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Abstract— Horizon length and model accuracy are defining
factors when designing a Model Predictive Controller. While
long horizons and detailed models have a positive effect on
control performance, computational complexity increases. As
predictions become less precise over the horizon length, it
is worth investigating a combination of different models and
varying time step size. Here, we propose a Model Predictive
Control scheme that splits the prediction horizon into two
segments. A detailed model is used for the short-term prediction
horizon and a simplified model with an increased sampling time
is employed for the long-term horizon. This approach combines
the advantage of a long prediction horizon with a reduction of
computational effort due to a simplified model and less decision
variables. The presented Model Predictive Control is recursively
feasible. A simulation study demonstrates the effectiveness of
the proposed method: employing a long prediction horizon with
advantages regarding computational complexity.

I. INTRODUCTION
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Model Predictive Control (MPC) iteratively solves an
optimal control problem on a finite prediction horizon. Over
this horizon, a cost function is minimized and constraints
are satisfied, given a system prediction model [1], [2]. When
designing an MPC controller, horizon length and model
accuracy need to be chosen to fit the control task.

While long horizons and detailed models improve the
prediction, this also results in increased computational effort.
Detailed models provide precise short-term predictions, how-
ever, even small model inaccuracies can accumulate over a
long prediction horizon, leading to the question how detailed
a long-term prediction model needs to be. In certain applica-
tions, it is useful to plan precisely for the short-term future
while only roughly planning the long-term future. Consider
the task of controlling an automated vehicle. Whereas precise
planning with a detailed prediction model is fundamental
for the immediate future, long-term aims, such as smart
lane decisions, do not require a detailed prediction model.
However, accounting for long-term aims is still beneficial,
for example switching to the right lane early in dense traffic
facilitates a right turn later.

Various approaches have been suggested to tackle the
issue of long prediction horizons and model accuracy. Hi-
erarchical MPC methods [3], use multiple MPC levels with
varying complexity. However, the optimal control problems
are solved individually, e.g., a high level regulator with slow
time scale on a reduced order model and a low level regulator
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with fast time scale in [4]. Hierarchical MPC schemes are
especially popular for chemical applications where different
time scales are present.

MPC with move blocking [5]–[7] provides an approach to
reduce the number of decision variables within the optimal
control problem. Regarding input move blocking, certain
inputs along the prediction horizon are set equal to previous
input values. However, shifting the blocked inputs when
solving the optimal control problem is an issue. A flexible
move blocking strategy was proposed in [8], adapting the
blocking when relevant.

In [9] an MPC scheme is proposed, which uses two
different models over the prediction horizon. A detailed
model for the short-term horizon is combined with an
approximated, coarse prediction model for the long-term
horizon. A robust MPC approach [10] is chosen for the
long-term horizon to account for model mismatch. While
recursive feasibility is guaranteed, stability is not shown.
In [11] the approach in [9] is extended. A robust MPC
approach with a detailed model is combined with a stochastic
MPC method [12] and a simplified model. The approach in
[11] allows safe planning for the short-term future while still
accounting for increased uncertainty in the long-term future
with probabilistic constraints, i.e., chance constraints. In [13]
a real-time iteration scheme for nonlinear MPC is presented,
where constraints in the later part of the prediction horizon
are replaced by logarithmic barriers.

A different approach to reduce computational effort is
presented in [14], [15]. Only a single prediction model is
employed over the prediction horizon, however, the sampling
time is varied, resulting in an MPC scheme with a non-
uniformly spaced optimization horizon. The sampling time
increases along the prediction horizon, allowing to extend
the time covered by the horizon while keeping the amount
of decision variables constant. While stability, based on
dissipativity, is shown, recursive feasibility is not addressed.
Both MPC with models of different granularity and MPC
with a non-uniformly spaced optimization horizon exploit
less detailed planning for the long-term future in order to re-
duce computational complexity. However, both methods only
focus on one specific aspect of reducing the computational
complexity.

In this paper, we propose an MPC scheme that combines
the approaches of [9] and [15]. The prediction horizon is
divided into two segments. A detailed model with relatively
small sampling time is combined with an approximated,
coarse model and larger sampling time. This allows to use
benefits of both individual methods. Computational effort
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due to model complexity is reduced by utilizing the simpli-
fied model for the long-term horizon. Furthermore, the time
covered by the prediction horizon is extended by choosing
larger sampling times while the amount of decision vari-
ables remains constant. Recursive feasibility of the proposed
method is guaranteed.

The presented approach is beneficial for tasks requiring
precise control for the short-term future, ensured by a small
sampling time and a detailed model, where additionally
long-term, coarse planning is advantageous. The long-term
planning allows to incorporate long-term goals into short-
term planning in such a way that it does not compromise the
required short-term precision, i.e., the cost-to-go is improved.
We show the effectiveness of the proposed method in a brief
vehicle avoidance simulation.

The paper is structured as follows. In Section II the
considered systems are introduced and MPC with models of
different granularity as well as MPC with a non-uniformly
spaced horizon are summarized. The proposed method, MPC
with models of different granularity in combination with a
non-uniformly spaced horizon, is presented in Section III.
A discussion is given in Section IV. A simulation study
is shown in Section V, followed by conclusive remarks in
Section VI.

II. PROBLEM SETUP

Similar to [9] we consider two nonlinear, discrete-time
system models

x+ = f(x,u) (1a)
s.t. x ∈ X (1b)

u ∈ U (1c)

z+ = g(z,v) (2a)
s.t. z ∈ Z (2b)

v ∈ V (2c)

with inputs u ∈ Rnu and v ∈ Rnv , and states x ∈ Rnx and
z ∈ Rnz , where x+ and z+ denote the states at the next time
step. Here, model (2) is considered to be an approximation
of model (1). The state and input constraints are given by the
state and input constraint sets X, U, and Z, V, respectively.

We now extend the models (1) and (2) including different
sampling times

x+ = f(x,u,∆ts) (3a)
s.t. x ∈ X (3b)

u ∈ U (3c)

z+ = g(z,v,∆tf) (4a)
s.t. z ∈ Z (4b)

v ∈ V (4c)

where ∆ts and ∆tf are the sampling times for the respective
prediction models. The two models are linked given a
projection function as defined in [9].

Assumption 1: There exists a surjective projection func-
tion Proj : Rnx ×Rnu → Rnz ×Rnv mapping the state and
input x and u of the detailed model to the state z and v of
the coarse model [9].

Ideally, the constraint sets Z and V of the coarse model
are computed using this projection function, i.e., (Z,V) =
Proj(X,U). If the main focus is to improve the cost-to-go
and feasibility issues occur, the constraint sets Z and V may
be chosen to depend more loosely on X and U.

In the following, two concepts are presented, MPC with
models of different granularity [9] and MPC with a non-

uniformly spaced prediction horizon [15], which will later
be combined.

A. MPC with Models of Different Granularity

We will briefly summarize MPC with models of different
granularity, based on the idea presented in [9], which relies
on splitting the original MPC prediction horizon N into two
parts. A short-term horizon ranges from k = 0 to k = ks
and a long-term horizon starts at k = ks and ends at k =
kf = N . For the short-term prediction a detailed model (1) is
used, whereas the long-term prediction is based on a coarse
model (2).

This results in an MPC cost function

min
{u0,...,uks},
{vks ,...,vkf−1}

(
ks−1∑
k=0

ls(xk,uk) + Vs(xks)

+

kf−1∑
k=ks

lf(zk,vk) + Vf(zkf)

)
(5)

with stage cost functions ls(xk,uk), lf(zk,vk) and terminal
cost functions Vs(xks), Vf(xkf). Constraints of the detailed
model, according to (1), are considered for k = 0, ..., ks − 1
and constraints of the coarse model (2) are required to hold
for k = ks, ..., kf − 1, with the terminal constraint z(kf) ∈
Zf ⊆ Z. A projection

(zks ,vks) = Proj(xks ,uks) ⊆ Z× V (6)

links the two models at k = ks.

B. MPC with Non-uniformly Spaced Horizon

In [14], [15] an approach is presented to use varying
sampling time within the MPC prediction horizon, allowing
to extend the horizon time without increasing the number of
decision variables. While multiple different time steps ∆tj
can be used, using only two different time steps is often
satisfactory, ∆t1 for the short-term horizon and ∆t2 for the
long-term horizon. Typically, different ∆tj are chosen such
that ∆tj+1 > ∆tj , i.e., sampling time increases over the
prediction horizon.

While constraints can be chosen independently for each
horizon segment, the different sampling time needs to be
accounted for in the quadratic cost function with weighting
matrices Q and R for states and inputs, respectively. This
is fundamental in order to penalize horizon segments with
larger ∆tj values equally, even though the relative number
of predicted states and inputs affecting the cost is less
compared to horizon segments with small ∆tj . This is
achieved by adapting the original weighting matrices Q and
R to individual weighting matrices Qj and Rj for each
horizon segment according to

Qj = Q
∆tj
∆t1

, Rj = R
∆tj
∆t1

. (7)

The presented approaches, MPC with models of different
granularity and MPC with a non-uniformly spaced horizon,
are now combined.
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III. METHOD

In this section, the MPC optimal control problem will be
presented, which includes models of different granularity and
a non-uniformly spaced prediction horizon. Recursive feasi-
bility of the approach is shown, followed by a discussion.

A. Optimal Control Problem

Given the methods presented in Section II, we combine a
detailed model and small sampling time for the short-term
horizon with a coarse model and larger sampling time for
the long-term horizon. The idea is displayed in Figure 1.
The MPC optimal control problem is given by

min
{u0,...,uks},
{vks ,...,vkf−1}

(
ks−1∑
k=0

ls(xk,uk,∆ts) + Vs(xks)

+

kf−1∑
k=ks

lf(zk,vk,∆tf) + Vf(zkf)

)
(8a)

s.t. xk+1 = f(xk,uk,∆ts), (8b)
xk ∈ X, ∀k = 1, ..., ks − 1, (8c)
uk ∈ U, ∀k = 0, ..., ks, (8d)
xks ∈ XCI ⊆ X, (8e)
(zks ,vks) = Proj (xks ,uks) ⊆ Z× V, (8f)
zk+1 = g(zk,vk,∆tf), (8g)
zk ∈ Z, ∀k = ks + 1, ..., kf, (8h)
vk ∈ V, ∀k = ks, ..., kf − 1 (8i)

with the current system state x0, the standard sampling time
∆ts and a larger sampling time ∆tf > ∆ts, as well as
a control invariant set XCI. The input uks is necessary to
evaluate (8f).

The stage costs ls(xk,uk,∆ts) and lf(zk,vk,∆tf) depend
on the respective sampling time. For a quadratic cost function
a similar approach to [15], presented in Section II-B, can be
applied to adapt the weighting matrices, based on ∆ts and
∆tf. The terminal cost functions are given by Vs and Vf.

The proposed MPC scheme allows to apply an accurate
prediction model with small sampling time for precise short-
term predictions, while still considering long-term aims,
with a less accurate long-term prediction. In the following,
recursive feasibility of the MPC scheme is shown.

B. Recursive Feasibility

One of the fundamental challenges for MPC is to be
able to guarantee recursive feasibility, as the optimal control
problem needs to be solved iteratively. Here, it is not possible
to apply standard MPC theory, e.g., shifting the previous
input sequence and a control invariant terminal constraint,
as the sampling time changes for the long-term horizon, i.e.,
∆ts < ∆tf. In the following, an input uk|t indicates the input
for the prediction step k at time step t. This similarly holds
for x, z, and v.

Definition 1: MPC is recursively feasible if a feasible
input

[Ut,Vt] = [u0|t, , ...,uks|t,vks|t, ...,v(kf−1)|t] (9)

at time step t, satisfying (8b)-(8i), guarantees that the MPC
optimal control problem is feasible at time step t+ 1, i.e., a
solution [Ut+1,Vt+1] exists.

To prove recursive feasibility, the initial optimal control
problem must be feasible.

Assumption 2: The optimal control problem (8) is initially
feasible, i.e., a solution [Ut, Vt], according to (9), exists for
t = 0.

Additionally, the difference in sampling time must be
considered.

Assumption 3: A control invariant set ZCI can be obtained,
so that for all xk ∈ XCI, it follows that zk ∈ ZCI.

This assumption implicates the following. If a control
invariant set for a state xk with model (3) exists, a control
invariant set also exists for the corresponding state zk with
model (4), given the different sampling time.

Theorem 1: The MPC optimal control problem (8) is
recursively feasible if Assumptions 1, 2, and 3 hold.

The theorem is proved by showing that a feasible
[Ut+1,Vt+1] exists, given a feasible [Ut,Vt].

Proof: Due to Assumption 2, an input [Ut,Vt] =
[u0|t, ...,uks|t,vks|t, ...,v(kf−1)|t] exists. First, the focus is
on the short-term horizon, using Ut. Shifting the initial
segment of inputs [u0|t, ...,u(ks−1)|t] by one step yields the
series of inputs [u0|(t+1), ...,u(ks−2)|(t+1)], as the previous
input sequence remains feasible for step t + 1. Accord-
ing to (8e), xks|t lies in the control invariant set XCI,
therefore, x(ks−1)|(t+1) ∈ XCI and an input u(ks−1)|(t+1)

exists such that xks|(t+1) ∈ XCI. This implies an in-
put uks|(t+1) exists, yielding the input sequence Ut+1 =
[u0|(t+1), ...,u(ks−1)|(t+1),uks|(t+1)].

Next, the long-term horizon is considered. Given As-
sumption 3, zks ∈ ZCI and vks exists. As ZCI is
a control invariant set, an input sequence Vt+1 =
[vks|(t+1), ...,v(kf−1)|t] exists, yielding [Ut+1,Vt+1] =
[u0|(t+1), ...,uks|(t+1),vks|(t+1), ..., v(kf−1)|(t+1)].

Therefore, the MPC optimal control problem (8) is recur-
sively feasible.

Note that uks|t is not part of the cost function (8a) and
does not guarantee x(ks+1)|t ∈ XCI, but is necessary to
evaluate (8f).



IV. DISCUSSION

The presented method divides the prediction horizon into
two segments. Multiple segments extending the original
horizon with different simpler models and larger sampling
times are also possible. However, the effort of designing
and setting up multiple segments could be higher than the
resulting benefit.

The proposed approach can be interpreted and applied in
two ways with respect to standard MPC: extending or split-
ting the horizon. In a first interpretation, the second horizon
segment is regarded as an extended horizon compared to
the standard MPC horizon. This allows longer predictions,
while the computational effort is only slightly increased
due to a simplified model and larger sampling times. A
second interpretation is as follows. The time span covered
by the prediction horizon is equal for standard MPC and the
proposed method. But computational complexity is reduced
as the detailed model is only employed for the short-term
prediction and less decision variables are used, given the
non-uniformly spaced horizon.

In contrast to [9] and other literature, in the optimal
control problem (8) the control invariant set XCI is at the
end of the first horizon segment (xks ). This is necessary
to guarantee recursive feasibility. If the control invariant set
were at the end of the overall horizon, recursive feasibility
could not be guaranteed, as the different sampling times
in the short- and long-term horizon do not allow standard
MPC theory to guarantee recursive feasibility, i.e., reusing
the shifted horizon for the next time step is not possible.
This is similar to guaranteeing stability in MPC with a non-
uniformly spaced horizon [15]. However, if we interpret the
proposed method as an approach, which extends the standard
horizon with a long-term horizon to improve the prediction
at only slightly increased computational effort, it is suitable
to place a control invariant set at the end of the short-term
horizon.

The predicted states in the long-term horizon do not affect
recursive feasibility, as xks ∈ XCI ensures that the optimal
control problem remains recursively feasible. The long-term
horizon is considered as an improvement for the cost-to-go.
Therefore, the constraints for the long-term horizon do not
necessarily have to exactly match the constraints of the short-
term horizon. A set ZCI must still be provided, however, to
ensure that the proof of Theorem 1 remains valid. However,
there is a certain degree of freedom to select ZCI.

As stability was not yet shown for MPC with models
of different granularity, the focus of this work was to first
guarantee recursive feasibility, which is guaranteed for MPC
with models of different granularity but not for MPC with a
non-uniformly spaced horizon. Dissipativity theory could be
of interest, similar to the stability guarantee in [15], when
investigating stability for the proposed method.

In [9] a robust MPC scheme was employed for the long-
term horizon to address consistency of the models. While this
was omitted here to focus on the combination of different
models and varying sampling time, a robust MPC scheme

robot

target
point

obstacles

Fig. 2: Simulation scenario

could be applied for the long-term prediction together with
additive noise to the coarse system model (4).

It is also important to note that not any simplified model
is suitable to be combined with a detailed model. It must be
possible to find a projection function, which is more likely if
the coarse model is a reduced model of the detailed model.
Finding a reduced model for a detailed nonlinear model is
challenging. However, for detailed linear models, it is often
straightforward to obtain a reduced model that ensures that
Assumption 1 is fulfilled. An example will be addressed in
the following simulation study.

V. SIMULATION STUDY

We evaluate the proposed MPC method in a setting similar
to the one described in [9]. A mobile robot is steered along a
path with obstacles, as illustrated in Figure 2. The aim is to
reach the target point while avoiding obstacles. All quantities
are given in SI units. The simulations were carried out in
MATLAB with the fmincon solver on a standard desktop
computer.

A. System Models

Two system models are considered, where the nonlinearity
is found in the constraints. The detailed model is given by

x+ =


1 ∆t 0 0
0 1 0 0
0 0 1 ∆t
0 0 0 1

x +


0 0

∆t 1
m 0

0 0
0 ∆t 1

m

u (10)

with state vector x = [px, vx, py, vy]>, input u = [Fx, Fy]>,
sampling time ∆t, and mass m = 0.5. The state vector
consists of x− and y−position px and py , as well as x−
and y−velocity vx and vy , the inputs are forces in x− and
y−direction, Fx and Fy . The following constraints, X and
U, are employed for states and inputs

−3 ≤vx≤ 3 (11a)
−5 ≤py≤ 5 (11b)
−3 ≤vy≤ 3 (11c)
−3 ≤Fx≤ 3 (11d)
−0.5 ≤Fx≤ 0.5. (11e)



The control invariant set XCI is given by

vx = 0, vy = 0, − 5 ≤ py ≤ 5. (12)

This ensures that at the end of the first horizon segment, the
robot can come to a standstill, which avoids any constraint
violations.

The approximated, coarse model, based on (10), is given
by

z+ =

[
1 0
0 1

]
z +

[
∆t 0
0 ∆t

]
v (13)

with state z = [px, py]> and input u = [vx, vy]>. The models
(10) and (13) are linked by the projection matrix

(
z
v

)
= Proj

((
x
u

))
=


1 0 0 0 0 0
0 0 1 0 0 0
0 1 0 0 0 0
0 0 0 1 0 0

(xu
)
. (14)

The coarse model is subject to constraints Z and V similar
to (11), i.e.,

−5 ≤py≤ 5 (15a)
−3 ≤vx≤ 3 (15b)
−3 ≤vy≤ 3, (15c)

where the control invariant set ZCI is defined as in (12).
Additionally, obstacles according to Figure 2 are consid-

ered as ellipsoidal constraints in both the detailed and the
coarse model. Given the ellipse equation(

px − x∗

a

)2

+

(
py − y∗

b

)2

≤ 1 (16)

with ellipse parameters a and b and origin offset [x∗, y∗],
we consider the two overlapping obstacles with parameters
[a1, b1, x

∗
1, y
∗
1 ] = [1.5, 1.5, 10,−0.1] and [a2, b2, x

∗
2, y
∗
2 ] =

[5, 1.4, 15.2, 1.3].
The position of the two obstacles allows to analyze the

benefit of a longer prediction horizon. Passing the obstacles
above results in a longer path. However, the circular obstacle
is positioned in such a way (y∗1 < 0) that it is more rewarding
to pass it above. A longer prediction horizon now allows to
choose the path with higher short-term cost, as it has lower
cost in the long-term.

B. MPC Schemes

We compare three MPC setups to evaluate the proposed
method: standard MPC, MPC with models of different gran-
ularity, and the proposed approach. The standard MPC has
a shorter horizon to then show the advantage of using a
longer prediction horizon. The aim is to reach the reference
point (px, py) = (20, 0), resulting in the reference states
xref = [20, 0, 0, 0]> and zref = [20, 0]>. The initial state
is x0 = [0, 0, 0, 0]. All stage costs have the quadratic form

ls(xk,uk)= (xk − xref)
>Qs(xk − xref) + u>k Rsuk (17a)

lf(zk,vk)= (zk − zref)
>Qf(zk − zref) + v>k Rfvk (17b)

with Qs = diag(1, 0, 5, 0), Rs = diag(0.1, 0.1) and Qf =
diag(1, 5), Rf = diag(0.01, 0.01). While velocities are
not penalized in ls(xk,uk), they are penalized slightly in
lf(zk,vk) in order to have a non-zero matrix Rf. Terminal
cost functions are chosen as Vs(xk) = (xk−xref)

>Qs(xk−
xref) and Vf(zk) = (zk − zref)

>Qf(zk − zref).
The three controllers have the following characteristics:

Standard MPC uses a prediction horizon N = 10 with
sampling time ∆t = 0.2 for model (10), constraints (11),
and terminal constraints (12), as well as stage cost ls(xk,uk)
and Vs(xN ).
MPC with models of different granularity uses the hori-
zons ks = 10 and kf = 16 with sampling time ∆t = 0.2 with
model (10) and constraints (11) for the short-term horizon
ks = 10, and model (13), constraints (15), and terminal
constraints (12), between ks = 10 and the long-term horizon
kf = 16. The stage costs are ls(xk,uk) and lf(zk,vk) with
terminal costs Vs(xks) and Vf(zkf).
The proposed MPC scheme also uses two horizons. For the
short-term horizon ks = 10 with sampling time ∆t1 = 0.2,
model (10) and constraints (11) are employed, as well as
(12) for the control invariant set XCI. Between ks = 10 and
the long-term horizon kf = 16 the increased sampling time
∆t2 = 0.4 is chosen with the model (13), constraints (15),
and control invariant set ZCI according to (12). Terminal
costs Vs(xks) and Vf(zkf) are used with the stage costs
ls(xk,uk) and

lf(zk,vk)= (zk − zref)
>Q̃f(zk − zref) + v>k R̃fvk (18)

with Q̃f = diag(2, 10), R̃f = diag(0.02, 0.02) according to
(7). The weights are increased, as the sampling time is larger
compared to the short-term horizon, resulting in less states
and inputs considered in the cost function.

The main properties of the analyzed MPC schemes (bold
font) used for the simulation are summarized in Table I.
Properties and results are also provided for further MPC
schemes that are not discussed in detail.

method ks ∆t1 kf − ks ∆t2 cost
standard MPC 10 0.2 5.9 · 103

standard MPC 13 0.2 5.9 · 103

standard MPC 16 0.2 5.9 · 103

standard MPC 8 0.4 6.0 · 103

NUSH MPC [15] 10 0.2 3 (det.) 0.4 5.9 · 103

gran. MPC [9] 10 0.2 6 (cor.) 0.2 5.6 · 103

proposed MPC 10 0.2 3 (cor.) 0.4 5.6 · 103

TABLE I: Comparison of MPC setups: short-term horizon
(detailed prediction model), long-term horizon (detailed or
coarse prediction model), sampling time, and cost.

As shown, the decision variables vary between the three
methods. While the horizon of the proposed method and
MPC with models of different granularity covers the same
horizon, less decision variables are necessary for the pro-
posed approach.

C. Simulation Results
In this section we will compare the simulation results of

the three methods. Each simulation was run for 50 iterations.



Fig. 3: Simulation Results: the standard MPC controller (red)
chooses a longer path due to the shorter horizon, while both
other approaches find the shorter path.

We will first focus on the individual simulations and then
investigate the overall result.

The simulation results of the individual controllers are
illustrated in Figure 3. As the center of the circular obstacle is
set slightly below y = 0, the standard MPC controller moves
the robot towards the top. If only the circular obstacle were
present, this would be the behavior with the lowest cost.
However, due to the short horizon the ellipsoidal obstacle is
only detected later. As the cost would be larger to change
the path, the robot continues the longer path. Both the MPC
with models of different granularity and the proposed MPC
scheme detect the ellipsoidal obstacle before deciding on a
path. Therefore, both methods select the shorter path below
the circular obstacle, resulting in lower overall costs.

The overall cost V ∗ for each simulation run is analyzed
by comparing the real cost which occurred for each step, i.e.,

V ∗ =

49∑
k=0

ls(xk+1,uk) (19)

according to (17a). The overall results are shown in Table I.
The standard MPC with N = 10 has the lowest compu-
tational effort, the average computation time per iteration
is 0.27 s (100%). However, as described before, the shorter
horizon results in higher costs, as the longer path is chosen,
illustrated by the increased cost compared to the other two
methods. In this example, the computational effort of the
proposed method is 0.41 s (151%). Eventually, we compare
the proposed method with MPC with models of different
granularity. While the costs are equal, the proposed method
reduces the computational effort by 33% compared to MPC
with models of different granularity (226%).

All three controllers reach the target state eventually, how-
ever, cost and computational effort vary. While the proposed
method proved to be beneficial here, this is highly scenario
dependent. It will be of interest to apply the proposed MPC
scheme to more challenging automated vehicle scenarios,
considering dynamic obstacles with uncertain behavior [16],
[17].

VI. CONCLUSION

In this paper, we proposed an MPC scheme that com-
bines a detailed model with smaller sampling time and an
approximated, coarse model with larger sampling time. The
presented method allows to plan precisely on a short-term
horizon while still considering long-term goals by improving
the cost-to-go. The coarse model combined with increased
sampling time allows reduced computational effort.

While recursive feasibility is guaranteed, stability is still
an issue, which could be addressed using dissipativity theory,
similar to showing stability for MPC with a non-uniformly
spaced horizon.
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