
target.

The probability p (Zk | mk, εk, Z0:k−) is derived in
Appendix B and defined in equation (84). Accordingly

p (Zk | εk = F,mk, Z0:k−)

=

mk∏
j=1

p (zk,j | εk = F,mk, Z0:k−)

=

mk∏
j=1

V−1
k = V−mkk (97)

because under the condition that the track does not
represent the target, all of the validated measurements
must be false, and the validated false measurements are
assumed to be independent and uniformly distributed in
the validation region with volume Vk.

Using Bayes’ rule we get

p (εk | mk, Z0:k−) =
p (mk | εk, Z0:k−) p (εk |, Z0:k−)

p (mk | Z0:k−)
(98)

and

p (εk = F | mk, Z0:k−)

=
p (mk | εk = F,Z0:k−) p (εk = F | Z0:k−)

p (mk | Z0:k−)
. (99)

The probability p (mk | εk, Z0:k−) is derived in Ap-
pendix B and defined in equation (82). The probability
p (mk | εk = F,Z0:k−) is

p (mk | εk = F,Z0:k−) = µF (mk) , (100)

since all of the measurements are false under the condition
that the track does not represent a target.
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Using the theorem of total probability with equations
(82) and (100), the probability of the number of measure-
ments mk conditioned on the previous measurements is

p (mk | Z0:k−) =p (mk | εk, Z0:k−)PT

+ p (mk | εk = F,Z0:k−) p
(
εk|k− = F

)
(101a)

=PGPDµF
(
m−k
)
PT

+
(
1− PDPGp

(
εk|k−

))
µF (mk) ,

(101b)

where PT
.
= p (εk | Z0:k−). Substituting equations (82)

and (101) into equation (98) yields

p (εk | mk, Z0:k−)

=

(
PGPDµF

(
m−k
)

+ (1− PGPD)µF (mk)
)
PT

PGPDµF
(
m−k
)
PT + (1− PDPGPT )µF (mk)

.

(102)
Using the fact that

p (εk = F | mk, Z0:k−) = 1− p (εk | mk, Z0:k−) ,

and substituting the equations (102), (97), and (84) into
equation (96) yields the probability of the validated mea-
surements conditioned on the previous measurements

p (Zk | mk, Z0:k−)

=

V
−m−

k
k

mk
PDµF

(
m−k
)∑mk

`=1 p (zk,j | ψ, εk, Z0:k−)PT

PGPDµF
(
m−k
)
PT + (1− PDPGPT )µF (mk)

+
V−mkk (1− PDPGPT )µF (mk)

PGPDµF
(
m−k
)
PT + (1− PDPGPT )µF (mk)

.

(103)
Substituting in equations (84), (102), and (103) into equa-
tion (95) and setting the density of false measurements to
the Poisson distribution defined in equation (23) yields
the probability of the track likelihood conditioned on the
previous measurements given in equations (65) and (66).
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