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Abstract
In this work, we explore multiple architectures and training pro-
cedures for developing a multi-speaker and multi-lingual neural
TTS system with the goals of a) improving the quality when
the available data in the target language is limited and b) en-
abling cross-lingual synthesis. We report results from a large
experiment using 30 speakers in 8 different languages across 15
different locales. The system is trained on the same amount of
data per speaker. Compared to a single-speaker model, when
the suggested system is fine tuned to a speaker, it produces sig-
nificantly better quality in most of the cases while it only uses
less than 40% of the speaker’s data used to build the single-
speaker model. In cross-lingual synthesis, on average, the gen-
erated quality is within 80% of native single-speaker models, in
terms of Mean Opinion Score.
Index Terms: multi-speaker synthesis, multilingual synthesis,
fine-tuning, neural speech synthesis

1. Introduction
The quality of synthetic speech has improved dramatically since
the development of methods based on neural networks, [1, 2].
However, using this technology requires high computational ca-
pacity and large amounts of training data. Several researchers
have shown that unlike unit-selection text-to-speech (USEL),
neural TTS can compensate for the lack of speech data from
the target speaker by adding data from other speakers. Most of
the research published in this respect has used support speakers
in the same language as the target. However, the most com-
mon case when developing TTS voices for a new language is
that there are no additional supporting speakers in that new lan-
guage. In that context, the only available options are to record
more speakers and/or to use support speakers from different lan-
guages.

In this paper, we show the results of applying the latter ap-
proach on a large-scale experiment involving 30 target speaker
in 8 languages across 15 different locales. Our goal was to ad-
dress the following questions: a) how effective is it to combine
speakers from different languages compared with just training
only on the data of the target speaker; b) what type of model
architecture and training protocol yields the best quality when
using multilingual data; and c) to which extent can the voices
created in this way speak some of the other languages included
in the training data?

In addition to the standard numerical results, we also show
the analysis of the most common errors pointed out by the eval-
uation subjects. We believe that the results of these experiments
will be useful for researchers and practitioners developing syn-
thetic voices.

The structure of the paper is as follows. Section 2 reviews
the recent literature on using data from other speakers to create
new voices and on the application of this method to create poly-
glot voices. Section 3 describes the architecture of the models

used in the experiment as well as the way in which these mod-
els were trained. Section 4 describes the conditions and results
of our experiments. It also shows the analysis of most com-
monly mentioned mistakes for each of the systems. Section 5
discusses some of the results and suggests some possible future
directions. Finally, in section 6 conclusions are drawn.1.

2. Related work
The idea of using data from other speakers to improve the qual-
ity of synthetic speech has been explored extensively [3, 4, 5].
Although there has been some work in training multi-speaker
text-to-wave models [6], most of the recent work has been in
phone-to-spectrogram. For instance, in [7] the effect of reduc-
ing the amount of data from the target speaker and compensat-
ing for it with data from other speakers was studied. The effect
of having imbalanced training data was further analized in [8].
Even more extreme examples were presented in [9], where only
5 minutes of speech were used to get high quality or even in [10]
where a single utterance is used. When there are not sufficient
support speakers, some authors have suggested to artificially ex-
pand the number of training speakers [11] or making use of low
quality data [12].

Mixing languages has also been widely studied, although in
most cases with the goal of creating polyglot voices. Within the
sequence-to-sequence framework, [13] and [14] introduced sev-
eral modifications to allow training polyglot voices using only
monolingual speakers. A non sequence-to-sequence model was
proposed in [15].

Even without aiming to create polyglot voices, using com-
pensatory data from speakers in other languages is also a po-
tential solution to the lack of data. However, this option has
received less attention. An architecture inspired by the speaker
and language factorisation (SLF) approach [16] but within the
DNN/LSTM framework was proposed in [17]. Other authors
have also shown that mixing data from multiple speakers and
languages can yield equal or even better quality than single
speaker models [18, 19]. Finally, in [20], 8 Indian languages
were combined directly in a very similar way to the one we
suggest here but using a DeepVoice3 [21] architecture.

3. Model training
3.1. Model architecture

The basic architecture of our models is Tacotron2 [2]. The main
input is a sequence of phones and punctuation marks and the
output is a sequence of 80-dimensional mel-spectrogram fea-
tures. These are computed from speech signals with a sampling
rate of 24kHz, using a 25ms analysis window and the Mel filter-
bank generated using Librosa Toolkit [22]. An end-pointing flag

1Samples can be found in https://apple.github.io/
ml-polyglot_tacotron2_finetuning-samples
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Figure 1: Model architectures. The rhombi indicate concatena-
tion. The dotted line linking the postnet output to the pre-net
input is used only at inference time

was also concatenated with the mel-spectrogram vector to make
the final 81-dimensional output vectors.

The encoder consists of a look-up table that converts the se-
quence of phone-IDs into a sequence of 512-dimensional vec-
tors, three 1D-CNNs and one bi-LSTM layers. The attention
is a stepwise monotonic attention [23]. On the decoder side,
the pre-net consists of two fully connected (FF) layers. The de-
coder itself is formed by two LSTMs followed by one FF layer
to decode the mel-spectrograms and another one to generate the
end-pointing signal. These mel-spectrograms are finally passed
through a post-net module consisting of 5 1D-CNNs. The train-
ing loss combines the L1 for the end-pointing and the output of
the decoder, and an L2 for the output of the post-net. For each
output step, two output vectors were generated.

On top of that standard architecture, two variants were
built, as depicted in fig. 1 The first variant (in green) consists
of adding a 16-dimensional residual variational auto-encoder
(resVAE) following [13]. The main goal of the resVAE is to
normalise differences between the utterances that cannot be de-
scribed from the input. The resVAE consists of 6 2D-CNN lay-
ers, each followed by batch normalisation, a GRU, a common
FF layer and 2 additional FF layers, one for the mean and an-
other for the covariance diagonal. A sample from this single
Gaussian distribution is then concatenated at the input of the
decoder. As usual, an additional loss factor for the KLD w.r.t
a diagonal Gaussian was added. During inference the resVAE
network is bypassed and a constant 0-vector is used instead.

The second variant (in red) is the addition of speaker and
language embeddings. The speaker embedding (SE) consists of
a 128 dimensional d-vector obtained from a speaker verification
model [12]. One advantage of using speaker embeddings versus
one-hot is that we can have different values for each utterance.
Unfortunately, the SE of each utterance also contains informa-
tion about the acoustics of that utterance [24]. To avoid this
and simulate something akin to a VAE, a single Gaussian model
of the embeddings of each speaker was computed and sampled
during training. At inference, the mean of the Gaussian was
used. The language embeddings (LE) are 32 dimensional vec-
tors obtained from a one hot encoding of the locale associated
with each speaker.

We experimented with different ways of adding SE and LE.
For SE, we found that the best option is to insert it both at the in-
put of the decoder, concatenated with the output of the attention
and with the output of the pre-net as in [25]. This configura-
tion yields the best results in terms of quality, voice similarity

Table 1: Evaluated models

System Fine Tuned (FT) resVAE SE+LE #total steps
FT Yes No No 3x106

FTres Yes Yes No 3x106

FTresSE Yes Yes Yes 3x106

resSE No Yes Yes 4.5x106

to the target speaker and voice consistency when synthesising
mix-lingual sentences. For LE, the best option was to concate-
nate it with the output of the encoder before the attention. Con-
catenating LE at the beginning of the encoder or after the atten-
tion made the models’ training unstable. In any case, the effect
of LE was almost negligible, presumably because the phonetic
sequence itself already contains enough information about the
language.

Previous internal evaluations on models with SE but with-
out fine tuning showed a preference for adding the resVAE. For
that reason, all our models with SE also include resVAE. In
some initial models we also included a domain adversarial NN
(DANN) loss against the identification of the speaker from the
encoder outputs as suggested in [13]. Although DANN pro-
vided some good results when mixing only 2-3 languages with
at least 4 speakers each [24], it introduced instability when we
added languages for which only two speakers were available.

3.2. Training procedure

Models that do not include any speaker information need to be
fine-tuned in order to get a stable voice. Models that include SE
can be used either directly, as in [7], or they can also be fine-
tuned. All the base models were trained on exactly the same
data. For the fine-tuning to each target speaker we used exactly
the same utterances of that speaker that were used as part of the
base-model training. We didn’t consider experiments in which
an existing model was fine-tuned to an unseen speaker because
if the data for the new speaker is available, it can always be
mixed with the existing speakers to create a new base model.

All models were trained on a single GPU with a batch size
of 16. We used the Adam optimiser [26] with 0.9 and 0.999 for
beta1 and beta2, respectively, an initial learning rate of 0.001,
4000 warm-up steps and “Noam decay scheme” [27]. The seed
models were trained for 2.5 million steps and then fine-tuned for
another 0.5 million steps. The non fine-tuned seed model with
speaker embeddings was further trained up to 4.5 million steps.
The systems that were finally evaluated are shown in Table 1 .

3.3. Normalisation of the phonetic transcriptions

We normalised the transcriptions across all locales to share
a single unified language-agnostic set of phones based on
XSAMPA [28]. Previous experiments had shown that in
crosslingual synthesis complex phones such as diphthongs,
nasalized vowels, syllabic consonants and affricates, tend to get
confused and the synthesis only produces half of the phone. To
avoid this problem, we split such complex phones. In this way,
diphthongs were split into two vowels, affricates into a closure
with no audible release plus a fricative, syllabic consonants into
the consonant preceded by schwa, and nasalized vowels into a
vowel followed by a velar nasal consonant.

Syllabic stress marks were also added to the vowels of the
stressed syllables for all languages. It should be noted that for
inlingual synthesis, (in which the spoken language is the same
language as that of the target voices) most languages do not
need explicit stress marks, especially those languages for which



stress is not phonemic. However, we found that in crosslin-
gual synthesis, (which is when the synthesised utterances were
in a language other than that of the target voices) the lack of
stress marks caused serious intelligibility problems, even in lan-
guages which are supposed to have no phonemic stress, such as
French. In crosslingual synthesis, the voices tended to apply the
stress pattern of its own language, e.g., Spanish voices speaking
French tended to put the stress in the penultimate syllable. Such
changes of the stress patterns made the parsing of the prosodic
words very difficult and thus, affected the intelligibility of the
utterances.

4. Experiments
We ran two subjective evaluations, one for inlingual synthesis
and another for crosslingual synthesis. All the evaluations were
5 points mean opinion score (MOS) tests conducted via crowd-
source on each respective locale. The question asked was “How
do you rate the overall quality of the voice?”. Each utterance
was evaluated by 15 different subjects and no subject was al-
lowed to judge more than 360 samples. With these settings,
the total number of listeners per voice was around 120 for the
inlingual experiments and 140 for the crosslingual one.

For each evaluation, raw scores were normalized by z-
scoring by subject. Mixed effects linear regression models
were fitted to the data with subjects and items (sample con-
tent/sentence) as random effects and the synthesis method/voice
as the fixed effect. T-tests for pairwise contrasts for each pair
of voices/systems provided estimated p-values (with Bonferroni
correction for the number of contrasts).

4.1. Data

The models were trained on 30 proprietary voices consisting of
two speakers for 15 different locales in 8 languages: Australia,
India, Ireland, South Africa, UK and US for English; Mexico
and Spain for Spanish; Canada and France for French, Brazil for
Portuguese, and Denmark, Germany, Italy and The Netherlands
for their respective main languages. From each speaker we used
8500 utterances randomly selected from the total corpus, which
on average corresponds to 7.73 hours/speaker. This amount of
data corresponds on average to 37% of the data used to train the
single speaker (SingSpkr) models.

4.2. Vocoder

In all the experiments, we used speaker-dependent waveRNN
neural vocoders [29]. The same vocoder trained on all the data
was used for each voice across all the models. The reasons for
this are: a) we only wanted to evaluate differences in the acous-
tic model and, b) there exist proposals for universal waveRNN
that work for both seen and unseen speakers [30, 31]

4.3. Inlingual synthesis

For each of the 15 locales, 150 utterances were evaluated with
each of the 2 speakers’ voices. In addition to the systems de-
scribed in Table 1, we also evaluated SingSpkr models with the
same architecture of FT models, trained from scratch on all the
available data of each speaker. The sentences were the same
for all the systems but not necessarily the same for both speak-
ers. In order to provide anchors, each evaluation included 50
recorded utterances from each of the target voice talents as the
high anchor and the same 150 evaluation sentences2 generated

2For 1 of the 15 locales we used 75 instead of 150 USEL utterances

Recording USEL SingSpkr FT FTres FTresSE resSE
Systems

1

2

3

4

5

M
O

S

4.39

3.47

4.04 4.13 4.14 4.15 4.03

Figure 2: MOS scores across all voices for inlingual synthesis

Table 2: Number of voices significantly different from SingSpkr
models in inlingual synthesis.

USEL FT FTres FTresSE resSE
better 1 11 14 14 4
equal 1 18 14 15 15
worse 28 1 2 1 11

by a hybrid unit selection system (USEL) [32] as the lower one.
Figure 2 shows the box plot with the summary of the results

across all voices. On average, all the fine-tuned models outper-
formed the SingSpkr models. The average difference between
the models is around 0.1 MOS scores. Note that this is by using
less than 40% of the target speaker data of the SingSpkr mod-
els. Obviously, there are variations depending on the voice. A
voice-by-voice analysis is provided in Table 2. This result con-
firms that for most voices any of the fine-tuned models perform
equal or better than the SingSpkr models. By contrast, resSe
was found to be significantly worse than SingSpkr for 11 voices
and only better for 4, even though both systems appear to be
identical in fig. 2. Our results confirm those reported in [20] for
premium voices with 15+ hours of data. Finally, we did not find
any significant differences among the 3 fine-tune approaches,
although both FTres and FTresSE seem to be marginally better
than FT, presumably due to their higher capacity.

4.4. Crosslingual synthesis and evaluation

Our main purpose was to create a base model from which new
voices for new languages can be created rapidly. However,
given that the seed models are trained on multiple languages,
we were curious to know to which extent the fine-tuned mod-
els still retained some multilingual capacity. Evaluating each of
the 30 voices over the 7 non-native languages would have been
ideal, but also very costly. For that reason, we evaluated only
the non-native voices when synthesising 4 different foreign lan-
guages, American English (en-US), Mexican Spanish (es-MX),
France French (fr-FR) and Germany German (de-DE). For each
target language 50 utterances from each of the non-native voices
were evaluated. Voices in the same main language but from a
different locale were not considered. To avoid conflating the
differences between native/non-native speakers with those be-
tween synthetic/natural speech, we only included as upper an-
chor 50 utterances generated by the native SingSpkr voice in
the target language. These SingSpkr voices are the same as the
ones described in Sec. 4.3. To reduce the number of different
voices/systems in a single evaluation, the stimuli were split into
two groups: one for the voices with the lower median funda-
mental frequency (F0) and another for the voices with higher
median F0 from each locale. This yields a total of 8 indepen-
dent MOS evaluations. In total, the number of individual voices
evaluated on each experiment were 10 for English, 14 for Span-



Table 3: Number of model comparisons across the 8 crosslin-
gual evaluations in which the MOS difference was significant

Systems #1st better #2nd better #No diff.
resSE vs. FT 1 0 7

resSE vs. FTres 1 0 7
resSE vs. FTresSE 1 0 7

FT vs. FTres 0 3 5
FT vs. FTresSE 2 6 0

FTres vs. FTresSE 2 2 4

ish and French and 15 for German. Subjects were not warned
that they were going to listen to foreign accented speech.

Table 3 shows for how many of the 8 evaluations the MOS
difference between models were significant, and Table 4 reports
the average MOS for each combination of target-language and
voice-locale. In general, all systems’ performance is very sim-
ilar. For most voices the non fine-tuned system resVAE is usu-
ally better than the fine-tuned ones. This result is not surprising
since fine-tuned models tend to “forget” previous knowledge.
However, with the exception of the low-pitch voices in French
those differences were not significant. Among the fine-tuned
models, FTres and FTresSE were better than FT on average,
probably because of the higher capacity introduced by the addi-
tional resVAE. However, the addition of the speaker embedding
does not seem to provide any advantage when the model is fine-
tuned.

Despite these differences, the combination of voice and tar-
get language has a much stronger impact over the speech quality
than the model type. As shown in Table 4, some combinations
achieve scores around 4.0 while others fall below 3.0.

4.5. Analysis of the comments

In inlingual synthesis, the main problems noted were in terms of
pauses (either misplaced or too few), pace (usually too fast), un-
natural intonation, and audio quality deterioration. These prob-
lems seem to affect more the resSE model. Word stress also
seems to be sometimes slightly misplaced in some languages.
In the resSE model, some non-phonemic distinctions are also
less accurately predicted, e.g., the Italian trill is sometimes cho-
sen instead of the flap.

In crosslingual synthesis, the foreign accent of a voice is
usually well identified, but in some cases deemed too pro-
nounced to the extent of impeding intelligibility, especially
when in combination with insufficient pausing and fast pace.
We also notice a degraded audio quality, affecting some voices
more than others, with some occasional “blabber”. Intonation
contours are sometimes incorrect and sometimes deemed as
monotone. In terms of pronunciation, the model without fine
tuning seems to retain less accent and produces a more accu-
rate approximation of the target language phones. This effect is
notable, for example, with the American English rhotic and the
French voices: the model without fine tuning being the closer
to the English alveolar approximant (although getting inaudible
in word final position or pre-consonantical position), and other
models having a pronunciation closer or identical to the French
rhotic. For most voices, lexical stress seems to be placed cor-
rectly.

In some language pairs, some phonemic distinctions are
lost. For example, the Spanish trill/flap pair is not always
maintained when synthesising with French, English, or German
voices. The English phone /h/ is often dropped in the synthesis
with the French voices. Actually, human French speakers often
do drop that phoneme. However, it contributes to the impression

Table 4: Crosslingual MOS per locale. The numbers in the tar-
get language column are the average MOS of the two ‘Native
SingSpkr’ voices in that language.

Target
language

Speaker
locale FT FTres FTresSE resSE

American
English

4.2

da-DK 3.77 3.84 3.78 3.7
de-DE 3.88 3.88 3.96 4.01
es-ES 3.66 3.74 3.77 3.78
es-MX 3.81 3.82 3.81 3.93
fr-CA 3.75 3.82 3.81 3.93
fr-FR 3.62 3.69 3.72 3.79
it-IT 3.72 3.69 3.76 3.76
nl-NL 3.84 3.87 3.85 3.9
pt-BR 3.68 3.71 3.81 3.88

France
French

4.35

da-DK 3.08 3.25 3.26 3.34
de-DE 3.77 3.84 3.84 3.86
en-AU 3.08 3.11 3.2 3.42
en-GB 3.28 3.33 3.3 3.51
en-IE 3.29 3.32 3.49 3.46
en-IN 3.46 3.43 3.5 3.7
en-US 3.27 3.29 3.29 3.57
en-ZA 3.25 3.47 3.47 3.69
es-ES 3.37 3.46 3.48 3.67
es-MX 3.55 3.53 3.58 3.7
it-IT 3.62 3.54 3.66 3.81
nl-NL 3.18 3.52 3.32 3.66
pt-BR 3.27 3.4 3.56 3.72

Mexican
Spanish

4.45

da-DK 2.88 3.08 2.87 2.67
de-DE 3.3 3.35 3.18 3.38
en-AU 2.94 2.91 2.9 3.04
en-GB 3.15 2.93 3.02 3.13
en-IE 3.03 2.98 3.07 3.21
en-IN 3.34 3.45 3.15 3.32
en-US 3.24 3.14 3.12 3.14
en-ZA 2.95 3.08 3.07 3.2
fr-CA 3.23 3.05 3.09 3.46
fr-FR 3.41 3.45 3.37 3.47
it-IT 3.95 4 3.92 3.95
nl-NL 3.03 3.08 2.85 3.08
pt-BR 3.63 3.62 3.61 3.64

Germany
German

3.96

da-DK 3.27 3.32 3.3 3.3
en-AU 3.47 3.58 3.57 3.63
en-GB 3.51 3.51 3.55 3.66
en-IE 3.57 3.7 3.66 3.82
en-IN 3.6 3.67 3.6 3.77
en-US 3.62 3.66 3.52 3.66
en-ZA 3.66 3.75 3.69 3.8
es-ES 2.88 3.12 3.09 3.44
es-MX 3.2 3.29 3.46 3.55
fr-CA 3.16 3.25 3.28 3.67
fr-FR 3.34 3.4 3.42 3.59
it-IT 3.16 3.18 3.12 3.57
nl-NL 3.43 3.55 3.51 3.65
pt-BR 2.8 2.97 3.27 3.55

Total 3.39 3.44 3.44 3.57

of strong foreign accent as more proficient speakers would tend
to realise it. Another factor contributing to the impression of
strong foreign accent is that intonation and some phonological
phenomena are ported to the target language. For instance, word
final rhotic is dropped by British English voices, and sometimes
French voices insert liaison in Spanish. It is also interesting to
note that some American English subjects expected a genuine
non-native accent. For example, they expected /t/ or /d/ instead
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Figure 3: Average crosslingual MOS per voice w.r.t average
phonetic distance between voice and language

of flaps in the French, Portuguese and German voices.

5. Discussion
5.1. Differences by language

There are two interesting observations from the crosslingual
evaluation. The first one is the large variation in the MOS de-
pending on the combination of target voice/language as shown
in Table 4. One possible explanation for this is that the pho-
netic differences between the voice’s language and the target
language matters. Figure 3 shows the average MOS3 of the
voices/systems in the crosslingual evaluation with respect to the
average phonetic distance between the speaker data and the test
sentence of the target computed as

AvgPhoneDist =
∑
∀t∈T

P (t|T ) min
∀s∈S

dist(et, es) (1)

where T and S are the sets of unique phones in the test utter-
ances of the target language and in the target speaker data, re-
spectively; et and es denote the phone embeddings for t and s
taken from the look-up-table of the resSE model, and dist is the
cosine similarity function. Note that for all t ∈ S the minimum
distance is 0.

Figure 3 shows that the impact of the phonetic distance de-
pends on the target language. For instance, Mexican subjects
penalised foreign accented voices heavily, even when the av-
erage phonetic distance is small. On the contrary, for French
subjects other factors seem to be more important. For example,
for the British, Australian and Irish English voices, the factors
that produce the most negative impact are very unnatural and
strongly pronounced intonation, unnatural parsing of groups of
words and pace which generally affected intelligibility. For the
British English voices, the intelligibility is also affected by the
porting of the non-rhotic character of British English to French:
final /r/ are often dropped and the quality and length of the
previous vowel is modified. The pronunciation of French di-
aeresis also seems problematic in terms of intelligibility, be-
ing realised as a diphthong (as in ”pays” for instance). On the
other hand, German, Italian, Portuguese, and Spanish voices
were preferred in terms of general intelligibility, even though
the intonation was found too monotone, the pauses sometimes
incorrectly placed or missing, and the foreign accent too strong.

For American English, MOS is also strongly correlated
with the average phonetic distance, but mainly due to the
smaller dispersion. Otherwise, the curves are flatter than for
German or Spanish. This links with the second observation

3The MOS values have been shifted so that the average MOS across
all the samples of the two evaluation groups of each target language are
the same

which is that the average MOS for American English is higher
than for the other languages. One explanation of that higher
score is that an average of 7% of the 8500 training utterances
of the non-English voices were in English, with another 13%
having at least one English word. The English proficiency of
the voice talents varied greatly, from fully bilingual to very ac-
cented. Moreover, the English utterances in the training data of
many voices were transcribed using the phones of the voice’s
language, which might be the reason for the relatively larger
phonetic distances for en-US. Still, that English data seems to
have contributed to improve the synthesis of English utterances
with non-English voices. Another possible explanation for the
higher MOS for American English may be that subjects in that
locale (and to some extent in France French too) are more used
to listening to foreign accents than their Mexican or German
counterparts and therefore, have a larger tolerance for them.
Further experiments are needed to confirm which hypothesis is
correct.

5.2. Pauses

One of the most commented problems for inlingual synthesis
was errors with pausing. Since the model does not include any
explicit pause predictor, or part-of-speech tagging, the pause
prediction depends entirely on the phonetic transcription and
punctuation marks. In single-language models, the network
might be able to perform some level of syntactic parsing, for
example identify the most common function words. In a mul-
tilingual framework, this is harder because the same phonetic
sequence might also correspond to a content word in a differ-
ent language. But also, different languages have different rules
regarding the punctuation. So, whereas in some languages it
is used mostly to indicate pausing, in others they have a more
grammatical function. These kinds of differences are hard to
disambiguate by just looking at the phone sequence. Includ-
ing a LE was expected to help with such language-dependent
issues. However, simply concatenating a global LE at the input
of the attention didn’t work.

6. Conclusions
This paper confirms that data from speakers in other languages
can be used to compensate for the lack of target speaker data.
We have presented a large-scale experiment on building neural
TTS models by mixing speech from 30 speakers of 15 different
locales in 8 different languages. The results show that for the
vast majority of voices, fine-tuning a multi-lingual and multi-
speaker model produces equal or better quality than single-
speaker models trained with more than 2.5 times the amount
of speaker-specific data.

An evaluation of these models synthesizing speech in a lan-
guage different from that of the target speaker has confirmed
that the models also preserve good multilingual capability. On
average, the MOS on these models in a crosslingual scenario is
around 80% of the MOS obtained by inlingual single-speaker
native voices. Although this may not be enough for a gen-
eral stand-alone voice in that language, it is sufficient for code-
switching. Our results showed that although non fine-tuned
voices are marginally better for crosslingual synthesis, for in-
lingual synthesis they are generally significantly worse than the
fine-tuned ones. Finally, we have presented a qualitative analy-
sis of the main problems identified by subjects during the inlin-
gual and crosslingual evaluations.
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