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ABSTRACT

This paper presents a local-control approach to address the multicommodity flow problem. The
method involves relaxing both capacity constraints and flow conservation constraints. If the flow
exceeds the capacity on an edge, the edge would incur a congestion cost. If the flow into a vertex
is not equal to that out of the vertex, the vertex would have a height. Subsequently, a new concept,
stable pseudo-flow, is introduced. Potential difference reduction algorithms, which don’t rely on any
shortest path or augmenting path, are designed to obtain stable pseudo-flow. If the stable pseudo-flow
is a nonzero-stable pseudo-flow, there exists no feasible solution for multicommodity flow problem.
Conversely, if the stable pseudo-flow is a zero-stable pseudo-flow, the feasible solution exists and the
zero-stable pseudo-flow is the feasible solution. Notably, the algorithms work in a localized manner
and can be efficiently implemented in parallel, which would further enhance performance.

Keywords local-control · optimality condition · exact algorithm · potential difference · multicommodity flow

1 Introduction

The multicommodity flow problem involves designing the flow for several different commodities through a common
network with varying edge capacities. Given a directed graph G(V,E) which has n vertexes and m edges, a capacity
function u : E → Q+, K origin-destination pairs of nodes defined by (sk, tk, dk) where sk and tk are the origin and
destination of commodity k, and dk is the demand, the objective is to obtain an assignment of flow which satisfies the
demand for each commodity without violating the capacity constraints. The constraints can be summarized as follows:

∑

k∈K

fij,k ≤ uij , ∀(i, j) ∈ E

∑

j∈δ+(i)

fij,k −
∑

j∈δ−(i)

fji,k =







dk, if i = sk

− dk, if i = tk

0, if i ∈ V − {sk, tk}

, ∀k ∈ K, i ∈ V

fij,k ≥ 0, ∀k ∈ K, (i, j) ∈ E,

(1)

where δ+(i) = {j|(i, j) ∈ E}, δ−(i) = {j|(j, i) ∈ E} and K = {1, 2, · · · ,K}. In this paper, we assume sk 6= tk.
The first expressions are capacity constraints. The second are flow conservation constraints, and the last are non-
negative constraints.

Multicommodity flow problems have attracted great attention since the publication of the works of [3] and [4]. Com-
prehensive surveys are given about this problem[5, 6, 7] . Many special solution methods based on linear program-
ming have been suggested to exploit, in some way, the special block-angular structure of multicommodity flow
problems[15, 16, 17, 18, 20, 32, 19, 14, 21]. Yet, the studies conducted by [46] and [47] demonstrate that general
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linear programs can be transformed into Two-Commodity Flow through Nearly-Linear Time Reductions. Recently,
Brand and Zhang[44] give a high accuracy algorithm for multi-commodity flow problem from single-commodity
methods. Besides, network equilibrium [9, 10, 11]is proposed to solve multicommodity flow problem.

There are also many approximation methods for multicommodity flow problem [33, 24, 23, 22]. Awerbuch and
Leighton[25, 26] propose an approximation algorithm which uses local-control techniques similar to the preflow-push
algorithm of Goldberg and Tarjan [27, 8]. Unlike previous approximation algorithms that attempt to find shortest paths
or augmenting paths to push flow towards sinks, their algorithm uses an "edge-balancing" technique that attempts to
send a commodity across an edge (i, j) if there is more of the commodity queued at i than that queued at j.

Goldberg and Tarjan[27, 8] relax the flow conservation constraints and propose the push-relabel algorithm for the
maximum-flow problem, which is considered one of the most efficient maximum flow algorithms. Recent improve-
ments compute the max-flow by a sequence of electric flows[37, 38, 39, 40, 41, 42, 43, 48]. There are also some
pseudo-flow approaches[34, 35, 36] for solving max-flow problem.

Liu[9] gives an algorithm for the multi-commodity flow problems by relaxing the capacity constraints. In this paper,
not only the capacity constraints but also the flow conservation constraints are relaxed. We introduce the congestion
function for each edge and height function for each vertex and commodity. Then a simple rule is given, that is, the
commodity k should flow from vertex i to vertex j if the height difference between vertex i and vertex j for commodity
k is greater than the congestion of edge (i, j). If the feasible region of Expression (1) is not empty, the feasible solution
would be obtained by this simple rule. This is consistent with our common sense: water finds its level.

The network notation introduced here is summarized in Table 1. Further notation is introduced as needed.

Table 1: Basic Network Notation

G(V,E) a directed graph
V node (index) set
E edge (index) set
K set of commodities, i.e., K = {1, · · · , k, · · · ,K}
fij,k flow of commodity k on edge (i, j), f = (· · · , fij,k, · · · )
fij flow on edge (i, j), i.e., fij =

∑

k∈K fij,k
(sk, tk, dk) sk and tk are the origin and destination of commodity

k, and dk is the demand
uij the capacity of edge (i, j)
δ+(i) {j|(i, j) ∈ E}
δ−(i) {j|(j, i) ∈ E}
ψij congestion function of edge (i, j)
hik height function of vertex i for commodity k
∆ik the amount by which the kth flow into the vertex i exceeds that out of the
rij the unused capacity for edge (i, j)
x the concat of f and r, i.e., x = (fr)
xj the jth component of x
m the number of edges of graph G(V,E)
n the number of vertexes of graphG(V,E)
λmax the largest eigenvalue of QTQ
Λ the maximum degree of graph G(V,E)
φij,k the potential difference of edge (i, j) and commodity k

1.1 Our Contribution

It is certainly worth noting that the worst-case runtime of our algorithm is still an open question. So why have we
spent time writing the paper? There are several reasons summarized as follows.

(i) By introducing height and congestion functions, we give a very simple and intuitive optimality condition,
which may inspire the research on fast and practical algorithms for the multicommodity flow problem.

(ii) Unlike the previously existing algorithms for the multicommodity flow problem, our new algorithm could be
executed in a localized manner, which are especially suited to environments where global control is not possi-
ble. Besides, the algorithm can work in parallel, which would greatly improve the computational efficiency.

(iii) We give a practical potential difference reduction algorithm by using an inexact line search method.
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(iv) We give an algorithm with complexity O(K|E|λmax

α
ln

Λ
∑

k∈K
dk

ǫα
) for the multicommodity flow problem,

where Λ is the maximum degree of graph G(V,E) and λmax the largest eigenvalue of QTQ (see Expres-
sion 13). For the definition of α, see the proof of Lemma 6. Note that α may be very small and the estimate
of its lower bound remains an open question.

2 Optimality Condition

2.1 Stable pseudo-flow

Unlike other methods, our method does not maintain the capacity constraints and flow conservation constraints. The
method, however, maintains a pseudo-flow, which is a function f : K × E → R

+. Let ∆ik be the amount by which
the flow of commodity k into the vertex i exceeds that out of the vertex, i.e.,

∆ik =
∑

j∈δ−(i)

fji,k −
∑

j∈δ+(i)

fij,k + ∆̂ik, ∀i ∈ V, k ∈ K, (2)

where δ+(i) = {j|(i, j) ∈ E}, δ−(i) = {j|(j, i) ∈ E} and ∆̂ik is defined as:

∆̂ik =







0 if i ∈ V − {sk, tk}

dk if i = sk

− dk if i = tk.

(3)

For each commodity k at each vertex i , a height function hik = hik(∆ik) is introduced, where hik(·) represents the
relationship between ∆ik and the height of vertex i for commodity k. Specifically, hik is defined as

hik(∆ik) = ∆ik. (4)

That is, the height of vertex i for commodity k is the amount by which the flow of commodity k into the vertex exceeds
that out of that vertex.

Additionally, a congestion functionψij = ψij(fij) for each edge is introduced, whereψij(·) represents the relationship
between the flow and the degree of congestion for edge (i, j). Specifically, ψij is defined as

ψij(fij) =

{

0 if fij ≤ uij

fij − uij if fij > uij ,
(5)

where uij is the capacity of edge (i, j) and fij =
∑

k∈K fij,k. If the flow on edge (i, j) is less than the capacity, the

congestion of edge (i, j) is zero. Otherwise, the congestion of edge (i, j) is the amount by which the flow exceeds the
capacity.

The greater the hik is, the higher the vertex i for commodity k is. The greater the ψij is, the more ’congested’ the edge
(i, j) is. As is often said, water finds its level. Intuitively, if the height difference between vertex i and vertex j for
commodity k is greater than the congestion of edge (i, j), the flow fij,k should be increased; if the height difference
is less than the congestion, the flow fij,k should be decreased. In the remainder of this paper, , we would give a strict
proof to demonstrate that the feasible solution for the multicommodity flow problem may be obtained by this intuitive
idea.

Firstly, we introduce the concepts of potential difference and stable pseudo-flow here.

Definition 1 For every edge (i, j) and commodity k, define the potential difference φij,k as the amount that the height
difference between vertex i and vertex j minus the congestion of edge (i, j), i.e.,

φij,k = hik − hjk − ψij . (6)

Definition 2 By using { ψij , ∀(i, j) ∈ E} as the congestion function and { hik, ∀i ∈ V, ∀k ∈ K} as the height function,
a pseudo-flow f is called a stable pseudo-flow if it satisfies the following conditions:

(i) for any used edge of commodity k, the height difference between vertex i and vertex j for commodity k is
equal to the congestion of edge (i, j), i.e., the potential difference φij,k is zero;

(ii) for any unused edge of commodity k, the height difference between vertex i and vertex j is less than or equal
to the congestion of edge (i, j), i.e., the potential difference φij,k is less than or equal to zero;

3
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where an edge (i, j) is called used by commodity k if there exists sk − tk flow on edge (i, j), otherwise it is called
unused.

Definition 3 A stable pseudo-flow f is called zero-stable pseudo-flow if ψij = 0, hik = 0, ∀(i, j) ∈ E, i ∈ V, k ∈ K.
Otherwise, it is called nonzero-stable pseudo-flow.

From the definitions above, a zero-stable pseudo-flow is a feasible flow that satisfies Expression (1). Therefore, we
have the following theorem:

Theorem 1 Given {(sk, tk, dk) : k ∈ K} and capacity reservation {uij : (i, j) ∈ E}, the feasible region of Expres-
sion (1) is not empty if and only if there exists zero-stable pseudo-flow.

In fact, if a nonzero-stable pseudo-flow exists, there is no feasible solution for Expression (1). Before proving this
conclusion, we would give a non-linear programming formulation of multicommodity flow problem, whose solution
is stable pseudo-flow.

2.2 Basic Formulation

Let fij be the sum of the flow of all pairs on edge (i, j) and ∆ik defined as Expression (2). Define the following
programming:

min z =
∑

(i,j)∈E

∫ fij

0

ψij(ω)dω +
∑

i,k

∫ ∆ik

0

hik(ω)dω

s.t fij,k ≥ 0, ∀k ∈ K, (i, j) ∈ E

(7)

where ψij is the congestion function and hik the height function.

In the above programming„ the objective function is the sum of the integrals of the edge congestion functions and the
integrals of the vertex height functions. It should be noted that there are only non-negative constraints present and no
capacity constraint or flow conservation constraint. According to the definitions of the congestion function denoted by
ψ and the height function denoted by h, the following lemma can be derived:

Lemma 1 The feasible region of Expression (1) is not empty if and only if the minimum value of the objective function
of Expression (7) is zero. Conversely, the feasible region of Expression (1) is empty if and only if the minimum value
of the objective function of Expression (7) is greater than zero.

2.3 Equivalence

To demonstrate the equivalence between the stable pseudo-flow and the optimal solution of Programming (7), it has
to be shown that any flow pattern that solves Programming (7) satisfies the stable conditions. This equivalency is
demonstrated by proving that the Karush-Kuhn-Tucker conditions for Programming (7) are identical to the stable
conditions.

Lemma 2 Let f
∗

be a solution of Programming (7). f
∗

is the optimal solution of Programming (7) if and only if it
satisfies the Karush-Kuhn-Tucker conditions of Programming (7).

Proof: Firstly, the objective function of Programming (7) is convex. Secondly, the inequality constraints of Program-
ming (7) are continuously differentiable concave functions. Therefore, Karush-Kuhn-Tucker conditions are necessary
and sufficient for the optimality of Programming (7) (see [12]).

Since Programming (7) is a minimization problem with non-negativity constraints, the Karush-Kuhn-Tucker condi-
tions of such formulation are as follows:

4
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Stationarity

−
∂z

∂fij,k
= −µij,k, ∀k ∈ K, (i, j) ∈ E

Primal feasibility

− fij,k ≤ 0, ∀k ∈ K, (i, j) ∈ E

Dual feasibility

µij,k ≥ 0, ∀k ∈ K, (i, j) ∈ E

Complementary slackness

µij,kfij,k = 0, ∀k ∈ K, (i, j) ∈ E.

(8)

Obviously,
∂z

∂fij,k
= ψij(fij)

∂fij
∂fij,k

+ hik(∆ik)
∂∆ik

∂fij,k
+ hjk(∆jk)

∂∆jk

∂fij,k

= ψij(fij) + (−hik(∆ik)) + (hjk(∆jk))

= ψij + hjk − hik.

(9)

Substituting the expression above into the Stationarity expression in KKT conditions,

hik − hjk − ψij = −µij,k, ∀k ∈ K, (i, j) ∈ E.

For any used edge of commodity k, i.e. fij,k > 0, by complementary slackness µij,kfij,k = 0 in KKT conditions, we
have µij,k = 0. Therefore,

hik − hjk − ψij = 0, ∀k ∈ K, (i, j) ∈ E.

That is, the potential difference between vertex i and vertex j for commodity k is equal to zero for any used edge of
commodity k.

For any unused edge of commodity k, due to µij,k ≥ 0, we have

hik − hjk − ψij = −µij,k ≤ 0, ∀k ∈ K, (i, j) ∈ E.

That is, the potential difference between vertex i and vertex j for commodity k is less than or equal to zero for any
unused edge of commodity k.

With the interpretation above, it is now clear that:

(i) for any used edge of commodity k, the potential difference between vertex i and vertex j for commodity k is
zero, i.e. φij,k = 0;

(ii) for any unused edge of commodity k, the potential difference between vertex i and vertex j for commodity k
is less than or equal to zero, i.e. φij,k ≤ 0.

So we have the following lemma:

Lemma 3 The optimal solution of Programming (7) is a stable pseudo-flow.

Obviously, a stable pseudo-flow also satisfies the KKT conditions. By Lemma 2, we have

Lemma 4 The stable pseudo-flow is the optimal solution of Programming (7).

By Lemma 1, Lemma 3 and Lemma 4, Theorem 2 holds.

Theorem 2 Given {(sk, tk, dk) : k ∈ K} and capacity reservation {uij : (i, j) ∈ E}, the feasible region of Expres-
sion (1) is empty if and only if there exists nonzero-stable pseudo-flow.

Remark 1 By Theorem 1 and Theorem 2, the optimality condition for multicommodity flow problem may be summa-
rized as follows:

(i) if there exists a nonzero-stable pseudo-flow, there exists no feasible solution for multicommodity flow problem;

(ii) if there exists zero-stable pseudo-flow, there exists a feasible solution and the zero-stable pseudo-flow is the
feasible solution.

5
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Remark 2 In fact, both Theorem 1 and Theorem 2 are true if the height function and the congestion function satisfy
the following conditions:

(i) the height function hik(∆ik) is a strictly monotone increasing function and hik(0) = 0;

(ii) the congestion function ψij satisfies the following definition:

ψ(fij) =

{

0 if fij ≤ uij

g(fij − uij) if fij > uij ,

where g(0) = 0 and g(·) is a strictly monotone increasing function.

Remark 3 Expression (9) shows that the potential difference is exactly the same as the negative gradient of the
objective function of Programming (7), which is the key to prove the convergence of the following algorithms.

3 Potential Difference Reduction Algorithm

Theorem 1 and Theorem 2 above suggest a simple algorithmic approach for solving the multicommodity flow problem.
That is, design an algorithm to obtain the stable pseudo-flow, which may be achieved by adjusting the commodity flow
fij,k until the potential difference φij,k = 0 or fij,k = 0. In other words, if the potential difference between vertex
i and vertex j for commodity k is greater than zero, the flow fij,k should be increased; if the potential difference is
less than zero and fij,k > 0, the flow fij,k should be decreased. In this paper we call this algorithm the potential
difference reduction algorithm. Before describing the algorithm, we need to rewrite Programming (7) as a quadratic
programming problem with nonnegative constraints.

3.1 Quadratic Programming

Firstly,
∫ ∆ik

0

hik(ω)dω =
1

2
∆2

ik =
1

2
(

∑

j∈δ−(i)

fji,k −
∑

j∈δ+(i)

fij,k + ∆̂ik)
2. (10)

By the definition of congestion function ψij , we have

∫ fij

0

ψij(ω)dω =







0 if fij ≤ uij
1

2
(fij − uij)

2 if fij > uij .
(11)

By introducing an auxiliary variable {rij : rij ≥ 0} which is the unused capacity for edge (i, j), Programming (7)
could be rewritten as

min z =
1

2

∑

(i,j)∈E

(
∑

k∈K

fij,k + rij − uij)
2 +

1

2

∑

i,k

(
∑

j∈δ−(i)

fji,k −
∑

j∈δ+(i)

fij,k + ∆̂ik)
2

s.t fij,k ≥ 0, ∀k ∈ K, (i, j) ∈ E

rij ≥ 0, ∀(i, j) ∈ E

(12)

Programming (12) is a quadratic programming problem with non-negative constraints, which could be rewritten in the
matrix form.

To write the matrix form, we define a n×mmatrixA ofGraph(V,E) with elementAve for the vertex v and the edge
e (connecting vertexes vi and vj) defined by

Ave =







− 1 if v = vi

1 if v = vj

0 otherwise.

Now define P as a nK ×m(K + 1) matrix composed of K × (K + 1) blocks of size n×m each:

6
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P =













A 0 · · · 0 0

0 A
...

...

...
. . . 0

...
0 · · · 0 A 0













.

Define C as a m×m(K + 1) matrix constructed from K + 1 blocks of identity matrices of dimension m×m:

C = (Im×mIm×m · · · Im×m).

For simplicity, define

Q = (PC) , x = (fr) . (13)

Then the objective function of Programming (12) could be rewritten as:

z =
1

2

∑

(i,j)∈E

(
∑

k∈K

fij,k + rij − uij)
2 +

1

2

∑

i,k

(
∑

j∈δ−(i)

fji,k −
∑

j∈δ+(i)

fij,k + ∆̂ik)
2

=
1

2
(Qx− b)T (Qx− b)

=
1

2
xTQTQx− bTQx+

1

2
bTb,

(14)

where bik = −∆̂ik and bij = uij .

Therefore, Programming (12) may be rewritten as:

min z =
1

2
xTQTQx− bTQx+

1

2
bTb

s.t x ≥ 0

(15)

The gradient projection methods [13, 1, 2] are efficient for the above problem. Bertsekas [13] shows a linear rate of
convergence of the gradient projection method under the assumption that the smallest eigenvalue of the matrix QTQ
is larger than zero. In this paper, we would show that the gradient projection method for Programming (15) is linearly
convergent, though QTQ is positive semi-definite.

3.2 Algorithm of linear convergence

Let λmax be the largest eigenvalue of QTQ and x ≥ 0 means that every element of x is greater than or equal to zero.
The potential difference reduction algorithm for multicommodity flow problem is as follows:

7
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Algorithm 1 Potential difference reduction algorithm

1: Given x0 ≥ 0; σ ∈ (0, 1) and set the step size β ≤ 2σ
λmax

2: for l = 0, 1, · · ·, do
3: Calculate the height hlik, ∀i ∈ V, k ∈ K:

hlik =
∑

j∈δ−(i)

f l
ji,k −

∑

j∈δ+(i)

f l
ij,k + ∆̂ik.

4: Calculate the congestion ψl
ij , ∀(i, j) ∈ E:

ψl
ij =

∑

k∈K

f l
ij,k + rlij − uij .

5: Calculate the potential difference φlij,k, ∀(i, j) ∈ E, k ∈ K:

φlij,k = hlik − hljk − ψl
ij .

6: Update f l+1
ij,k , r

l+1
ij , ∀(i, j) ∈ E, k ∈ K:

f l+1
ij,k = max{f l

ij,k + βφlij,k, 0}

rl+1
ij = max{rlij − βψl

ij,k, 0}.

7: end for

Note that the flow fij,k is updated by adding the potential difference, but rij is updated by subtracting its gradient. As
is shown by Equation (9), the negative gradient of the objective function of Programming (7) is exactly the same as

the potential difference. Additionally, the gradient ∂z
∂x

= QTQx−QT b. For simplicity, Algorithm 1 can be reduced
to a much more condensed matrix form.

Algorithm 2 Potential difference reduction algorithm in matrix form

Initialization: Given x0 ≥ 0, σ ∈ (0, 1). Set the step size β ≤ 2σ
λmax

and y0 := x0.

Iterative step: Given xl, calculate:
{

yl+1 = xl − β(QTQxl −QT b)

xl+1 = max(yl+1, 0)
(16)

Remark 4 Obviously, Algorithm 1 and Algorithm 2 are exactly equivalent.

Lemma 5 {xl}l≥0, generated by Algorithm 2, is convergent. Furthermore, {xl}l≥0 converges to an optimal solution
of Programming (15).

Remark 5 Lemma 5 can be directly deduced as a special case from Theorem 6 in [31]. We refer readers to [31] for
more details.

Lemma 6 Let {xl}l≥0 and {yl}l≥0 be the sequence generated by Algorithm 2. Then there exists a real q ∈ (0, 1)
such that, for all l ≥ 0,

‖yl+2 − yl+1‖2 ≤ (1− q)‖yl+1 − yl‖2.

Proof: Set B = βQTQ, which is a symmetric positive semi-definite matrix. Let λBmax the largest eigenvalue of B.
Obviously, λBmax = βλmax ≤ 2σ < 2. So we have

‖(I −B)x‖2 ≤ ‖x‖2. (17)

We denote by N (Q) the null space of the matrix Q and define the real number η

η = 1−max

{

‖PN (Q)(x)‖2

‖x‖2
| x ≥ 0,x 6= 0

}

, (18)

8
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where PN (Q)(x) is the projection of x onto N (Q).

Since

xTBx = β(
∑

(i,j)∈E

(
∑

k∈K

fij,k + rij)
2 +

∑

i,k

(
∑

j∈δ−(i)

fji,k −
∑

j∈δ+(i)

fij,k)
2)

≥ β(
∑

(i,j)∈E

∑

k∈K

f2
ij,k +

∑

(i,j)∈E

r2ij)

= βxTx, ∀x ≥ 0,

(19)

we have xTBx ≥ βxTx = β‖x‖22.

Let x = x0+x1 where x0 ∈ N (Q) and x1 is orthogonal to N (Q). Since xTBx = xT
1 Bx1 ≤ λBmax‖x1‖22, we have

β‖x‖22 ≤ λBmax‖x1‖
2
2. That is,

‖x0‖
2
2 = ‖x‖22 − ‖x1‖

2
2

≤ (1−
β

λBmax

)‖x‖22

≤ (1−
β

2
)‖x‖22

≤ (1−
β

4
)2‖x‖22.

(20)

By Inequality (20) and Equation (18), we have
β

4
≤ η ≤ 1. (21)

Let J be a nonempty subset of {1, 2, ..., N} where N is the dimension of x. Denote the family of all such subsets by
J . For each J ∈ J , introduce the subspace XJ ∈ RN ,

XJ = {x ∈ RN |xj = 0, ∀j /∈ J}. (22)

Define HJ = XJ ∩ N (Q) and denote by YJ the subspace of XJ which is orthogonal to HJ . Given any J ∈ J , let
αJ be the largest non-negative number for which

‖(I −B)y‖2 ≤ (1− αJ )‖y‖2, ∀y ∈ YJ , (23)

where I denotes the unit matrix. Clearly, αJ is actually positive.

The first line of Equation (16) could be rewritten as:

yl+1 = xl − (Bxl − βQT b). (24)

Therefore,
yl+1 − yl = (I −B)(xl − xl−1). (25)

Furthermore, if yl+1
j ≥ 0 or yl

j ≥ 0, using xl = max(yl, 0), we have

|xl+1
j − xl

j |+ |yl+1
j − xl+1

j |+ |yl
j − xl

j | = |yl+1
j − yl

j |. (26)

Since
h
T (Bx− βQTb) = h

TBx− h
TβQTb

= hT (βQTQ)x− hT (βQT b)

= β(Qh)T (Qx− b)

= 0, ∀h ∈ N (Q),

it follows that
hT (yl+1 − xl) = 0, ∀h ∈ N (Q). (27)

Now let wl = xl − xl−1 and define
Jl = {j|yl

j ≥ 0 or yl−1
j ≥ 0}. (28)

Decompose wl, which clearly belongs to XJl
, as wl = wl,0 +wl,1 where wl,0 ∈ HJl

and wl,1 ∈ YJl
, and consider

the following two cases.
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Case I. ‖wl,0‖2 ≤ (1− ε)‖wl‖2 for some ε ∈ (0, 1).

‖(I −B)wl‖22 = ‖(I −B)wl,0‖22 + ‖(I −B)wl,1‖22

≤ ‖wl,0‖22 + (1 − αJ)
2‖wl,1‖22

= (2αJ − α2
J)‖w

l,0‖22 + (1− αJ )
2‖wl‖22

≤ (1− ε)2(2αJ − α2
J )‖w

l‖22 + (1− αJ)
2‖wl‖22

= (1− εαJ(2 − ε)(2− αJ))‖w
l‖22.

(29)

Hence,
‖(I −B)wl‖22 ≤ (1− εαJ)‖w

l‖22. (30)

By Equation (25) and Equation (26),

‖yl+1 − yl‖2 = ‖(I −B)(xl − xl−1)‖2

≤
√

(1− εαJ‖x
l − xl−1‖2

≤
√

(1− εαJ‖y
l − yl−1‖2.

(31)

Case II. ‖wl,0‖2 ≥ (1− ε)‖wl‖2 for some ε ∈ (0, 1).

Rewrite wl = yl − xl−1 + xl − yl. Define x̄ as follwoing:

x̄j =

{

xl
j − yl

j , ∀j ∈ Jl

0, ∀j /∈ Jl
.

By Equation (27), the vector yl − xl−1 is orthogonal to HJl
. Therefore, wl,0 = PHJl

(xl − yl) = PHJl
(x̄) is the

projection of x̄ onto HJl
, from which, by Equation (18), we have

(1− ε)‖wl‖2 ≤ ‖wl,0‖2 = ‖PHJl
(x̄)‖2

≤ (1− η)‖x̄‖2.

Therefore,

‖wl‖2 ≤
(1− η)

(1− ε)
‖x̄‖2,

which, together with Equation (26), implies

‖wl‖2 ≤
(1− η)

(1− ε)
‖yl − yl−1‖2. (32)

By Equation (25) and Inequality (17), we have the following the inequality

‖yl+1 − yl‖2 = ‖(I −B)wl‖2

≤ ‖wl‖2 ≤
(1 − η)

(1− ε)
‖yl − yl−1‖2.

(33)

Taking ε = η
1+αJ

, we can summarize Inequalities (31) and (33) as

‖yl+1 − yl‖2 ≤ (1−
ηαJ

2(1 + αJ)
)‖(yl − yl−1)‖2

≤ (1− q)‖yl − yl−1‖2,
(34)

where

q = min

{

ηαJ

2(1 + αJ )
|∀J ∈ J

}

.

Set α = min{αJ |∀J ∈ J }, then we have

q =
ηα

2(1 + α)
. (35)

10
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Remark 6 The proof above is similar to that of Theorem 10 in [31]. The main difference, in comparison with the
result in [31], is that here we do not assume every element in matrix Q to be greater than or equal to zero.

Remark 7 AlthoughQTQ is positive semi-definite, Algorithm 2 is of linear convergence rate, by Lemma 6.

Remark 8 According to the definition of αJ , it is evident that α is greater than zero. However, α may be very small
and the estimate of its lower bound remains an open question.

Theorem 3 Let {xl}l≥0 and {yl}l≥0 be the sequence generated by Algorithm 2. x∗ and y∗ are the limits of the two

sequences, respectively. Set the step size β = 2σ
λmax

. Then the following statements hold:

(i) we can find an index L in O(λmax

α
ln

Λ
∑

k∈K
dk

ǫα
) iterations such that ‖xl − x∗‖2 ≤ ǫ ∀l ≥ L;

(ii) each iteration can be done in O(K|E|) time.

Proof:

By Formulation (35) and Inequality (21),

q =
ηα

2(1 + α)
≥

αβ

8(1 + α)
=

ασ

4(1 + α)λmax

. (36)

By Lemma 6,

‖yl+1 − yl‖2 ≤ (1− q)l‖y1 − y0‖2. (37)

Therefore,

‖yL − y∗‖2 ≤
∞
∑

l=L

‖(yl+1 − yl)‖2

≤ ‖y1 − y0‖2

∞
∑

l=L

(1− q)l

= ‖y1 − y0‖2
(1− q)L

q
.

(38)

Since xl = max{yl, 0}, the following inequality holds,

‖xl+1 − xl‖2 ≤ ‖yl+1 − yl‖2, (39)

together with Inequality (38), we have

‖xL − x∗‖2 ≤ ‖y1 − y0‖2
(1− q)L

q
. (40)

11
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Define the starting point as {f0
ij,k = 0, r0ij = uij , ∀(i, j) ∈ E, k ∈ K}, i.e., x0 = y0 =

(

f0

r0

)

. So

‖y1 − y0‖2 = ‖β(QTQx0 −QT b)‖2

= β

√

√

√

√

∑

k∈K

∑

(i,j)∈E

(
∂z

∂f0
ij,k

)2 +
∑

(i,j)∈E

(
∂z

∂r0ij
)2

= β

√

∑

k∈K

∑

(i,j)∈E

(ψ0
ij + h0jk − h0ik)

2 +
∑

(i,j)∈E

(ψ0
ij)

2

= β

√

∑

k∈K

∑

(i,j)∈E

(0 + h0jk − h0ik)
2 +

∑

(i,j)∈E

02

= β

√

∑

k∈K

∑

(i,j)∈E

(∆̂jk − ∆̂ik)2

≤ β
∑

k∈K

∑

(i,j)∈E

|∆̂jk − ∆̂ik|

≤ β
∑

k∈K

(2Λdk)

= 2βΛ
∑

k∈K

dk

=
4σΛ

∑

k∈K dk

λmax

,

(41)

where Λ is the maximum degree of Graph G(V,E).

(1− q)l

q
‖y1 − y0‖2 ≤ ǫ (42)

is satisfied, provide that
l ∗ ln(1− q) + ln ‖y1 − y0‖2 ≤ ln(ǫq). (43)

Since ln(1 + q) ≤ q, ∀ q > −1, Inequality (43) is true if

l ≥
1

q
ln

‖y1 − y0‖2
ǫq

. (44)

By Inequality (36) and (41),

1

q
ln

‖y1 − y0‖2
ǫq

≤
4(1 + α)λmax

ασ
ln

16(1 + α)Λ
∑

k∈K dk

ǫα
. (45)

Therefore, if

l ≥ L =
4(1 + α)λmax

ασ
ln

16(1 + α)Λ
∑

k∈K dk

ǫα

= O(
λmax

α
ln

Λ
∑

k∈K dk

ǫα
),

(46)

Inequality (42) holds. By Inequality (40), the first statement of this theorem holds.

Obviously, the height {hik, ∀i ∈ V, k ∈ K} can be obtained in 2K|E| time; the congestion function {ψij , ∀(i, j) ∈ E}
can be obtained in O(K|E|) time. Therefore, each iteration of Algorithm 1 can be done in O(K|E|) time. So the
proof is complete.

Remark 9 Lemma 7 would give an estimate of the upper bound of λmax. However, the estimate of the lower bound
of α is still an open problem.

Remark 10 Since the largest eigenvalue λmax is usually unavailable, it is not known a priori how small one should
take the step size β. A possible way is to substitute the λmax by its upper bound in Lemma 7.
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Lemma 7 Let λmax be the largest eigenvalue of QTQ, then

λmax ≤ K + 1 + 2Λ, (47)

where Λ is the maximum degree of graph G(V,E).

Proof:

xTQTQx =
∑

(i,j)∈E

(
∑

k∈K

fij,k + rij)
2 +

∑

i,k

(
∑

j∈δ−(i)

fji,k −
∑

j∈δ+(i)

fij,k)
2

≤
∑

(i,j)∈E

((K + 1)(
∑

k∈K

f2
ij,k + r2ij)) +

∑

i,k

(Λ(
∑

j∈δ+(i)

f2
ij,k +

∑

j∈δ−(i)

f2
ji,k))

= (K + 1)
∑

(i,j)∈E

(
∑

k∈K

f2
ij,k + r2ij) + 2Λ

∑

k∈K

(
∑

(i,j)∈E

f2
ij,k)

≤ (K + 1 + 2Λ)(
∑

(i,j)∈E

∑

k∈K

f2
ij,k +

∑

(i,j)∈E

r2ij)

= (K + 1 + 2Λ)xTx, ∀x.

Since xTQTQx ≤ (K + 1 + 2Λ)xTx, λmax ≤ K + 1 + 2Λ.

3.3 A Practical Algorithm

When λmax is large, the step size β is small, which would lead to slow convergence. In this section we would give a
practical potential difference reduction algorithm whose step size is determined by an inexact line search method.

Let φ(f ) be the vector of potential difference when the flow is f , i.e., φ(f ) = (· · · , φij,k, · · · ). And max(u,v)
denotes the component-wise maximum of u,v. Algorithm 3 describes the adaptive potential difference reduction
algorithm.

Algorithm 3 Adaptive potential difference reduction algorithm

1: Set β0 = 1, µ = 0.5, v = 0.9, given f0

2: for l = 0, 1, · · ·, if the stopping criterion is not satisfied, do

3: calculate φ(f l) by Algorithm 4;

4: f̂
l
= max{f l + βlφ(f l),0};

5: calculate φ(f̂
l
) by Algorithm 4;

6: ωl = βl‖φ(f
l)− φ(f̂

l
)‖2/‖f

l − f̂
l
‖2.

7: while ωl > v do
8: βl := βl ∗ 0.8/ωl;

9: f̂
l
= max{f l + βlφ(f l),0};

10: Calculate φ(f̂ l) by Algorithm 4;

11: ωl = βl‖φ(f
l)− φ(f̂

l
)‖2/‖f

l − f̂
l
‖2.

12: end while

13: f l+1 = f̂
l
;

14: φ(f l+1) = φ(f̂
l
).

15: if ωl ≤ µ then
16: βl := βl ∗ 1.5 .
17: end if
18: end for
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Algorithm 4 Given f≥ 0, compute potential difference

1: Calculate the height hik, ∀i ∈ V, k ∈ K:

hik =
∑

j∈δ−(i)

fji,k −
∑

j∈δ+(i)

fij,k + ∆̂ik. (48)

2: Calculate the congestion function ψij , ∀(i, j) ∈ E:

ψij =















0 if
∑

k∈K

fij,k ≤ uij

∑

k∈K

fij,k − uij if
∑

k∈K

fij,k > uij .
(49)

3: Calculate the potential difference φij,k, ∀(i, j) ∈ E, k ∈ K:

φij,k = hik − hjk − ψij . (50)

Remark 11 By Equation (9), the negative gradient of the objective function of Programming (7) is exactly the same
as the potential difference. Therefore, Algorithm 3 is a gradient projection method for Programming (7). For the
convergence of gradient projection method, see [13, 29].

Remark 12 The step-size rule in Algorithm 3 is to start with an initial guess for the step size and then, if some
condition is not satisfied, reduce the step size successively by multiplication with a constant scalar until it meets the
condition. The reducing rule for βl is of Armijo type[30, 13].

Remark 13 Too small step size βl will lead to slow convergence. If ωl ≤ µ, we would enlarge βl by βl := βl ∗ 1.5(see
[28]).

4 Further Discussion on Optimality Condition

As commonly understood, directed edges correspond to pipes of the physical network and vertices are pipe junctions.
In practice, for any physical network, it is impossible for the flow in a pipe to exceed its capacity . In this section we
would discuss the optimality condition for multicommodity flow problem when only relaxing the flow conservation
constraints.

The basic formulation is as follows:

min z =
∑

i,k

∫ ∆ik

0

hik(ω)dω

s.t
∑

k∈K

fij,k ≤ uij , ∀(i, j) ∈ E

fij,k ≥ 0, ∀k ∈ K, (i, j) ∈ E

(51)

where hik is the height function and ∆ik defined as Expression (2).

In the programming above, the objective function is the sum of the integrals of the vertex height function. The
flow conservation constraints are relaxed but the capacity constraints are maintained. Obviously, the feasible region
of Expression (1) is not empty if and only if the minimum value of the objective function of Programming (51) is
zero; the feasible region of Expression (1) is empty if and only if the minimum value of the objective function of
Programming (51) is greater than zero. Since Programming (51) is convex, the solution f∗ of Programming (51) is
optimal if and only if it satisfies the following Karush-Kuhn-Tucker conditions:
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Stationarity

−
∂z

∂fij,k
= −µij,k + γij , ∀k ∈ K, (i, j) ∈ E

Primal feasibility
∑

k∈K

fij,k ≤ uij , ∀(i, j) ∈ E

− fij,k ≤ 0, ∀k ∈ K, (i, j) ∈ E

Dual feasibility

µij,k ≥ 0, ∀k ∈ K, (i, j) ∈ E

γij ≥ 0, ∀(i, j) ∈ E

Complementary slackness

µij,kfij,k = 0, ∀k ∈ K, (i, j) ∈ E

γij(
∑

k∈K

fij,k − uij) = 0, ∀(i, j) ∈ E.

(52)

Obviously,
∂z

∂fij,k
= hik(∆ik)

∂∆ik

∂fij,k
+ hjk(∆jk)

∂∆jk

∂fij,k

= (−hik(∆ik)) + (hjk(∆jk))

= hjk − hik.

(53)

Substituting the expression above into Stationarity expression in KKT conditions,

γij = µij,k + hik − hjk, ∀k ∈ K, (i, j) ∈ E.

If edge(i, j) is not saturated, by complementary slackness, γij = 0. If edge(i, j) is saturated, γij ≥ 0. Intuitively, γij
could be interpreted as the pressure on pipes generated by the fluid. If edge(i, j) is not saturated, the pipe pressure is
zero; otherwise it is greater than or equal to zero.

For any used edge of commodity k, i.e. fij,k > 0, by complementary slackness µij,kfij,k = 0 in KKT conditions, we
have µij,k = 0. Therefore,

γij = hik − hjk, ∀k ∈ K, (i, j) ∈ E.

That is, the height difference between vertex i and vertex j for commodity k is equal to the pipe pressure γij of edge
(i, j).

For any unused edge of commodity k, due to µij,k ≥ 0, we have

γij = µij,k + hik − hjk ≥ hik − hjk, ∀k ∈ K, (i, j) ∈ E

That is, the height difference between vertex i and vertex j for commodity k is less than or equal to the pipe pressure
γij .

Note that the pipe pressure γij is zero when the edge is unsaturated. Therefore, the optimality conditions can be
concluded as follows:

(i) for any used edge of commodity k, if it is unsaturated, the height difference between vertex i and vertex j for
commodity k is zero;

(ii) for any used edge of commodity k, if it is saturated, the height difference between vertex i and vertex j for
commodity k is equal to the pipe pressure γij ;

(iii) for any unused edge of commodity k, the height difference between vertex i and vertex j for commodity k is
less than or equal to the pipe pressure γij .

5 Conclusion

In this paper, we present a localized approach to solve the multicommodity flow problem. By relaxing both the
capacity constraints and flow conservation constraints, we define a congestion function ψ for each edge and a height
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function h for each vertex and commodity. Utilizing the congestion function ψ and the height function h, we propose
a simple and intuitive optimality condition for multicommodity flow problem. Furthermore, by the optimal condition,
we give an algorithm based on potential difference reduction approach, which works in a localized manner without
depending on any shortest path or augmenting path. Overall, this work contributes a novel perspective on solving
the multicommodity flow problem, which would help people better understand flow problems and may inspire further
research in this field.
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