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Abstract

Differentiable architecture search (DARTS) marks a
milestone in Neural Architecture Search (NAS), boasting
simplicity and small search costs. However, DARTS still
suffers from frequent performance collapse, which happens
when some operations, such as skip connections, zeroes and
poolings, dominate the architecture. In this paper, we are
the first to point out that the phenomenon is attributed to
bi-level optimization.

We propose Single-DARTS which merely uses single-
level optimization, updating network weights and archi-
tecture parameters simultaneously with the same data
batch. Even single-level optimization has been previ-
ously attempted, no literature provides a systematic ex-
planation on this essential point. Replacing the bi-level
optimization, Single-DARTS obviously alleviates perfor-
mance collapse as well as enhances the stability of ar-
chitecture search. Experiment results show that Single-
DARTS achieves state-of-the-art performance on main-
stream search spaces. For instance, on NAS-Benchmark-
201, the searched architectures are nearly optimal ones.
We also validate that the single-level optimization frame-
work is much more stable than the bi-level one. We hope
that this simple yet effective method will give some insights
on differential architecture search. The code is available at
https://github.com/PencilAndBike/Single-DARTS.git.

1. Introduction
Neural architecture search (NAS) has helped to find

more excellent architectures than manual design. Generally,
NAS is formulated as a bi-level optimization problem[2]:

α∗ = arg min
α∈A

Lval(α,w∗α)

s.t. w∗α = arg min
wα

Ltrain(α,w)
(1)

where α denotes architecture, A denotes architecture search
space,wα denotes the network weights with the architecture
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Figure 1: Search process comparison between the original
DARTS and Single-DARTS.

parameter α, Ltrain and Lval denote the optimization loss
on the training and validation dataset. Due to the inner opti-
mization on Ltrain where each architecture should be well-
trained respectively, it costs huge computational resources
to search the optimal architecture. To avoid training each
architecture from scratch, weight-sharing methods [27] are
proposed, which constructs a super network where all archi-
tectures share the same weights. DARTS relaxes the search
space to be continuous and approximates w∗α by adapting w
with only a single training step, instead of solving the inner
optimization 1 completely. The approximation scheme is:
∇αLval(α,w∗α) ≈ ∇αLval(α,w − ξ∇wLtrain(α,w)).
It saves computations and finds competitive networks.

However, many papers [34, 26, 37, 21, 12, 15] have re-
ported the performance collapse in DARTS, where it eas-
ily converges to non-learnable operations, such as skip-
connection, pooling, and zero, which devastates the accu-
racy of the searched model. As shown in Figure 1, at the
early stage of searching, DARTS performs very unsteadily,
and after one point when it converges to non-learnable op-
eration, its performance drops. They also propose some ef-
fective mechanisms or regularization to improve DARTS.

In this paper, we dig deeper into this situation. First,
we propose that the performance collapse in DARTS is ir-
reversible. Moreover, we delve into the irreversible per-
formance collapse in DARTS from the perspective of op-
timization, where little attention has been paid to in pre-
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vious works. In the bi-level optimization in DARTS, net-
work weights and architecture parameters are updated alter-
natively with different batches of data (train and validation
data). We derive that in such framework, learnable opera-
tions act as adding noise on input and fitting input worse
than non-learnable operations like skip-connection and
pooling. As a result, the probabilities of non-learnable op-
erations increase faster than learnable ones, which enables
non-learnable operations to dominate the search phase.

To this end, we propose Single-DARTS, a simple yet
effective single-level optimization framework, which up-
dates network weights and architecture parameters simul-
taneously with the identical batch of data. Through gra-
dient analysis, we present that with such an optimization
mechanism, Single-DARTS can obviously alleviate the per-
formance collapse. Experiment results prove that Single-
DARTS shows strong performance both in accuracy and
stability. In Figure 1, Single-DARTS performs much more
steadily than DARTS as well as reaches higher accuracy. On
NAS-Benchmark-201 [15], Single-DARTS searches nearly
the optimal architecture with a variance of 0, showing ex-
cellent stability.

In general, our contributions are as follows:

• We analyze the irreversible performance collapse in
DARTS from the perspective of optimization. We pro-
vide theoretical insights by gradient analysis, by which
we derive that it is the bi-level optimization framework
in DARTS that causes severe and irreversible perfor-
mance collapse.

• We propose Single-DARTS with a single-level opti-
mization framework where the network weights and
architecture parameters are updated simultaneously.

• Our simple yet effective method, Single-DARTS,
reaches the state-of-the-art performance in mainstream
search spaces. It also show strong stability.

2. Related Works
Neural Architecture Search. Neural architecture

search (NAS) is an automatic method to design neu-
ral architecture instead of human design. Early NAS
methods adopt reinforcement learning (RL) or evolu-
tionary strategy [38, 2, 3, 31, 30, 39] to search among
thousands of individually trained networks, which costs
huge computation sources. Recent works focus on ef-
ficient weight-sharing methods, which falls into two
categories: one-shot approaches [6, 4, 1, 7, 18, 33, 29] and
gradient-based approaches [32, 27, 9, 8, 20, 12, 34, 23],
achieve state-of-the-art results on a series of tasks
[10, 17, 24, 35, 16, 28] in various search spaces. They
construct a super network/graph which shares weights
with all sub-network/graphs. The former commonly does

heuristic search and evaluates sampled architectures in
the super network to get the optimal architecture. The
latter relaxes the search space to be continuous and intro-
duces differential and learnable architecture parameters.
In this paper, we mainly discuss gradient-based approaches.

Differentiable Architecture Search. Gradient-based
approaches are commonly formulated as an approximation
of the bi-level optimization which updates network weights
and updates architecture parameters in the training and vali-
dation dataset alternatively[27]. It has searched competitive
architectures, however, many papers pointed out DARTS-
based methods don’t work stably, suffering from severe per-
formance collapse. NAS-Benchmark-201 [15] points out
that DARTS performs badly in this search space. Its perfor-
mance drops quickly during the search procedure. Towards
this serious problem, researchers try to give explanations
and solve it. [4] shows the relationship between DARTS
searched architectures’ performance and the domain eigen-
value of ∇2

αLvalid. FairDARTS [12] shows that DARTS is
easy to converge to skip-connect operation due to its unfair
advantage in exclusive competition. It gives each opera-
tion an independent weight to replace the exclusive com-
petition and introduces zero-one loss to decrease the unfair
advantage. However, in our point bi-level optimization is
the key reason for the collapse and single-level optimization
could also get satisfied result under exclusive competition.
Previous works[26, 34, 19, 21] show that DARTS favors
non-parametric operations. DropNAS [19] observes the co-
adaption problem and Matthew effect that light operations
are trained maturely earlier. Different from these works, we
analyze DARTS from the perspective of optimization.

Single-level Optimization. Although the original paper
[27] shows that single-level optimization performs worse
than bi-level optimization and they indicate that single-level
would cause overfitting, but recent works show the oppo-
site results [21, 5, 19]. They adopt single/one-level op-
timization to replace bi-level optimization in their meth-
ods. Combining single-level optimization with their pro-
posed methods, they can find more accurate network archi-
tectures. StacNAS[21] advocates that the over-fitting phe-
nomenon is caused by the network’s depth gap between the
search phase and the evaluation phase. GoldNAS[5] indi-
cates that super-network parameters are trained much more
effectively than architecture parameters and adds data aug-
mentation in the search phase. DropNAS [19] combines
operations dropout with single-level optimization to solve
the co-adaptation problem it proposes. However, on one
side, though based on single-level optimization, these works
focus on other techniques to get satisfactory results. Our
method just uses single-level optimization alone to search
steadily high-performance architectures. On the other side,
these works prove that single-level optimization outper-



forms bi-level optimization empirically, without detailed
explanations or proof. On the contrary, in this paper, we
give theoretical insights about bi-level optimization from
the perspective of optimization, on the basis of which we
propose a single-level method, Single-DARTS.

3. Irreversible Collapse in DARTS
In this section, we first review the Differentiable Archi-

tecture Search (DARTS) framework. Then we propose that
the performance collapse in DARTS is irreversible.

Preliminary of DARTS Differentiable Architecture
Search (DARTS) is a milestone in neural architecture
search. Its search space includes stacks of several cells,
where each cell is a directed acyclic graph. Each cell
consists of sequential nodes where node i represents the
latent feature map xi. The edge from node i to node j rep-
resents a connection, and each connection is one operation
from candidate operations O: convolution, pooling, zero,
skip-connect, etc. Let oi,j denote the operation from node
i to j. The output of each intermediate node is computed
based on all of its predecessors: xj =

∑
i<j o

i,j(xi)
In DARTS, it transforms the problem of searching the
best architecture to searching the best operation on each
connection. DARTS makes the search space continuous by
relaxing the categorical choice of a particular operation to a
weighted sum over all possible operations. Let αi,jk denote
architecture parameter with operation ok between node i
and node j, then the output of this connection is

ōi,j(xi) =
∑
k

exp(αi,jk )∑
k′ exp(α

i,j
k′ )

ok(xi) (2)

where it adopts softmax function to have weights over dif-
ferent operations. The output of one intermediate node
is computed based on all of its predecessors: xj =∑
i<j ōi,j(xi)
Therefore, DARTS needs to optimize the network

weights w and the architecture parameters α. DARTS re-
solves this problem by a bi-level optimization framework,
which updates network weights on the train set and archi-
tecture parameters on the validation set: ∇αLval(α,w∗α) ≈
∇αLval(α,w − ξ∇wLtrain(α,w)).

Irreversible Performance Collapse Previous works have
unveiled that it is easy for DARTS to converge to non-
learnable operations like skip-connect, zero, pooling, etc.
As a result, the performance collapse will happen. In this
paper, we delve deeper into this situation. As shown in Ap-
pendix Figure A-1, we train DARTS in the two spaces and
plot the probability curves of one edge. At one point, the
probability of non-learnable operation starts to surpass the

learnable one. However, for this edge, the ideal choices
are actually learnable operations, and non-learnable opera-
tions will bring about disastrous influence to model accu-
racy. Thus, the divergence between them becomes increas-
ingly larger, enabling non-learnable operations to dominate
the architecture search. Such divergence also indicates that
the performance collapse is irreversible.

4. Methodology

In this section, we firstly understand DARTS from the
perspective of information gain. Then we theoretically an-
alyze the bi-level optimization and explain the collapse in
DARTS. At last, we present our solution, Single-DARTS.

4.1. Understanding DARTS

According to Eq.2, we consider a general formulation for
the connection setting in DARTS:

f(
∑
i

pixi), where
∑

pi = 1, 0 ≤ pi ≤ 1

where xi is a set of input vectors and its corresponding loss
function about one-hot vector y is:

L = −yT ln(softmax(f(
∑
i

pixi))) (3)

We denote x̄ as
∑
pixi. If model fits y with xi better than

xj , it means the cross entropy between y and f(xi; θ) is
smaller than f(xj ; θ). For loss function 3, pi should be
increased faster than pj for xi gets more information gain
than xj . Under gradient descend methods, the gradient of
pi is smaller than pj . Heuristically, ∂L∂x̄

T
(xi) reflect the ad-

vantage of input xi. We give the formal description as fol-
lows: for one hot random vector y, function f(x; θ) and
loss L = −yT ln(f(

∑
pkxk; θ), if −yT ln(f(xi; θ)) ≤

−yT ln(f(xj ; θ)), then we have ∂L
∂pi

≤ ∂L
∂pj

. Limited
to mathematical tools, we consider a simplified situation
where f(x; θ) = x to give some insight and we conduct
empirical experiments to verify the following theorems in
deep neural networks.

Theorem 4.1 For input vectors {xk}, L =
−yT ln(softmax(

∑
k pkxk)) where y is one-hot vec-

tor,
∑
k pk = 1 and 0 ≤ pk ≤ 1, x̄ as

∑
k pkxk, if

KL-Divergence(p(x̄)||p(xk)) ≈ 0 ∀ xk and

− yT ln(softmax(xi)) ≤ −yT ln(softmax(xj)) (4)

then
∂L
∂pi

/
∂L
∂pj

(5)



Proof 4.1 We have ∂L
∂pi

= (softmax(xi) − y)Txi, let t de-
note softmax(x̄). Suppose y0 = 1 and yl = 0 where l > 0,
we have

−yT ln softmax(xi) = − ln
expx0

i∑
l expxli

We have

− ln expx0
i + ln

∑
l

expxli ≤ − ln expx0
j + ln

∑
l

expxlj

x0
i − x0

j ≥ ln

∑
l expxli∑
l expxlj

And

∂L
∂pi

= (softmax(x̄)− y)Txi =
∑
l

tlxli − x0
i

∂L
∂pi
− ∂L
∂pj

= (
∑
l

tlxli − x0
i )− (

∑
l

tlxlj − x0
j )

=
∑
l

tl(xli − xlj)− (x0
i − x0

j )

To prove ∂L
∂pi
≤ ∂L

∂pj
, we just need to prove

∑
l t
l(xli−xlj) ≤

ln
∑
l exp xli∑
l exp xlj

, then we have ∂L
∂pi
− ∂L
∂pj
≤ ln

∑
l exp xli∑
l exp xlj

−(x0
i −

x0
j ) ≤ 0.

Let qj denote softmax(xj), according to Jensen’s in-
equality that for convex function h(x), h(

∑
k pkxk) ≤∑

hkf(xk) and − ln(x) is a convex function, we have

ln

∑
l expxli∑
l expxlj

= ln
∑
l

expxlj∑
l′ expxl

′
j

exp(xli − xlj)

≥
∑
l

qlj ln(exp(xli − xlj))

=
∑
l

qlj(x
l
i − xlj)

Since KL-Divergence(p(x̄)||p(xk)) ≈ 0, thus
softmax(x̄) ≈ softmax(xk),

∑
l q
l
j(x

l
i − xlj) ≈∑

l t
l(xli − xlj). So

∑
l t
l(xli − xlj) ≤ ln

∑
l exp xli∑
l exp xlj

.

Note that in Theorem 4.1 we assume KL-
Divergence(p(x̄)||pk(x)) ≈ 0. In fact, with the help
of Batch Normalization (BN) in neural networks, the
distribution of intermediate batch normalized feature maps
can be approximated as normal Gaussian distribution.
Moreover, x̄ is the weighted sum of xi so it can be approxi-
mated as normal Gaussian distribution as well. Therefore,
our assumption is valid.

4.2. Drawback in Bi-level Framework

Consider a more concrete formulation that xi are trans-
formed features from the same input x, xi = oi(x). Specif-
ically, oi(x) could be linearly expanded as oi(x) = Wix.

∂L
∂pi

= E[
∂L
∂x̄

T

(Wix);X, y] (6)

∂L
∂Wi

= E[pi
∂L
∂x̄

xT ;X, y] (7)

To be emphasized, Eq.7 only exist for learnable operations
for non-learnbale operations do not update their weights.
According to last section, if Wix bring more information
gain than Wjx, then ∂L

∂pi
should be smaller than ∂L

∂pj
. For

DARTS, pi is updated on the validation dataset. On the iter-
ation t and on the validation dataset Dvalid = {Xval, yval}:

∂L
∂pti

=
1

N

N∑
j=1

∂L(xjval)

∂x̄

T

(W t
i x

j
val)

W t
i is updated on the training dataset Dtrain =
{Xtrain, ytrain}:

∂L
∂W t

i

=
pi
M

M∑
k=1

∂L(xktrain)

∂x̄
xktrain

T

W t
i = W t−1

i − η ∂L
∂W t−1

i

= W t−1
i − η p

t−1
i

M

N∑
k=1

∂L(xktrain)

∂x̄
xktrain

T

As a result, the gradient of pi is:

∂L
∂pti

=
1

N

N∑
j=1

∂L(xjval)

∂x̄

T

(W t−1
i xjval)

− ηpt−1
i

NM

N∑
j=1

M∑
k=1

(
∂L(xjval)

∂x̄

T
∂L(xktrain)

∂x̄
)(xktrain

T
xjval)

For bi-level optimization W and α are computed on the dif-

ferent batches, since samples are different, ∂L(xjval)

∂x̄ is in-

dependent of ∂L(xktrain)
∂x̄ , and xktrain is independent of xjval.

Thus

N∑
j=1

M∑
k=1

(
∂L(xjval)

∂x̄

T
∂L(xktrain)

∂x̄
)(xktrain

T
xjval) ≈ 0 (8)



Furthermore, during the early stage of architecture search

∂L
∂pti
≈ 1

N

N∑
j=1

∂L(xjval)

∂x̄

T

(W t−1
i xjval) (9)

=
1

N

N∑
j=1

∂L(xjval)

∂x̄

T

(W t−2
i xjval) (10)

− ηpt−2
i

NM

N∑
j=1

M∑
k=1

(
∂L(xjval)

∂x̄

T
∂L(xktrain)

∂x̄
)(xktrain

T
xjval)

(11)

≈ 1

N

N∑
j=1

∂L(xjval)

∂x̄

T

(W t−2
i xjval) (12)

≈ .... ≈ 1

N

N∑
j=1

∂L(xjval)

∂x̄

T

(W 0
i x

j
val) (13)

(14)

Let i denote learnable operaions’ indicator while j as the
non-learnable’s. Learnable operations (convolution) are ini-
tialized randomly thus they are actually adding noise on in-
put x. So during the early stage, they bring less informa-
tion gain than non-learnable operations. 9 does not estab-
lish when iterations are adequate, however, due to softmax
as activation function, the gap between ∂L

∂ptj
and ∂L

∂pti
could

be expanded during early stage.

Effect of activation function For αi and αj , if αj ≥ αi,
the gradient of αi is more likely to be smaller than αj under
softmax activation and gradient descent. It means the gap
between αi and αj would be expanded. Formally, we have

Theorem 4.2 For function L = g(
∑
i

exp(αi)∑
j exp(αj)

xi), let

pi = exp(αi)∑
j exp(αj)

, x̄ =
∑
i pixi, if ∂L

∂x̄

T
xj <

∂L
∂x̄

T
xi and

αj ≥ αi, then ∂L
∂αj ≤

∂L
∂αi

The proof is included in Appendix. On the early stage,
∂L
∂x̄

T
xj ≤ ∂L

∂x̄T
xi for learnable operation i and non-

learnable operation j. Theorem 4.2 indicates that in
DARTS, on the early training stage, once one non-learnable
operation is superior to others, the probability of this op-
eration will become increasingly larger, and after some it-
erations, it will be nearly 1, which leads to the irreversible
performance collapse. Moreover, we could get the conver-
gence speed as follows.

Theorem 4.3 Given n operations, learning rate η, i∗ =

arg mini
∂L
∂x̄

T
xi, we define the margin between operations

as δ = mini 6=i∗
∂L
∂x̄

T
(xi − xi∗) ≥ 0, if αi∗ ≥ αi, then ∀

ε > 0, it achieves pi∗ > 1 − ε under gradient descent in
iterations

t ≤ n ln((1− ε)n)

ηδ
(15)

The proof is included in Appendix. It shows that fewer can-
didate choices, a bigger margin and larger learning rates
would cause performance collapse earlier. It is consistent
with the empirical results that when the learning rate is
lower, DARTS will perform better on NAS-Benchmark-201
if the total epoch is fixed to 50.

4.3. Solution: Single-DARTS

The analysis above indicates that it is the bi-level opti-
mization in DARTS that plays a crucial role in performance
collapse. In this paper, we propose Single-DARTS, which
optimizes the network weights and architecture parameters
by the same batch of data.

αt, wt− = η∇α,wLtrain(αt−1, wt−1) (16)

Under this framework, we have

∂L
∂pti

=
1

N

N∑
j=1

∂L(xjval)

∂x̄

T

(W t−1
i xjval)

− ηpt−1
i

N2

N∑
j=1

(
∂L(xjtrain)

∂x̄

T
∂L(xjtrain)

∂x̄
)(xjtrain

T
xjtrain)

<
1

N

N∑
j=1

∂L(xjval)

∂x̄

T

(W t−1
i xjval)

< ... <
1

N

N∑
j=1

∂L(xjval)

∂x̄

T

(W 0
i x

j
val)

It means for learnable operations, ∂L
∂pi

in the single-level
framework is smaller than in bi-level framework at the same
iteration and ∂L

∂pi
is decreased as the training process goes.

After several iterations, learnable operations (convolution)
are really learned but not add noise on the input, Thus
they bring more information gain than non-learnable oper-
ations. Therefore, ∂L

∂pi
of learnable operations can possi-

bly be smaller than non-learnable operations. Under gradi-
ent descent, pi would consequently be increased faster than
non-learnable operations and finally exceed them.

Furthermore, we use sigmoid to replace softmax as acti-
vation function on α. For sigmoid, ∂L

∂αi
= pi(1−pi)∂L∂x̄

T
xi.

pi(1−pi) is a nonmonotone function and it could be nearly
zero when pi is near 1, thus even pi ≥ pj and ∂L

∂x̄

T
xi ≤

∂L
∂x̄

T
xj , it’s possible that ∂L

∂αi
≥ ∂L

∂αj
. Therefore, from theo-

retical analysis, Single-DARTS can alleviate the irreversible
performance collapse in DARTS.



5. Experiments
In this section, we conduct experiments to validate our

theoretical insights and evaluate the performance of our pro-
posed method, Single-DARTS. We choose two mainstream
search spaces, NAS-Benchmark-201 and DARTS space.

5.1. Results

5.1.1 NAS-Benchmark-201

In NAS-Benchmark-201, we train the supermodel for 50
epochs with batch size of 64. We set SGD optimizer with
learning rate as 0.005, weight decay as 3 × 10−4, momen-
tum as 0.9 and the cosine scheduler for network weights.
And we set Adam optimizer with a fixed learning rate of
3 × 10−4 and a momentum of (0.5, 0.999) for architecture
parameters. We run each method 5 times and report the av-
erage results.

Table 1 shows the experiment results on NAS-
Benchmark-201. NAS-Benchmark-201 is a challenging
search space, where DARTS performs poorly, showing very
low accuracy consistently. On the contrary, by replacing the
bi-level optimization with single-level optimization, Single-
DARTS outperforms all the previous methods. Single-
DARTS shows very strong stability and its results are very
close to the optimal results. So Single-DARTS is superior
to the previous method both in accuracy and stability.

5.1.2 DARTS

We directly do the search process on the ImageNet-1k
dataset. Specifically, input images are downsampled third
times by convolution layers at the beginning of the super-
model to reduce spatial resolution which follows [25]. In
the search phase, we train the supermodel for 50 epochs.
We set batch size as 360, learning rate as 0.025, weight
decay as 3 × 10−4, and the cosine scheduler for network
weights. And we use Adam with a fixed learning rate of
3 × 10−4 and a momentum of (0.5, 0.999) for architecture
parameters, and weight decay is set to 0 to avoid extra gra-
dients on zero operations. For sigmoid, α is initialized as
− ln(7) such that sigmoid(α) = 0.125 (from our empirical
experiments setting α = 0 could be worse than using soft-
max, more comparisons are shown in 5 and Appendix). The
search phase costs 4 GPUs for about 28 hours on NVIDIA
GeForce RTX 2080ti. In the retraining phase, we adopt the
training strategy as previous works [20] to train the searched
architecture from scratch, without any additional module.
The whole process lasts 250 epochs, using SGD optimizer
with a momentum of 0.9, a weight decay of 3×10−5. It’s to
be mentioned that due to memory limit of 2080ti, we scale
both batch size and learning rate by 0.75 (1024 to 768, 0.5
to 0.375). And we reproduce previous methods [20, 34, 36]
under this setting to ensure fairness. Additional enhance-

ments are adopted including label smoothing and an auxil-
iary loss tower during training as in PDARTS. Learning rate
warm-up is applied for the first 5 epochs and decayed down
to zero linearly. The retrain phase costs 8 GPUs for about
3.5 days on RTX 2080ti.

As shown in Table 2, Single-DARTS search the state-of-
the-art architecture with 77.0% top1 accuracy on ImageNet-
1K. There is no constraint on FLOPs during the search pro-
cess and larger models naturally have better performance.
We report the result of previous methods in their origi-
nal paper. When training the searched architectures from
scratch, we follow the strategy of PDARTS, which re-trains
the searched architecture for 250 epochs. In contrast, Drop-
NAS trains for 600 epochs and DARTS+ for 800 epochs.
AutoAugment, mixup and SE module are also applied in
DropNAS.

We transfer the searched architecture to CIFAR10. To
keep mobile setting, we shorten the number of layers from
20 to 14 to make parameters under 3.5M. The training set-
ting is identical to PDARTS. The architecture’s initial chan-
nels are 36. The whole process lasts 600 epochs with batch
size of 128, using SGD optimizer with a momentum of
0.9, a weight decay of 3 × 10−4. Cutout regularization of
length 16, drop-path of probability 0.3 and auxiliary tow-
ers of weight 0.4 are applied. The initial learning rate is
0.025, which is decayed to 0 following the cosine rule. As
shown in Table 3, Single-DARTS search the comparable re-
sult with 97.54% accuracy on CIFAR10. It’s to be men-
tioned that DARTS+ trains for 2,000 epochs.

5.2. Analysis

5.2.1 Gradient Correlation

We define
∑N
j=1

∑M
k=1(

∂L(xjval)

∂x̄

T
∂L(xktrain)

∂x̄ )(xktrain
T
xjval)

as the gradient correlation in bi-level optimization,
accordingly the one in single-level optimization is∑N
j=1

∑M
k=1(

∂L(xjtrain)

∂x̄

T
∂L(xktrain)

∂x̄ )(xktrain
T
xjtrain). In

our analysis, we point out that it is the gradient correlation
that plays a crucial role in the performance collapse in
DARTS. Here we visualize the gradient correlation in
bi-level optimization and single-level optimization. Figure
2 compares the gradients correlation 8 in DARTS and
Single-DARTS. For DARTS, the gradients correlation is
nearly zero. On the contrary, the gradient correlation in
Single-DARTS is much bigger than the one in DARTS,
which is consistent with our theoretical analysis.

5.2.2 Operator Gradients

We compare ∂L
∂pi

in the last cell between DARTS and
Single-DARTS in Figure 3. For DARTS, ∂L

∂pi
of non-

learnable operations are smaller than learnable operations
and the gap increases as the training process goes. Thus



Table 1: Comparison of different NAS algorithms on NAS-Bench-201.

Method CIFAR-10 CIFAR-100 ImageNet-16-120
validation test validation test validation test

Optimal 91.61 94.37 73.49 73.51 46.77 47.31
Å RSPS[22] 84.16±1.69 87.66±1.69 59.00±4.60 58.33±4.34 31.56±3.28 31.14±3.88

DARTS[27] 39.77±0 54.30±0 15.03±0 15.61±0 16.43±0 16.32±0

GDAS[14] 90.00±0.21 93.51±0.13 71.14±0.27 70.61±0.26 41.70±1.26 41.84±0.90

SETN [13] 82.25±5.17 86.19±4.63 56.86±7.59 56.87±7.77 32.54±3.63 31.90±4.07

ENAS [29] 39.77±0 54.30±0 15.03±0 15.61±0 16.43±0 16.32±0

CDARTS [36] 91.13±0.44 94.02±0.31 72.12±1.23 71.92 ±1.30 45.09±0.61 45.51±0.72

DARTS- [11] 91.03±0.44 93.80±0.40 71.36±1.51 71.53±1.51 44.87±1.46 45.12±0.82

Single-DARTS 91.55±0 94.36±0 73.49±0 73.51±0 46.37±0 46.34±0
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Figure 2: Comparison of gradient correlation 8 between bi-level and single-level optimization on CIFAR10 dataset in NAS-
Benchmark-201 search space. It shows the gradient correlation on different nodes of the first, the middle, and the last cells.
Solid lines represent bi-level and dashed lines represent single-level. Gradient correlation in bi-level optimization is nearly
zero and far smaller than in single-level optimization.
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Figure 3: Comparison of gradients of pi in the edges 3←2
in the 15th cell in DARTS and Single-DARTS.

non-learnable operations’ architecture parameters would be
much larger than the learnable ones. On the contrary,
in Single-DARTS, ∂L

∂pi
of learnable operations compete

against non-learnable operations and finally learnable oper-
ations surpass non-learnable ones. More comparison results
of different cells are shown in Appendix.

5.3. Ablation Study

Bi-level V.S. Single-level In this paper, Single-DARTS
optimizes network weights and architecture parameters
with the same batch of data. However, there are also some
different optimization methods, such as using two different
batch of data from the train set. Here we conduct the abla-
tion study on it and the results are shown in Table 4. The
training phase lasts 50 epochs. w and α are optimized with
the SGD optimizer. The learning rate is set to 0.005, which
is the optimal value for these methods. We run each exper-
iment 5 times and report the average values. We can see
from the results that if we sample two different batch data
from the same subset, the performance collapse is alleviated
to some extent. Thus, using same batch of data is optimal,
which is equivalent to single-level optimization in ours.

Different Learning Rates. We evaluate the performance
of bi-level (DARTS) and single-level (Single-DARTS) opti-
mization under different learning rates. Here, we use SGD
as the optimizer and change the learning rate. Table 5 shows



Table 2: Comparison with SOTA architectures on ImageNet
in DARTS space. †: the average results of searched archi-
tectures (not the average results of retraining searched the
best architecture) and ∗: the best result. ?: scaling channels
of the best such that its FLOPs bellow 600M. �: adding ex-
tra training strategy on PDARTS setting.

Architecture FLOPs/M Params/M Top-1/%.

NASNet-A [39] 564 5.3 74.0
AmoebaNet-C [30] 570 6.4 75.7
PDARTS [9] 557 4.9 75.6
PC-DARTS [34] 597 5.3 75.8
DARTS [27] 574 4.7 73.3
DARTS+� [23] 591 5.1 76.3
CDARTS† [36] 732 6.1 76.3
CDARTS* [36] 704 6.3 76.6
CDARTS? [36] 571 5.4 75.9
DropNAS� [19] 597 5.4 76.6

Single-DARTS* 714 6.60 77.0
Single-DARTS† 707 6.55 76.7
Single-DARTS? 599 5.3 76.0

Table 3: Comparisons on CIFAR10 in DARTS space.

Architecture Params Top-1.
(M) (%)

AmoebaNet-B [30] 2.8 97.45
PDARTS [9] 3.4 97.50
PC-DARTS [34] 3.6 97.43±0.07

DARTS [27] 3.3 97.24±0.09

DARTS+ � [23] 4.3 97.63±0.13

CDARTS [36] 3.8 97.52±0.04

DropNAS [19] 4.1 97.42±0.14

Single-DARTS 3.3 97.54

Table 4: Comparison of different optimization strategies
with Softmax, whether to optimize on same subset or batch.

Subset Batch CIFAR10 CIFAR100 ImgNet16−120

61.88±10.72 25.13±13.47 17.98±2.35

X 84.34±0.02 54.92±0.06 25.97±0.49

X X 94.27±0.13 73.01±0.71 46.10±0.34

that when the learning rate changes, the performance of
DARTS varies dramatically, where the gap can be more than
50%. On the contrary, Single-DARTS shows much stronger
stability and always achieves accuracies well above 93%.

Table 5: Accuracy under different learning rates (lr), activa-
tion functions (act), and optimizers (opt). * init α as 0.

Method lr/act/opt CIFAR10 CIFAR100

DARTS
0.001 91.54±1.26 68.21±1.15

0.005 61.88±10.72 25.13±13.47

0.025 39.77±0 54.30±0

Single-DARTS
0.001 94.36±0 73.51±0

Single-DARTS 0.005 94.36±0 73.51±0

0.025 93.10±0 69.24±0

DARTS Softmax 61.88±10.72 25.13±13.47

Sigmoid 80.57±0 47.93±0

Single-DARTS
Softmax 94.27±0.13 73.01±0.71

Sigmoid 94.36±0 73.51±0

Sigmoid* 93.76±0 70.71±0

DARTS SGD 61.88±10.72 25.13±13.47

Adam 80.57±0 47.93±0

Single-DARTS SGD 94.36±0 73.51±0

Adam 94.36±0 73.51±0

Different Activation Functions In Single-DARTS, we
adopt a non-competitive activation function, Sigmoid, in-
stead of the original Softmax function. Here we show the
performance of DARTS and Single-DARTS under different
activation functions in Table 5. We can see that using non-
competitive activation functions is effective, which is con-
sistent with the empirical results in previous works and the
theoretical analysis in our paper. Moreover, Single-DARTS
performs much more steadily than DARTS under different
activation functions, no matter competitive or not.

Different Optimizers We evaluate the performance of
DARTS and Single-DARTS under different optimizers. For
SGD optimizer, we set momentum as 0.9, learning rate as
0.005, and weight decay as 3× 10−4. For Adam optimizer,
we use a fixed learning rate of 3 × 10−4 and a momen-
tum of (0.5, 0.999). From Table 5, using Adam as the opti-
mizer can admittedly push the performance of DARTS to a
higher level. On the contrary, Single-DARTS performs well
no matter what optimizer it uses.

6. Conclusion
In this paper, we unveil that the performance collapse in

DARTS is irreversible. Then we analyze this phenomenon
from the perspective of optimization. Through gradient
analysis, we state out that the bi-level framework plays
a crucial role in performance collapse. On the basis of
our theoretical insights, we propose a simple yet effective
method, which uses single-level optimization. Ours outper-
forms previous methods both in accuracy and stability.
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A. Irreversible Trend of Non-parametric Op-
erations

The probability curves of architecture parameters
(softmax(α)) during the whole search of DARTS on
CIFAR-10 in (a) NAS-201 and (b) DARTS Search space.
There is an irreversible trend that non-learnable operations
(e.g., skip, pool) surpass learnable operations.

(b) DARTS Search Space

(a) NAS-201 Search Space

Figure 4: Irreversible trend of non-parametric operations in
different space

B. Search space details

NAS-Bench-201 [15] builds a cell-based search space,
where one cell could be seen as a directed acyclic graph
consisting of 4 nodes and 6 edges. Each network is stacked
by 15 cells. Each edge represents an operation selected
from (1) zero, (2) skip connection, (3) 1×1 convolution, (4)
3×3 convolution, and (5) 3×3 average pooling. The search
space has 15,625 neural cell candidates in total. And all the
candidates are given training accuracy/valid accuracy/test
accuracy on three datasets: (1) CIFAR-10: In NAS-Bench-
201, it separates the train set in original CIFAR-10 into
two parts, one as the train set and the other as the valida-

tion set, each set contains 25K images with 10 classes, (2)
CIFAR-100: For CIFAR-100, it separates the original test
set to get the validation and test set, each set has 5K im-
ages, and (3) ImageNet-16-120. It downsamples ImageNet
to 16×16 pixels and selects 120 classes. Totally, it involves
151.7K training images, 3K validation images, and 3K test
images. We set Adam as architecture parameters’ optimizer
and SGD as network weights’.

DARTS [15] is also a cell-based search space. Each
cell contains 6 nodes and each node has to select 2 edges
to connect with the previous 2 nodes. Each edge has 8
operations: 3 × 3 and 5 × 5 separable convolution, 3 × 3
and 5×5 dilated separable convolution, 3×3 max-pooling,
3 × 3 average-pooling, skip-connect (identity), and zero
(none). The stacked networks have normal cells and
reduction cells. It contains 1018 candidates, which is quite
large.

C. Proof of theorem 4.2
Theorem C.1 For function L = g(

∑
i

exp(αi)∑
j exp(αj)

xi), let

pi = exp(αi)∑
j exp(αj)

, x̄ =
∑
i pixi, if ∂L

∂x̄

T
xj <

∂L
∂x̄

T
xi and

αj ≥ αi, then ∂L
∂αj ≤

∂L
∂αi

Proof C.1 It’s easily to see that pi ≥ pj if αi ≥ αj and
pi∗ ≥ 1

n for
∑
i pi = 1. Consider

∂L
∂αi

=
∂L
∂x̄

T

(pi(1− pi)xi − pi
∑
k 6=i

pkxk)

=
∂L
∂x̄

T ∑
k 6=i

pipk(xi − xk)

=
∂L
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T ∑
k
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∑
k

pk
∂L
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T

(xi − xk)

For ∂L
∂x̄

T
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∂x̄

T
xi,

∂L
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− ∂L
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= pi
∑
k

pk
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T

(xi − xk)− pj
∑
k

pk
∂L
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T

(xj − xk)

= (pi − pj)
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−
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As a result

∂l

∂αi∗
− ∂l

∂αi

= pi∗
∑
j

pj
∂l

∂z
(zi∗ − zj)− pi

∑
j

pj
∂l

∂z
(zi − zj)

= (pi∗ − pi)
∑
j

pj
∂l

∂z
(zi∗ − zj) + pi(

∑
j

pj
∂l

∂z
(zi∗ − zj)

−
∑
j

pj
∂l

∂z
(zi − zj))

= (pi∗ − pi)
∑
j

pj
∂l

∂z
(zi∗ − zj) + pi

∑
j

pj
∂l

∂z
(zi∗ − zi)

≥ (pi∗ − pi)δ + piδ

= pi∗δ

≥ δ

n
(17)

Under gradient ascent, on update step t we have, for any
i 6= i∗,

αti∗ − αti = αt−1
i∗ − α

t−1
i + η(

dlt−1

dαt−1
i∗
− dlt−1

dαt−1
i

)

≥ αt−1
i∗ − α

t−1
i + ηpti∗δt

≥ α0
i∗ − α0

i + η
∑
t

pti∗δt

≥ ηtδ

n

(18)

When t = n ln((1−ε)n)
ηδ , we have

αi∗ − αi ≥ ln((1− ε)n)

Thus

pi∗ =
1∑

i exp(αi − αi∗)
≥ 1∑

i exp(− ln((1− ε)n))
= 1−ε

(19)
Under gradient descent, for i∗ = arg mini

∂l
∂zzi, we have

the same conclusion.

D. Searched results in DARTS
We use Single-DARTS to search directly on the

ImageNet-1K dataset in DARTS space. Initializing αi as
− ln(7) ( softmax(αi) = 0.125) will improve the perfor-
mance. The training setting follows PDARTS, without any
additional tricks. In addition, for Single-DARTS, using half
of the dataset also gains promising results.

E. More comparison of gradients of pi in 5.2.2

F. Visualization of architectures

Table 6: ∗ denotes α is initialized as − ln(7). ’Data’ means
using full or half of data to search.

Activation Data Seed FLOPs Params Top-1.
(M) (M) (%)

softmax full 0 714.72 6.58 76.28
softmax full 1 712.92 6.56 76.71
softmax full 2 722.25 6.61 76.27
sigmoid full 0 738.21 6.69 76.12
sigmoid full 1 738.21 6.69 76.58
sigmoid full 2 721.35 6.60 76.29
sigmoid* full 0 707.89 6.50 76.96
sigmoid* full 1 721.35 6.60 77.0
sigmoid* full 2 700.61 6.40 76.95
softmax half 0 712.01 6.55 76.51
softmax half 1 692.18 6.36 76.31
softmax half 2 709.04 6.45 76.51
sigmoid* half 0 720.44 6.59 76.67
sigmoid* half 1 692.18 6.36 76.78
sigmoid* half 2 707.89 6.50 76.54
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Figure 5: DARTS, the 0th cell.
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Figure 6: DARTS, the 8th cell.
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Figure 7: DARTS, the 16th cell.
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Figure 8: Single-DARTS, the 0th cell.
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Figure 9: Single-DARTS, the 8th cell.
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Figure 10: Single-DARTS, the 16th cell.
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Figure 11: activation=softmax, data=full, seed=0
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Figure 12: activation=softmax, data=full, seed=1
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Figure 13: activation=softmax, data=full, seed=2
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Figure 14: activation=sigmoid*, data=full, seed=0
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Figure 15: activation=sigmoid*, data=full, seed=1
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Figure 16: activation=sigmoid*, data=full, seed=2


