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Abstract In this paper, we introduce a new kernel function which differs from
previous functions, and play an important role for generating a new design of primal-
dual interior point algorithms for semidefinite linear complementarity problem. Its
properties, allow us a great simplicity for the analysis of interior-point method, there-
fore the complexity of large-update primal-dual interior point is the best so far. Nu-
merical tests have shown that the use of this function gave a big improvement in the
results concerning the time and the number of iterations. so is well promising and
perform well enough in practice in comparison with some other existing results in
the literature.
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1 Introduction

Let Sn denotes the linear space of all n × n real symmetric matrices, Sn+ and Sn++

is the cone of symmetric positive semidefinite, and symmetric positive definite ma-
trices respectively. The semidefinite linear complementarity problem (SDLCP)
Find a pair of matrices (X,Y ) ∈ ×Sn × Sn that satisfies the following conditions

X,Y ∈ Sn+, Y = L(X) +Q, and X • Y = Tr(XY ) = 0. (1)

Where L : Sn → Sn is a given linear transformation and X, Y, Q ∈ Sn.

Interior point methods (IPMS) have been known for several decades, Since the
invention of interior point methods by Karmarker, In 1984 [7], whith an important
contribution was made by Nestrov and Todd [17]. This methods considered the
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powerful tools to solve linear optimization (LO) and can be extended to more gen-
eral cases such as complementarity problem (CP ), semidefinite optimization(SDO)
and semidefinite linear complementarity problem (SDLCP).
The semidefinite linear complementarity problem (SDLCP) can be also viewed as a
generalization of the standard linear complementarity problem (LCP) and included
the geometric monotone semidefinite linear complementerity introduced by [9], so it
became the object of many studies of research these last years and have important
applications in mathematical programming and various areas of engineering and sci-
entific fields (see [11],[16]).
Because their polynomial complexity and their simulation efficiency, primal-dual fol-
lowing path are the most attractive methods among interior point to solve a large
wide of optimization problems [12], [14], [18], [19]. These methods are based on the
kernel functions for determining new search directions and new proximity functions
for analyzing the complexity of these algorithms, thus we have shown the important
role of the kernel function in generating a new design of primal-dual interior point
algorithm.
Also these methods are introduced by Bai et al [2], and Elghami [4] for (LO) and
(SDO) and extended by many authors for different problems in mathematical pro-
gramming [1], [3], [5], [8], [10].
The polynomial complexity of large update primal-dual algorithms is improved in
contrast with the classical complexity given by logarithmic barrier functions by us-
ing this new form.
A kernel function is an univariate strictly convex function which is defined for all
positive real t and is minimal at t = 1, whereas the minimal value equals 0. In the
other words ψ(t) is a kernel function when it is twice differentiable and satisfies the
following conditions

ψ(1) = ψ′(V ) = 0, ψ′′(t) > 0 for all t > 0 and lim
t→0

ψ(t) = lim
t→+∞

ψ(t) = +∞.

We can describe by its second derivative, as follows

ψ(t) =

∫ t

1

∫ ζ

1
ψ′′(ξ)dξdζ. (2)

This function may be extended to a scaled barrier function Ψ defined from Sn to
Sn by Ψ(V ) = Tr(ψ(V )) where V is a symmetric positive definite matrix.
In this paper, we establish the polynomial complexity for (SDLCP) by introducing
the following new kernel function

ψ(t) =
1

2
(2t2 +

1

t2
− 5) + e

1
t
−1. (3)

The goal of this paper is to investigate such a new kernel function and the cor-
responding barrier function and show that our large-update primal-dual algorithm
has favourable complexity bound in terms of elegant analytic properties of this ker-
nel function. We show that the (SDLCP) is generalization of (SDO), we loose the
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orthogonality of the search direction matrices. Therefore, the analysis of search di-
rection and step size is a little different from (SDO) case, this will be studied in
detail later.
The paper is organized as follows. First in Sec. 2, we present the generic primal-dual
algorithm, based on Nestrov-Todd direction. and the new kernel function and its
growth properties for (SDLCP) are presented in Sect. 3, in Sect. 4, we derive the
complexity results for the algorithm (an estimation of the step size and its default
value, the worst case iteration complexity). In Sec. 5, some numerical results are
provided. Finally, a conclusion in Sec. 6.
Throughout the paper we use the following notation and we review some known
facts about matrices and matrix functions which will be used in the analysis of the
algorithm.
The expression X � 0 ( X ≻ 0) means that X ∈ Sn+ ( X ∈ Sn++). The trace of n×n
matrix X is denoted by Tr(X) =

n
∑

i=1
xii. The Frobenius norm of a matrix X ∈ R

n×n

is defined by ‖X‖F =
√
X •X =

√

Tr(XTX). For any X ≻ 0, λi(X), 1 ≤ i ≤ n,
denote its eigenvalues. Q1/2 denotes the symmetric square root, for any Q ∈ Sn++,
. The identity matrix of order n is denoted by I. The diagonal with the vector x
is given by X = diag(x). we denote by λ(V ) the vector of eigenvalues of V ∈ Sn++,
arranged in non-increasing order, that is λ1(V ) ≥ λ2(V ) ≥ . . . ≥ λn(V ). For two
real valued functions f(x), g(x) : Rn+ → R

n
++, f(x) = O(g(x)) if f(x) ≤ kg(x) and

f(x) = Θ(g(x)) if k1g(x) ≤ f(x) ≤ k2g(x) for some positive constants k, k1 and k2.

Theorem 1. (Spectral theorem for symmetric matrices [2]) The real n× n martix
A is symmetric if and only if there exists a matrix Q ∈ R

n×n such that QTQ = I
and QTAQ = B, where I is the n× n identity matrix and B is a diagonal matrix.

Definition 1. ([4], Definition 3.2.1) Let V be a symetric matrix, and let

V = QTdiag(λ1(V ), λ2(V ), . . . , λn(V ))Q (4)

where Q is any orthogonal matrix that diagonalizes V , and let ψ(t) be defined as in
Eq. (3). The matrix valued function ψ : Sn → Sn is defined

ψ(V ) = QTdiag(ψ(λ1(V )), ψ(λ2(V )), . . . , ψ(λn(V )))Q. (5)

Note that ψ(V ) depends only on the restriction of ψ(t) to the set of eigenvalues
of V. Since ψ(t) is differentiable, the derivative ψ′(t) is well defined for t > 0. Hence,
replacing ψ(λi(V )) in Eq. (5) by ψ′(λi(V )), we obtain that the matrix function ψ′(V )
is defined as well. Using ψ, we define the barrier function (or proximity function)
Ψ(V ) : Sn+ → R+ as follows

Ψ(V ) = Tr(ψ(V )) =
n
∑

i=1

ψ(λi(V )). (6)

When we use the function ψ(.) and its first three derivatives ψ′(.), ψ′′(.) and ψ′′′(.)
without any specification, it denotes a matrix function if the argument is a matrix
and a univariate function (from R to R ) if the argument is in R.
In [5],[6], we can be found some concepts related to matrix functions.
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2 Presentation of Problem

The feasible set, the strict feasible set and the solution set of (1) are subsets of Rn×n

denoted respectively by

F = {(X,Y ) ∈ Sn × Sn, Y − L(X) = Q : X � 0, Y � 0},
F0 = {(X,Y ) ∈ F : X ≻ 0, Y ≻ 0},
S = {(X,Y ) ∈ F : Tr(XY ) = 0}.

The set S is nonempty and compact, if F0 is not empty and L is monotone. As
we know, the basic idea of primal-dual IPMs is to relax the third equation (comple-
mentarity condition) in problem (1) with the following parameterized system







XY = µI,
Y − L(X) = Q,
X ≻ 0, Y ≻ 0.

(7)

where µ > 0, and I is the identity matrix.
Since L is a linear monotone transformation and (SDLCP) is strictly feasible (i.e.,
there exists (X0, Y0) ∈ F0), the System (7) has a unique solution for any µ > 0.
As µ → 0 the sequence (X(µ), Y (µ)) approaches the solution (X,Y ) of problem
(SDLCP).
Suppose that the point (X,Y ) is strictly feasible. The natural way to define a search
direction is to follow the Newton approach to linearize the first equation in System
(7) by replacing X and Y with X+ = X + ∆X and Y+ = Y + ∆Y , respectively.
This leads to the following system

{

X∆Y +∆XY = µI −XY,
L(∆X) = ∆Y.

(8)

Or equivalently
{

∆X +X∆Y Y −1 = µY −1 −X,
L(∆X) = ∆Y.

(9)

In general case, the Newton system has a unique solution not necessarily symmetric,
because ∆X is not symmetric due to the matrix X∆Y Y −1. Many researchers have
proposed methods for symmetrizing the first equation in System (9 ) by using an
invertible matrix P and the termX∆Y Y −1 is replaced by P∆Y P T . Thus, we obtain

{

∆X + P∆Y P T = µY −1 −X,
L(∆X) = ∆Y.

(10)

In [17], Todd studied several symmetrization schema. Among them, we consider
the Nesterov-Todd(NT) symmetrization schema where P is defined as

P = X
1
2 (X

1
2Y X

1
2 )−

1
2X

1
2

= Y − 1
2 (Y

1
2XY

1
2 )

1
2Y − 1

2 ,
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Let D = P
1
2 where P

1
2 denotes the symmetric square root of P.

The matrix D can be used to scale X and Y to the same matrix V defined by

V =
1√
µ
D−1XD−1 =

1√
µ
DY D, (11)

thus we have

V 2 =
1

µ
D−1XYD. (12)

Note that the matrix V and D are symmetric and positive definite. Let us further
define

DX = 1√
µD

−1∆XD−1,

DY = 1√
µD∆Y D.

(13)

So by using Eqs.(11) and (13), the System (10) becomes

{

DX +DY = DV ,

L̃(DX) = DY .
(14)

Where L̃(DX) = DL(DDXD)D and DV = V
−1 − V.

The linear transformation L̃ is also monotone on Sn. Under our hypothesis the
new linear System (14) has a unique symmetric solution (DX ,DY ). These directions
are not orthogonal, because

DX •DY = Tr(DYDX)
= Tr(DXDY )
= ( 1√

µD
−1∆XD−1) • ( 1√

µD∆Y D)

= 1
µ∆X •∆Y

= 1
µ∆X • L(∆X) ≥ 0.

thus, it is only difference between SDO and SDLCP problem.
So far, we have described the schema that defines classical NT-direction. Now
following [4, 11, 12] and [18], we replace the right hand side of the first equation in
System(14) by −ψ′(V ). Thus we will use the following system to define new search
directions

{

DX +DY = −ψ′(V ),

L̃(DX) = DY .
(15)

The new search directions DX and DY are obtained by solving System (15), so
that ∆X and ∆Y are computed via Eq.(13). By taking along the search directions
with a step size α defined by some line search rules, we can construct a new couple
(X+, Y+) according to X+ = X + α∆X and Y+ = Y + α∆Y .
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Algorithm 1 Generic interior point algorithm for SDLCP

Input: A threshold parameter τ ≥ 1; an accuracy parameter ǫ ≥ 0;
barrier update parameter θ, 0 < θ < 1; X0 ≻ 0, Y 0 ≻ 0 and µ0 = Tr(X0Y 0)/n
such that Ψ(X0, Y 0, µ0) ≤ τ
begin

X := X0;Y := Y 0;µ := µ0;
while nµ ≥ ǫ do
begin

µ = (1− θ)µ;
while Ψ(X,Y, µ) > τ do

begin

Solve System (15 ) and use Eq. (13) to obtain (∆X,∆Y );
determine a suitable step size α;
update (X,Y ) := (X,Y ) + α(∆X,∆Y )
end

end

end

3 Properties of New Kernel Function

In this part, we present the new kernel function and we give those properties that
are crucial in our complexity analysis.
Let

ψ(t) =
1

2
(2t2 +

1

t2
− 5) + e

1
t
−1. (16)

We list the first three derivatives of ψ as below

ψ′(t) = 2t− 1

t3
− 1

t2
e

1
t
−1, (17)

ψ′′(t) = 2 +
3

t4
+ (

2

t3
+

1

t4
)e

1
t
−1 > 1, (18)

ψ′′′(t) = −12

t5
− (

6

t5
+

1

t6
+

6

t4
)e

1
t
−1 < 0. (19)

Lemma 1. Let ψ(t) be as defined in Eq.(16). Then

tψ′′(t) + ψ′(t) > 0, t < 1, (20)

ψ′′′(t) < 0, t > 0, (21)

tψ′′(t)− ψ′(t) > 0, t > 1, (22)

2ψ′′(t)2 − ψ′′′(t)ψ′(t) > 0, t < 1, (23)

ψ′′(t)ψ′(βt)− βψ′(t)ψ′′(βt) > 0, t > 1, β > 1. (24)
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Proof. For the first inequality, using Eqs.(17) and (18), it follows that

tψ′′(t) + ψ′(t) = 4t+ 2
t3
+ ( 1

t2
+ 1

t3
)e

1
t
−1 > 0 if t < 1.

The second inequality ψ′′′(t) < 0, for all t > 0 it is clear from Eq.(19).

tψ′′(t)− ψ′(t) = 4
t3
+ ( 1

t3
+ 3

t2
)e

1
t
−1 > 0 if t > 1.

2ψ′′(t)2 − ψ′′′(t)ψ′(t) = K(t) +H(t)e2(
1
t
−1) +Q(t)e(

1
t
−1) > 0 if t < 1.

Where,K(t) = 8 + 48
t4 + 6

t8 , H(t) = ( 2
t6 + 2

t7 + 1
t8 ), and

Q(t) = (28t3 + 20
t4 + 2

t5 + 6
t7 + 6

t8 − 1
t9 )

Finally, to obtain Eq. (24), using Eqs. (21) and (22).

Now let as define the proximity measure δ(V ) as follows

δ(V ) = 1
2‖ − ψ′(V )‖

= 1
2

√

Tr(ψ′(V )2)
= 1

2‖DX +DY ‖.
(25)

Note that δ(V ) = 0 ⇔ V = I ⇔ Ψ(V ) = 0.

Theorem 2. [14] Suppose that V1 and V2 are symmetric positive definite and Ψ is
the real valued matrix function induced by the matrix function ψ. Then,

Ψ

([

(V
1
2
1 V2V

1
2
1 )

1
2

])

≤ 1

2
(Ψ(V1) + Ψ(V2)).

Lemma 2. For ψ(t), we have the following

1. ψ(t) is exponential convex, for all t > 0,

2. 1
2(t− 1)2 ≤ ψ(t) ≤ 1

2(ψ
′(t))2, t > 0,

3. ψ(t) ≤ 4(t− 1)2, t ≥ 1.

Now, let ̺ : [0,∞) → [1,∞) be the inverse function of ψ(t), for all t ≥ 1 then we
have the following lemma

Lemma 3. For ψ(t), we have

√
1 + s ≤ ̺(s) ≤ 1 +

√
2s, s ≥ 0.

Theorem 3. [4] Let ̺ : [0,∞) → [1,∞) be the inverse function of ψ(t), t ≥ 1.
Then we have

Ψ(βV ) ≤ nψ(β̺(
Ψ(V )

n
)), β ≥ 1 forV ∈ Sn++.

Theorem 4. Let 0 ≤ θ ≤ 1 and V+ = V√
1−θ

. If Ψ(V ) ≤ τ , then we have

Ψ(V+) ≤
2

1− θ
(
√
2τ +

√
nθ)2.
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Proof. Using Theorem (3) with β = 1√
1−θ

, Lemmas (2), (3) and Ψ(V ) ≤ τ , we have

Ψ(V+) ≤ nψ
(

1√
1−θ

̺(Ψ(V )
n

)

≤ 4n
2

(

̺(
Ψ(V )

n
)

√
1−θ

− 1

)2

= 2n

(

̺(
Ψ(V )

n
)−(

√
1−θ)

√
1−θ

)2

≤ 2n

(

1+
√

2(
Ψ(V )

n
)−

√
1−θ

√
1−θ

)2

≤ 2n

(

1+
√

2( τ

n
)−

√
1−θ

√
1−θ

)2

≤ 2n

(
√

( 2τ
n
)+θ

√
1−θ

)2

≤ 2
1−θ

(√
2τ +

√
nθ
)2
,

Where the last inequality is holds since 1−
√
1− θ = θ

1+
√
1−θ

≤ θ, for all 0 ≤ θ < 1.

Denote Ψ0 = 2
1−θ

(√
2τ +

√
nθ
)2
. Then Ψ0 is an upper bound of Ψ(V ) during the

process of the algorithm.

4 Complexity Analysis

4.1 An estimation of the step size

The aim of this paper is to define a new kernel function, and to obtain new complexity
results for an (SDLCP) problem, during an inner iteration, we compute a default
step size α, and the decrease of the proximity function.
After an inner iteration, new iterates X+ = X + α∆X =

√
µD(V + αDX)Dand

Y+ = Y + α∆Y =
√
µD−1(V + αDY )D

−1 are generated, where α is the step size
and DX , DY and D are defined by (13). On the other hand, from (11), we have
V 2
+ = (V + αDX)(V + αDY ) and it is clear that the matrix V 2

+ is similar to the

matrix (V +αDX )
1
2 (V +αDY )(V +αDX)

1
2 . By assuming that (V +αDX) ≻ 0 and

(V +αDY ) ≻ 0 for such feasible step size α and we deduce that they have the same
eigenvalues. Since the proximity after one step is defined by :

Ψ(V+) = Ψ([(V + αDX )
1
2 (V + αDY )(V + αDX)

1
2 ]

1
2 )

By Theorem (2), we have Ψ(V+) ≤ 1
2 [Ψ((V + αDX) + Ψ(V + αDY )]. Define, for

α > 0 , f(α) = Ψ(V+)−Ψ(V ) and f1(α) =
1
2 [Ψ((V +αDX)+Ψ(V +αDY )]−Ψ(V )

Then f(α) is the difference of the proximity between a new iterate and a current
iterate for a fixed µ > 0. It is easily seen that, f1(0) = f(0) = 0 and f(α) ≤ f1(α).
Furthermore, f1(α) is a convex function.
Now, to estimate the decrease of the proximity during one step, we need the two
successive derivatives of f1(α) with respect to α.
By using the rule of differentiability [6], [14], we obtain

f ′1(α) =
1
2Tr(ψ

′((V + αDX)DX + ψ′(V + αDY )DY )

and

f ′′1 (α) =
1
2Tr(ψ

′′((V + αDX)D
2
X + ψ′′(V + αDY )D

2
Y )

Hence, by using (13) and (25), we obtain

f ′1(0) =
1
2Tr(ψ

′((V )(DX +DY )) =
1
2Tr(−ψ′(V )2) = −2δ2(V ).
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In what follows, we use the short notation δ(V ) := δ

Lemma 4. [4, Lemma 3.4.4] One has

f ′′1 (α) ≤ 2δ2ψ′′(λn(V )− 2αδ)

Lemma 5. [4, Lemma 3.4.5] If the step size α satisfies

−ψ′(λn(V )− 2αδ) + ψ′(λn(V ) ≤ 2δ.

One has f ′1(α) ≤ 0.

Lemma 6. [4, Lemma 3.4.6] Let ρ : [0,∞) → (0, 1] denote the inverse function of
the restriction of −1

2ψ
′(t) on the interval (0,1], then the largest possible value of the

step size of α satisfying f ′1(α) ≤ 0 is given by

α = 1
2δ (ρ(δ) − ρ(2δ)).

Lemma 7. Let ρ and α the same as be defined in Lemma (6). Then

α > α̃ = 1
ψ′′(ρ(2δ)) .

We need to compute ρ(2δ) = s; where ρ : [0,∞) → (0, 1] be the inverse of
−1

2ψ
′(t) for all t ∈ [0, 1). This implies

−ψ′(t) = 4δ ⇔ −2t+ 1
t3 + 1

t2 e
1
t
−1 = 4δ

⇔ e
1
t
−1 = t2(4δ + 2t− 1

t3 ) (∗)
⇒ t ≥ 1

1+log(4δ+1)

Using the definition of ψ′′(t) and (*). If s ≤ 1, we have s−1
s5 ≤ 0 and 1

s2 ≤ (1 +
log(4δ + 1))2.

ψ′′(t) = 2 +
3

t4
+ (

2

t3
+

1

t4
)e

1
t
−1 ≤ 6 + 2(6δ + 1)(1 + log(4δ + 1))2 (26)

α̃ :=
1

ψ′′(ρ(2δ)
=

1

ψ′′(s)
≥ 1

6 + 2(6δ + 1)(1 + log(4δ + 1))2.
(27)

Next lemma shows that the proximity function ψ(t) with the default step size α is
decreasing

Lemma 8. [5, Lemma 3.4] Let h(t) be a twice differentiable convex function with
h(0) = 0, h′(0) < 0, and let h(t) attains its (global) minimum at t > 0. If h′′(t) is

increasing for t ∈ [0, t∗], then h(t) = th′(0)
2 . f1(α) holds the condition of the above

lemma, for all 0 ≤ α ≤ α;

f(α) ≤ f1(α) ≤
f ′1(0)

2
α (28)

Then we have the following lemmas to obtain the upper bound for the decreasing
value of the proximity in the inner iteration.
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Lemma 9. For any α satisfying α ≤ α, we have : f(α) ≤ −αδ2

Lemma 10. Let Ψ(V ) ≥ 1; ρ and α̃ be defined as in Lemma (6) and Lemma(7).
Then, one has:

f(α̃) ≤ − δ2

ψ′′(ρ(2δ)
). (29)

Proof. Lemma (9) and the fact that α ≥ α̃, imply that

f(α̃) ≤ −α̃δ2 = − δ2

ψ′′(ρ(2δ) ≤ − δ2

6+2(6δ+1)(1+log(4δ+1))2
≤ − δ2

6+2(6δ+
√
2δ)(1+log(4δ+1))2

≤ − δ2

6+2δ(6+
√
2)(1+log(4δ+1))2

≤ −1
2

(

Ψ

6+2
√

Ψ√
2
(6+

√
2)(1+log(4

√
Ψ√
2
+1))2

)

≤ −
√
Ψ

(16+12
√
2)(1+log(2

√
2Ψ0+1))2

≤ −
√
Ψ0

33(1+log(2
√

2Ψ0+1))2
;

(16 + 12
√
2) ≃ 33, f(α̃) ≤ −

√
Ψ0

33(1+log(2
√

2Ψ0+1))2
.

.

4.2 Iteration bound

To come back to the situation where Ψ(V ) ≤ τ after µ−update, we have to count
how many inner iterations. Let the value of Ψ(V ) after µ−update be denoted by
Ψ0 and the subsequent values by Ψk, for k = 0, 1, . . . ,K − 1, where K is the total
number of inner iterations per the outer iteration. Then we have

Ψk−1 > τ, 0 ≤ Ψk ≤ τ (30)

Lemma 11. [15] Let t0, t1, . . . , tk be a sequence of positive numbers such that

tk+1 ≤ tk − βt1−γk , k = 0, 1, . . . ,K − 1

Where β > 0 and 0 < γ ≤ 1. Then

K ≤ ⌈ t
γ
0

βγ
⌉

Letting tk = Ψk, β = 1
33(1+log(2

√
2Ψ0+1))2

, γ = 1
2

Lemma 12. Let K be the total number of inner iterations in the outer iteration.
Then we have

K ≤ 66
(

1 + log(2
√
2Ψ0 + 1))2

)

Ψ
1
2
0 .

Proof. Using Lemma (11), we get the result.

Now, we estimate the total number of iterations of our algorithm.

Theorem 5. If τ ≥ 1, the total number of iterations is not more than

66(1 + log(2
√
2Ψ0 + 1))2)Ψ

1
2
0

1

θ
log

nµ0

ǫ
.
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Proof. In the algorithm,nµ ≤ ǫ, µk = (1− θ)kµ0 and µ0 =
xt0y0
n

. By simple compu-

tation, we have

k ≤ 1

θ
lognµ

0

ǫ .

By multiplying the number of outer iterations and the number of inner iterations,
we get an upper bound for the total number of iterations, namely

K

θ
lognµ

0

ǫ ≤ 66

θ
(1 + log(2

√
2Ψ0 + 1))2)Ψ

1
2
0 log

nµ0

ǫ
.

This completes the proof.

we assume that τ = O(n), θ = Θ(1) and Ψ
1
2
0 = O(

√
n.)

The algorithm will obtain the solution of the problem at most O(
√
n(logn)2log

n

ǫ
).

5 Numerical results

The main purpose of this section is to present three monotone SDLCPs for testing
the effectiveness of algorithm. The implementation is manipulated in ”Matlab”.
Here we use ”inn”, ”out” and ”T” which means the inner, outer iterations number
and the time produced by the algorithm 1, respectively. The choice of different
values of the parameters shows their effect on reducing the number of iterations.

In all experiments, we use τ = 2 , ǫ = 10−6, θ ∈ {0.5, 0.89, 0.95}, and α ∈
{0.3, 0.5, 0.7, 0.8, 0.9, 1, 1/log(4δ), 1/1+ log(4δ+1)} , the theoretical barrier parame-
ter µ0 ∈ {Tr(XY )/n, 0.05, 0.005, 0.0005}. We provide a feasible initial point (X0, Y0)
such that IPC and Ψ(X0, Y0, µ0) 6 τ are satisfied.

The first example is the monotone SDLCP defined by two sided multiplicative
linear transformation [1] . The second is monotone SDLCP which is equivalent to
the symmetric semidefinite least squares(SDLS)problem and the third one is refor-
mulated from nonsymmetric semidefinite least squares(NS-SDLS)problem [10], in
the second and third example, L is Lyaponov linear transformation.
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Example 1. The data of the monotone SDLCP is given by L(X) = AXAT ,
where

A =













17.25 −1.75 −1.75 −1.75 −1.75
−1.75 16.25 −2 0 0
−1.75 −2 16.25 −2 0
−1.75 0 −2 16.25 −2
−1.75 0 0 −2 16.25













and

Q =













−9.25 1.25 1.25 1.25 1.25
1.25 −8.25 1.5 0 0
1.25 1.5 −8.25 1.5 0
1.25 0 1.5 −8.25 1.5
1.25 0 0 1.5 −8.25













The strictly feasible initial starting point X0 ≻ 0 is given by X0 = Diag(0.0620, . . . , 0.0620).
The unique solution X∗ ∈ S5

+ is given by

X∗ =













0.0313 0.0020 0.0020 0.0020 0.0020
0.0020 0.0313 0.0019 0 0
0.0020 0.0019 0.0312 0.0019 0
0.0020 0 0.0019 0.0312 0.0019
0.0020 0 0 0.0019 0.0313













The number of inner, outer iterations and the time for several choices of α, θ and
µ obtained by algorithm 1 are presented in the following tables

θ = 0.5

α/µ Tr(XY )/n 0.05 0.005 0.0005

inn / out / T inn / out / T inn /out / T inn / out / T

0.3 74 / 22 / 0.17 71 / 19 /0.17 65 / 15 / 0.15 61 / 12 / 0.15

0.5 43 / 22 / 0.12 41 /19 /0.12 37 / 15 / 0.12 35 / 12 /0.10

0.7 23 / 22 / 0.09 22 / 19 / 0.17 20 / 15 / 0.07 19 / 12 / 0.07

0.9 22/ 22 / 0.10 21 / 19 / 0.15 18 / 15 / 0.07 16 / 12 / 0.09

1 22 / 22 / 0.10 19 / 18 / 0.09 17 / 15 /0.07 15 / 12 / 0.07

1/log(4δ) 7 / 22 / 0.07 16 / 19 / 0.09 12 / 15 / 0.09 25 / 12 /0.10

1/log(4δ+1) 20 / 22 / 0.09 21 / 19 / 0.06 24 / 15 / 0.09 30 / 12 /0.10

Table 1: Number of inner, outer iterations and the time for several choices of α and
µwith θ = 0.5



13

θ = 0.89

α/µ Tr(XY )/n 0.05 0.005 0.0005

inn / out / T inn / out / T inn /out / T inn / out / T

0.3 58 / 7 / 0.14 57 / 6 /0.14 55 / 5 / 0.12 53 / 4 / 0.14

0.5 31 / 7 / 0.10 31 /6 /0.10 30 / 5 / 0.09 28 / 4 /0.09

0.7 21 / 7 / 0.09 20 / 6 / 0.07 19 / 5 / 0.09 18 / 4 / 0.09

0.9 14/ 7 / 0.07 14 / 6 / 0.07 13 / 5 / 0.06 12 / 4 / 0.06

1 9 / 7 / 0.06 8 / 6 / 0.06 8 / 5 /0.06 7 / 4 / 0.06

1/log(4δ) 14 / 7 / 0.07 20 / 6 / 0.07 22 / 5 / 0.09 36 / 4 /0.10

1/log(4δ+1) 22 / 7 / 0.07 24 / 6 / 0.09 30 / 5 / 0.09 36 / 4 /0.10

Table 2: Number of inner, outer iterations and the time for several choices of α and
µwith θ = 0.89

θ = 0.95

α/µ Tr(XY )/n 0.05 0.005 0.0005

inn / out / T inn / out / T inn /out / T inn / out / T

0.3 53 / 5 / 0.12 60 / 5 /0.14 56 / 4 / 0.14 51 / 3 / 0.10

0.5 29 / 5 / 0.09 33 /5 /0.09 30 / 4 / 0.09 28 / 3 /0.09

0.7 18 / 5 / 0.07 20 / 5 / 0.07 18 / 4 / 0.07 17 / 3 / 0.07

0.9 11/ 5 / 0.07 12 / 5 / 0.07 11 / 4 / 0.07 10 / 3 / 0.06

1 7 / 5 / 0.06 7 / 5 / 0.06 7 / 4 /0.06 6 / 3 / 0.06

1/log(4δ) 20 / 5 / 0.07 23 / 5 / 0.07 32 / 4 / 0.10 38 / 3 /0.10

1/log(4δ+1) 24 / 5 / 0.09 31 / 5 / 0.09 34 / 4 / 0.09 41 / 3 /0.10

Table 3: Number of inner, outer iterations and the time for several choices of α and
µwith θ = 0.95

Example 2. The data of the monotone SDLCP which is equivalent to the sym-
metric semidefinite least squares (SDLS) problem is given by L(X) = 1

2(A
TAX +

XATA) and Q = −1
2(A

TB +BTA). Where

A =

















6 −1 0 0 0
−0.1 6 −1 0 0
0 −0.1 6 −1 0
0 0 −0.1 6 −1
0 0 0 −0.1 6
0 0 0 0 −0.1
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and

B =

















1 0 0 0 0
−0.4 1 0 0 0
−0.4 −0.4 1 0 0
−0.4 0 −0.4 1 0
−0.4 0 0 −0.4 1
−0.4 0 0 0 −0.4

















The strictly feasible initial point X0 ≻ 0 defined by X0 = Diag(0.2369, . . . , 0.2369).
The unique solution X∗ ∈ S5

+ of the proposed example is given by

X∗ =













0.1639 −0.0215 −0.0342 −0.0328 −0.0300
−0.0215 0.1553 −0.0227 −0.0019 −0.0027
−0.0342 −0.0227 0.1558 −0.0194 0.0014
−0.0328 −0.0019 −0.0194 0.1564 −0.0189
−0.0300 −0.0027 0.0014 −0.0189 0.1598













The number of inner, outer iterations and the time for several choices of α, θ
and µ are presented in the following tables.

θ = 0.5

α/µ Tr(XY )/n 0.05 0.005 0.0005

inn / out / T inn / out / T inn /out / T inn / out / T

0.3 74 / 22 / 0.21 69 / 18 /0.20 65 / 15 / 0.07 61 / 12 / 0.18

0.5 43 / 22 / 0.15 40 /18 /0.15 37 / 15 / 0.17 35 / 12 /0.15

0.7 23 / 22 / 0.11 21 / 18 / 0.11 20 / 15 / 0.11 19 / 12 / 0.10

0.9 22/ 22 / 0.10 20 / 18 / 0.12 18 / 15 / 0.09 16 / 12 / 0.10

1 22 / 22 / 0.12 19 / 18 / 0.12 17 / 15 /0.11 15 / 12 / 0.06

1/log(4δ) 8 / 22 / 0.07 12 / 18 / 0.11 18 / 15 / 0.12 26 / 12 /0.14

1/log(4δ+1) 20 / 22 / 0.10 21 / 18 / 0.10 25 / 15 / 0.10 31 / 12 /0.12

Table 4: Number of inner, outer iterations and the time for several choices of α, and
µ with θ = 0.5.
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θ = 0.89

α/µ Tr(XY )/n 0.05 0.005 0.0005

inn / out / T inn / out / T inn /out / T inn / out / T

0.3 58 / 7 / 0.20 57 / 6 /0.20 55 / 5 / 0.17 53 / 4 / 0.17

0.5 31 / 7 / 0.12 31 /6 /0.12 29 / 5 / 0.10 28 / 4 /0.12

0.7 21 / 7 / 0.10 20 / 6 / 0.10 19 / 5 / 0.07 18 / 4 / 0.10

0.9 14/ 7 / 0.09 14 / 6 / 0.09 13 / 5 / 0.07 12 / 4 / 0.07

1 8 / 7 / 0.04 8 / 6 / 0.06 8 / 5 /0.06 8 / 4 / 0.07

1/log(4δ) 19 / 7 / 0.07 23 / 6 / 0.10 29 / 5 / 0.12 31 / 4 /0.14

1/log(4δ+1) 23 / 7 / 0.10 26 / 6 / 0.10 31 / 5 / 0.14 38 / 4 /0.15

Table 5: Number of inner, outer iterations and the time for several choices of α, and
µwith θ = 0.89.

θ = 0.95

α/µ Tr(XY )/n 0.05 0.005 0.0005

inn / out / T inn / out / T inn /out / T inn / out / T

0.3 54 / 5 / 0.18 61 / 5 /0.20 56 / 4 / 0.20 52 / 3 / 0.18

0.5 29 / 5 / 0.12 33 /5 /0.10 30 / 4 / 0.12 28 / 3 /0.09

0.7 18 / 5 / 0.09 20 / 5 / 0.06 18 / 4 / 0.07 17 / 3 / 0.09

0.9 11/ 5 / 0.07 12 / 5 / 0.07 11 / 4 / 0.07 10 / 3 / 0.06

1 7 / 5 / 0.07 7 / 5 / 0.04 7 / 4 /0.06 7 / 3 / 0.07

1/log(4δ) 18 / 5 / 0.07 21 / 5 / 0.07 25 / 4 / 0.12 41 / 3 /0.17

1/log(4δ+1) 25 / 5 / 0.10 32 / 5 / 0.12 36 / 4 / 0.12 42 / 3 /0.14

Table 6: Number of inner, outer iterations and the time for several choices of α, and
µ with θ = 0.95.

Example 3. We consider the monotone SDLCP which is reformulated from NS-
SDLS problem:
The matrices A and B of NS-SDLS are given by
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A =











































−0.3157 0.0330 0.0603
−0.3274 −0.0158 0.0625
−0.3569 0.0787 0.0563
−0.2994 0.0301 0.0496
−0.3243 −0.0048 0.0715
−0.3447 0.0736 0.0545
−0.2417 0.0709 0.0522
−0.2063 −0.0099 0.0233
−0.3285 0.1585 0.0979
−0.2484 0.0878 0.0622
−0.2196 0.0023 0.0280
−0.3148 0.1506 0.0922











































and

B =











































−1.4257 0.1528 0.4398
−1.4024 −0.3092 0.4187
−1.3766 0.4366 0.4197
−1.4274 0.1424 0.4353
−1.3994 −0.3095 0.4206
−1.3716 0.4285 0.4193
−1.4269 0.1581 0.4335
−1.4015 0.3229 0.4214
−1.3767 −0.4189 0.4333
−1.4257 0.1515 0.4358
−1.3989 0.3276 0.4217
−1.3724 0.1454 0.4356











































Lyapunov linear transformation L(X) is symmetric and strictly monotone given by

L(X) = 1
2(G

−1X +XG−1) and Q = −1
2(G

−1ATB +BTAG−1).

Where G = ATA. The unique solution X∗ is given by

X∗ =





5.1595 0.3075 2.3185
−0.8348 6.2621 −8.1377
1.5400 −0.0070 0.6169





The number of inner, outer iterations and the time for several choices of α, µ
and θ ∈ {0.50, 0.80, 0.90} with feasible starting point X0 = I are presented in the
following tables.
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θ = 0.50

α/µ Tr(XY )/n 0.05 0.005 0.0005

inn / out / T inn / out / T inn /out / T inn / out / T

0.3 6 / 22 / 0.07 6/18/0.07 6 / 14 /0.06 6/11/0.06

0.5 3 / 22 / 0.06 3/18/0.06 3 /14 /0.06 3/11/0.06

0.7 2 / 22 / 0.07 2/18/0.06 2 / 14 / 0.06 2/11/0.04

0.9 2/ 22 / 0.06 2/18/0.04 2 / 14 / 0.06 2/11/0.04

1 2 / 22 / 0.06 2/18/0.06 2 / 14 / 0.06 2/11/0.06

1/log(4δ) 15 / 22 / 0.09 17/ 18 / 0.09 15/ 14 /0.06 15 / 11 / 0.06

1/log(4δ+1) 15 / 22 / 0.07 17 / 18 / 0.09 15/ 14 /0.09 15 / 11 / 0.09

Table 7: Number of inner, outer iterations and the time for several choices of α, and
µ with θ = 0.5.

θ = 0.80

α/µ Tr(XY )/n 0.05 0.005 0.0005

inn / out / T inn / out / T inn /out / T inn / out / T

0.3 6 / 10 / 0.04 6 / 8 / 0.06 6 / 6 /0.04 6 / 5 / 0.06

0.5 3 / 10 / 0.04 3 / 8 / 0.04 3 / 6 /0.06 3 / 5 / 0.06

0.7 2 / 10 / 0.04 2 / 8 / 0.06 2 / 6 / 0.06 2 / 5 / 0.04

0.9 2/ 10 / 0.04 2 / 8 / 0.06 2 / 6 / 0.04 2/ 5 /0.06

1 2 / 10 / 0.06 2 / 8 / 0.06 2 / 6 / 0.06 2/ 5 /0.04

1/log(4δ) 16 / 10 / 0.07 17 / 8 / 0.09 15 /6 / 0.07 17 / 5 / 0.09

1/log(4δ+1) 16 / 10 / 0.04 17 / 8 / 0.07 16/ 6 / 0.07 17 / 5 / 0.07

Table 8: Number of inner, outer iterations and the time for several choices of α, and
µ withθ = 0.80.
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θ = 0.90

α/µ Tr(XY )/n 0.05 0.005 0.0005

inn / out / T inn / out / T inn /out / T inn / out / T

0.3 6 / 7 / 0.06 6/ 6 /0.04 6 / 5 /0.06 6/ 4 / 0.06

0.5 3 / 7 / 0.04 3/ 6 /0.04 3 /5 /0.04 3/ 4 / 0.04

0.7 2 / 7 / 0.04 2/ 6 /0.06 2 / 5 / 0.04 2 / 4 / 0.06

0.9 2/ 7 / 0.06 2/ 6 /0.06 2 / 5 / 0.06 2 / 4 /0.04

1 2 / 7 / 0.04 2/ 6 /0.04 2 / 5 / 0.06 2 / 4 / 0.06

1/log(4δ) 16 / 7 / 0.07 17/ 6 /0.07 17/5/0.07 17 / 4 / 0.07

1/log(4δ+1) 16 / 7 / 0.06 17/ 6 /0.07 17/5/0.07 17 / 4 / 0.06

Table 9: Number of inner, outer iterations and the time for several choices of α, and
µ with θ = 0.90.

The results in these tables show that the algorithm based on our kernel function
ψ(t) is effective, and it’s number of iterations depends on the values of the parameters
α, θ and µ. For all possible combinations of this parameters in practical computation,
we obtained the better results than those by recent kernel functions.

6 Conclusion

In this paper, we introduced a new kernel function, which contributed well to cre-
ating a new design for primal-dual interior-point algorithms. We show that the

iteration bound of large-update interior point method is O(
√
n(logn)2log

n

ǫ
), which

improves the best iteration complexity. Finally, the numerical results obtained are
excellent,which indicated that our kernel function used in algorithm 1 is efficient.
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Algerie (2012).

[4] Elghami. M, New primal-dual interior point methods based on kernel functions, Ph.
D. thesis, Delft University, Netherland, (2005).



19

[5] Elghami. M, Guennoun. Z. A , Boula. S and Steihaug. T, Interior-point methods for
linear optimization based on a kernel function with trigonometric barrier term,
J. comput. App, Math, 236, pp, 3613-3623, (2012).

[6] Horn. R. A and charles. R. J. Matrix Analysis, Cambridge university press, UK,
(1986).

[7] Karmarker. N, A new polynomial time algorithm, for linear programming in proceed-
ings of the 16th Annual ACM symposium on Theory of computing, pp, 302-311,
(1984).

[8] Kheirfam. B, Primal-dual interior point algorithm for semidefinite optimization
based on a new kernel function with trigonometric barrier term, 61, pp, 659-680,
(2012).

[9] Kojima. M, Shindoh. M and Hara. S, Interior point methods for monotone semidef-
inite linear complementarity in symmetric matrices. SIAM J. Optimization, 7,
pp, 86-125, (1997).

[10] Krislock. N. G. B, Numerical solution of semidefinite constrained least squares
problems. Master of science. The university of British colombia, Canada, (2003).

[11] Peyghami. M. R, An interior-point approach for semi definite optimisation using
new proximity functions, Asia-Pac. J. Oper. Res, 26(3), pp 365-382, (2009).

[12] peyghami. M. R, Fathi Hafshejani.S and Chen. S, A primal-dual interior point
method for semidefinite optimization based on a class of trigonometric barrier
functions,J. Oper. Res, pp 319-323, 44(2016).

[13] peyghami. M. R, Fathi Hafshejani.S and Chen. S, Complexity of interior point
methods for linear optimization based on new trigonometric kernel function, J,
comput. App. Math, 255, pp, 74-85, (2014).

[14] Peng. J, C. Roos. C and Terlaky. T, New class of polynomial primal-dual methods
for linear and semidefinite optimization, European J. Oper. Res. 143(2), pp,
234-256, (2002).

[15] Peng. J, C. Roos. C and Terlaky. T, Self regular function and new search directions
for linear and semidefinite optimization. Math. program, 93, pp, 129-171, (2002).

[16] Roos. C, Terlaky. T and Vial. J. P, Theory and Algorithms for linear optimization
An interior point Approach, springer, New york, (2005).

[17] Todd. M. J, A study of search directions in primal-dual interior point methods for
semidefinite programming. Optim. Methods Softw, 11, pp, 1-46, (1999).

[18] Wang. G. Q, Bai. Y. Q and Roos. C, Primal-dual interior point algorithm for
semidefinite optimization based on a simple kernel function, J. Math. Model
Algorithms. 4, pp, 409-433, (2005).

[19] Wright. S. J, Primal-dual interior point methods. SIAM, Philadelphia, USA, (1997).


	1 Introduction
	2 Presentation of Problem
	3 Properties of New Kernel Function
	4 Complexity Analysis
	4.1 An estimation of the step size
	4.2 Iteration bound

	5 Numerical results
	6 Conclusion

