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We discuss here the application of the simultaneous block diagonalization (SBD) of matrices
to the study of the stability of both complete and cluster synchronization in random (generic)
networks. For both problems, we define indices that measure success (or failure) of application of
the SBD technique in decoupling the stability problem into problems of lower dimensionality. We
then see that in the case of random networks the extent of the dimensionality reduction achievable
is the same as that produced by application of a trivial transformation.
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I. INTRODUCTION

The mathematics literature has dealt with the fundamental problem of simultaneous block diagonalization (SBD)
of a set of matrices [1–5]. The first paper where this technique was applied to network synchronization is [6], which
focused on complete synchronization of networks with nodes connected through two or more coupling functions. More
recently this technique has been applied to cluster synchronization of networks [7]. The use of this technique reduces
the stability problem to a number of subproblems of smallest dimension. The original Master Stability Function
(MSF) derivation of [8] decouples the stability problem for any N -dimensional matrix corresponding to an undirected
network into N independent blocks, where each block coincides with one of the matrix eigenvalues. However, it is
unclear what the extent of the dimensionality reduction obtained from application of the SBD technique can be.

Here we characterize the extent of this dimensionality reduction when the SBD approach is applied to generic
networks, where by a generic network we mean a ‘typical’ network that is produced by a random process such as the
Erdős-Rényi network generation algorithm [9] or the configuration model [10]. Random networks are broadly studied
in the literature as fundamental and paradigmatic models for the structure and dynamics of complex systems [11].
Previous work has investigated random networks in the context of epidemics [12–14], percolation [15, 16], resilience
to attacks and failures [17, 18], games [19], network synchronization [20] and control [21]. It is therefore important
to characterize both complete and cluster synchronization for this class of networks. We show that application of the
SBD reduction to these random networks does not lead to a beneficial reduction of the stability problem, either in
the case of complete synchronization or cluster synchronization. Nonetheless, we do not mean that the technique is
not useful. However, it points out that its usefulness is limited to the non-generic case, for which the reduction can
sometimes be very significant[6, 7].

Our paper is structured as follows: In sections II and III we provide the mathematical background for the method we
use to compute the SBD. Our main results are presented in Sections IV and V, which discuss the cases of complete and
cluster synchronization respectively. In those sections, we define indices to measure the extent of the dimensionality
reduction resulting from the application of the SBD algorithm. In the case of randomly constructed networks, we see
that the index value often equals zero to demonstrate certain limitations of the method. In section VI, we present
a discussion on the relevance of our findings in applying the SBD to randomly constructed networks. Lastly, the
conclusions are given in section VII.

II. SIMULTANEOUS BLOCK DIAGONALIZATION OF MATRICES

The problem of simultaneous block diagonalization can be formalized as follows: given a set of N × N matrices
A(1), ..., A(M) find an N × N orthogonal matrix P such that the matrices PTA(k)P have a common block-diagonal
structure for k = 1, ...,M . It should be noted that such a block-diagonal structure is not unique in at least two
senses: first, the blocks may be permuted, resulting in block diagonal decompositions that are isomorphic; second, the
matrices corresponding to certain blocks may be further refined into smaller blocks, resulting in a structure that is
fundamentally different. A block diagonal structure with smaller blocks is considered to be finer and the finest SBD
(FSBD) is beneficial in that it provides the simplest elements in the decoupling of systems as described above.

There are two different but closely related theoretical frameworks with which we can address our problem of finding
a block-diagonal decomposition for a finite set of given N ×N real matrices. The first is group representation theory

ar
X

iv
:2

10
8.

07
89

3v
3 

 [
co

nd
-m

at
.d

is
-n

n]
  2

4 
Ja

n 
20

22



2

[22, 23] which relies on group symmetries and ensures a degree of universality in a SBD. The second is matrix ∗-
algebras [24] which are not only necessary to answer the fundamental theoretical question of the existence of such a
finest block-diagonal decomposition but also useful in its computation. Indeed, existence can be justified through the
structure theorem of ∗-algebras [25, Theorem 5.4] and this structure has also been utilized to formulate algorithms
for computing the SBD of A(1), ..., A(M). In particular, our approach appeals to this structure, but it should be noted
that both frameworks have been utilized in the literature [26–30].

In what follows we write

P = SBD(A(1), A(2), ..., A(M)) (1)

to indicate that the transformation yields

PTA(k)P = B(k), k = 1, ...,M, (2)

where all the matrices B(k), k = 1, ...,M share the same finest block diagonal form,

B(k) =
⊕
j

B
(k)
j , (3)

with the blocks B
(k)
j all having the same sizes for k = 1, ...,M and not being further reducible by a simultaneous

transformation.

III. PROCEDURE TO DETERMINE P

Here we describe the procedure to compute the FSBD for a set of M symmetric matrices denoted A(k), k =
1, 2, . . . ,M , previously published [5]. First, we find a matrix U that simultaneously commutes with each matrix A(k)

[5], that is, [A(k), U ] = A(k)U − UA(k) = On, k = 1, . . . ,M , where On is the n-by-n matrix of all zeroes.
Define the vectorizing function V : Rn×m 7→ Rnm to take as input an n-by-m matrix and return a vector by stacking

each of the matrix’s columns on top of each into a vector of length nm. For two matrices A ∈ Rn×m and B ∈ Rp×`,
let A ⊗ B ∈ Rnp×m` denote the Kronecker product. As the commutator equation is linear in U , it can alternatively
be expressed as a matrix-vector product.

V(A(k)U − UA(k)) = V(A(k)U)− V(UA(k))

= V(On), k = 1, 2, . . . ,M
(4)

The vectorizing function applied to a matrix product can be expressed as a matrix-vector product, where forA ∈ Rn×m
and B ∈ Rm×p, the product V(AB) = (Ip ⊗ A)V(B) = (BT ⊗ In)V(A) (see Proposition 7.1.9 in [31]). Apply these

identities to Eq. (4), and define P (k)V(U) = (In ⊗ A(k) − (A(k))T ⊗ In)V(U) = 0N2 where 0N2 is the vector of all
zeros of length N2. To find U , we look for a vector in the intersection of the nullspaces of P (k) for k = 1, 2, . . . ,M ,

that is, a vector V(U) ∈
⋂M
k=1N (P (k)). This can be accomplished in two steps by first noting that for a matrix

A ∈ Rn×m N (A) = N (ATA) (see Theorem 2.4.3 in [31]) and second, for a set of M positive semi-definite matrices

B(j), j = 1, 2, . . . ,M , N
(∑M

j=1B
(j)
)

=
⋂M
j=1N (B(j)) (see Fact 8.7.3 in [31]). As the matrix P (k) may not be positive

semi-definite, the vectorized commutator operation is pre-multiplied by (P (k))T , so that the matrix (P (k))TP (k) is

symmetric and positive semi-definite. Create the matrix S =
∑M
k=1(P (k))TP (k) so that if a vector V(U) is in the

nullspace of S, it lies in the intersection of the nullspaces of P (k), and thus it also commutes with all A(k), k = 1, . . . ,M .

To determine the nullspace of the matrix S ∈ RN2×N2

, which by construction is positive semi-definite, we find the
eigenvectors of S corresponding to eigenvalues equal to zero. While S is large and dense, its special structure makes
finding a few extremal eigenvalues and eigenvectors feasible even when N is large by using the Lanczos method
[32] which only requires a function to compute matrix-vector products. Note that while a matrix-vector product,

Su, requires N4 operations (remember S ∈ RN2×N2

), it can equivalently be computed using nested commutation
operations requiring 4N3 operations. To see this reduction, we can break the matrix-vector product into individual
contributions from each P (k).

Su =
∑M
k=1 P

(k)TP (k)u =
∑M
k=1 P

(k)T V
(
[A(k),mat(U)]

)
=∑M

k=1 V
([
A(k)T ,

[
A(k), U

]]) (5)

Evaluating a commutator requires two N -by-N matrix products which each requires 2N3 operations. In total, for M
twice nested commutators, the total work required is 4MN3 operations, which for M � N , is a significant reduction as
compared to constructing S explicitly. This can be demonstrated with the following steps to compute V(Y ) = SV(U).
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1. Initialize Y = ON to be the N -by-N matrix of zeroes

2. For k = 1, 2, . . . ,M

(a) Û = A(k)U − UA(k)

(b) Y ← Y +A(k)T Û − ÛA(k)T

3. Return V(Y )

The computational complexity can further be reduced if each of the matrices A(k) is sparse with average density
ρ ∈ [0, 1] (defined as the number of nonzero entries divided by N2) so computing the matrix-matrix products requires
in average only 4ρN3 operations.

The dominant computational complexity of each step of the Lanczos algorithm is the matrix vector product [32]
which we have shown can be computed in 4ρMN3 operations, far more cheaply than the N4 operations if S did not
have its special structure. Due to the iterative nature of the Lanczos algorithm, it is unknown a priori the number of
iterations required to compute the eigenvalue/eigenvector pairs. Nonetheless, unless the number of iterations required
is on the order of N2 or larger, the Lanczos algorithm is more efficient than constructing S explicitly and finding the
eigenvalue/eigenvectors pairs using a standard tridiagonalization approach for dense symmetric eigenvalue problems.

Let vk ∈ RN2

, k = 1, 2, . . . , nev, be the nev eigenvectors found corresponding to the eigenvalues equal to zero of
S, each of which lies in the intersection of the nullspaces of P (k), k = 1, 2, . . . ,M . To select a random vector in the
intersection of the nullspaces, create the vector V(U) =

∑nev

k=1 ckvk where we uniformly at random select ck ∈ [−1, 1],
k = 1, 2, . . . , nev, and scale them such that

∑
k c

2
k = 1. The resulting matrix U satisfies all of the commutation

relations, [A(k), U ] = ON , as does UT because each A(k) is symmetric. With this fact, the symmetric matrix 1
2 (U +

UT ) also commutes,
[
A(k), 12 (U + UT )

]
, k = 1, 2, . . . ,M . Finally, to find the matrix P that simultaneously block

diagonalizes each of the A(k), k = 1, 2, . . . ,M , compute the eigenvectors of 1
2 (U +UT ), and store them as the columns

of P . The proof of the correctness is extensive and beyond the scope of this paper but can be found in [5].
A related problem [5] is to find a transformation P that does not exactly simultaneously block diagonalize all of the

matrices A(k), k = 1, 2, . . . ,M , but rather results in matrices with off-diagonal blocks with entries with magnitude
of the order ε > 0. The process is validated by Lemma 4.1 in [5] and proceeds exactly as before except now rather
than finding the eigenvectors associated with eigenvalues equal to zero, instead, the Lanczos method is used to find
eigenvalues of S less than ε along with their eigenvectors. After this, with the eigenvectors vk, k = 1, 2, . . . , nev, the
same steps are taken to compute U , extract its symmetric part 1

2 (U + UT ), and find the eigenvectors of the result.
We make available our code to compute the FSBD of a set of symmetric matrices – see [53].

IV. APPLICATION OF THE SBD TECHNIQUE TO COMPLETE SYNCHRONIZATION OF
NETWORKS WITH DIFFERENT TYPES OF CONNECTIONS

The time evolution of a network of dynamical systems coupled through different types of connections is described
by the following set of equations:

ẋxxi(t) = FFF (xxxi(t)) +

M∑
k=1

N∑
j=1

A
(k)
ij [HHH(k)(xxxj(t))−HHH(k)(xxxi(t))] i = 1, · · · , N (6)

where xxxi(t) and FFF (xxxi(t)) represent the m-dimensional state vector and dynamical function of the system located
at node i, respectively. The network nodes are coupled through different coupling functions HHH(k), k = 1, · · ·M .
The network connectivity associated to each coupling function is described by the adjacency matrix A(k), where

A
(k)
ij = A

(k)
ji > 0 if there is a connection between nodes i and j and A

(k)
ij = A

(k)
ji = 0 otherwise. The above set of

equations can be rewritten,

ẋxxi(t) = FFF (xxxi(t)) +

M∑
k=1

N∑
j=1

L
(k)
ij HHH

(k)(xxxj(t)) i = 1, · · · , N, (7)

where the Laplacian matrices L(k) have entries L
(k)
ij = A

(k)
ij > 0 for j 6= i and L

(k)
ii = −

∑
j 6=i L

(k)
ij , k = 1, ...,M .

Note that all of the rows of the Laplacian matrices L(k) sum to zero, k = 1, ...,M . The synchronization manifold
xxx1 = xxx2 = · · · = xxxN is an invariant subspace for the set of Eqs. (7). The dynamics on this manifold, which corresponds
to complete synchronization, xxx1(t) = xxx2(t) = · · · = xxxN (t) = xxxs(t) obeys the equation of an uncoupled system,

xxxs(t) = FFF (xxxs(t)). (8)
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To investigate the stability of the complete synchronous state, we study the dynamics of a small perturbation from
the synchronous solution (xxxi(t) = xxxs(t) + δxxxi(t)). The synchronous state is stable if the perturbations approach 0 for
large t. The linearized system of equations can be written,

δẋxxi(t) = DFFF (xxxs(t))δxxxi(t)

+

M∑
k=1

N∑
j=1

L
(k)
ij DHHH

(k)(xxxs(t))δxxxj(t) i = 1, · · · , N
(9)

By stacking together all the perturbations in an mN -dimensional vector zzz = [δxxxT1 , δxxx
T
2 , · · · , δxxxTN ]T , the set of Eqs. (9)

can be rewritten in vectorial form,

żzz(t) =

[
IN ⊗DFFF (xxxs(t)) +

M∑
k=1

L(k) ⊗DHHH(k)(xxxs(t))

]
zzz(t) (10)

One observation is that by construction the set of Laplacian matrices L(1), L(2), ..., L(M) all share one common
eigenvector [1, 1, ..., 1]/

√
N , with associated eigenvalue 0. It follows that we can define an orthogonal transformation

P̃ leading to a trivial simultaneous block diagonalization (TSBD)

P̃TL(k)P̃ = 0⊕Borth, k = 1, ...,M, (11)

where the block Borth is (N−1)-dimensional. Hence, there will be a large block produced by the TSBD with dimension

N − 1. For example, P̃ could be taken as the matrix whose columns are the eigenvectors of any of the matrices L(1),
L(2), ..., L(M) [33]. One would hope that calculation of the FSBD for the set of matrices L(1), L(2), ..., L(M) leads to a
finer block-diagonalization than the TSBD.

Here, for simplicity and without loss of generality, we focus on the case of M = 2 different connection types, for
which Eq. (10) becomes,

żzz(t) =
[
IN ⊗DFFF (xxxs(t)) + L(1) ⊗DHHH(1)(xxxs(t))

+ L(2) ⊗DHHH(2)(xxxs(t))
]
zzz(t)

(12)

We attempt to break the stability of problem (12) into a set of independent lower-dimensional equations. To this
end, we seek for a transformation that leads to decoupling the set of Eqs. (12), by simultaneously block diagonal-
izing L(1) and L(2). Special instances of this problem have been studied in Ref. [33] which obtained three different
conditions under which the problem with mN -dimension can be broken into a set of (N − 1) problems of dimension
m each. Moreover, Ref. [6] has introduced the general framework in which the SBD technique is applied to network
synchronization.

We now compute P = SBD(L(1), L(2)) and rewrite Eq. (12) as follows:

η̇ηη(t) =
[
IN ⊗DFFF (xxxs(t)) + (PTL(1)P )⊗DHHH(1)(xxxs(t))

+ (PTL(2)P )⊗DHHH(2)(xxxs(t))
]
ηηη(t),

(13)

where ηηη(t) = (PT ⊗ Im)zzz(t).

As stated before, PTL(i)P = ⊕nj=1B
(i)
j , where all the matrices Bj have the same block-diagonal form. Therefore,

Eqs. (13) can be decoupled as follows,

η̇ηηi(t) =
[
IDi
⊗DFFF (xxxs(t)) +B

(1)
i ⊗DHHH

(1)(xxxs(t))

+ B
(2)
i ⊗DHHH

(2)(xxxs(t))
]
ηηηi(t),

(14)

where Di is the block-dimension of Bi,
∑
iDi = N .

We note that for a given value of i (i = 1) we obtain scalar blocks B
(1)
1 = B

(2)
1 = 0, which are associated with a

perturbation parallel to the synchronization manifold. Therefore, to analyze the stability of the synchronous solution,
we only need to assess Eq. (14) for the remaining i > 1 transverse blocks.
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A. Performance of the SBD technique applied to complete synchronization

To examine the extent of the reduction provided by the SBD method, the following index is introduced

0 ≤ Id = 1− Z − 1

N − 2
≤ 1 (15)

where Z is the maximum block dimension in both PTL1P and PTL2P . The best possible performance of the SBD
is achieved for Id = 1, corresponding to all the blocks having dimension Z = 1. On the other hand, if the maximum
block dimension Z = N − 1, the index Id = 0, which corresponds to the same reduction achievable with the TSBD.
We define application of the SBD technique to be a success (a failure) for large (low) values of 0 ≤ Id ≤ 1.

We examine the performance of the SBD method in reducing the dimension of the problem of complete synchro-
nization for three different network classes: (i) Erdős-Rényi (ER) random networks[9] with edge probability p, (ii)
Watts-Strogatz small-world (WS) networks[34] with rewiring probability q, and (iii) scale-free networks [35] generated
by the configuration model [10] with power law exponent γ.

For each network class, we create two random graphs with the same number of nodes N but with possibly two
different parameters. For each case, let A(1) and A(2) be the two adjacency matrices and L(1) and L(2) be the two
Laplacian matrices. The SBD is found using the method described above and the performance index Id is computed
which is shown in Fig. 1. For ER networks, Fig. 1 (a) (b) and (c) show the index Id versus edge probabilities p1
and p2 for number of nodes N = 10, 20 and 50, respectively. For SW networks, Fig. 1 (e) and (f) show the index
Id versus the rewiring probabilities q1 and q2 with N = 20 and N = 50 nodes, respectively. Fig. 1 (d) shows the
index Id versus the exponents of power-law distribution γ1 and γ2 of scale-free networks with N = 50 nodes where
the minimum degree of each node is set to k = 3 in order to have a connected network. The size of the networks in

FIG. 1. (a)-(c) The index Id for two Erdős-Rényi topologies (ER) is plotted vs the connection probabilities p1 and p2 with (a)
N = 10 nodes, (b) N = 20 nodes, and (c) N = 50 nodes. (d) The index Id for two scale-free (SF) networks with N = 50 nodes
is plotted vs the power-law distribution exponents γ1 and γ2. (e) and (f) The index Id for two Watts-Strogatz small-world
(SW) topologies is plotted vs the rewiring probabilities q1 and q2 in networks with N = 20 and N = 50 nodes, respectively..
Different values of the index Id are shown as variation in the color spectrum from dark blue (Id = 0) to dark red (Id = 1).

panel (a) is N = 10 nodes, in panel (b) and (e) is N = 20 nodes, and in panel (c), (d), and (f) is N = 50 nodes.
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Different values of the index Id are shown as variations in the color spectrum from dark blue (Id = 0) to dark red
(Id = 1). For the ER networks, we see that Id is non-zero near the perimeter of the parameter space corresponding
to graphs with either low edge probability or high edge probability (very sparse or very dense). In this regime, there
are many isolated nodes (sparse) or cliques (dense) which behave similarly (the graph complement of a clique is a set
of isolated nodes). These structures typically result in a finer SBD.

For the SW networks, we see only in the lower left corner that Id > 0 which represents graphs that are still quite
lattice-like, that is, not many edges from the original lattice have been rewired. This means the two graphs may have
large parts that are structurally identical to each other which in turn may yield more significant dimension reductions.
Also, Panel (d) shows that different values of the exponent of the power-law distribution γ ∈ [2, 5] for two scale-free
networks with N = 50 nodes results in a large dark blue area. By construction, the scale-free networks we create
cannot have isolated nodes (as we have set minimum degree k = 3) and do not have any regular structure due to the
configuration model’s random wiring procedure. Thus, neither of the proposed situations which can lead to the SBD
transformation significantly reducing the dimension of two random graphs (isolated nodes/cliques or shared structure)
hold and Id = 0 for almost all pairs of parameters γ1 and γ2.

V. APPLICATION OF THE SBD TECHNIQUE TO CLUSTER SYNCHRONIZATION

The stability of cluster synchronous solutions in networks has attracted much attention in the last few years. A
general equation for a network of coupled dynamical systems is the following,

ẋxxi(t) = FFF (xxxi(t)) +

N∑
j=1

AijHHH(xxxj(t)) i = 1, · · · , N (16)

where the network connectivity is described by the adjacency matrix A, where Aij = Aji > 0 if there is a connection
between nodes i and j and Aij = Aji = 0 otherwise. The function HHH is the node-to-node coupling function.

The nodes of the network can be partitioned into a set of C equitable clusters or balanced colors C1, C2, ..., CC ,

where Ni is the number of nodes in cluster Ci and
∑C
i=1Ni = N [36, 37]. All the nodes in the same equitable

cluster receive the same number of connections from each one of the clusters [38]. Among several possible equitable
partitions of the network, there is one corresponding to the minimum number of clusters, which we will refer to
as the minimum balanced coloring. For any adjacency matrix A, the algorithm described by Belykh and Hasler
[39] outputs the minimum balanced coloring very efficiently. Information about the minimum balanced coloring is
contained in the N×C indicator matrix O = {Oij} where Oij is equal to 1 if node i is in cluster Cj and is 0 otherwise.

Similar to the case of complete synchronization described previously, given an equitable partition of the network
nodes, we can define an invariant subspace for the set of Eqs. (16), which we call the cluster synchronization manifold.
The dynamics on this manifold is the flow-invariant cluster synchronous time evolution [40] {xxxs1(t),xxxs2(t), · · · ,xxxsC(t)},
where xxxs1(t) is the synchronous solution for nodes in cluster C1, xxxs2(t) is the synchronous solution for nodes in cluster
C2, and so on.

We can then define the C × C quotient matrix Q such that for each pair of clusters Cu and Cv,

Quv =
∑
j∈Cv

Aij i ∈ Cu u, v = 1, 2, · · · , C (17)

All of the nodes belonging to the same cluster can synchronize on the quotient network time evolution (xxxsu(t)),

ẋxxsu(t) = FFF (xxxsu(t)) +

C∑
v=1

QuvHHH(xxxsv(t)), u = 1, ..., C. (18)

The question we are interested in is whether the cluster synchronous solution corresponding to the minimum balanced
coloring is stable or unstable.

Stability of the cluster synchronous solution depends on the mN -dimensional equation,

żzz(t) =

[
C∑
c=1

Ec ⊗DFFF (xxxsc(t)) +A

C∑
c=1

Ec ⊗DHHH(xxxsc(t))

]
zzz(t) (19)

where the cluster indicator matrix Ec is a diagonal matrix such that (Ec)ii = 1 if node i belongs to cluster c and
(Ec)ii = 0 otherwise.
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We note that by left-multiplying Eq. (19) by the matrix Õ ⊗ Im where Õ = (OTO)−1OT we obtain the dynamics
of the perturbation parallel to the synchronization manifold [37, 41, 42].

Similarly to Sec. IV, we would like to reduce the stability problem to a set of independent lower dimensional equations
instead of dealing with the high dimensional problem, Eq. (19). Ref. [43] has proposed a dimensionality reduction
approach based on group theory for the case of orbital clusters and shown that the irreducible representation (IRR)
of the symmetry group can be used to block-diagonalize the set of Eq. (19). Ref. [7] has applied the SBD method
to characterize stability of any cluster synchronization pattern. An important question is whether the symmetry-
independent approach of [7] may lead to a dimensionality reduction of the stability analysis in the broader class of
networks [44] that have equitable clusters that are not merely the result of symmetries [41]. Next we show that this
is not the case.

Following [7] we compute P = SBD(A,E1, E2, ..., EC). By applying P to Eq. (19), we obtain,

η̇ηη(t) =

[
(PT

C∑
c=1

EcP )⊗DFFF (xxxsc(t))

+ (PT
C∑
c=1

AEcP )⊗DHHH(xxxsc(t))

]
ηηη(t),

(20)

where ηηη(t) = PT ⊗ Imzzz(t). Note that because both matrices PTAP and PTEcP have the same block diagonal
structure, so does PTAEcP , which becomes apparent by rewriting PTAEcP = (PTAP )(PTEcP ). Therefore, (20)
can be decomposed into lower dimensional equations,

η̇ηηi(t) =

[
C∑
c=1

(Ji)c ⊗DFFF (xxxsc(t)) +

C∑
c=1

(Bi)c ⊗DHHH(xxxsc(t))

]
ηηηi(t) (21)

where (Ji)c and (Bi)c are blocks of the same dimensions derived from the transformations PT
∑C
c=1EcP = ⊕nj=1(Jj)c

and PT
∑C
c=1AEcP = ⊕nj=1(Bj)c, respectively.

A. Generating networks with assigned equitable partition

In order to study the performance of the SBD reduction in the case of cluster synchronization, we need a method to
generate a random symmetric network with an assigned equitable partition. This can be done by using the algorithm
described below.

First, assign the number of nodes in each of the C clusters, N1, N2, ..., NC , where in order to enforce a trivial pattern
of connectivity we pick N1, N2, ..., NC , so that no two such numbers are coprime, i.e. gcd(Ni, Nj) > 1, i = 1, ..., C,
j 6= i. Second, we need to determine the relative indegree dij of nodes in cluster i from nodes in cluster j. Due to the
assumption that the network is symmetric, the following condition needs to be satisfied

Nidij = Njdji. (22)

One solution is dij = Nj and dji = Ni, which corresponds to complete connectivity in which each node in cluster i is
coupled to all the nodes in cluster j and vice versa. By the assumption that Ni and Nj are not coprimes, it follows
that we can always choose other values of dij and dji, namely,

dij =
Nj
α

dji =
Ni
α
, (23)

where α = gcd(Ni, Nj) > 1. Then, for each pair of clusters, we can randomly connect the nodes in cluster i and

cluster j with
NiNj

α bidirectional links. The intra-connectivity of each cluster is determined by first assigning the
intra-degree Di of all nodes in cluster i for i = 1, 2, ..., NC . This should be chosen such that NiDi is an even number
and Di < Ni.

The algorithm provided here generates a network with an assigned equitable partition as opposed to the algorithms
to generate networks with assigned orbital partition presented in [44, 45].
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B. Performance of the SBD technique applied to cluster synchronization

For the case of cluster synchronization, we can also define a transformation corresponding to the trivial simultaneous
block diagonalization (TSBD.) This corresponds to the transformation that separates the perturbation parallel to the

synchronization manifold from the perturbation transverse to the synchronization manifold. By choosing P̃ = ⊕Ci=1Gi
where Gi is an orthogonal matrix of dimension Ni with one of its columns having entries that are all the same and
equal to 1Ni/

√
Ni we obtain the trivial simultaneous block diagonalization

PTAP = Bpar ⊕Borth, (24)

where the block Bpar is C-dimensional and the block Borth is (N−C)-dimensional. Hence, the largest block produced
by the TSBD will have dimension L = max (C,N − C). Thus for the case of cluster synchronization, we define the
performance index,

Ics =
L− Z
L

(25)

where Z is the largest block dimension resulting from calculation of the FSBD for the set of matrices {A,E1, E2, ..., EC}
and where A is the adjacency matrix and E1, E2, ..., EC are the previously defined cluster indicator matrices. Again
the index compares the performance of the FSBD with that of the TSBD. An index Ics = 0 indicates that the
reduction achieved by the FSBD is the same as that of the TSBD. As before for the index Id, we define application
of the SBD technique to be a success (a failure) for large (low) values of 0 ≤ Ics ≤ 1.

Next, we consider a numerical example for a random symmetric network with C = 4 clusters generated using the
algorithm described above. Figure 2 (a) shows the network that is to be examined to measure the performance index
for the SBD algorithm, with nodes color coded according to the equitable cluster to which they belong.

FIG. 2. (a) A randomly constructed symmetric network with C = 4 equitable clusters and N = 34 nodes. The clusters are
identified as follows: C1 (green nodes) with N1 = 4, C2 (red nodes) with N2 = 8, C3 (yellow nodes) with N3 = 12, and C4
(blue nodes) with N4 = 10. The arbitrarily chosen intra-degrees for this network are d1 = 2, d2 = 3, d3 = 4, and d4 = 6. (b)
From left to right: the adjacency and cluster indicator matrices {A,E1, E2, E3, E4}. Each non-zero entries of these matrix is
indicated with a black dot. (c) From left to right: the block-diagonalized matrices {PTAP,PTE1P, P

TE2P, P
TE3P, P

TE4P}
after application of the FSBD transformation.

Figure 2(b) shows the adjacency and cluster indicator matrices for the network shown in Fig. 2(a) where each black
dot represents a non-zero entry in these matrices. The block-diagonalized matrices obtained by application of the
FSBD transformation are shown in Fig. 2(c).

In order to better visualize the block decomposition, we construct the matrix Ω as the sum of absolute values of
the matrices {PTAP,PTE1P, P

TE2P, P
TE3P, P

TE4P}

Ω = |PTAP |+ |PTE1P |+ |PTE2P |+ |PTE3P |+ |PTE4P | (26)

where the symbol | · | here indicates the entry-wise absolute value of a matrix. A representation of the matrix Ω is
shown in Fig. 3, which evidences two blocks: one 4-dimensional block and one 30-dimensional block. For this example,
the calculated performance index is 0 with L = 30 and Z = 30. We have obtained similar results for all the other
instances we have tested of random graphs with assigned equitable partition (algorithm of Sec. VA).
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FIG. 3. Representation of the matrix Ω for the network shown in Fig. 2. The dots represent non-zero entries. Using equation
(25), the calculated performance index is Ics = 0 with L = 30 and Z = 30.

VI. DISCUSSION

Random ‘unstructured’ networks have been the subject of extensive investigation in the literature, with applications
to epidemic dynamics [12–14], percolation [15, 16], resilience to attacks and failures [17, 18], games [19], network
synchronization [20] and control [21]. Several analytical results have been derived by using the assumption that the
network topology is random and uncorrelated [20, 46–49]. Complete and cluster synchronization of random networks is
undoubtedly a topic of interest in the Physics and Nonlinear Dynamics literature. In this paper we take the approach
of the natural scientist and focus on whether or not a mathematical tool (the SBD decomposition) is effective in
dealing with the synchronization of random networks. Ref. [50] takes a different perspective and claims that random
networks are not a good testbed for application of the SBD technique. Here we are interested in assessing whether
problems of practical interest can be successfully addressed by the SBD tool, rather than looking for problems to which
the tool can be successfully, or rather conveniently, applied. Previous work in this area has often only emphasized
the strengths and not the limitations of the technique, which is partially corrected in this paper. The fact that the
technique mostly fails when applied to random networks points out the importance of developing alternative tools
and/or new techniques to deal with the important class of random networks. A relevant related question is whether
the SBD technique can be successfully applied to the analysis of real network topologies. This question has been
recently considered in [51], which has shown a moderate success of the SBD technique in this case.

VII. CONCLUSIONS

The techniques for simultaneous block diagonalization of matrices have been developed by Maehara, Murota et al
in a number of seminal papers [2–5]. These techniques were originally applied to problems in the areas of semidefinite
programming and signal processing (independent component analysis), see e.g. [2]. The first application of these
techniques to network synchronization was presented in a 2012 paper [6]. Only recently they have been applied to
the problem of cluster synchronization of networks [7, 51, 52].

We are highly indebted to the mathematicians who have developed the algebraic theory of simultaneous block diag-
onalization of matrices. This can be applied to many problems in the applied sciences where one is looking for modal
decompositions but such decompositions may not be obvious. The application of these techniques to the problem of
network synchronization is important as it allows to define the extent to which the synchronization stability problem
can be reduced in realistic situations that deviate from the original assumptions of nodes all of the same type and
connections all of the same type [8]. We have seen here that unfortunately in generic situations (random networks)
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the obtained reduction is modest and comparable to that achievable with a trivial transformation. Even though
that is the case, it is important to know the extent of the attainable reduction and that no further decomposition of
the problem is possible. With this paper we believe we have set the expectations straight about the reduction that
is realistically achievable from application of SBD to the study of complete and cluster synchronization of generic
(random) graphs. Overall, this does not diminish our enthusiasm for these techniques, which can provide exceptional
insight into many problems of interest in physics and engineering, including network synchronization. Besides, both
Refs. [6, 7] have shown that the reduction produced by the SBD technique can be substantial for specific network
realizations, can be useful when one has the ability to appropriately select the networks connectivity.

Code to compute the simultaneous block diagonalizations for the examples shown in this paper can be accessed at
the Github repo [53].
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[36] H. Sachs, Über teiler, faktoren und charakteristische polynome von graphen, Teil I. Wiss. Z. TH Ilmenau 12, 7-12 (1966).
[37] M. T. Schaub, N. O’Clery, Y. N. Billeh, J.-C. Delvenne, R. Lambiotte, and M. Barahona, Graph partitions and cluster

synchronization in networks of oscillators, Chaos: An Interdisciplinary Journal of Nonlinear Science 26, 094821 (2016).
[38] M. Egerstedt, S. Martini, M. Cao, K. Camlibel, and A. Bicchi, Interacting with networks: How does structure relate to

controllability in single-leader, consensus networks?, IEEE control systems magazine 32, 66-73 (2012).
[39] I. Belykh and M. Hasler, Mesoscale and clusters of synchrony in networks of bursting neurons, Chaos: An Interdisciplinary

Journal of Nonlinear Science 21, 016106 (2011).
[40] M. Golubitsky and I. Stewart, Synchrony versus symmetry in coupled cells, in EQUADIFF 2003 (World Scientific, 2005)

pp. 13–24.
[41] A. B. Siddique, L. Pecora, J. D. Hart, and F. Sorrentino, Symmetry-and input-cluster synchronization in networks, Physical

Review E 97, 042217 (2018).
[42] I. Klickstein, L. Pecora, and F. Sorrentino, Symmetry induced group consensus, Chaos: An Interdisciplinary Journal of

Nonlinear Science 29, 073101 (2019).
[43] L. M. Pecora, F. Sorrentino, A. M. Hagerstrom, T. E. Murphy, and R. Roy, Cluster synchronization and isolated desyn-

chronization in complex networks with symmetries, Nature communications 5, 1 (2014).
[44] I. Klickstein and F. Sorrentino, Generating graphs with symmetry, IEEE Transactions on Network Science and Engineering

6, 836 (2018).
[45] I. Klickstein and F. Sorrentino, Generating symmetric graphs, Chaos: An Interdisciplinary Journal of Nonlinear Science

28, 121102 (2018).
[46] M. Catanzaro, M. Boguña, , and R. Pastor-Satorras, Generation of uncorrelated random scale-free networks, Phys. Rev.

E 71, 027103-1-027103-4 (2005).
[47] J. G. Restrepo, E. Ott, and B. R. Hunt, Approximating the largest eigenvalue of network adjacency matrices, Physical

Review E 76, 056119 (2007).
[48] A. Pomerance, E. Ott, M. Girvan, and W. Losert, The effect of network topology on the stability of discrete state models

of genetic control, Proceedings of the National Academy of Sciences 106, 8209 (2009).
[49] F. Sorrentino, A. B. Siddique, and L. M. Pecora, Symmetries in the time-averaged dynamics of networks: Reducing

unnecessary complexity through minimal network models, Chaos: An Interdisciplinary Journal of Nonlinear Science 29,
011101 (2019).

[50] Y. Zhang, Comment on” failure of the simultaneous block diagonalization technique applied to complete and cluster
synchronization of random networks”, arXiv preprint arXiv:2110.15493 (2021).

[51] S. Panahi, I. Klickstein, and F. Sorrentino, Cluster synchronization of networks via a canonical transformation for simul-
taneous block diagonalization of matrices, Chaos: An Interdisciplinary Journal of Nonlinear Science 31, 111102 (2021).

[52] Y. Zhang, V. Latora, and A. E. Motter, Unified treatment of synchronization patterns in generalized networks with
higher-order, multilayer, and temporal interactions, Communications Physics 4, 1 (2021).

[53] Panahi, S., “Sbd-failures,” https://github.com/SPanahi/SBD-failures (2021).

http://arxiv.org/abs/2110.15493
https://github.com/SPanahi/SBD-failures

	Failure of the simultaneous block diagonalization technique applied to complete and cluster synchronization of random networks
	Abstract
	I Introduction
	II Simultaneous Block Diagonalization of Matrices
	III Procedure to Determine P
	IV Application of the SBD technique to complete synchronization of networks with different types of connections 
	A Performance of the SBD technique applied to complete synchronization

	V Application of the SBD technique to cluster synchronization
	A Generating networks with assigned equitable partition
	B Performance of the SBD technique applied to cluster synchronization

	VI Discussion
	VII Conclusions
	 Acknowledgement
	 References


