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AMBITROPICAL GEOMETRY, HYPERCONVEXITY AND ZERO-SUM GAMES

MARIANNE AKIAN, STÉPHANE GAUBERT, AND SARA VANNUCCI

Abstract. Shapley operators of undiscounted zero-sum two-player games are order-preserving maps
that commute with the addition of a constant. We characterize the fixed point sets of Shapley operators,
in finite dimension (i.e., for games with a finite state space). Some of these characterizations are of
a lattice theoretical nature, whereas some other rely on metric or tropical geometry. More precisely,
we show that fixed point sets of Shapley operators are special instances of hyperconvex spaces: they
are sup-norm non-expansive retracts of R

n, and also lattices in the induced partial order. Moreover,
they retain properties of convex sets, with a notion of “convex hull” defined only up to isomorphism.
This provides an effective construction of the injective hull or tight span, in the case of additive cones.
For deterministic games with finite action spaces, these fixed point sets are supports of polyhedral
complexes, with a cell decomposition attached to stationary strategies of the players, in which each cell
is an alcoved polyhedron of An type. We finally provide an explicit local representation of the latter
fixed point sets, as polyhedral fans canonically associated to lattices included in the Boolean hypercube.

1. Introduction

1.1. Motivation. Shapley operators play a fundamental role in the study of zero-sum repeated games,
see [Sha53, Ney03, MSZ15a]. For infinite horizon problems, including the cases of a discounted payoff,
of a total payoff up to a stopping time, or of a mean payoff (in which the payoff is given by a time
average), the fixed point of a suitable Shapley operator determines the value of the game as well as
optimal stationary strategies. The mean payoff problem is somehow the most difficult one. Then, the
notion of fixed point is defined in a projective sense (up the action of additive constants), see [Mou76,
Th. VI.1]. The existence and uniqueness of such fixed points have been investigated in the setting of
non-linear Perron-Frobenius theory [GG04, LN12, AGH20]. The absence of fixed points is tied to the
time-dependent nature of the nearly optimal strategies [BF68, BK76], whereas multiple fixed points yield
multiple optimal stationary strategies [KY92].

The structure of the fixed point set of Shapley operators has been studied especially in the determin-
istic one player case, as part of tropical spectral theory [BCOQ92, KM97a, AGW09], or in the setting
of viscosity solutions of ergodic Hamilton-Jacobi partial differential equations and weak-KAM theory,
see [FS05, IM07, Fat08]. The results there show in particular that fixed points are uniquely determined
by their restriction to a suitable subset or “boundary” of the state space, in a way somehow analogous
to the Poisson-Martin representation of harmonic functions [Dyn69]. For one player deterministic prob-
lems, the role of the “boundary” is played either by a distinguished subset of the state space (“critical
nodes” [BCOQ92], “projected Aubry set” [FS05]) or by a metric boundary (the horoboundary) of the
state space [IM07, AGW09]. Fixed point sets appear to be wilder objects in the two-player case, even
when the space space is finite. The geometry of these fixed point sets is the main subject of this paper.

A further motivation arises from algebra in characteristic one [CC19] and tropical geometry [MS15].
In this setting, one needs to work in categories in which the objects are tropical analogues of linear spaces,
and the arrows are linear maps. However, tropical duality results require to consider at the same time
properties of linearity in a primal and in a dual sense, and sometimes to compose maps that are linear
in each of these senses (e.g., compositions of min-plus and max-plus linear maps). This is the case, for
instance, of projections onto linear spaces, which are generally non-linear [CGQ96, CGQ04], but which
are still Shapley operators. Hence, it may be desirable to develop a broader, “self-dual”, framework, in
which the objects include both tropical (max-plus) linear spaces and their duals, and the arrows are
Shapley operators.

Thinking of Shapley operators in abstract terms leads to a metric geometry approach, exploiting
a connection with the theory of nonexpansive mappings. Recall that a self-map T of a metric space
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(X, d) is nonexpansive if d(T (x), T (y)) 6 d(x, y). For undiscounted games with state space [n], the
Shapley operators are precisely the self-maps T of Rn that are nonexpansive with respect to the metric
associated with the sup-norm and that commute with the action of additive constants [CT80, KM97a].
As shown in [GK95], this is equivalent to T being nonexpansive in the weak (non-symmetric) metric
d(x, y) = t(y − x) where t(z) := maxi∈n zi. The map t(·) here is an example of weak Minkowski norm
or hemi-norm, and it is a special case of the local norm associated to the Finsler structure of the “Funk
metric”, studied in Hilbert’s geometry, see [PT09, Wal18, GV12].

From this perspective, the study of fixed point sets of Shapley operators becomes tied to the classical
topic of fixed point sets of nonexpansive mappings and nonexpansive retracts (i.e., fixed points of idem-
potent nonexpansive maps) in Banach spaces, see [KR07] for background. Recall that a nonexpansive
retract C of a Banach space X that satisfies a technical condition (the so called fixed point property
for spheres) valid in particular in finite dimension, must be metrically convex [Bru73], meaning that
for all x, y ∈ C and for all α, β > 0 such that α + β = 1, there must exist a point z in C such that
d(x, z) = αd(x, y) and d(z, y) = βd(x, y). In particular, nonexpansive retracts of strictly convex Banach
spaces are closed and convex. Conversely, any closed and convex subset C of a Hilbert space X is a non-
expansive retract of this space, and indeed, a retraction is given by the best approximation map, which
associates to a point of X the nearest point in C, see e.g. [GR84, Th. 3.6]. Moreover, if X is a Banach
space of dimension at least 3, it is known that all the closed and convex subsets of X are nonexpansive
retracts if and only if X is a Hilbert space, see [Rei77, Prop. 2.2], and also [Kak39, Kle60, Bru74] for
earlier results of this nature.

In this way, classical convexity appears to be linked to the geometry of Euclidean retractions. Then,
one may wonder whether other types of (weak) metric spaces are tied to interesting convexity theories.
In particular, we may ask whether fixed point sets of Shapley operators may be thought of as “convex
sets” in a useful sense. We give here a positive answer to this question, by establishing links between the
theory of fixed point sets of Shapley operators, tropical geometry, order preserving retracts of lattices,
and hyperconvexity. We focus on the finite dimensional case.

1.2. Summary of results. We define a subset C of R
n to be an ambitropical cone if C is invariant

by translation by constant vectors, and if C is a lattice in the order induced by the standard partial
order of Rn (but not necessarily a sublattice of R

n). This includes as special cases the max-plus and
min-plus convex cones arising in idempotent analysis [LMS01] and tropical geometry [CGQ04, DS04].
In contrast with the classes of max-plus and min-plus cones, the class of ambitropical cones is self-dual
since it is invariant by the “flip” (change of sign) operation. Hence, we use the name ambitropical, as
it includes both tropical convexity and its dual. We call Shapley retract the image of an idempotent
Shapley operator.

Theorem 3.8 below shows that Shapley retracts are precisely closed ambitropical cones. Further,
we show that there are canonical retractions on a closed ambitropical cone C, characterized as the
composition of nearest point projection mappings on the tropical convex cone and dual tropical convex
cone generated by C, see Theorem 4.7. This leads to a further characterization of ambitropical cones,
by an analogue of the “best co-approximation property” arising in the theory of Banach spaces [PS79],
see Theorem 4.12 below. We also show that the class of ambitropical cones admits an analogue of the
“convex hull” operation: although the intersection of ambitropical cones may not be ambitropical, there
is a well defined notion of ambitropical hull, the minimal closed ambitropical cone containing a given
set, which is unique up to isomorphism (the morphisms being Shapley operators). One main result,
Theorem 5.6, shows that ambitropical cones are precisely hyperconvex sets that are additive cones.
Since we provide an effective construction of the ambitropical hull, in terms of the range of a tropical
Petrov-Galerkin projector (Theorem 4.17), this leads to an explicit construction of the hyperconvex hull
of an additive cone.

We subsequently study ambitropical cones with a semilinear structure, which we call ambitropical
polyhedra. The building blocks of ambitropical polyhedra are the alcoved polyhedra of the root system
An, studied in [LP07], which include as special cases Stanley’s order polyhedra [Sta86]. Ambitropical
polyhedra are defined as ambitropical cones that are finite unions of alcoved polyhedra. Theorem 8.8
shows that ambitropical polyhedra coincide with fixed point sets of Shapley operators of deterministic
games with finite action spaces. Further, we show that ambitropical polyhedra are polyhedral complexes
whose cells are associated to pairs of stationary policies of both players that are optimal in the mean payoff
problem, see Theorem 8.3. We study, in particular, the case of homogeneous ambitropical polyhedra, i.e.,
ambitropical polyhedra that are invariant by the multiplicative action of positive scalars. We show that
homogeneous ambitropical polyhedra arise when considering tangent cones of ambitropical polyhedra,
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hyperconvex sets
Theorem 5.1

ambitropical cones

closed ambitropical cones
Theorems 3.8, 4.12

closed tropical cones closed dual tropical cones

ambitropical polyhedral cones
Theorem 8.8

tropical polyhedral cones dual tropical polyhedral cones

homogeneous ambitropical polyhedra
≃ lattices in {0, 1}n

Theorem 9.6

alcoved polyhedra

order polyhedra

dual tropical polyhedral cones

Table 1. The hierarchy of ambitropical cones

so, they provide a local description of these sets. Theorem 9.6 provides a characterization of homogeneous
ambitropical polyhedra, as polyhedral fans associated to subsets of {0, 1}n that are lattices in the induced
order.

The hierarchy of classes of sets considered in this paper is presented on Table 1.

1.3. Related work. As indicated in §1.1, the present results are related to several series of works. A
first source of inspiration is the theory of “best approximation” in tropical geometry [CGQ04, AGNS11],
in which (non-linear) projectors onto max-plus / min-plus spaces have been studied. In particular, the
canonical retractions on ambitropical cones turn out to coincide with the tropical analogue of Petrov-
Galerkin projectors, introduced in [CGQ96] and applied in [AGL08] to the numerical solution of optimal
control problems.

The representation of ambitropical polyhedra (Theorem 8.3) as the support of a polyhedral complex
is somehow inspired by the characterization of Develin and Sturmfels [DS04] of polyhedral complexes
arising from tropical polyhedral cones, in terms of the duals to regular subdivisions of the product of
two simplices. The latter property makes use of (classical) convex duality, and so this does not carry
over to the ambitropical case given its “minimax” nature. However, we still get a complete combinatorial
characterization in the special case of homogeneous ambitropical polyhedra, see Theorem 9.6, showing
these are equivalent to lattices included in {0, 1}n with the induced order. Such lattices are precisely the
order preserving retracts of {0, 1}n studied by Crapo [Cra82].

Moreover, sup-norm nonexpansive retracts (not necessarily order preserving) have been studied in the
setting of hyperconvexity, a notion introduced by Aronszajn and Panitchpakdi [AP56], see [Bai88, EK01]
for more information. Hyperconvex spaces are metrically convex spaces in which the collection of closed
balls has Helly number two. It follows from [AP56, Th. 9] that the sup-norm nonexpansive retracts
of R

n are precisely the closed subsets of R
n that are hyperconvex. Hence, closed ambitropical cones

are special instances of closed hyperconvex sets, with an additional structure induced by the order and
the additive homogeneity. Furthermore, an equivalence holds, namely that an additive cone of Rn is a
closed ambitropical cone if and only if it is hyperconvex for the sup-norm metric. This result allows us
to compute the hyperconvex hull of an additive cone. The problem of computing the hyperconvex hull
has received much attention, Isbell and Dress [Isb64, Dre84] shows that this hull can be realized as a
“tight-span”. Even in dimension 2, computations of hyperconvex hull are difficult [KcK16]. Our results
solve this problem for the special case of additive cones.

As mentioned above, it is an open problem to understand what Fathi’s characterization of weak-KAM
solutions, as spaces of Lipchitz functions on the “projected Aubry set” [FS05, Fat08], becomes in the
“two-player” case. Our results answers the analogue of this question in the discrete, finite dimensional
case: whereas one-player solution spaces are alcoved polyhedra, in the two-player case, we show that
the solution spaces are precisely ambitropical sets, which in the finite action case are obtained by gluing
alcoved polyhedra. This interpretation is elaborated in Theorem 8.3.
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Finally, our treatment of Shapley operators is inspired by the “operator approach” of zero-sum games,
early work in these directions include [Eve57, Koh74, BK76], see [RS01a, Ren11, BGV15, Zil16] for more
recent developments.

2. Preliminary results

In this section, we establish, or recall, basic results concerning tropical cones.

2.1. Additive cones, tropical cones and semimodules. The tropical semifield, Rmax, is the set
R ∪ {−∞} equipped with the addition (x, y) 7→ x ∨ y := max(x, y) and with the multiplication (x, y) 7→
x + y. It admits a zero element, equal to −∞, and a unit element, equal to 0. We shall also use the
min-plus version of the tropical semifield, Rmin, which is the set R ∪ {+∞} equipped with the addition
(x, y) 7→ x∧y := min(x, y) and with the multiplication (x, y) 7→ x+y. The semifields Rmax and Rmin are
isomorphic. We denote by 6 the partial coordinatewise order of (R ∪ {±∞})n, and we use the notation
λ + x := (λ + xi)i∈[n], for all λ ∈ Rmax and x ∈ (Rmax)

n, and similarly for λ ∈ Rmin and x ∈ (Rmin)
n.

We extend the notation ∨ to denote the supremum of vectors of (R ∪ {±∞})n. Similarly, ∧ denote the
infimum of vectors.

Definition 2.1. An additive cone of Rn is a subset C of Rn such that

(1) x ∈ C, λ ∈ R =⇒ λ+ x ∈ C.

A tropical cone is an additive cone C such that:

(2) x, y ∈ C =⇒ x ∨ y ∈ C.

A dual tropical cone is defined similarly, by requiring that x, y ∈ C =⇒ x ∧ y ∈ C, instead of (2).

Tropical cones are, essentially, special cases of semimodules over the tropical semifield. Recall that
semimodules (modules over semirings) are defined in a way similar to modules over rings, see [CGQ04].
In particular, semimodules over idempotent semirings have been studied under the name of idempotent
spaces in [LMS01]. A simple example of semimodule over Rmax is the n-fold Cartesian product of Rmax,
(Rmax)

n; the internal law is (x, y) 7→ x ∨ y := (xi ∨ yi)i∈[n], for x, y ∈ (Rmax)
n, and the action of Rmax

on (Rmax)
n is defined by (λ, x) 7→ λ+ x. This yields a free, finitely generated semimodule. If C ⊂ R

n is
a tropical cone, then C ∪ {(−∞, . . . ,−∞)} is a subsemimodule of (Rmax)

n, and vice versa.
We shall consider, in particular, tropical cones satisfying a topological assumption. We equip Rmax

with the topology defined by the metric (a, b) 7→ |ea − eb|. The semimodule (Rmax)
n, equipped with

the topology of the metric d∞(x, y) = maxi∈[n] |e
xi − eyi | is a topological semimodule (meaning that the

structure laws are continuous). Observe that the induced topology on R
n ⊂ (Rmax)

n is the Euclidean
topology. Dual considerations apply to (Rmin)

n.

Definition 2.2. Given a subset C ⊂ R
n, we define the lower closure of C, clo↓ C ⊂ (Rmax)

n, to be
the set of limits of nonincreasing sequences of elements of C. Similarly, we define the upper closure
clo↑ C ⊂ (Rmin)

n to be the set of limits of nondecreasing sequences of elements of C.

For instance, if C = {x ∈ R
2 | |x1 − x2| 6 1}, clo↓ C = C ∪ {(−∞,−∞)}, whereas if C = {x ∈ R

2 |
x1 > x2}, clo

↓ C = {x ∈ (Rmax)
2 | x1 > x2}. The following proposition shows a correspondence between

closed tropical cones and a class of closed tropical subsemimodules.

Proposition 2.1. The map C 7→ V := clo↓ C establishes a bijective correspondence between the nonempty
closed tropical cones C ⊂ R

n and the closed subsemimodules V of (Rmax)
n such that V ∩ R

n 6= ∅. The
inverse map is given by V 7→ V ∩R

n.

The dual property, concerning clo↑ C and (Rmin)
n instead of clo↓ C and (Rmax)

n, also holds. We
denote by supp y := {i ∈ [n] | yi > −∞} the support of a vector y ∈ (Rmax)

n.

Proof. Suppose C ⊂ R
n is a tropical cone. Since (Rmax)

n is a topological semimodule, clo↓ C is a

semimodule over Rmax. We next show that clo↓ C is closed. Let xk denote a sequence of elements of
clo↓ C converging to an element x ∈ (Rmax)

n. Let ǫk denote an arbitrary sequence of positive numbers

decreasing to 0. Let yk := xk + ǫke ∈ clo↓ C. Observe that ηk := d∞(xk, yk) = (eǫk − 1)maxi∈[n] e
xk
i → 0

as k → ∞. Moreover, by definition of clo↓ C, we can find zk ∈ C such that yk 6 zk and d∞(yk, zk) 6 ηk.
It follows that the sequence zk also converges to x. We claim that there is a subsequence znk of zk that
is nonincreasing. Indeed, suppose by induction that zn1 > · · · > znk has already been selected. Let
I := suppx. Since zl → x as l → ∞, we get zli → xi ∈ R for i ∈ [n], and zli → −∞ for i ∈ [n] \ I.
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However, by construction, znk > ǫnk
e + x, and so znk

i > ǫnk
+ xi for all i ∈ I. We deduce that there is

an index l such that zl 6 znk , and we set nk+1 := l. This shows that x ∈ clo↓ C, and so, clo↓ C is closed.
Conversely, suppose that V is a closed subsemimodule of (Rmax)

n. Then, it is immediate that V ∩R
n

is a closed tropical cone. It remains to show that the correspondence is bijective. We have trivially
clo↓ C ∩ R

n = C for all nonempty closed tropical cones C ⊂ R
n. Conversely, if V is a closed tropical

subsemimodule of (Rmax)
n such that V ∩ R

n is nonempty, we must show that V = clo↓(V ∩ R
n). let

x ∈ V , and let us choose an arbitrary element y ∈ V ∩Rn. Then, the path λ 7→ γ(λ) := x∨(λ+y), defined

for λ ∈ (−∞, 0] is such that γ(λ) ∈ V ∩ R
n, and limλ→−∞ γ(λ) = x. It follows that x ∈ clo↓(V ∩ R

n),

hence, V ⊂ clo↓(V ∩ R
n). The other inclusion is immediate. �

Recall that an element u of a tropical subsemimodule V ⊂ (Rmax)
n is an extreme generator of V

if u = v ∨ w with v, w ∈ V implies that u = v or u = w. A tropical linear combination of elements
of V is a vector of the form ∨i∈I(λi + ai) where (λi)i∈I ⊂ Rmax and (ai)i∈I ⊂ V are finite families.
We say that G ⊂ V is a tropical generating set if every element of V is a tropical linear combination
of a family of elements of G. We say also that two vectors are tropically proportional if they differ by
an additive constant. The next result summarizes results from [GK07, BSS07]; it shows that a closed
tropical subsemimodule of (Rmax)

n is generated by its extreme rays.

Theorem 2.2 (See Theorem 3.1 in [GK07] or Theorem 14 in [BSS07]). Suppose that V is a closed
tropical subsemimodule of (Rmax)

n. Then, every element of V is a tropical linear combination of at most
n extreme generators of V . Moreover, these extreme generators are characterized as follows. For all
i ∈ [n], let Vi := {x ∈ V | xi = 0}, and let MinVi denote the set of minimal elements of Vi. Then, every
extreme generator of V is tropically proportional to an element of ∪i∈[n] Min Vi.

This is reminiscent of the classical Carathéodory theorem for closed convex pointed cones.

2.2. Alcoved polyhedra and metric closures. An important class of tropical cones and dual tropical
cones consists of alcoved polyhedra. The latter were introduced in [LP07]: in general, an alcoved poly-
hedron associated to a root system is a polyhedron whose facets have normals that are proportional to
vectors of this root system. Here, the root system is An, the collection of vectors {ei−ej | i, j ∈ [n], i 6= j},
where ei denotes the ith vector of the canonical basis of Rn.

Definition 2.3. An alcoved polyhedron [LP07] is a polyhedron of the form

A(M) = {x ∈ R
n | xi > Mij + xj , ∀1 6 i, j 6 n}(1)

for some matrix M = (Mij) ∈ (Rmax)
n×n.

Order polyhedra are remarkable examples of alcoved polyhedra. They are of the form {x ∈ R
n | xi >

xj if (i, j) ∈ E} where E ⊂ [n] × [n] is a partial order relation on the set [n]. Intersection of order
polyhedra with the hypercube [0, 1]n are known as order polytopes, they were studied by Stanley [Sta86].

We shall denote by ∨ the tropical addition of matrices, so that, for all A,B ∈ (Rmax)
m×n, (Aij) ∨

(Bij) := (Aij ∨ Bij) ∈ (Rmax)
m×n. The tropical multiplication of matrices will be denoted by concate-

nation, i.e, for A ∈ (Rmax)
m×n and B ∈ (Rmax)

n×p, AB ∈ (Rmax)
m×p is the matrix with (i, j)-entry

∨k∈[n](Aik +Bkj). Then, when m = n, for all r, the rth tropical power of A is denoted by Ar := A · · ·A
(A is repeated r times).

There are well known relations between alcoved polyhedra and operations of metric closures which we
next recall. The tropical Kleene star of M is defined by M∗ := I ∨M ∨M2 ∨ · · · . This supremum may
be infinite, i.e., in general (M∗)ij may take the value +∞. Recall that to the matrix M is associated a
digraph with set of nodes [n] and an arc i → j of weight Mij whenever Mij > −∞. Then, (Mk)ij yields
the maximal weight of a path of length k from i to j, and (M∗)ij yields the supremum of the weights of
paths from i to j, of arbitrary length. We have (M∗)ij < +∞ for all i, j if and only if there is no circuit
with positive weight in the digraph of M . Then, M∗ = M0 ∨ · · · ∨Mn−1, see e.g. Prop 2.2 of [AGW05].

The critical circuits of the matrix M∗ are the circuits in the digraph of M∗ with weight 0. The
union of the critical circuits constitutes the critical digraph. The following result is well known: the first
statements follow readily from the results recalled above, whereas the characterization of generators is a
special case of the characterization of tropical eigenspaces, see e.g. [BCOQ92, Th. 3.100], Theorem 6.4
of [AGW05], or [But10, Th. 4.4.5].

Lemma 2.3. The polyhedron A(M) is non-empty if and only there is no circuit of positive weight in the
digraph of M . Then,

A(M) = {x ∈ R
n | M∗x 6 x} = {x ∈ R

n | M∗x = x} = {M∗y | y ∈ R
n} .(2)
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Moreover, a tropical generating set of clo↓ A(M) is obtained as follows: denote by C1, . . . , Cs the strongly
connected components of the critical digraph of M∗, and select indices i1 ∈ C1, . . . , is ∈ Cs in an arbitrary
manner. Then, the set of columns of M∗ indexed by i1, . . . , is tropically generates clo↓ A(M), and every

generating set of clo↓ A(M) contains at least one scalar multiple of each of these columns. �

Remark 2.4. It follows from Lemma 2.3 that the minimum number of elements of a tropical generating
family of the tropical semimodule clo↓ A(M) ⊂ (Rmax)

n never exceeds n. The same observation applies

to dual tropical generating families of clo↑ A(M). In contrast, there are finitely generated tropical
subsemimodules of (Rmax)

n with an arbitrarily large number of generators, see e.g. [AGG13].

3. Shapley operators and Ambitropical Cones

3.1. Abstract Shapley Operators. Shapley operators are dynamic programming operators allowing
one to compute the value function of zero-sum games. The typical example of Shapley operator T :
R

n → R
n is of the form

Ti(x) = inf
a∈Ai

sup
b∈Bi

(rabi +
∑

j∈[n]

P ab
ij xj) ,(3)

where [n] = {1, . . . , n} is the state space, Ai, Bi are the sets of actions available in state i, of the two
players, called “Min” and “Max”, rabi is a payment made by by Player Min to Player Max at a given stage,
assuming that Min selected action a and that Max selected action b, and P ab

ij > 0 is the probability of

transition from i to j, so that
∑

j P
ab
ij = 1. Such operators capture zero-sum perfect or “turned based”

information games, without discount. In the original model considered by Shapley, the two players
play simultaneously and the actions are randomized, which can be cast as (3), in which Ai and Bi are
simplices [RS01a, Ney03]. Actually, many variants of Shapley operators (depending on the nature of the
turns and on the information structure) can be considered, and so, it will be convenient to introduce a
general definition.

Definition 3.1 (Shapley operator). An (abstract) Shapley operator is a map T : Rn → R
p with the

following properties:

(1) x 6 y implies T (x) 6 T (y), for all x, y ∈ R
n;

(2) T (λ+ x) = λ+ T (x), for all x ∈ R
n and λ ∈ R.

The example (3) of Shapley operator obviously satisfies these properties. Conversely, Kolokoltsov
showed that every abstract Shapley operator R

n → R
n can be written as (3) (see [KM97b]) and Singer

and Rubinov [RS01b] showed that the transition probabilities can even be chosen to be 0/1.
Note that, taking into account the semimodule structure of R

n and R
p, the canonical choice of

morphisms to consider would be tropically linear maps (maps that commute with the supremum and with
the addition of a constant). Shapley operators constitute a larger class of maps and they are precisely
canonical morphisms of additive cones (see Def. 3.1).

In the square case, i.e., when n = p, Shapley operators arise as dynamic programming operators of
two-player zero-sum games, see e.g. [RS01a, Ney03]. It is known that Shapley operators are nonexpansive
in the sup-norm; this observation plays a key role in the “operator approach” of zero-sum games [CT80,
RS01a, Ney03, GV12]. Furthermore, the following observation, made in [GK95, Prop. 1.1], shows that
Shapley operators are characterized by a nonexpansiveness property. Recall that t(x) := maxi∈[n] xi

denotes the “top” hemi-norm of a vector x ∈ R
n. It will also be convenient to use the notation b(x) :=

−t(−x) = mini∈[n] xi.

Proposition 3.1 ([GK95, Prop. 1.1]). Let T : Rn → R
p. The following assertions are equivalent:

(1) T is a Shapley operator;
(2) t(T (x)− T (y)) 6 t(x− y) for all x, y ∈ R

n;
(3) b(T (x)− T (y)) > b(x− y) for all x, y ∈ R

n.

The following result is a consequence of a general result on [BNS03] concerning the continuous exten-
sion of positive homogeneous maps defined on the interior of polyhedral cones.

Proposition 3.2 (Corollary of [BNS03, Theorem 3.10]). A Shapley operator T : Rn → R
p admits a

unique continuous extension T− : (Rmax)
n → (Rmax)

p, given by

T−(x) = inf{T (y) | y > x, y ∈ R
n} .
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Similarly, T has a unique continuous extension (Rmin)
n → (Rmin)

p, given by

T+(x) = sup{T (y) | y 6 x, y ∈ R
n} .

Remark 3.3. Proposition 3.2 provides only one-sided extensions of T , either to (R ∪ {−∞})n or to
(R∪ {+∞})n. A Shapley operator defined on R

n generally does not extend canonically to (R∪ {±∞})n

(consider n = 2 and Ti(x) = ((x1 + x2)/2) for i = 1, 2).

A Shapley operator is said to be tropically linear if T (x∨y) = T (x)∨T (y) holds for all x, y ∈ R
n. It is

said to be dual tropically linear if T (x∧y) = T (x)∧T (y). Denoting by etropj := (−∞, . . . ,−∞, 0,−∞, . . . ,

−∞) (with 0 in the jth position) the jth vector of the tropical canonical basis of (Rmax)
n, and Mij :=

(T−(e
trop
j ))i, we see that if T is tropically linear, then

(T (x))i = ∨j∈[n](Mij + xj) ,

i.e., T is represented by a matrix product. A similar representation holds for dual tropically linear
Shapley operators.

3.2. Ambitropical cones. We next introduce our main object of study: ambitropical cones. We are
looking for a class of objects which includes tropical cones and their duals. This leads to the following
definitions. We recall that R

n is equipped with the standard partial order.

Definition 3.2. An ambitropical cone is a non-empty additive cone C of Rn such that C is a lattice in
the induced order of (Rn,6).

Recall that C being a lattice means that every two elements x, y of C have a least upper bound

x ∨C y := min{z ∈ C | z > x, z > y},

and a greatest lower bound

x ∧C y = max{z ∈ C | z 6 x, z 6 y},

where the symbols “max” and “min” indicate the greatest and smallest elements of a set. Similarly, we
will use the notation supC X and infC X for the least upper bound and greatest lower bound in C of a
subset X ⊂ C, when it exists. In particular, x∨c y = supC{x, y} and x∧c y = infC{x, y}. The operations

supC and infC defined for subsets of C should not be confused with the restriction of the operations

sup = supR
n

and inf = infR
n

defined for subsets of Rn: indeed, for all X ⊂ C that has a least upper
bound in C, supC X > supX , and similarly infC X 6 inf X if X has a greatest lower bound in C. In
other words, an ambitropical cone is a lattice but it may not be a sublattice of Rn.

We shall especially consider ambitropical cones satisfying the following property.

Definition 3.3 (Conditionally complete lattice). A lattice L is said conditionally complete if every
nonempty subset of L that has an upper bound has a join (a least upper bound), and if every nonempty
subset of L that has a lower bound has a meet (a greatest lower bound).

The following observation is elementary.

Lemma 3.4. Let C be an ambitropical cone. A subset of Rn is bounded from above by an element of Rn

if and only if it is bounded from above by an element of C. The dual statement holds for subsets bounded
from below.

Proof. Let X ⊂ R
n and suppose that there exists u ∈ R

n such that x 6 u holds for all x ∈ X . Let
y ∈ C. Then, u 6 z := y + t(u− y). It follows that x 6 z ∈ C holds for all x ∈ X . �

Proposition 3.5. An ambitropical cone is a conditionally complete lattice if and only if it is closed in
the Euclidean topology.

Proof. Suppose that the ambitropical cone C is closed in the Euclidean topology, and let X ⊂ C be
a nonempty set bounded above by some element y ∈ C. Let Pf(X) denote the set of nonempty finite
subsets of X . For all F ∈ Pf (X), let uF := supC F . Then, (uF )F∈Pf (X) is a nondecreasing net of
elements of C, bounded above by y. Since C is closed in the Euclidean topology, the limit of a net of
elements of C belongs to C, and so u := limF uF ∈ C. By construction, u > x holds for all x ∈ X .
Moreover, if z ∈ C is an upper bound of X , we get z > uF for all F ∈ Pf (X), and so z > u. This shows
that u is the least upper bound of X . A dual argument works for greatest lower bounds. Hence, C is a
conditionally complete lattice.
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Conversely, suppose that C is a conditionally complete lattice. Observe that for every bounded
sequence (xk) of elements of C, the following “liminf” and “limsup” constructions both define elements
that belong to C:

limsupCk→∞ xk := infCk>1 sup
C
ℓ>k xℓ, liminfCk→∞ xk := supCk>1 inf

C
ℓ>k xℓ .

We shall use the fact that limsupC
k→∞ xk > liminfCk→∞ xk. This inequality, which is standard when

C = R
n, is still valid in general. Indeed, for all k,m > 1, we have supCℓ>k xℓ > infCℓ>m xℓ, and so

supCℓ>k xℓ > supCm>1 infℓ>m xℓ = liminfCr→∞ xr . Hence,

limsupCk→∞ xk = infCk>1 sup
C
ℓ>k xℓ > liminfCr→∞ xr .(4)

Suppose that the sequence (xk)k>1 of elements of C converges to x ∈ R
n. Then, for all ǫ > 0, there

exists an index m such that ‖xℓ − x‖ 6 ǫ for all ℓ > m. In particular, xℓ 6 ‖xℓ − xm‖+ xm 6 2ǫ+ xm.

We deduce that limsupCℓ→∞ xℓ 6 2ǫ + xm 6 3ǫ + x. Since the latter inequality holds for all ǫ > 0, we

deduce that limsupCℓ→∞ xℓ 6 x. A dual argument sows that liminfCℓ→∞ xℓ > x. Using (4), we conclude

that x = limsupCℓ→∞ xℓ = liminfCℓ→∞ xℓ ∈ C, showing that C is closed in the Euclidean topology. �

In the sequel, when writing that an ambitropical is closed, we shall always refer to the Euclidean
topology.

We define, for all closed ambitropical cones C, and for all x ∈ R
n, the following canonical retractions:

Q−
C(x) := supC{y ∈ C | y 6 x} , Q+

C(x) := infC{y ∈ C | y > x} .(5)

We shall denote by Im f := {f(x) | x ∈ X} the image or range of a map f : X → Y . Recall that a
retraction onto C is a map P : Rn → C that is a continuous, idempotent map from R

n to R
n with range

C. Then, C is a retract of Rn. The following result shows that any closed ambitropical cone is a Shapley
retract, i.e., the image of a retraction that is a Shapley operator.

Proposition 3.6. Suppose that C is a closed ambitropical cone of R
n. Then, Q−

C is an idempotent

Shapley operator, i.e., (Q−
C)

2 = Q−
C , and the range of Q−

C is C. The same is true for Q+
C.

Proof. Since C is conditionally complete, for all x ∈ R
n, Q−

C(x) is well defined and Q−
C(x) ∈ C. Moreover,

Q−
C trivially fixes C, implying that ImQ−

C = C and (Q−
C)

2 = Q−
C . We also have, for all x ∈ R

n and

λ ∈ R, Q−
C(λ + x) = supC{y ∈ C | y 6 λ + x} = supC{y ∈ C | −λ + y 6 x} = supC{λ + z ∈ C | z 6

x} = λ + Q−
C(x). The operator Q−

C is trivially order preserving, hence it is a Shapley operator. Dual

arguments apply to Q+
C . �

Theorem 3.7. Let C be a closed ambitropical cone contained in R
n. The set of Shapley retractions onto

C (i. e. idempotent Shapley operators with range C) constitutes a complete lattice, with bottom element
Q−

C and top element Q+
C .

Proof. First of all, we shall prove that for any Shapley retraction P onto C and for every x ∈ R
n

Q−
C(x) 6 P (x) 6 Q−

C(x) . Let y ∈ C such that y 6 x, we get y = P (y) 6 P (x) ∈ C, and so

Q−
C(x) = supC{y ∈ C | y 6 x} 6 P (x). Similarly, P (x) 6 Q+

C(x). Let (Qα)α∈A : Rn → R
n be a

collection of Shapley retractions onto C. Since Q−
C(x) 6 Qα(x) 6 Q+

C(x) for all x ∈ R
n, the family

(Qα(x))α∈A ⊂ C

is bounded from above and from below. By Proposition 3.5 C is conditionally complete, which allows us
to define

Q(x) = supC{Qα(x) | α ∈ A}.

It is immediate that Q is a Shapley operator that fixes C and that C is its range. So, Q is the least
upper bound of the family (Qα)α∈A in the set of Shapley retractions. �

Proposition 3.6 shows that closed ambitropical cone are Shapley retracts of Rn. The following result
shows that we have actually an equivalence.

Theorem 3.8. Let E be a subset of Rn. The following assertions are equivalent

(1) E is a closed ambitropical cone;
(2) E is a Shapley retract of Rn;
(3) E is the fixed point set of a Shapley operator;
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Proof. (1) ⇒ (2). If E is a closed ambitropical cone, then, by Proposition 3.6, E is the image of Q−
E and

Q−
E is an idempotent Shapley operator.
(2) ⇒ (3) is trivial.
(3) ⇒ (1). Since E is the fixed point set of a Shapley operator T , E is a closed cone. We shall now show

that it is also a lattice in the induced order. Let x, y ∈ E and we claim that x∨E y = limk→∞ T k(x∨Rn y).
We have that x, y 6 x ∨Rn y, so x = T (x) 6 T (x ∨Rn y) and y = T (y) 6 T (x ∨Rn y). Applying again T
to these inequalities and passing to the limit, we obtain that limk→∞ T k(x ∨Rn y) is an upper bound of
x and y. Let z ∈ E such that x, y 6 z. Then x ∨Rn y 6 z and T (x ∨Rn y) 6 T (z) = z; applying again
T to this inequality and passing to the limit, we obtain that limk→∞ T k(x ∨Rn y) 6 z. We have now to
prove that limk→∞ T k(x ∨Rn y) ∈ E. T (limk→∞ T k(x ∨Rn y)) = limk→∞ T k(x ∨Rn y) by definition. So,
limk→∞ T k(x ∨Rn y) is a fixed point of T and it belongs to E. The case of inf is dual.

�

4. From tropical hulls to ambitropical hulls

4.1. Decomposition of canonical retractions in terms of projections on tropical cones. Ap-
propriate tropical analogues of Hilbert’s spaces are obtained by considering spaces that are closed by
taking suprema [LMS01, CGQ04]. Considering suprema of bounded sets leads to the notion of b-complete
idempotent spaces in [LMS01], whereas allowing unconditional suprema leads to the notion of complete
semimodules [CGQ04].

Hence, we shall perform a (one sided) conditional completion. If E is a nonempty subset of R
n,

we shall denote by Emax the subset of Rn consisting of tropical linear combinations of possibly infinite
families of elements of E, i.e., the set of elements of the form

sup{λf + f | f ∈ E}(6)

where the λf ∈ Rmax are such that the family of elements (λf + f)f∈E is bounded from above and the
λf are not identically −∞. Up to the adjunction of a bottom element, the set Emax is the b-complete
idempotent space generated by E in the sense of [LMS01].

We shall also need to consider the Rmax-semimodule obtained by taking the lower closure of Emax, a
notion already introduced in Definition 2.2:

Ēmax := clo↓ Emax .

Similarly, we shall denote by Emin the set of elements of the form inf{λf + f | f ∈ E} where the
λf ∈ Rmin are such that the family of elements (λf + f)f∈E is bounded from below, and the λf are not

identically +∞. We also set Ēmin := clo↑ Emin.

Proposition 4.1. Let C ⊂ R
n be an additive cone. Then, the following statements are equivalent:

(1) C is closed;
(2) C is stable by limits of bounded nondecreasing sequences;
(3) C is stable by limits of bounded nonincreasing sequences.

Proof. The implication (1)⇒(2) is trivial.
We next show that (2)⇒(3). Let xk be a bounded nonincreasing sequence of elements of C converging

to x ∈ R
n. Consider the sequence yk := xk − 2‖x − xk‖∞e ∈ C. We have yk 6 −‖x − xk‖∞e + x.

Moreover, yk also converges to x. It follows that for all k, we can find an index l > k such that yl > yk.
Hence, we can construct a nondecreasing subsequence ynk

converging to x. Applying (2), we conclude
that x ∈ C.

We finally show that (3)⇒(1). Suppose xk is a sequence of elements of C converging to x ∈ R
n.

Consider now yk := 2‖x − xk‖∞ + xk. Then, arguing as in the proof of the previous implication, we
deduce that we can construct a nonincreasing subsequence ynk

still converging to x. Applying (3), we
conclude that x ∈ C. �

Corollary 4.2. Let E denote a non-empty subset of Rn. Then, Emax is a closed tropical cone. Similarly,
Emin is a closed dual tropical cone.

Proof. By definition, Emax is a tropical cone. Let us consider a bounded nondecreasing sequence xk ∈
Emax. We can write xk = sup{λk

f + f | f ∈ E} where for each k, the family (λk
f )f∈F is not identically

−∞. Let x := limk xk = supk xk ∈ R
n. From λk

f + f 6 xk 6 x, we deduce that λk
f 6 b(x − f). So, the

sequence (λf )k>1 is bounded from above. It follows that λf := sup{λk
f | k > 1} < +∞. Moreover, using

the associativity of the supremum operation, we get x = supxk = sup{λf + f | f ∈ E} ∈ Emax. Hence,
9



Emax is stable by limits of nondecreasing sequences. It follows from Proposition 4.1 that Emax is closed
in the Euclidean topology. A dual argument applies to Emin. �

If C is a closed tropical cone, then C is closed by tropical linear combinations, and it is also closed
by taking the supremum of nondecreasing sequences, it follows that the supremum supC relative to C
coincides with the supremum of Rn. We deduce the following result.

Lemma 4.3. If C is a closed tropical cone, then Q−
C 6 I. Similarly, if C is a closed dual tropical cone,

then Q+
C > I. �

Corollary 4.4. Let E denote a non-empty subset of R
n. Then, Ēmax is a closed subsemimodule of

(Rmax)
n. Similarly, Ēmin is a closed subsemimodule of (Rmin)

n

Proof. By definition, Emax is a tropical cone, and by Corollary 4.2, it is a closed subset of Rn. Then, it
follows from Proposition 2.1 that Ēmax = clo↓ Emax is a closed subsemimodule of (Rmax)

n. �

For all nonempty subsets E of Rn, and for all x ∈ R
n, we define the tropical projections

Pmax
E (x) := sup{y ∈ Emax | y 6 x} , Pmin

E (x) := inf{y ∈ Emin | y > x} .

This is a specialization of the notion of projectors Q−
C and Q+

C to C = Emax or C = Emin, introduced
in (5). Indeed, if C = Emax, the operation supC coincides with the ordinary supremum sup of Rn. The
dual property holds for C = Emin. If G is any tropical generating set of Emax, then, we have the explicit
representation

Pmax
E (x) = sup

g∈G

(

b(x− g) + g
)

, ∀x ∈ R
n ,(7)

see [CGQ04, Th. 5], and a dual formula applies to Pmin
E . The next proposition tabulates elementary

properties of these projectors.

Proposition 4.5. Let E be a nonempty subset of Rn. Then, Pmax
E and Pmin

E are Shapley operators from
R

n → R
n such that:

Pmax
E 6 I, Pmin

E > I .(8)

ImPmax
E = Emax, ImPmin

E = Emin .(9)

Pmax
E = (Pmax

E )2, Pmin
E = (Pmin

E )2 .(10)

Proof. The inequalities (8) follow from Lemma 4.3. By definition, Pmax
E fixes Emax, and Pmax

E (Rn) ⊂
Emax, so Pmax

E = (Pmax
E )2. The same property holds for Pmin, showing (10). The last claim follows from

the fact that Pmax
E fixes Emax ⊃ E, and from the same property for Pmin

E . �

The maps Q̄−
E and Q̄+

E defined in the next proposition will play a key role.

Proposition 4.6. Let E be a nonempty subset of Rn. Then, the maps

Q̄−
E := Pmin

E ◦ Pmax
E , and Q̄+

E := Pmax
E ◦ Pmin

E

satisfy the following properties

(i) Q̄−
E; Q̄+

E are Shapley operators;

(ii) Q̄−
E and Q̄+

E fix E;

(iii) (Q̄−
E)

2 = Q̄−
E; (Q̄+

E)
2 = Q̄+

E;

(iv) Q̄+
E ◦ Q̄−

E ◦ Q̄+
E = Q̄+

E; Q̄−
E ◦ Q̄+

E ◦ Q̄−
E = Q̄−

E;

(v) Q̄+
E 6 Q̄−

E ◦ Q̄+
E; Q̄−

E > Q̄+
E ◦ Q̄−

E.

Proof. (i). We showed in Proposition 4.5 that Pmin
E and Pmax

E are both Shapley operators. The collection
of Shapley operators is stable by composition.

(ii). This follows from the fact that Pmin
E and Pmax

E fix Emax and Emin, respectively (Proposition 4.5),
which both contain E.

(iii). Using the second inequality in (8), and the first equality in (10), we get (Q̄−
E)

2 = Pmin
E ◦ Pmax

E ◦
Pmin
E ◦Pmax

E > Pmin
E ◦Pmax

E ◦Pmax
E = Pmin

E ◦Pmax
E . Using now the first inequality in (8), and the second

equality in (10), we get Pmin
E ◦ Pmax

E ◦ Pmin
E ◦ Pmax

E 6 Pmin
E ◦ Pmin

E ◦ Pmax
E = Pmin

E ◦ Pmax
E , showing that

(Q̄−
E)

2 = Q̄−
E . The second property in (iii) is dual.

(iv). Using (10), we get Q̄+
E ◦ Q̄−

E ◦ Q̄+
E = Pmax

E ◦ Pmin
E ◦ Pmin

E ◦ Pmax
E ◦ Pmax

E ◦ Pmin
E = Pmax

E ◦ Pmin
E ◦

Pmax
E ◦ Pmin

E = (Q̄+
E)

2 = Q̄+
E , by (iii). The second property is dual.
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(v). We have that Q̄−
E ◦Q̄+

E = Pmin
E ◦Pmax

E ◦Pmax
E ◦Pmin

E = Pmin
E ◦Pmax

E ◦Pmin
E > Pmax

E ◦Pmin
E (z) = Q̄+

E ,
using Pmin

E > I. The second inequality is dual. �

The next theorem motivates the introduction of the operators Q̄−
E and Q̄+

E above, it deals with the
situation in which E is a closed ambitropical cone.

Theorem 4.7 (Factorizations of canonical retractions on closed ambitropical cones). For all closed
ambitropical cones C, we have

Q−
C = Q̄−

C = Pmin
C ◦ Pmax

C and Q+
C = Q̄+

C = Pmax
C ◦ Pmin

C

Proof. Suppose C is a closed ambitropical cone. Observe first that for all z in R
n,

Pmax
C (z) = sup{x ∈ C | x 6 z} .(11)

Indeed, Pmax
C (z) = sup{x ∈ Cmax | x 6 z} > sup{x ∈ C | x 6 z}. However, an element u 6 z of Cmax

can be written as u = ∨y∈C(λy + y) with λy ∈ Rmax, and λy + y 6 z. So, λy + y 6 sup{x ∈ C | x 6 z},
and so, u 6 sup{x ∈ C | x 6 z}, which entails (11). Dually, Pmin

C (z) = inf{x ∈ C | x > z}.
Using (11), and the dual property, we get

Q̄−
C(x) = Pmin

C ◦ Pmax
C (x) = inf{y ∈ C | y > Pmax

C (x)}

= inf{y ∈ C | y > sup{z ∈ C | z 6 x}}

= inf{y ∈ C | (z 6 x, z ∈ C) =⇒ z 6 y}

= supC{z ∈ C | z 6 x} = Q−
C(x) .

The proof that Q̄+
C = Q+

C is dual. �

For closed tropical cones C, the projection Q−
C = Pmax

C has the property that Q−
C(x) is a point of

C with minimal distance to C with respect to Hilbert’s seminorm, see [CGQ04], hence, it is a tropical
analogue of the “nearest point projection” arising in Euclidean spaces. A basic property of this projection
on a closed convex set of an Euclidean space is that it is sunny. Recall that a retraction F from R

n to
a subset of Rn is sunny if, given x, y ∈ R

n, for every z in the segment [x, y], F (x) = y =⇒ F (z) = y.
The following result shows that the canonical projections on closed tropical or dual tropical cone are also
sunny.

Proposition 4.8. If C is a closed tropical cone, then, the projection Q−
C = Pmax

C is sunny. Similarly, if

C is a closed dual tropical cone, then, the projection Q+
C = Pmin

C is sunny.

Proof. It is trivial that Q−
C = Pmin

C ◦ Pmax
C = Pmax

C . Let y := Pmax
C (x), so by (8) y 6 x. Then any point

z = (1 − t)y + tx with 0 < t < 1 satisfies y 6 z 6 x, and so, y = Pmax
C (y) 6 Pmax

C (z) 6 Pmax(x) = y,
implying that Pmax

C is a sunny retraction. �

However, the following example shows that Proposition 4.8 does not carry over to closed ambitropical
cones, the canonical retractions Q−

C = Pmin
C ◦ Pmax

C and Q+
C = Pmax

C ◦ Pmin
C are generally not sunny.

Example 4.9. Consider the Shapley operator

T





x1

x2

x3



 =





max(x1, x3)
max(x2, x3)
− 1

2 + x1+x2

2





The fixed point set of T is the closed ambitropical cone E = {x ∈ R
3 | x1+x2

2 = x3+
1
2 , x1 > x3, x2 > x3}

shown on Figure 1. The cross section of E in R
2 defined by x3 = 0 is displayed by the black segment,

as well as the cross section of Emax (triangle in light gray above this segment) and the cross section of
Emin (triangle in dark gray below this segment). In this case Pmin

E ◦ Pmax
E is not a sunny retraction.

Indeed, consider the point x = (2, α, 0), with 0 < α < 1. We have Pmax
E (x) = u := (1, α, 0), and

Pmin
E (u) = y := (1−α/2, α/2, 0). However, consider the mid-point x′ := (y+x)/2 = (3/2−α/4, 3α/4, 0).

We have u′ := Pmax
E (x′) = (1, 3α/4, 0) and y′ := Pmin

E (u′) = (1 − 3α/8, 3α/8, 0) 6= y showing that
Pmin
E ◦ Pmax

E is not sunny. This is illustrated in the figure.
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Figure 1. An ambitropical cone such that the canonical retractions Q±
E are not sunny.

4.2. Characterization of ambitropical cones in terms of best co-approximation. We saw in The-
orem 4.7 that the two canonical retractions Q−

C and Q+
C on a closed ambitropical cone can be decomposed

in terms of the projection operators Pmax
C and Pmin

C . In a perhaps surprising way, we shall see that this
leads to an order-theoretical analogue of a notion of best co-approximation, introduced by Papini and
Singer [PS79] to characterize nonexpansive retracts. If E is a subset of a Banach space (X, ‖ · ‖), E is
said to be a set of existence of best co-approximation if, for all z ∈ X , the set

B
‖·‖
E (z) := {x ∈ X | ‖y − x‖ 6 ‖y − z‖, ∀y ∈ E}

contains an element of E. It is immediate that if E is a nonexpansive retract of X , then E is a set
of existence of best co-approximation. The converse is known to hold in Lp spaces with 1 6 p < ∞,
see [Wes92] and the references therein. Here we shall be interested in Shapley retracts of R

n. By
Proposition 3.1, these are precisely the images of Rn by idempotent maps that are nonexpansive in the
“top” hemi-metric tx = maxi∈[n] xi. In view of this property, we introduce the following analogue of the

set B
‖·‖
E (z).

Definition 4.1. Let E be a subset of Rn. For any y, z ∈ R
n we define B(y, z) = {x ∈ R

n | y+b(z−y) 6
x 6 y + t(z − y)} where t(x) = maxi∈[n] xi and b(x) = mini∈[n] xi for any x ∈ R

n. Then, we define
BE(z) = ∩y∈EB(y, z).

Definition 4.2. Let E be a subset of R
n, we say that E is a set of existence of best tropical co-

approximation if BE(z) ∩ E 6= ∅ for every z ∈ R
n.

Lemma 4.10. We have BE(z) = {x ∈ R
n | Pmax

E (z) 6 x 6 Pmin
E (z)}.

Proof. We shall prove that supy∈E(b(z − y) + y) = Pmax
E (z) = sup{x ∈ Emax | x 6 z}. Let x ∈ Emax,

x = supy∈E(λ+ y). Suppose x 6 z, then we have that λ 6 b(x− y) 6 b(z− y). In a similar way, we see

that Pmin
E (z) = infy∈E t(z − y) + y. �

Lemma 4.11. Let E be a subset of Rn. If E is a set of existence of best tropical co-approximation, then
B̄E(z) := [Q̄−

E(z), Q̄
+
E(z)] ∩ E 6= ∅ for any z ∈ R

n.

Proof. We know that, if E is a set of best tropical co-approximation then for any z ∈ R
n, there exists

u ∈ E such that Pmax
E (z) 6 u 6 Pmin

E (z). Composing the first inequality by Pmin
E , and composing

the second inequality by Pmax
E , we get Q̄−

E(z) = Pmin
E ◦ Pmax

E (z) 6 Pmin
E (u) = u, and u = Pmax

E (u) 6

Pmax
E ◦ Pmin

E (z) = Q̄+
E(z). �

The following result completes Theorem 3.8, it characterizes ambitropical cones in terms of best
co-approximation and of the projections Pmax

E and Pmin
E .

Theorem 4.12. Let E be a subset of Rn. The following assertions are equivalent

(1) E is a closed ambitropical cone of Rn;
(2) E is a set of existence of best tropical co-approximation;
(3) for all z ∈ R

n, [Pmax
E (z), Pmin

E (z)] ∩ E 6= ∅;
(4) Pmin

E (z) ∈ E holds for all z ∈ Emax;
(5) Pmax

E (z) ∈ E holds for all z ∈ Emin;
(6) E is the fixed point set of the operator Q̄+

E = Pmax
E ◦ Pmin

E ;

(7) E is the fixed point set of the operator Q̄−
E = Pmin

E ◦ Pmax
E .

Proof. (1) ⇒ (2). By Theorem 3.8, we have that E = P (Rn) where P = P 2 is a Shapley operator. Then,
for all y ∈ E, and for all z ∈ R

n, t(P (z)− y) = t(P (z)− P (y)) 6 t(z − y), i.e., P (z) 6 t(z − y)+ y, and
dually, P (z) > b(z − y) + y, showing that P (z) ∈ E ∩BE(z).
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(2) ⇒ (3). This follows from Lemma 4.10.
(3) ⇒ (4). We first observe that

∀z ∈ R
n, [Pmax

E (z), Pmin
E (z)] ∩ E 6= ∅ ⇒ ∀z ∈ Emax, [z, Pmin

E (z)] ∩ E 6= ∅ .(12)

Now, the condition [z, Pmin
E (z)] ∩ E 6= ∅ is equivalent to: ∃u ∈ E such that z 6 u 6 Pmin

E (z). However,
Pmin
E (z) is the minimal vector v ∈ Emin such that v > z, it follows that Pmin

E (z) 6 u, and so Pmin
E (z) =

u ∈ E.
(4) ⇒ (5). By hypothesis, we have that for any z ∈ Emax, Pmin

E (z) ∈ E, so in particular [z;Pmin
E (z)]∩

E 6= ∅. Consider an arbitrary z ∈ R
n. Then, we have that Pmax

E (z) ∈ Emax and, consequently
[Pmax

E (z), Pmin
E (Pmax

E (z))] ∩ E 6= ∅. Recalling that [Pmax
E (z), Pmin

E (Pmax
E (z))] ⊆ [Pmax

E (z), Pmin
E (z)] since

Pmax
E 6 I, we have that for any z ∈ R

n, [Pmax
E (z);Pmin

E (z)] ∩ E 6= ∅. In particular, let z ∈ Emin, then
we have that [Pmax

E (z), z] ∩ E 6= ∅ and by the dual argument of the previous implication we obtain that
Pmax
E (z) ∈ E.
(5) ⇒ (6). We will denote with Fix(Q̄+

E) the fixed points set of Q̄+
E . Since any element of E is fixed

by Q̄+
E , E ⊆ Fix(Q̄+

E). We shall now prove the other inclusion. Let z ∈ R
n such that Pmax

E (Pmin
E (z)) = z.

Since Pmin
E (z) ∈ Emin, z = Pmax

E (Pmin
E (z)) ∈ E.

(6) ⇒ (7). By the idempotency Q̄+
E we have that Pmax

E ◦ Pmin
E (y) ∈ E for every y ∈ R

n, in particular

for any y ∈ Emin, Pmax
E (y) ∈ E. As in the previous implication we know that E ⊆ Fix(Q̄−

E) and we shall
now prove the other inclusion. Let z ∈ R

n such that Pmin
E (Pmax

E (z)) = z, so z ∈ Emin and consequently
Pmax
E (z) ∈ E. Since E is fixed by Pmin

E , we have that z = Pmin
E (Pmax

E (z)) ∈ E.
(7) ⇒ (1). This follows from Proposition 4.6, ((iii)) and Theorem 3.8.

�

Corollary 4.13. Let E be a non-empty subset of Rn, included in a closed ambitropical cone F . Then,
Emax ∩ Emin ⊂ F .

Proof. The set Emax ∩ Emin is fixed both by Pmax
E and Pmin

E . If E ⊂ F , the fixed point set of Pmax
E is

included in the fixed point set of Pmax
F . The same is true for Pmin

E and Pmin
F . So, Emax∩Emin is included

in the fixed point set of Pmin
F ◦ Pmax

F , which by Theorem 4.12,(7), coincides with F . �

Corollary 4.14. Suppose C is a closed ambitropical cone. Then C = Cmax ∩ Cmin.

Proof. The inclusion Cmax ∩ Cmin ⊂ C follows from Corollary 4.13. The other inclusion is trivial. �

Example 4.15. Conversely, given an additive cone E ⊂ R
n, the condition that E = Emax ∩ Emin does

not imply that E is an ambitropical cone. Consider, for example, the set E = (a + R) ∪ (b + R) where
a = (1, 0, 0) and b = (0, 1, 0). This set, as well as the spaces Emax and Emin, are shown on Figure 8. We
see that E = Emax ∩ Emin but since E is disconnected, it cannot be ambitropical.

4.3. Ambitropical hull. The intersection of ambitropical cones is generally not ambitropical, so the
notion of ambitropical hull of a set E cannot be defined in the naïve manner, as the intersection of
ambitropical cones containing E. However, we shall see that there is a proper notion of ambitropical
hull, unique up to isomorphism.

Definition 4.3. Let E ⊂ R
n. We say that Ẽ ⊂ R

n is a ambitropical hull of E if Ẽ is a closed ambitropical
cone which is a superset of E and if it is minimal with respect to inclusion.

Proposition 4.16. For each nonempty subset E ⊂ R
n, the sets Im Q̄−

E and Im Q̄+
E are closed ambitropical

cones containing E that are isomorphic.

Proof. If E ⊂ R
n is non-empty, the operator Q̄−

E maps R
n to R

n, and it follows from its definition that
it satisfies the axioms of Shapley operators (Definition 3.1). Moreover, we have seen in Proposition 4.6,
(iii) that Q̄−

E is idempotent. It follows that Im Q̄−
E = Q̄−

E(R
n) is a Shapley retract, and so Im Q̄−

E is

ambitropical. Moreover, Im Q̄−
E ⊃ E. By duality, the same is true for Im Q̄+

E . By Prop. 4.6, (iv), the

map Q̄+
E is a bijection from Im Q̄−

E to Im Q̄+
E with inverse map Q̄−

E . �

The next result shows that if F is a closed ambitropical cone containing E, then, there is a Shapley
operator which injects ImQ−

E into F .

Theorem 4.17 (Ambitropical hulls). Let E be a non-empty subset of Rn, and suppose that F is a closed
ambitropical cone containing E. Then,

(i) Q̄+
E ◦ Q̄−

F ◦ Q̄+
E = Q̄+

E;
13



(ii) Q̄−
E ◦ Q̄+

F ◦ Q̄−
E = Q̄−

E;

Moreover, Im Q̄+
E is isomorphic to a subset F+ of F , analogously Im Q̄−

E is isomorphic to a subset F−

of F and F+ is isomorphic to F−. In particular, both Im Q̄+
E and Im Q̄−

E are ambitropical hulls of E,
and all the ambitropical hulls of E are isomorphic.

Proof. Observe first that since E ⊂ F ,

Pmin
E ◦ Pmin

F = Pmin
E(13)

Indeed, E ⊂ F implies that Pmin
F 6 Pmin

E . Hence, Pmin
E ◦ Pmin

F 6 Pmin
E ◦ Pmin

E = Pmin
E . Moreover,

since Pmin
F > I, Pmin

E ◦ Pmin
F > Pmin

E , which shows (13). Since Emax ⊂ Fmax, Pmax
F which fixes Emax =

ImPmax
E , we have

Pmax
F ◦ Pmax

E = Pmax
E(14)

Using (13) and (14), we get Q̄+
E ◦ Q̄−

F ◦ Q̄+
E = Pmax

E ◦ Pmin
E ◦ Pmin

F ◦ Pmax
F ◦ Pmax

E ◦ Pmin
E = Pmax

E ◦ Pmin
E ◦

Pmax
E ◦ Pmin

E = (Q̄+
E)

2 = Q̄+
E , by Proposition 4.6, (v). This shows (i). The proof of (ii) is dual.

Let F+ = Q̄−
F (Im Q̄+

E) ⊆ F and consider

Q̄−
F : Im Q̄+

E → F+, Q̄+
E : F+ → Im Q̄+

E ;

they are inverses to each other by (i), so Im Q̄+
E and F+ are isomorphic. Analogously, by (i), Im Q̄−

E is

isomorphic to the subset of F , F− = Q̄+
F (Im Q̄−

E). Moreover, by Corollary 4.16, Im Q̄+
E

∼= Im Q̄−
E and

consequently F− ∼= F+. Finally, let Ẽ be an ambitropical hull of E, then Im Q̄+
E is isomorphic to a

subset Ẽ+ of Ẽ but, since Ẽ is minimal for inclusion, we have that Ẽ ∼= Ẽ+ ∼= Im Q̄+
E. �

We next point out an elementary metric property of ambitropical cones. Recall that a geodesic between
x and y with respect to a seminorm ‖ · ‖ on R

n is a map γ : [0, 1] → R
n such that γ(0) = x, γ(1) = y,

and ‖γ(t2)− γ(t1)‖+ ‖γ(t3)− γ(t2)‖ = ‖γ(t3)− γ(t1)‖, for all 0 6 t1 < t2 < t3 6 1.

Proposition 4.18. If E is a closed ambitropical cone of Rn, then, for any two points x, y of E, there is
a curve connecting x and y and included in E that is a geodesic both in Hilbert’s seminorm and in the
sup-norm.

Proof. Since E is closed and ambitropical, there is an idempotent Shapley operator P such that E =
P (Rn). Let x, y ∈ E, and consider the ordinary line segment, γ(s) = x + s(y − x), for s ∈ [0, 1], which
connects x and y in R

n, and is a geodesic in any semi-norm, in particular, in Hilbert’s semi-norm and
in the sup-norm. Then, since P is nonexpansive both in Hilbert’s seminorm and in the sup-norm, the
map s 7→ P (γ(s)) is still a geodesic, both in Hilbert’s seminorm and in the sup-norm, and it is included
in E. �

5. Ambitropical convexity and hyperconvexity

We relate here the above notions of ambitropical cones and of ambitropical hull with hyperconvexity.
This notion was introduced by Aronszajn and Panitchpadki [AP56], We refer the reader to [Isb64, Dre84,
Bai88, EK01] for insights on hyperconvex spaces and on the related notions of injective metric spaces
and tight-span.

Definition 5.1. A metric space M is said to be hyperconvex if
⋂

α∈Γ B(xα, rα) 6= ∅ for any collection of
points {xα}α∈Γ in M and positive numbers {rα}α∈Γ such that d(xα, xβ) 6 rα + rβ for any α, β ∈ Γ.

We recall that a metric space M is said to be injective if for every X,Y metric spaces, where Y is
a subspace of X and f : Y → M nonexpansive, there exists an extension of f , f ′ : X → M , that is
nonexpansive. (Note that injective metric spaces do not coincide with injective objects in the category
of metric spaces with nonexpansive maps. Indeed, it is true that every injective object is an injective
metric space but the converse does not hold since the inverse of a nonexpansive map need not be
nonexpansive.) Hyperconvex spaces are complete metric spaces and they are exactly injective metric
spaces [Isb64, Dre84].

Theorem 3.8 shows that closed ambitropical cones are Shapley retracts of R
n. Therefore, they are

particular cases of sup-norm nonexpansive retracts of R
n, so we get by [AP56, Th. 9], that they are

hyperconvex subsets of Rn with sup-norm metric, which are, in addition, additive cones. We next show
that the converse implication holds.

Theorem 5.1. Let E be an additive cone of Rn. The following assertions are equivalent
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(1) E is a closed ambitropical cone;
(2) E is hyperconvex for the sup-norm metric.

Proof. We only need to show that (2) =⇒ (1). Suppose that E is an additive cone which is hyperconvex
in the sup-norm metric. Since an hyperconvex space is complete, and E is a subspace of Rn, E must
be closed in the Euclidean topology. By Definition 3.2, it is enough to prove that E is a lattice in the
induced order. Let x, y ∈ E and let, for any s 6 r ∈ R,

(15) Br
s (u) = {x ∈ E | u+ s 6 x 6 u+ r} = B(u+ (s+ r)/2, (r − s)/2)

Let U = {u ∈ E | u 6 x, u 6 y}. We want to prove that there exists a maximal element z of U ,
that is an element z ∈ E such that z 6 x, z 6 y and u 6 z for every u ∈ U .

This is equivalent to z ∈ B0
rx
(x), z ∈ B0

ry
(y) for some rx, ry < 0 and, for every u ∈ U , z ∈ Bru

0 (u)

for some ru > 0. Let us choose rx and ry such that x + rx/2 6 y, y + ry/2 6 x, and ru such that, for
all u ∈ U , x 6 u + ru and y 6 u + ru. Then, we assume without loss of generality that rx > ry, and
observe that x + rx/2 ∈ B0

rx
(x) ∩ B0

ry
(y). Moreover, x ∈ B0

rx
(x) ∩ Bru

0 (u) holds for all u ∈ U . Hence,

we have that the balls in the above family have pairwise nonempty intersections. Therefore, using (15),
they can be rewritten as balls satisfying the conditions in Definition 5.1. So, using the hyperconvexity
of E, we obtain an element z ∈ E belonging to the intersection of all the balls, and such an element is
the maximal element of U . �

Definition 5.2. Let E be a metric space and let denote the metric by d. We call E a metric space with a
real action if there is an action of the additive group (R,+, 0) on E, denoted by (λ, x) ∈ R×E 7→ λ·x ∈ E,
such that

d(λ · x, λ′ · x) = |λ− λ′| ,(16a)

d(λ · x, λ · x′) = d(x, x′) ,(16b)

for any x, x′ ∈ E and any λ, λ′ ∈ R.

Let us consider the category of metric spaces with a real action, with the nonexpansive, action-
preserving maps. In the same spirit as for metric spaces, we say that C is an injective metric space with
a real action if for any metric space with a real action Y and any subset X of Y which is closed by the
real action on Y , every nonexpansive, action-preserving map from X to C has an extension from Y to
C that is nonexpansive and action-preserving. Note that, as for metric spaces, this definition does not
coincide with the usual definition of injective objects in the above category.

A prominent example of hyperconvex space is given by the tight span of a metric space, which provides
its hyperconvex or injective hull [Isb64, Dre84]. We now recall the definition and basic results regarding
the tight span.

Definition 5.3 (Tight span of a metric space [Isb64, Dre84]). Let X be any metric space with a metric d.
The tight span T (X) is the set of functions f : X → R>0 satisfying one of the two equivalent properties:

(1) f(x) = supy∈X(d(x, y)− f(y)), for all x ∈ X ;
(2) f(x)+ f(y) > d(x, y), for all x, y ∈ X , and f is minimal among the functions with this property.

The second property in Definition 5.3 was used in the original construction of Isbell, where a map f
satisfying this property is called an extremal function. The first property in Definition 5.3 was used by
Dress, who noted the equivalence with the second one and established a number of additional proper-
ties [Dre84, Th. 3]. The injectivity hull property of the tight span and some other properties were proved
in [Isb64, Section 2]. We gather below some of the properties established in [Dre84, Th. 3] or in [Isb64,
Section2], that will be used in the sequel.

We equip T (X) with the supremum distance

d∞(f, g) = sup
x∈X

|f(x)− g(x)| .

Theorem 5.2 ([Dre84, Th. 3] and [Isb64, Section 2]). For any x ∈ X, we denote by e(x) = d(x, ·) the
map y ∈ X 7→ d(x, y). We have the following properties

(1) Any element f of T (X) is 1-Lipschitz continuous, that is |f(x)− f(y)| 6 d(x, y).
(2) For all x ∈ X and f ∈ T (X), we have d∞(e(x), f) = f(x).
(3) For all x ∈ X, e(x) ∈ T (X), and the map e : X → T (X), x 7→ e(x) is an isometry. Then, X is

isometric to the range e(X) ⊂ T (X) of e, and can be identified to a subset of T (X).
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(4) Any nonexpansive map φ from T (X) to itself that fixes e(X) is the identity map.
(5) T (X) is an hyperconvex, or equivalently, injective metric space.
(6) T (X) is the injective hull of X in the category of metric spaces, meaning that for any injective

space Y such that X ⊂ Y , or such that there is an isometry ι from X to Y , there exists an
isometry ϕ from T (X) to Y such that ι = ϕ ◦ e.

Recall also that in Theorem 5.2, Item 6 follows from Item 5 and Item 4.
We now show that when X is a metric space with a real action, the tight span T (X) is canonically

equipped with a structure of metric space with real action.

Proposition 5.3. Assume that X is a metric space with a real action (λ, x) ∈ R×X 7→ λ · x ∈ X. For
all f ∈ T (X) and λ ∈ R, we set

λ · f : X → R, y ∈ X 7→ (λ · f)(y) = f((−λ) · y) .

Then, λ · f ∈ T (X). Moreover, the map (λ, f) ∈ R×T (X) 7→ λ · f ∈ T (X) yields a real action on T (X),
and, together with the supremum distance d∞, this equips T (X) with a structure of metric space with
real action. Moreover, the map e : X → T (X) of (3) of Theorem 5.2 is an action-preserving isometry.

Proof. Using that (16b) holds for the metric and action of X , we shall deduce that λ · f ∈ T (X) holds
for any f ∈ T (X) and λ ∈ R. Indeed, for any x ∈ X , we have

sup
y∈X

(d(x, y) − (λ · f)(y)) = sup
y∈X

(d(x, y)− f((−λ) · y)) = sup
z∈X

(d(x, λ · z)− f(z))

= sup
z∈X

(d((−λ) · x, z)− f(z)) = f((−λ) · x) = (λ · f)(x) ,

where the first equality in the second line follows from (16b), and the second one holds since f ∈ T (X).
So, by Definition 5.3 (first property), λ · f ∈ T (X). It follows that the map (λ, f) 7→ λ · f defines an
action of the group (R,+, 0) on T (X).

We now show that the axioms (16) are satisfied, i.e., in the present setting:

d∞(λ · f, λ′ · f) = |λ− λ′| ,(17a)

d∞(λ · f, λ · f ′) = d∞(f, f ′) ,(17b)

for all f, f ′ ∈ T (X) and λ, λ′ ∈ R. Property (17b) follows from a trivial change of variable:

d∞(λ · f, λ · f ′) = sup
x∈X

|f((−λ) · x)− f ′((−λ) · x)| = sup
x∈X

|f(x) − f ′(x)| = d∞(f, f ′) .

It remains to show (17a). We have

d∞(λ · f, λ′ · f) = sup
x∈X

|f((−λ) · x) − f((−λ′) · x)| 6 sup
x∈X

d((−λ) · x, (−λ′) · x) = |λ− λ′| ,(18)

where the inequality in (18) uses that any element of T (X) is 1-Lipschitz continuous, see Item 1 of
Theorem 5.2. If this inequality is strict for some λ, λ′ ∈ R and f ∈ T (X), then

ν := sup
x∈X

|f((−λ) · x) − f((−λ′) · x)| < |λ− λ′| .

Denote µ = λ′ − λ, then applying a change of variable, we obtain that

|f(µ · x)− f(x)| 6 ν < |µ|, for all x ∈ X .

In particular, f(µ · x) 6 f(x) + ν, and applying successively this inequality to the elements (nµ) · x
such that n is an integer, we get f((nµ) · x) 6 f(x) + nν, for all n > 1. Since f ∈ T (X), we also have
f((nµ) · x) + f(x) > d((nµ) · x, x) = n|µ|, where the last equation follows from (16a). We deduce that
n|µ| 6 2f(x) +nν for all n > 1, which is impossible since ν < |µ|. Therefore, the inequality in (18) is an
equality, whih proves (17a).

By (3) of Theorem 5.2, the map e : X → T (X), x 7→ d(x, ·) is an isometry. We also have that
e(λ · x)(y) = d(λ · x, y) = d(x, (−λ · y)) = e(x)(−λ · y) = (λ · e(x))(y). Hence, e(λ · x) = λ · e(x). This
shows that e is also action-preserving. �

Theorem 5.4. Injective metric spaces with a real action are exactly hyperconvex spaces with a real
action.
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Proof. To show that hyperconvex spaces with a real action are injective, we proceed as in the proof
of Theorem 4.2 of [EK01], which shows the analogous property in the absence of a real action. In the
following we will outline the parts which require to be adjusted.

Let H be an hyperconvex metric space with a real action, we want to prove that H is injective. We
shall consider a metric space with real action (M,d) and D, a subset of M which is closed by the action.
Let (H, d′) be a metric space with real action and g : D → H a nonexpansive, action preserving map. To
prove that H is injective we shall show that there exists a nonexpansive and action-preserving extension
of g from M to H .

Let define C as follows:

C = {(TF , F ) | D ⊆ F ⊆ M, F is closed by the action of M, TF : F → H, TF preserves the action}

C is nonempty since it contains (g,D). It is ordered by (TF , F ) 6 (TF ′ , F ′) if F ⊂ F ′ and TF ′ is an
extension of TF over F ′. We need to show that any maximal element (TF1

, F1) of C is such that F1 = M .
We proceed by contradiction, assuming that there exists z ∈ M \ F1, and constructing (TF , F ) ∈ C,
such that (TF1

, F1) < (TF , F ) and z ∈ F . Since the set F must be close under the action, we take
F = F1 ∪ {λ · z | λ ∈ R}. Also, the extended function TF need to preserve the action. So we need to
choose x ∈ H and define TF (λ · z) = λ ·x for all λ ∈ R. Since we are assuming that z /∈ F1, we have that
for every λ, λ · z /∈ F1, so we do not have ambiguities in the definition of TF . Since H is hyperconvex,
the arguments of the proof of Theorem 4.2 of [EK01] shows that there exists x ∈ H such that the map
TF restricted to the set F1 ∪ {z} is nonexpansive. We need to prove that TF is nonexpansive on all the
metric space F . Since TF is already nonexpansive on F1, we only need to check the following conditions:

d′(TF (λ · z), TF (λ
′ · z)) 6 d(λ · z, λ′ · z) ,

d′(TF (z1), TF (λ · z) 6 d(z1, λ · z) ,

for all z1 ∈ F1 and λ, λ′ ∈ R. Since TF (λ · z) = λ · x, the first inequality is an equality and follows from
(16a). Since TF is preserving the action on F , F1 is closed under the action, and TF is nonexpansive on
F1 ∪ {z}, the first inequality follows from (16b).

To show the converse implication, we shall make use of the properties of the tight span.
Consider now a metric space with real action X and assume that it is injective. Then, by (5) of

Theorem 5.2 and Proposition 5.3, T (X) is a hyperconvex set with a real action, and the map e : X →
T (X), x 7→ d(x, ·) is an action-preserving isometry. By injectivity of X there exists an action-preserving
nonexpansive map from h : T (X) → X such that h◦e is the identity. Indeed, we can consider the identity
map on X as the map which will be expanded. Then, the map e ◦ h : T (X) → T (X) is a nonexpansive
map which fixes e(X).

By Item 4 of Theorem 5.2, we have that the map e ◦ h is the identity, so X = T (X) and it is
hyperconvex. �

We deduce the following result.

Corollary 5.5. Assume that X is a metric space with a real action. Then, T (X) is the injective hull
of X, meaning that for any injective metric space with a real action Y such that X ⊂ Y , or such that
there is an action preserving isometry ι from X to Y , there exists an action preserving isometry ϕ from
T (X) to Y such that ι = ϕ ◦ e.

Proof. Let X is a metric space with a real action, and let Y be an injective metric space with a real action
such that there is an action preserving isometry ι from X to Y . As above, by (5) of Theorem 5.2 and
Proposition 5.3, T (X) is a hyperconvex set with a real action, and the map e : X → T (X), x 7→ d(x, ·)
is an action-preserving isometry. Moreover, by Theorem 5.4, T (X) is injective.

By injectivity of Y there exists an action-preserving nonexpansive map from g : T (X) → Y such that
g ◦ e = ι. By injectivity of T (X) there exists an action-preserving nonexpansive map from h : Y → T (X)
such that h ◦ ι = e. Then, the map h ◦ g : T (X) → T (X) is a nonexpansive map which satisfies
h ◦ g ◦ e = h ◦ ι = e, so it fixes e(X).

By Item 4 of Theorem 5.2, we have that the map h ◦ g is the identity, so g is an isometry such that
ι = g ◦ e. �

Theorem 5.6. Let X ∈ R
n be an additive cone. Then, the ambitropical hull of X and the injective hull

of X are in bijective correspondence under an action-preserving isometry.

Proof. Let A ⊂ R
n be an ambitropical hull of X , with ı : X → A the canonical injection. By Theorem 5.1,

A is a hyperconvex additive cone, and by Theorem 5.4, it is an injective space with real action, and
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by Corollary 5.5, there is an action-preserving isometry ϕ from T (X) to a subset of A and such that
ϕ ◦ e = ı. Hence, ϕ(T (X)) is injective, and by Theorem 5.1 and Theorem 5.4, it is an ambitropical cone.
By minimality of A, A = ϕ(T (X)) which entails that T (X) and A are in bijective correspondence under
the action preserving isometry ϕ. �

In general, it is already a difficult problem to construct the tight span of finite metric spaces with
more than a few points. A characterization of the tight span of arbitrary subsets of the plane with the
maximum metric is given in [KcK16]. Thanks to the above theorem, we get a way to compute the tight
span of an additive cone, since this last one is isometric to its ambitropical hull, see e.g. Figure 3 for an
illustration.

6. Special classes of ambitropical cones

We next review several canonical classes of sets in tropical geometry, showing these are special cases
of ambitropical cones, that can be characterized by suitable reinforcements of Theorem 3.8.

The simplest examples of ambitropical cones consist of alcoved polyhedra, discussed in Section 2.
Actually, the following result shows that alcoved polyhedra are characterized by the property of being
sublattices of Rn. Observe that all properties but one do not assume polyhedrality, polyhedrality comes
as a consequence of the other properties.

Proposition 6.1. Let C ⊂ R
n. The following statements are equivalent:

(1) C is an alcoved polyhedron;
(2) C is a closed tropical cone and a closed dual tropical cone,
(3) C is a closed ambitropical cone in which the infimum and supremum laws coincide with the ones

of Rn.
(4) There is a tropically linear Shapley operator T such that C = {x ∈ R

n | T (x) 6 x}.
(5) There is a dually tropically linear Shapley operator T such that C = {x ∈ R

n | T (x) > x}.

Proof of Proposition 6.1. An alcoved polyhedron is stable by pointwise supremum and pointwise infimum
of vectors, so (1) implies (2). Trivially, (2) implies (3).

Suppose now that (3) holds. Then, by Proposition 3.5, C is a conditionally complete lattice, and the
lattice operations of C are the pointwise supremum and pointwise infimum of vectors. Define, for all
i, j ∈ [n],

Mij := sup{λ | vi > λ+ vj , ∀v ∈ C}

The latter set is nonempty, it is closed and bounded from above, so that the supremum is achieved. In
particular, we have Mij ∈ Rmax. By construction, C ⊂ A(M), and Mij = M∗

ij . Observe also that the
inequality vi > λ+ vj , is equivalent to wi > λ where w := v− vjδj ∈ C is such that wj = 0, denoting by
δj = (0, . . . , 0, 1, 0, . . .0) the j-th vector of the canonical basis of Rn. It follows that:

Mij = inf Cij , where Cij := {vi | v ∈ Cj} and Cj := {v ∈ C | vj = 0} .

Denoting by uj the jth column of the matrix M , we deduce that

uj = inf Cj ∈ clo↓ C .

Define, Aj := {v ∈ clo↓ C | vj = 0}. Since C is a conditionally complete lattice, the set Aj ⊂ clo↓ C
is stable by taking infima. Hence, the set MinAj consists of a single point, uj . By Theorem 2.2, every
element of C is a tropical linear combination of vectors uj . This implies that A(M) = {M∗y | y ∈ R

n} =
C. So (3) implies (1).

If C = A(M) is an alcoved polyhedron, it follows from (2) that C = {x ∈ R
n | T (x) 6 x} where

T (x) = M∗x is a Shapley operator. So (1) implies (4).
Conversely, if C = {x ∈ R

n | T (x) 6 x} for some tropically linear Shapley operator, then, for all
x, y ∈ C, since T is order preserving, T (x ∧ y) 6 T (x) ∧ T (y) 6 x ∧ y, and since T is tropically linear,
T (x ∨ y) = T (x) ∨ T (y) 6 x ∨ y, showing that x ∧ y and x ∨ y belong to C. Moreover, C is closed, since
T is continuous (in fact, T is sup-norm nonexpansive). This shows that (4) implies (3).

(1) and (5) are equivalent. Indeed, observe that C is of the form {x ∈ R
n | T (x) 6 x} for some

tropically linear Shapley operator iff −C is of the form {x ∈ R
n | P (x) > x} for some dually tropically

linear Shapley operator (consider the involution T 7→ P, P (x) := −T (−x) on the space of Shapley
operators). Moreover, C is an alcoved polyhedron iff −C is an alcoved polyhedron. Hence, the announced
equivalence follows from the equivalence of (1) and (4), already established. �
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Note that in the above proof we made use of a particular instantiation of the "flip" application
X → −X which sends ambitropical cones to ambitropical cones.

Tropical cones, and dual tropical cones, are also remarkable examples of ambitropical cones. The
relation between these cones and sub or super-fixed point sets of Shapley operators was already noted
in [AGG12].

Proposition 6.2. Let C ⊂ R
n. The following statements are equivalent:

(1) C is a closed tropical cone;
(2) C is a closed ambitropical cone in which the supremum law coincides with the one of Rn;
(3) there is a Shapley operator T such that C = {x ∈ R

n | T (x) > x}.

Proof. (1)⇒(2). Suppose that C is a closed tropical cone, and let X denote a non-empty subset of C
bounded from above by an element of Rn. Then, for all finite subsets F ∈ Pf (X), supF belongs to C,
because C is stable by supremum, and supX = limF∈Pf (X) supF ∈ C because C is closed. It follows
that X has a supremum in C which coincides with its supremum in R

n. Suppose now that X is bounded
from below by an element z of Rn. Consider Y := {y ∈ C | y 6 x, ∀x ∈ X}. Then, Y is non-empty and
it is bounded from above. It follows from the previous observation that supY is the supremum of Y , in
C. Moreover, supY is precisely the infimum of X in C, showing that C is ambitropical.

(2)⇒(3). Since C is a closed ambitropical cone, then, it is the fixed point set of z 7→ Q−
C(z) = sup{x ∈

C | x 6 z}, and Q−
C 6 I. So, C = {z ∈ R

n | Q−
C(z) = z} = {z ∈ R

n | Q−
C(z) > z}.

(3)⇒(1). Suppose that C = {x ∈ R
n | T (x) > x}. Since T is continuous, C is closed. Moreover, since

T is order preserving, for all x, y ∈ C, T (x ∨ y) > T (x) ∨ T (y) > x ∨ y, showing that x ∨ y ∈ C. �

We state the following dual version of Proposition 6.2.

Proposition 6.3. Let C ⊂ R
n. The following statements are equivalent:

(1) C is a closed dual tropical cone;
(2) C is an ambitropical cone in which the infimum law coincides with the one of Rn;
(3) there is a Shapley operator T such that C = {x ∈ R

n | T (x) 6 x}. �

We next define the subclass of homogeneous tropical cones – which will arise as tangent spaces or
recession sets of ordinary tropical cones.

Definition 6.1. An ambitropical cone C is homogeneous if for all α > 0 and for all x ∈ C, αx ∈ C.
Recall that a Shapley operator T : Rn → R

n is homogeneous if T (αx) = αT (x) holds for all α > 0 and
for all x ∈ R

n.

Proposition 6.4. Let C ⊂ R
n. The following statements are equivalent:

(1) C is a closed homogeneous ambitropical cone;
(2) there is an idempotent homogeneous Shapley operator whose fixed point set is C;
(3) there is a homogeneous Shapley operator whose fixed point set is C.

Proof. The implication (2)⇒(3) is immediate. If C is the fixed point set of an homogeneous Shapley
operator T , then, we know from Theorem 3.8 that C is an ambitropical cone, and it follows from
the homogeneity of T that C is homogeneous. This shows the implication (3)⇒(1). If C is a closed
homogeneous ambitropical cone, we know from Theorem 3.8 that C is the range of the idempotent
Shapley operator Q̄−

C = Q−
C . Observe that, for all α > 0 and x ∈ R

n, Q−
C(αx) = supC{y ∈ C | y 6

αx} = supC{αα−1y | y ∈ C, α−1y 6 x} = supC{αz | z ∈ C, z 6 x} = αQ−
C(x) since y 7→ α−1y is a

bijection from C to C, which is order preserving and whose inverse also preserves the order. This shows
the implication (1)⇒(2). �

7. Correspondence between fixed points of Shapley operators and calibrated policies

7.1. Finitely generated Shapley operators. The following definition is taken from [CTGG99].

Definition 7.1. A min-max function in the variables x1, . . . , xn is a map f : Rn → R, defined by a term
in the context-free grammar X → x1, . . . , xn, X ∨X,X ∧X,X + c where c stands for any real constant.

For instance, f(x1, x2, x3) = ((x1 ∨ (x2 + 3)) ∧ ((x3 − 1) ∨ x1)) ∨ x2 is a min-max function. It follows
readily from the definition that the set of min-max functions is stable by the operations ∨, ∧, and by
the translation by a constant. Using the distributivity law, we may always rewrite a min-max function
in conjunctive normal form, i.e.,

f(x) = ∧k∈[K] ∨i∈[n] (cki + xi)(19)
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for some integer K and coefficients cki ∈ Rmax, such that for all k ∈ [K], cki 6= −∞ for some i ∈ [n].
Similarly, we may rewrite f in disjunctive normal form:

f(x) = ∨k∈[K′] ∧i∈[n] (c
′
ki + xi)(20)

for some integer K ′ and coefficients c′ki ∈ Rmin, such that for all k ∈ [K ′], c′ki 6= +∞ for some i ∈ [n].
Monotone Boolean functions are special cases of min-max functions, they are obtained by restricting the
above grammar rule to exclude the derivation X 7→ X + c. For instance, (x1 ∨ x2) ∧ x3 is a monotone
Boolean function.

Definition 7.2. A Shapley operator is finitely generated if its coordinates are min-max functions.

It will be convenient to write finitely generated Shapley operators in an algebraic way, along the lines
of [AGG12], making apparent the game interpretation. Let A ∈ (Rmax)

m×p. The adjoint of the tropically
linear map associated with the matrix A is the dual tropically linear map

y 7→ A♯y, (A♯y)k = ∧i∈[m](−Aik + yi), k ∈ [p] ,

which sends R
m → R

p if A has no identically −∞ column. Observe that, for x ∈ R
p and y ∈ R

m,

Ax 6 y ⇐⇒ x 6 A♯y .

If B ∈ (Rmax)
m×n The tropically linear map

x 7→ Bx, (Bx)i = ∨j∈[n](Bij + xj), i ∈ [m]

sends R
n to R

m if B has not identically −∞ row. This motivates the following definition.

Definition 7.3. We say that a pair of matrices A ∈ (Rmax)
m×p, B ∈ (Rmax)

m×n is proper if A has no
identically −∞ column, and B has no identically −∞ row.

Given a proper pair of matrices A ∈ (Rmax)
m×p, B ∈ (Rmax)

m×n, we consider the operator T = A♯◦B,
with coordinates

Ti(x) = ∧j∈[m]

(

−Aji + ∨k∈[n](Bjk + xk)
)

, i ∈ [p] .(21)

This is a finitely generated Shapley operator from R
n → R

p.

Proposition 7.1. Every finitely generated Shapley operator can be written as T = A♯ ◦ B for some
proper pair of matrices A,B.

Proof. Every coordinate of T can be represented by a min-max function in disjunctive normal form, and
this representation is of the form (21) (with Aij ∈ {0,−∞}). �

Recall that a map T : Rn → R
p is (positively) homogeneous (of degree 1) if T (αx) = αT (x) holds for

all α > 0 and x ∈ R
n.

Proposition 7.2. If T is a finitely generated homogeneous Shapley operator, then the coordinates of T
are given by monotone Boolean functions, and all the finitely generated homogeneous Shapley operators
arise is this way.

Proof. Suppose that T = A♯ ◦B as above. Then, Ti(x) = α−1Ti(αx), and so,

Ti(x) = lim
α→∞

∧j∈[m]

(

− α−1Aji + ∨k∈[n](α
−1Bjk + xk)

)

= ∧j∈[m], Aij 6=−∞

(

∨k∈[n], Bjk 6=−∞ xk

)

which is a monotone Boolean function. �

Proposition 7.3. Let T1, T2 be two finitely generated Shapley operators R
n → R

p. Then the operators
T1 ∨ T2 and T1 ∧ T2 are finitely generated. Suppose now that T2 is a finitely generated Shapley operator
from R

q → R
n. Then, T1 ◦ T2 is a finitely generated Shapley operator.

Proof. By definition, min-max functions are stable by the laws ∨ and ∧. They are also stable by composi-
tion, meaning that if f(x1, . . . , xn) is a min-max function in the variables x1, . . . , xn, and if for all i ∈ [n],
gi(y1, . . . , yq) is a min-max function in the variables y1, . . . , yq, then f(g1(y1, . . . , yq), . . . , gn(y1, . . . , yq))
is a min-max function in the same variables. This implies the announced properties. �
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7.2. Eigenvectors of Shapley operators and Deterministic Mean Payoff Games. We next recall
that the operators of the form (21) are precisely the dynamic programming operators of deterministic
zero-sum games without discount, referring the reader to [AGG12] for background. We shall also present
an equivalence between the fixed points of the Shapley operator and a remarkable class of optimal
positional policies, calibrated policies.

We associate to the proper pair of matrices (A,B) a game in which two players, Max and Min, move
alternatively a token in a digraph. The set of states is the disjoint union of the sets [n] and [m]. If the
token is in a state i ∈ [n], Player Min chooses a new state j ∈ [m] such that Aji is finite, moves the
token to this state, and receives a payment Aji from Max. If the token is in a state j ∈ [m], Player Max
chooses a new state k ∈ [n] such that Bjk is finite, moves the token to this state, and receives a payment
Bjk from Min. The assumption that the pair (A,B) is proper guarantees that each player has always at
least one available action. Given an initial state i ∈ [n], and an integer k, one can consider the game in
horizon k, in which each the two players makes k moves, alternatively, so that the total payment received
by Player Max is

Rk = −Aj1i0 +Bj1i1 −Aj2i1 +Bj2i2 + · · · −Ajkik−1
+Bjkik

where i0, j1, i1, j2, . . . , jk, ik is the sequence of states that are visited and i0 = i is the initial state. A
history of the game, at a given stage, consists of the sequence of visited states, so if l turns have been
played, and if it Min’s turn to play, the history is i0, j1, i1, j2, . . . , jl, il whereas if it is Max’s turn to play,
the history is i0, j1, i1, j2, . . . , jl, il, jl+1. We assume that the game is in perfect information, meaning
that the two players observe the history. A (pure) strategy of a player is a map which associates an action
to each history. Therefore, the total payment is a function of the strategies σ and π of the two players
and of the initial state i, i.e., Rk = Rk

i (σ, π). It follows from dynamic programming arguments, that the
game in horizon k with initial state i has a value, vki , and that there are associated optimal strategies σ∗

and π∗, meaning that the following saddle point property holds:

Rk
i (σ

∗, π) 6 vki 6 Rk
i (σ, π

∗)

for all strategies σ of Player Min and π of Player Max, which entails in particular that vki = Rk
i (σ

∗, π∗).
Indeed, the value vector vk = (vki )i∈[n] ∈ R

n satisfies the dynamic programming equation

v0 = 0, vk = T (vk−1) ,

and the actions that achieve the min or max in the expression Ti(v
k−1) provide optimal decisions for the

two players, depending only on the current state and on the time remaining to play. We refer the reader
to [MSZ15b] for background on game theory and on the dynamic programming approach.

A deterministic policy of Player Min (resp. Max) is a map σ : [n] → [m] (resp. π : [m] → [n]). A
deterministic policy of Player Min induces a stationary positional strategy, obtained by moving to state
σ(i) when in state i ∈ [n], and similarly for Player Max, the state being now j ∈ [m].

We are interested in the mean payoff game, in which Player Min wants to minimize the mean payment
per time unit made to Player Max, and Player Max wants to maximize it. Liggett and Lippman [LL69],
and Ehrenfeucht and Mycielski [EM79] showed that there exists a vector χ = (χi)i∈[n] ∈ R

n and deter-
ministic policies σ∗ and π∗, of Player Min and Max, respectively, such that, for all strategies σ and π of
these two players, and for all initial states i ∈ [n],

(22) lim sup
k→∞

k−1Rk
i (σ

∗, π) 6 χi 6 lim inf
k→∞

k−1Rk
i (σ, π

∗) .

The number χi is known as the value of the mean payoff game with initial state i. Moreover, the vector
χ coincides with the limit limk→∞ vk/k.

A remarkable case arises when the non-linear eigenproblem

T (u) = λ+ u, u ∈ R
n, λ ∈ R

is solvable. Then, the value of the mean payoff game χi is independent of the initial state i, and
optimal deterministic policies can be obtained from the eigenvector u. To explain this relation, it will
be convenient to extend the notion of policy as follows: a nondeterministic policy of Player Min (resp.
Max) is a map σ : [n] → P([m]) \ ∅, such that σ(i) ⊂ {j ∈ [m] | Aji finite} for all i ∈ [n]. Similarly, a
nondeterministic policy of Player Max is a map π : [m] → P([n])\∅, such that π(j) ⊂ {i ∈ [n] | Bji finite}
for all j ∈ [m]. A nondeterministic policy of Player Min induces a whole collection of strategies (not
necessarily stationary or positional), obtained by restricting the moves of Min to the i → j ∈ σ(i). In
particular, it induces deterministic policies, obtained by selecting, for all i ∈ [n], a single element in σ(i).
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We denote by S the set of nondeterministic policies of Player Min, and by P the set of nondeterministic
policies of Player Max.

The following definition extends to the two-player case the notion of calibrated trajectory introduced
by Fathi in the context of weak-KAM theory, see [FS04, Fat08].

Definition 7.4 (calibrated policies). Given u ∈ R
n, we say that a pair of non-deterministic policies

(σu, πu) is u-calibrated if, for some λ ∈ R,

i) By playing any strategy induced by σu, Player Min can guarantee that, whatever strategy Max
chooses, and for all horizons k and initial states i0,

−Aj0i0 +Bj0i1 + · · · −Ajj−1ik−1
+Bjk−1ik 6 ui0 − uik + kλ ,(23)

ii) By playing any strategy induced by πu, Player Max can guarantee that, whatever strategy Min
chooses, and for all horizons k and initial states i0,

−Aj0i0 +Bj0i1 + · · · −Ajj−1ik−1
+Bjk−1ik > ui0 − uik + kλ ;(24)

where i0, j0, i1, j1 . . . , ik is the sequence of states that are visited.

In the special one-player case, assuming for instance that Player Max is a dummy (with only one
possible action in each state), we can replace the inequality by an equality in (23), and then, we recover
the original notion of calibrated trajectory. In particular, Fathi established a correspondence between
the global viscosity solutions of the ergodic Hamilton-Jacobi PDE and calibrated trajectories, see [FS04,
Prop. 3.5] and [Fat08, Prop 4.1.10]. The following elementary proposition states an analogous property
in the two-player setting.

Proposition 7.4. Suppose that T (u) = λ+u, define π∗(j) = argmaxiBji+ui and σ∗(i) = argminj −Aji+
(Bu)j. Then, the pair of policies (σ∗, π∗) is u-calibrated. Moreover, all pairs of u-calibrated policies arise
in this way.

To establish this result, it will be convenient to introduce, for all pair of deterministic policies (σ, π)
of the two players, the operators T σ and πT , Rn → R

n, such that

T σ
i (x) = −Aσ(i)i + ∨k(Bσ(i)k + xk),

πTi(x) = ∧j(−Aji +Bjπ(j) + xπ(j)) .

These operators represent the one-player games obtained by fixing a policy of one of the players.

Proof. If T (u) = λ + u, by definition of σ∗ and π∗, we have, for all deterministic policies σ and π
compatible with σ∗ and π∗,

T σ(u) = λ+ u, πT (u) = λ+ u .

It follows that for all k, (T σ)k(u) = kλ+ u, which implies that (23) holds. Similarly, (πT )k(u) = kλ+ u
yields (24).

Conversely, if σ∗ and π∗ are u-calibrated, by specializing (23) to k = 1, we deduce that T (u) 6 λ+ u,
and similarly, we deduce from (24) that T (u) > λ+ u. �

Any deterministic policies (σ∗, π∗) induced by a pair (σu, πu) of u-calibrated policies are optimal in the
mean payoff game, meaning they satisfy the saddle point property (22). However, being u-calibrated is
a finer property than being optimal in the mean payoff game, since it involves not only the mean payoff
but also the deviation to the mean payoff. This is easily seen in the one-player case. Then, playing
a deterministic policy induces state trajectories which ultimately cycle. As long as the the ultimate
cycle reached from each initial state is unchanged, the mean-payoff optimality is preserved, but not the
property of being calibrated.

Example 7.5. Consider the one player game shown in Figure 2, in which the Player is Max. This can be
represented by the pair of matrices (A,B) where A is the tropical identity map, meaning that player Min
is a dummy, and B is the matrix of payments shown in the figure. The value of the mean payoff game is
equal to 1, since it is optimal for Player Max to reach the cycle 4 → 4 which has the best weight-to-length
ratio, equal to 1. The matrix B, and so, the operator T = A♯ ◦ B, has only one eigenvector up to an
additive constant, given by u = (−2,−2,−1, 0), and so, by Proposition 7.4, there is only one u-calibrated
strategy, namely 1 → 3, 3 → 4 and 2 → 4. However, the strategy 1 → 2, 3 → 4 and 2 → 4 is also
optimal, since the same ultimate cycle is reached by any initial state, but it is not u-calibrated.
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Figure 2. A one player game (maximizing the average cost), with two optimal policies,
only one of which (going right, in blue) is calibrated.

Example 7.6. An example of calibrated policies arises from the notion of Blackwell optimality, originally
introduced in the one player setting [Bla62]. Let 0 < α < 1 be a discount factor, and consider the value
vector vα of the discounted version of the game, so that vα is the unique solution of the fixed point
equation vα = T (αvα). It follows from the result of Kohlberg [Koh80] that, as soon as the mean payoff
of the game is independent of the initial state, vα has a Laurent series expansion satisfying in particular
vα = λ/(1− α) + u+O(1− α), where λ ∈ R is the mean payoff, as α → 1−, and we have T (u) = λ+ u.

There are policies σ∗, π∗ such that T (αvα) = T σ∗

(αvα) = π∗

T (αvα) for all values of α close enough to
1, meaning that σ∗, π∗ are optimal in all the discounted games with a discount factor sufficiently close
to one (see [AGGCG19, Th. 8] for a proof of this property in the two player setting). These policies are
said to be Blackwell optimal. They are u-calibrated.

8. Ambitropical polyhedra

We now consider ambitropical cones with a polyhedral structure.

Definition 8.1. An ambitropical polyhedron is an ambitropical cone that is a finite union of alcoved
polyhedra. An ambitropical polytope is an ambitropical polyhedron that is bounded in Hilbert’s seminorm.

Observe that an ambitropical polyhedron is closed. We shall first show that fixed point sets of finitely
generated Shapley operators are ambitropical polyhedra, and then, we will show that all ambitropical
polyhedra arise in this way and provide a notion of generating family.

8.1. Polyhedral structure of the fixed point sets of finitely generated Shapley operators.

Recall that a polyhedral complex K is a set of polyhedra, called cells, that satisfies the following conditions:
every face of a polyhedron from K is also in K; the intersection of any two polyhedra σ1, σ2 ∈ K is a face
of both σ1 and σ2. A polyhedral complex is a fan if every cell is a cone. The support of a polyhedral
complex is the union of its cells. (Here, cone is understood in the sense of convex analysis, not in the
sense of ordered additive cones.)

Suppose E is the fixed point set of a finitely generated Shapley operator. So E = {x | x = A♯ ◦Bx},
for some proper pair of matrices A,B ∈ (Rmax)

m×n. We will show that E is the support of a polyhedral
complex, and that the cells of this complex correspond to calibrated policies of the two players.

It will be convenient to lift the ambitropical cone, considering

F := {(x, y) ∈ R
n × R

m | x = A♯y, y = Bx}

so that E = projx(F ), where projx is the projection (x, y) 7→ x from R
n × R

m to R
n.

Given any pair of nondeterministic policies (σ, π) ∈ S × P (see §7.2), we denote by Zσ,π the set of
couples (x, y) ∈ R

n × R
m verifying the following relations

x 6 A♯y, xi > −Aji + yj , ∀i ∈ [n], ∀j ∈ σ(i)(25a)

y > Bx yj 6 Bjk + xk, ∀j ∈ [m], ∀k ∈ π(j) .(25b)

Let us consider σ−1(j) = {i ∈ [n] | j ∈ σ(i)} and π−1(i) = {j ∈ [m] | i ∈ π(j)}. Observe that
∪j∈[m]σ

−1(j) = [n] and ∪i∈[n]π
−1(i) = [m], because σ(i) and π(j) are non-empty, for all i ∈ [n] and

j ∈ [m].

Proposition 8.1. We have

F =
⋃

(σ,π)∈S×P

Zσ,π .(26)
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Proof. The relations (25a) entail that x = A♯y, and similarly (25b) entail that y = Bx. So, for all
(σ, π) ∈ S × P, Zσ,π ⊂ F . Moreover, for all (x, y) ∈ F , taking σ(i) := argminj∈[m](−Aji + yj), we can

check that (25a) is satisfied by x = A♯y. Similarly, for all x in R
n, taking π(j) := argmaxi∈[n](Bji + xi),

we can check that (25b) is satisfied by y = Bx. So, (x, y) ∈ Zσ,π. �

Proposition 8.2. The image Xσ,π := projx(Zσ,π) is characterized by the relations

[(A ∨B)x]j 6 Bjk + xk, ∀j ∈ [m], ∀k ∈ π(j)(27a)

[(A ∨B)x]j 6 Aji + xi, ∀j ∈ [m], ∀i ∈ σ−1(j) .(27b)

Moreover, both Zσπ and Xσ,π are alcoved polyhedra.

Proof. Let (x, y) ∈ Zσ,π. Since x 6 A#y is equivalent to Ax 6 y, we deduce that (A ∨ B)x 6 y.
Moreover, (25) entail that

Aji + xi > yj, ∀j ∈ [m], ∀i ∈ σ−1(i) .(28)

It follows that x satisfies (27). Conversely, suppose that (27) holds, and let y := Bx. The inequalities
in (27a) entail that [Bx]j 6 [(A ∨ B)x]j 6 Bjk + xk 6 [Bx]j for all j ∈ [m] and k ∈ π(j), so that
Bjk + xk = yj = [(A ∨ B)x]j . Then, it follows from these inequalities that Ax 6 y, and so x 6 A♯y.
Then, we deduce from (27b) that yj 6 Aji + xi for all j ∈ [n] and i ∈ σ−1(j), which can be rewritten as
−Aji + yj 6 xi for all i ∈ [n] and j ∈ σ(i), and so A♯y 6 x, which shows that (x, y) ∈ Zσ,π.

It is immediate from the form of the constraints in (25) and (27) that Zσ,π and Xσ,π are alcoved
polyhedra. �

We define the type of a point x ∈ R
n to be the pair of partially defined maps τ := (σ, π) where for all

j ∈ [m], π(j) denotes the set of k ∈ [n] such that the relation (27a) holds, and σ−1(j) denotes the set
of i ∈ [n] such that (27b) holds. We say that a type is proper if both σ and π are policies (this requires
the maps σ and π to be totally defined). We denote by T the set of proper types associated to points
x ∈ R

n.

Theorem 8.3. Suppose E is the fixed point set of the finitely generated Shapley operator. Then, the
collection of alcoved polyhedra (Xτ )τ∈T constitutes a polyhedral complex whose support is E. Moreover,
the cell Xτ consists precisely of those fixed points u such that the pair τ of nondeterministic policies in
the mean payoff game associated to T is u-calibrated.

Proof. It follows from (26), E = projx(F ) and Proposition 8.2 that E =
⋃

τ Xτ . We have to show that
the collection of polyhedra {Xτ}τ∈T is a polyhedral complex.

Consider τ = (σ, π) ∈ T and τ ′ = (σ′, π′) ∈ T . Let π′′ ∈ P be such that π′′(j) = π(j) ∪ π′(j) for all
j ∈ [m], and let σ′′ ∈ S be such that σ′′(i) = σ(i) ∪ σ′(i) for all i ∈ [n]. It is immediate from (27) that
Xτ ∩Xτ ′ = Xτ ′′ . Let now x be a point in the relative interior of Xτ ′′ . For j ∈ [m], let π′′′(j) be defined
as the set of k such that [(A ∨B)x)]j 6 Bjk + xk. For i ∈ [n], let σ′′′(i) be defined as the set of j such
that [(A ∨B)x]j 6 Aji + xi, so that τ ′′′ is the type of x. Observe that σ′′′(i) ⊃ σ′′(i) ⊃ σ′(i) 6= ∅, which
entails that σ′′′ is proper. Similarly, π′′′ is proper. Moreover, the inclusion Xτ ∩ Xτ ′ ⊃ Xτ ′′′ is trivial.
The reverse inclusion follows from the observation that relint(Xτ ∩Xτ ′) ⊂ Xτ ′′′ . This follows from the
fact that τ ′′′ is the type of any point x ∈ relint(Xτ ∩Xτ ′).

Finally, observing that a face F ′ of Xτ is obtained by saturating some of the inequalities (27), and
taking for τ ′ the type of an arbitrary point in the relative interior of this face, it is immediate that
F ′ = Xτ ′ .

Moreover, considering the proof of Proposition 7.4, we see that a pair of nondeterministic policies
τ = (σ, π) ∈ T is u-calibrated if and only if, for all deterministic policies σd, πd induced by σ and π, we
have u = T (u) = T σd(u) = πdT (u), and this means precisely that u ∈ Xτ . �

Remark 8.4. The polyhedral complex of Theorem 8.3 generalizes the complex introduced by Develin and
Sturmfels to represent tropical polyhedra [DS04]. The latter complex is recovered by considering the
special case in which A = B, so that T = B♯ ◦ B. Then, the range of T is precisely the dual tropical
cone generated by the opposite of the columns of B. By Proposition 8.2, the cell Xσ,π is given by
{x | (Bx)j 6 Bjk +xk, k ∈ π(j), (Bx)j 6 Bji+xi, i ∈ σ−1(j)}, and then, we see that this cell coincides

with X π̄−1,π̄, in which π̄ is the nondeterministic policy whose graphs is the union of those of π and σ−1.

The cells X π̄−1,π̄ are precisely the ones that constitute the polyhedral complex of [DS04] and the policy
π̄ is equivalent to the combinatorial type defined there.
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8.2. Polyhedral complexes associated with ambitropical polyhedra. Whereas ambitropical cones
arise as fixed point sets of Shapley operators, we shall see that ambitropical polyhedra arise as fixed point
sets of finitely generated Shapley operators.

In the special case of alcoved polyhedra, the following lemma shows that these Shapley operators are
simple, and its proof shows that they are associated with one-player games.

Lemma 8.5. Let E ⊂ R
n be an alcoved polyhedron, Q−

E(x) = supE{y ∈ E; y 6 x} and Q+
E(x) =

infE{y ∈ E; y > x}. Then Q−
E and Q+

E are finitely generated Shapley operators.

Proof. Observe first that supE coincides with the sup law of Rn and that similarly infE coincides with the
inf law of Rn, because E is an alcoved polyhedron (stable by these sup and inf laws). We can find a matrix
M ∈ (Rmax)

n×n such that E = A(M), i.e., E = {x ∈ R
n | x > Mx}. We claim that Q+

E(x) = M∗x.

Indeed, by Lemma 2.3, M∗x ∈ A(M). Moreover, since M∗ > I, M∗x > x, and so Q+
E(x) 6 M∗x. Now,

if z > x for some z ∈ A(M), we have z = M∗z > M∗x, showing that M∗x 6 Q+
E(x). The operator

x 7→ M∗x is finitely generated. A dual argument shows that Q−
E which is also finitely generated. �

We now compute a finitely generated Shapley retraction on an ambitropical polyhedron represented
as a union of alcoved polyhedra.

Lemma 8.6. Suppose that E is the union of a finite family of alcoved polyhedra (Ek)k∈K . Then,

Pmax
E = sup

l∈K

Q−
El
, Pmin

E = inf
l∈K

Q+
El

.

Proof. By definition of Q−
El

, for all x ∈ R
n, El ∋ Q−

El
(x) 6 x. Since El ⊂ Emax and Emax is stable by

supremum, we deduce that Emax ∋ supl∈K Q−
El
(x) 6 x, and so, Pmax

E (x) > supl∈K Q−
El
(x). Moreover,

any element z of Emax can be written as z = supl∈K zl for some zl ∈ El. If z 6 x, it follows that

zl 6 Q−
El
(x), from which we deduce that z 6 supl∈K Q−

El
(x). Since this holds for all Emax ∋ z 6 x, it

follows that Pmax(x) 6 supl∈K Q−
El
(x). The proof of the characterization of Pmin

E is dual. �

Corollary 8.7. Let E be the union of a finite family of alcoved polyhedra (Ek)k∈K . Then

Q−
E(x) = inf

k∈K
Q+

Ek
(sup
l∈K

Q−
El
(x)), Q+

E(x) = sup
k∈K

Q−
Ek

( inf
l∈K

Q+
El
(x)) .(29)

Proof. This follows from Theorem 4.7 and Lemma 8.6. �

Theorem 8.8. Let E be a subset of Rn, then the following are equivalent:

(1) E is an ambitropical polyhedron
(2) There exists a finitely generated Shapley operator P such that P = P 2 and E = {x ∈ R

n|x =
P (x)}.

(3) E is the fixed point set of a finitely generated Shapley operator;
(4) E is a closed ambitropical cone and Ēmax and Ēmin are finitely generated as modules over Rmax

and Rmin, respectively.

Proof. (1)⇒(2). The set E is the range of the idempotent Shapley operator Q̄−
E , and it follows from

Corollary 8.7 and Lemma 8.5 that this Shapley operator is finitely generated.
(2) ⇒ (3) is obvious.
(3) ⇒ (4). Since E is the fixed point set of a Shapley operator, E is a closed ambitropical cone. If this

Shapley operator is finitely generated, then by Theorem 8.3, E can be written as the union of a finite
family of alcoved polyhedra (Xτ )τ∈T. Then, Ēmax = clo↓ Emax coincides with the union of the lower

closures clo↓ Xτ , for τ ∈ T. By Lemma 2.3, every clo↓ Xτ is a finitely generated Rmax-semimodule. It
follows that Ēmax is a finitely generated Rmax-semimodule.

(4) ⇒ (1). By Corollary 8.7, E is the fixed point set of the operator Q̄−
E given in (29). By Lemma 8.5,

every operator Q±
Ek

is finitely generated. Hence, Q̄−
E is finitely generated. Then, by Theorem 8.3, E is a

finite union of alcoved polyhedra. �

The description of an ambitropical polyhedron as the fixed point set of a Shapley operator is analogous
to the “external” description of a polyhedron. We next show that ambitropical polyhedra admits an
alternative description, by generators.

Definition 8.2. A description by generators of a closed ambitropical coneE consists of a pair (Umax, Umin)
such that Umax is a tropical generating set of Ēmax and Umin is a dual tropical generating set of Ēmin.
We say that the description is finite if the sets Umax and Umin are finite.
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The generating sets Umax and Umin uniquely determine Emax and Emin, and so they uniquely deter-
mine the ambitropical cone E, which coincides with ImPmax

E ◦ Pmin
E .

Corollary 8.9. A closed ambitropical cone is an ambitropical polyhedron if and only if it has a finite
description by generators. Moreover, it is an ambitropical polytope if and only if these generators belong
to R

n.

Proof. If E is an ambitropical polyhedron, it follows from Theorem 8.8, (4) that E admits a finite
description by generators.

Conversely, if E is a closed ambitropical cone that admits a finite description by generators, (Umax, Umin),
by (7) and its dual, Pmax

E and Pmin
E are finitely generated Shapley operators, and so, E is the fixed point

set of the finitely generated Shapley operator Pmax
E ◦ Pmin

E . So, E is an ambitropical polyhedron by
Theorem 8.8 (2).

Now, if E is bounded in Hilbert’s seminorm, we have Ēmax = Emax ∪ {(−∞, . . . ,−∞)}, and dually,
Ēmin = Emin ∪ {(+∞, . . . ,+∞)}, we get Umax ⊂ Emax and Emin ⊂ Umin, showing that the generators
belong to R

n. Conversely, suppose that the elements of Umax and Umin belong to R
n, and let R denote

the maximal Hilbert seminorm of these elements. We observe that balls in Hilbert’s seminorm are
invariant by the operations of suprema and infima, and so, considering the formula (7), we deduce that
E ⊂ ImPmax

E is included in the ball of radius R in Hilbert’s seminorm. �

When E is an ambitropical polytope, for any description by generators (Umax, Umin), Umax and Umin

are necessarily subsets of E, and so we actually get a proper notion of internal representation of E by
generators.

In particular, we have the following characterization of ambitropical polytopes.

Corollary 8.10. Every finite subset of Rn admits an ambitropical hull that is an ambitropical polytope,
and all the ambitropical polytopes arise in this way.

Proof. By Theorem 4.17, an ambitropical hull of a finite subset E = {u1, . . . , uk} of R
n is given by

the range of the finitely generator operator Q̄+
E = Pmax

E ◦ Pmin
E , which, by Corollary 8.9, is bounded in

Hilbert’s seminorm, and so, it is an ambitropical polytope.
Conversely, suppose that F is an ambitropical polytope. Then, F is a finite union of alcoved polyhedra

Fk that are bounded in Hilbert seminorm. Each of these alcoved polyhedra Fk has a finite set of tropical
generators. By taking the union of these finite sets we obtain a (possibly redundant) finite set F+ of
tropical generators of Emax. The dual constructions yields a finite set F− of dual tropical generators
of Emin. Observe that the explicit construction of the retraction Q̄+

E given in Corollary 8.7 involves

elementary operators Q±
Ek

which only depend on the primal and dual tropical generators of Ek. Hence,

by taking for E the union of the two sets F±, we get that Q̄+
E = Q̄+

F , showing that F is an ambitropical
hull of the finite set E. �

Example 8.11. Corollary 8.10 is illustrated in Figure 3, showing an ambitropical hull of the points
a1, . . . , a9 given by the columns of the matrix





a1 a2 a3 a4 a5 a6 a7 a8 a9

4 5 3 1 0 0 0 0 4
0 2 4 3 4 2 2 −1 0
0 0 0 0 2 4 2 0 3





9. Homogeneous ambitropical polyhedra

We next study the class of ambitropical polyhedra that are homogeneous in the sense of Definition 6.1.
We shall see that such polyhedra arise when studying “locally” ambitropical polyhedra, or when con-
sidering their behavior at infinity. Moreover, they admit a combinatorial characterization, in terms of
posets.

Definition 9.1. Let C be an ambitropical polyhedron in R
n and u ∈ C. The tangent cone of C at point

u, denoted by Tu(C), is the set of vectors v such that u+ sv ∈ C holds for all s > 0 small enough.

Let us recall the following definition from variational analysis.

Definition 9.2. A function T : Rn → R
p is semidifferentiable at point u ∈ R

n if there exists a continuous
map T ′

u, (positively) homogeneous (so T ′
u(αx) = αT ′

u(x) holds for all α > 0 and x ∈ R
n) such that

T (u+ h) = T (u) + T ′
u(h) + o(‖h‖) .(30)
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Figure 3. A finite collection of points E = {a1, . . . , a9}; the tropical cone Emax that it
generates (left); the dual tropical cone Emin (right); and the ambitropical hull ImPmax

E ◦
Pmin
E (middle).

Then, T ′
u(h) must coincide with the one sided directional derivative:

T ′
u(h) = lim

s→0+
s−1(T (u+ sh)− T (u)) .

Conversely, if T is Lipschitz continuous, an application of Ascoli’s theorem shows that if this directional
derivate exists for all h ∈ R

n, then, T is semidifferentiable at point u, see e.g. [AGN16, Lemma 3.2]. We
shall be consider especially the situation in which T is continuous and piecewise linear, meaning that Rn

can be covered by finitely many polyhedra on each of which the restriction of T is an affine map. Then,
T is automatically Lipschitz continuous, and the directional derivative always exists, showing that T is
semidifferentiable. In this case, the semiderivative h 7→ T ′

u(h) is also piecewise linear, and this entails
that the local expansion (30) is exact for h small enough:

Proposition 9.1. Let T : Rn → R
n be piecewise linear, and let u ∈ R

n. Then, there exists a neighbor-
hood V of 0 such that, for all h ∈ V ,

T (u+ h) = T (u) + T ′
u(h) .(31)

�

The chain rule extends to semidifferentiable maps: if f, g are Lipschitz continuous, if f is semidiffer-
entiable at point u, and if g is semidifferentiable at point f(u), then

(g ◦ f)′u = g′f(u) ◦ f
′
u ,(32)

see Lemma 3.4 of [AGN16].
Let us also recall the rule of computation of directional derivatives of suprema and infima. If f is a

function R
n → R that can be written as a supremum of a finite family of functions f = maxi∈I fi and if

each fi has one sided directional derivatives at point u, then

f ′
u(h) = max

i∈I∗(u)
(f ′

i)u(h), where I∗(u) = {i ∈ I | f(u) = fi(u)} ,(33)

see [RW98, Exercise 10.27]. A dual rule applies to a function f = mini∈I fi.
We call homogeneous ambitropical polyhedron an ambitropical polyhedron that is a homogeneous

ambitropical cone.

Proposition 9.2. Suppose C is an ambitropical polyhedron, and let u ∈ C. Then, the tangent cone
Tu(C) is a homogeneous ambitropical polyhedron.
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Proof. It follows from the definition of Tu(C) that if v ∈ Tu(C), then sv ∈ Tu(C) for all s > 0. Since C is
an ambitropical polyhedron, we have C = {x ∈ R

n | T (x) = x} where T is a finitely generated Shapley
operator. We claim that

Tu(C) = {h ∈ R
n | T ′

u(h) = h} .

Let h ∈ R
n such that T ′

u(h) = h. For s > 0 small enough such that sh belongs to the neighborhood
V of Proposition 9.1, we have that T (u+ sh) = T (u) + T ′

u(sh) = u + sT ′
u(h) = u + sh. It follows that

h ∈ Tu(C). Conversely if h ∈ Tu(C), u+ sh ∈ C holds for all s small enough, hence, T (u+ sh) = u+ sh
holds for all such s, and using (31), we deduce that T ′

u(h) = h. Therefore, Tu(C) is the fixed point set
of the homogeneous Shapley operator T ′

u. Using the chain rule (32), the rule of semidifferentiation of
suprema (33), and the dual rule of semidifferentiation of infima, we deduce that T ′

u is finitely generated.
�

Definition 9.3. Suppose C is a finite union of (ordinary) polyhedra. Then, the recession cone of C, Ĉ,
is the set of vectors v such that there is a vector x ∈ C such that x+ sv belongs to C for all s > 0.

If T is piecewise linear Rn → R
p, an in particular if T is finitely generated, then the recession function

T̂ (x) := lim
s→∞

s−1T (sx)

is well defined. Observe that T̂ is finitely generated as soon as T is finitely generated (this follows from
the proof of Proposition 7.2).

Proposition 9.3. Suppose C is an ambitropical polyhedron. Then, the recession cone Ĉ is a homoge-
neous ambitropical polyhedron.

Proof. If v ∈ Ĉ, then αv ∈ Ĉ holds for all α > 0, showing that C is homogeneous. Suppose that
C = {x ∈ R

n | T (x) = x}, where T is a finitely generated Shapley operator. We claim that Ĉ = {v ∈

R
n | T̂ (v) = v}. Let v ∈ Ĉ. Then, the exists y ∈ C such that y + sv ∈ C holds for all s > 0. So

T (y+ sv) = y+ sv. Dividing by s, using the nonexpansive character of T , and letting s tend to infinity,

we deduce that T̂ (v) = v. Conversely, suppose that T̂ (v) = v. Then, we can find a vector y such that
the ray [0,∞) ∋ s 7→ y + sv is included in a region in which T is affine. Then, T (y + sv) = w + sCv for
some matrix C and for some vector w. Specializing at s = 0, we deduce that w = T (y). We also have

T (y + sv)/s → Cv as s → ∞, and so T̂ (v) = Cv. It follows that T (y + sv) = T (y) + sT̂ (v). Hence,

T (y+ sv) = y+ sv, showing that y+ sv ∈ C, for all s > 0, and so v ∈ Ĉ. Since T̂ is a finitely generated

homogeneous Shapley operator, this entails that Ĉ is a homogeneous ambitropical polyhedron. �

Theorem 9.4. Let E be a subset of Rn, then the following are equivalent:

(1) E is a homogeneous ambitropical polyhedron;
(2) There exists a homogeneous finitely generated Shapley operator such that P = P 2 and E = {x ∈

R
n|x = P (x)};

(3) There exists a homogeneous finitely generated Shapley operator T such that E = {x ∈ R
n|x =

T (x)}.

Proof. (1)⇒(2). If E is a homogeneous ambitropical polyhedron, we can write E as a finite union ∪kEk

where the Ek are homogeneous alcoved polyhedra. Then, the operators Q±
Ek

are homogeneous and

finitely generated. We conclude as in the proof of the implication (1)⇒(2) of Theorem 8.8.
(2)⇒(3): trivial.
(3)⇒(1): by Theorem 8.8, E is an ambitropical polyhedron. Since E = {x ∈ R

n|x = T (x)}, and T is
homogeneous, E is homogeneous.

�

Given a homogeneous ambitropical polyhedron C of Rn, we define the skeleton of C, SkC, to be the
intersection of C with {0, 1}n. Given an (ordered) partition I = (I1, . . . , IS) of [n], we define the Weyl
cell of C to be

W I = {x ∈ R
n | (i ∈ Ir , j ∈ Is, r 6 s) =⇒ xi 6 xj} .

E.g., {x ∈ R
4 | x1 6 x2 = x3 6 x4} is the Weyl cell corresponding to the partition ({1}, {2, 3}, {4}) of

the set {1, 2, 3, 4}. When each of the sets I1, . . . , IS has exactly one element, W I is a Weyl chamber of
An type, i.e., a set of the form {x ∈ R

n | xσ(1) 6 . . . 6 xσ(n)} for some permutation σ.
We shall need the following observation, which is a variation on the construction of the canonical

triangulation of order polytopes by Stanley [Sta86, § 5].
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Lemma 9.5. Any homogeneous ambitropical polyhedron is a union of Weyl cells.

Proof. Any ambitropical polyhedron is a finite union of alcoved polyhedra, and if this polyhedron is
homogeneous, the alcoved polyhedra must be homogeneous. It suffices to show that a homogeneous
alcoved polyhedron is a finite union of Weyl cells. A homogeneous alcoved polyhedron is of the form
E = {x | xi 6 xj , ∀(i, j) ∈ L} where L is a subset of [n] × [n]. We shall think of L as a relation on the
set [n], and, since, E is unchanged if L is replaced by its reflexive and transitive closure, we assume that
L is a preorder. Then, we define the equivalence relation ≡L, on [n], such that for any i, j ∈ [n], i ≡L j
if and only if (i, j) ∈ L and (j, i) ∈ L. The equivalence classes determined by this relation are nonempty
subsets of [n], that constitute a partition of [n]. The relation L determines a partial order 6L on the set
of these equivalence classes, the order being defined by I 6L J if (i, j) ∈ L for all i ∈ I and j ∈ J , and
for all equivalence classes I, J . We choose a linear extension of this partial order, allowing us to write
the equivalence classes as I1, . . . , IS , in such a way that Ik 6L Il =⇒ k 6 l. Such a linear extension
determines then a Weyl cell W I with I = (I1, . . . , IS). By construction, W I ⊂ E. Moreover, if x ∈ E,
then, taking J1 := argmini∈[n] xi, we see that J1 must be a union of equivalence classes Ii1 , . . . , Iim1

.
Similarly, J2 = argmini∈[n]\I1 xi must be a union of equivalence classes Iim1+1

, . . . , Iim2
. Continuing in

this way, setting Jk := argmini∈[n]\Ik−1
xi = Iimk−1

∪ · · · ∪ Imk
until J1 ∪ · · · ∪ Jk = [n], we get that

x ∈ W I with I = (Ii1 , . . . , Iis). This shows that E is the union of the Weyl cells W I arising from all
the linear extensions of the order 6L. Note that different extensions give different Weyl cells. �

The following theorem characterizes the polyhedral complexes associated with homogeneous ambi-
tropical polyhedra, showing that they are in bijection with lattices included in {0, 1}n. These lattices
have been studied by Crapo [Cra82].

Theorem 9.6 (Homogeneous ambitropical cones are equivalent to lattices in {0, 1}n). The map C 7→
SkC establishes a bijective correspondence between homogeneous ambitropical polyhedra of Rn and subsets
of the partially ordered set ({0, 1}n,6) that contain the bottom and the top element, and that are lattices
in the induced order. Moreover, there is a one-to-one correspondence between the chains in SkC and
the Weyl cells included in C; the cardinality of each of these chains coincides with the dimension of the
corresponding Weyl cell plus one unit; and the collection of these Weyl cells constitutes a polyhedral fan
with support C.

Proof. If C is a homogeneous ambitropical polyhedron, then, by Theorem 9.4, there is a homogeneous
finitely generated Shapley operator P = P 2 : Rn → R

n such that C = {x ∈ R
n | x = P (x)}. The

coordinates of a homogeneous finitely generated Shapley operator can be written as min-max formula
without additive translations (i.e., as a monotone Boolean formula), and so, P admits a restriction
{0, 1}n → {0, 1}n. Since Sk(C) = C∩{0, 1}n, this entails that Sk(C) = P ({0, 1}n) is an order preserving
retract of {0, 1}n. Moreover, since P is positive homogeneous, the identically zero vector is fixed by P ,
and since P commutes with the addition of a constant vector, the unit vector is also fixed by P . This
implies P ({0, 1}n) is a lattice in the induced order of {0, 1}n, containing the bottom and top elements.

We now claim that for all permutations σ of [n], the action of P on the chamber W σ := {x | xσ(1) 6

. . . 6 xσ(n)} is uniquely determined by its action on {0, 1}n. In fact, P is linear on the chamber W σ,
and since this chamber is a cone with a generating family consisting of vectors in {0, 1}n, it follows that
P is uniquely determined by its restriction to {0, 1}n. In particular, P fixes the full chamber W σ if and
only if it fixes each generator of each chamber belonging to {0, 1}n. So, the fixed point set of P , which is
C, is uniquely determined by the fixed point set of P restricted to {0, 1}n, which is Sk(C). This shows
that the correspondence between a homogeneous ambitropical polyhedron and its skeleton is bijective.

We now show the following claim: every subset S of {0, 1}n that is a lattice in the induced order
and contains the bottom and top elements of {0, 1}n, can be realized as a skeleton of a homogeneous
ambitropical polyhedron. The map T (x) := supS{u ∈ {0, 1}n | u 6 x} is an order preserving self-map
of {0, 1}n such that S = {x ∈ {0, 1}n | x = T (x)}.Now, by a standard result, any order preserving map
f from {0, 1}n to {0, 1} such that f(0, . . . , 0) = 0 and f(1, . . . , 1) = 1 can be represented by a monotone
Boolean function. Indeed, let F := {y ∈ {0, 1}n | f(y) = 1}, and consider the monotone Boolean function

g(x) :=
∨

y∈F

∧

i∈[n], yi=1

xi .

We have that f(x) = g(x) holds for all x ∈ {0, 1}n. This establishes the claim.
By Lemma 9.5, C is a finite union of Weyl cells. We observe that the intersection of the Weyl cell

W I with {0, 1}n is a chain. Indeed, the bottom element of W I is the zero vector. The smallest non-zero
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element of W I is the vector x gotten by setting xi = 0 for all i ∈ ∪s<SIs and xi = 1 for all i ∈ IS . The
smallest element of W I greater than x is the vector y gotten by setting yi = 0 for all i ∈ ∪s<S−1Is and
yi = 1 for all i ∈ ∪s>S−1Is, etc. This yields a chain of length S + 1. Moreover, consider the linear space
HI = {x ∈ R

n | xi = xj , ∀i, j ∈ Is, ∀s ∈ [S]}. Every set Is yields |Is| − 1 independent linear relations,

so, HI is of dimension n− (
∑S

s=1 |Is| − 1) = n+ S −
∑S

s=1 |Is| = S. We have W I ⊂ HI , and since for
all 0 < α1 < · · · < αS , the vector x such that xi = αs for all i ∈ Is, we deduce that W I is of dimension
at least S. It follows that W I is of dimension equal to S.

Finally, a face of the Weyl cell associated with an ordered partition I1, . . . , IS is again a Weyl cell,
associated with a new partition obtained by merging several consecutive sets of the partition in a single
class (this corresponds to the operation of taking a subchain in the skeleton). Moreover, taking the
intersection of Weyl cells corresponds to taking the intersection of the associated chains, which entails
that the collection of these Weyl cells constitutes a polyhedral fan. �

We deduce that the class of ambitropical sets is not closed under projection:

Example 9.7. Consider the subset L of {0, 1}5 given by bottom, top and the following elements (0, 1, 0, 0, 1),
(0, 0, 1, 0, 1), (0, 1, 1, 1, 0), (1, 1, 1, 0, 1), with induced order. The set L is a lattice, so we know by the pre-
vious result that it corresponds to an homogeneous ambitropical polyhedron C of R5, of which it is the
skeleton L = C ∩ {0, 1}5. Let us consider now the projection proj(C) on R

4 of C which is obtained by
taking the first 4 coordinates, and observe that it is a homogeneous polyedron. Assume that it is an am-
bitropical cone. Then, by Theorem 9.6 again, its skeleton would be a lattice. But the skeleton of proj(C)
is the projection of the skeleton L of C, which is not a lattice since the sup of the two elements (0, 1, 0, 0)
and (0, 0, 1, 0) is not well defined, because the two elements (0, 1, 1, 1) and (1, 1, 1, 0) are minimal upper
bounds. This shows that proj(C) is not an ambitropical cone.

Example 9.8. Consider the finitely generated Shapley operator T : R3 → R
3,

T (y) =
(

(x1 ∧ x2) ∨ (x1 ∧ x3) ∨ (x2 ∧ x3), x2, x3

)

.

The fixed point set E of T is the butterfly shaped polyhedral complex with two full dimensional cells E1

and E2, shown in Figure 4. Explicitly, E1 = {x ∈ R
3 | x2 > x1 > x3}, E2 = {x ∈ R

3 | x3 > x1 > x2}.
Using Lemma 8.6, we get that the tropical projections are given by:

Pmax
E





x1

x2

x3



 =





(x1 ∧ (x2 ∨ x3))
x2

x3



 and Pmin
E





x1

x2

x3



 =





(x1 ∨ (x2 ∧ x3))
x2

x3





Example 9.9. A union of Weyl cells that is not ambitropical is shown at the left of Figure 7. This union
is not ambitropical because it does not contain the unique geodesic between two specific points of this
union, contradicting the conclusion of Proposition 4.18.

Example 9.10. Consider the ambitropical polyhedron E in Figure 6. We have that in this case

Q−
E





x1

x2

x3



 =





(x1 ∧ x2 ∧ (1 + x3)) ∨ (x1 ∧ (1 + x2) ∧ x3) ∨ (x2 ∧ x3 ∧ (1 + x1))
x2 ∧ (1 + x1) ∧ (1 + x3)
x3 ∧ (1 + x2) ∧ (1 + x1)





The construction of the sets Emax and Emin, as well as Theorem 4.12, showing that Pmax ◦ Pmin and
Pmin ◦ Pmax are retractions on an ambitropical set E, are illustrated in the figure.

Example 9.11. The construction of the ambitropical hulls by means of Theorem 4.17 is illustrated in Fig-
ure 8. Here, E = {a, b} where a = (1, 0, 0) and b = (0, 1, 0). In this special case, the sets Emax and Emin

are the ranges of Q̄+
E and Q̄−

E , respectively, and so, they provides ambitropical hulls of {a, b}. There is an
infinite family of ambitropical hulls interpolating between Emax and Emin. One element of this family is
shown in black. It constitutes a polyhedral complex whose cells are cones, and whose rays are generated
by the vectors a, b and by the integer vectors (i, 4− j, 0) for i = 1, 2, 3 and (i− 1, 4− j, 0) for i = 1, . . . , 4.

Example 9.12. We now give an example in dimension 4. Consider

EI = {x ∈ R
4 | x1 6 x2 6 x3 6 x4}

and for the circular permutation γ with cycle (1, 2, 3, 4),

Eγ = {x ∈ R
4 | x4 6 x1 6 x2 6 x3} .
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x1 x2

x3

g1g2·

h

f1

f2

x1 x2

x3

g1g2·

h

f1

f2

x1 x2

x3

g1g2·

h

f1

f2

Figure 4. A homogeneous ambitropical polyhedron E consisting of two unbounded
alcoved polyhedra (left). The tropical polyhedral cones Emax (center) and Emin (right).
See Example 9.8.

(1, 1, 1)

(0, 1, 1) (1, 0, 1) (1, 1, 0)

(0, 0, 1) (0, 1, 0) (1, 0, 0)

(0, 0, 0)

Figure 5. The skeleton (in bold) of the ambitropical polyhedron of Figure 4 (the two
nodes (1, 0, 0) and (0, 1, 1) in gray do not belong to the skeleton). The two maximal
chains (of length 4) yield the representation of C as the union of two Weyl cells (each
being of dimension 3).

x1 x2

x3

g1g2·

h

f1

f2

x1 x2

x3

g1g2·

h

f1

f2

x1 x2

x3

g1g2·

h

f1

f2

Figure 6. An ambitropical polyhedron E consisting of two alcoved polyhedra (left).
The tropical polyhedral cones Emax (center) and Emin (right). The homogeneous am-
bitropical polyhedron of Figure 4 is precisely the tangent cone T(0,0,0)E.

The union of the chambers EI and Eγ is shown in Figure 9, as well as the range of Q−
E , which is larger

than this union, implying that E is not ambitropical. AN example of non-trivial ambitropical cone in
R

4 is shown in Figure 10.
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x1 x2

x3

g1g2·

a

b
h

f1

f2

x1 x2

x3

a

b
x1 x2

x3

a

b

Figure 7. Illustrating the metric convexity property of ambitropical cones. A fan
which is not ambitropical (left). The geodesic in Hilbert’s projective metric connecting
the two points a and b (dotted segment) is unique, but it is not included in the fan.
An ambitropical fan (middle, and right). An example of geodesic connecting a and b,
included in the fan is shown (dark blue broken line, middle). Another example of such
a geodesic is shown at right.

x1 x2

x3

a

b
Emax

Emin

Figure 8. Three examples of ambitropical hulls of a set with two elements E = {a, b}.
The range of Q̄+

E is the tropical cone Emax shown in blue, whereas the range of Q̄−
E is

the dual tropical cone Emin shown in red. Another ambitropical hull is represented by
the zigzag line (in black). By Theorem 4.17, all these ambitropical hulls are isomorphic.

x1x2

x3

x4

x1x2

x3

x4

Figure 9. The union E of the chambers x4 > x3 > x2 > x1 and x3 > x2 > x1 > x4

(left) is not ambitropical. Indeed, the fixed point set of Q−
E (middle) is the union of

these chambers with the chambers x3 > x4 > x2 > x1 and x3 > x2 > x4 > x1, which
coincides with the alcoved polyhedron defined by x3 > x2 > x1. The latter coincides
with the range of Pmax

E and with the range of Pmin
E .
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x1x2

x3

x4

x1x2

x3

x4

x1x2

x3

x4

Figure 10. The union E of the three chambers {x4 > x3 > x2 > x1}, {x2 > x3 >

x4 > x1} and {x2 > x3 > x1 > x4} (left) is an ambitropical cone. Tropical cone Emax

(middle) and Emin (right).
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