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Abstract

We establish that the iterates of the Iterative Proportional Fitting Procedure, also known
as Sinkhorn’s algorithm and commonly used to solve entropy-regularised Optimal Transport
problems, are stable w.r.t. perturbations of the marginals, uniformly in time. Our result is
quantitative and stated in terms of the 1-Wasserstein metric. As a corollary we establish a
quantitative stability result for Schrödinger bridges.
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1 Introduction

The basic problem of Optimal Transport (OT) (see Villani (2009) for a broad overview), in its mod-
ern formulation introduced by Kantorovich (1942), is to find a coupling of two distributions µ, ν that
minimises

inf
π∈T(µ,ν)

∫

‖x− y‖2dπ(x, y), OT(µ, ν)

where T(µ, ν) denotes the collection of probability measures with marginals µ, ν and the Euclidean
distance ‖x− y‖ may be replaced by any other metric or cost function c(x, y). OT provides a theoretical
framework for analysis in the space of probability measures and has deep connections with many branches
of mathematics including partial differential equations and probability. Beyond its intrinsic interest,
OT has recently become an extremely important tool for data science and machine learning, finding
numerous applications in fields as diverse as imaging, computer vision or natural language processing
(Peyré and Cuturi, 2019).

This ubiquity of OT in modern applications is largely due to the computational tractability of the
Entropy-Regularised Optimal Transport problem

inf
π∈T(µ,ν)

∫

‖x− y‖2dπ(x, y) + εKL(π|µ⊗ ν) , OTε(µ, ν)

which is equivalent to the static Schrödinger bridge, a problem going back to Schrödinger (1931), see
Equation (1) in Section 3. Here KL(π|ρ) denotes the Kullback–Leibler divergence between the probability
measures π and ρ, defined as

KL(π|ρ) =

{

∫

log(dπdρ (x))dπ(x), π ≪ ρ,

+∞, otherwise.
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The great interest in OTε(µ, ν), as explained in the seminal paper of Cuturi (2013), stems from its
amenability to the Iterative Proportional Fitting Procedure (IPFP), see Equation (3) below. The theo-
retical properties of IPFP, also known as the Sinkhorn algorithm, have been investigated in numerous
works, and are therefore fairly well understood.

Due to its computational tractability, OTε(µ, ν) has been used in applications as an approximation to
OT(µ, ν). Rigorous justification of this approximation has been the subject of intense research recently.
Indeed it has been established, see e.g. Cominetti and San Martín (1994); Mikami (2004); Léonard (2012);
Carlier et al. (2017), that as the regularisation parameter ε → 0, the solution of OTε(µ, ν) converges to
that of OT(µ, ν).

More recently however, Schrödinger bridges and entropy-regularised OT are being studied for their
own sake, finding applications in control, computational statistics and machine learning, see e.g. Bernton et al.
(2019); Chen et al. (2021); Corenflos et al. (2021); De Bortoli et al. (2021); Huang et al. (2021); Li et al.
(2020); Vargas et al. (2021). In these applications, the entropy regularisation may be a desirable feature
rather than an approximation, and the main source of error is the fact that the marginal distributions
are typically intractable and often approximated by empirical versions. It is then desirable that as the
number of samples increases, this error vanishes. For example, a quantitative version of this statement,
can then be used to establish that the differentiable particle filter proposed in Corenflos et al. (2021)
converges as the sample size increases, for any ε > 0, thus strengthening the analysis of Corenflos et al.
(2021) which requires εN → 0 as N → ∞ to ensure consistency towards the true optimal filter.

This is the question we study in this paper. In particular we establish the stability of the IPFP and
of the solution of the corresponding Schrödinger bridge problem w.r.t. perturbations of the marginals.

For standard OT, a classical argument using compactness and cyclical monotonicity guarantees
a qualitative version of this result, see e.g.(Villani, 2009, Theorem 5.23, Corollary 5.23). Quantitative
versions of this result appeared much more recently, at least in the case of quadratic costs, in Mérigot et al.
(2020), Li and Nochetto (2021), Delalande and Merigot (2021). In particular it is established that the
optimal transport plans, or maps in the case of absolutely continuous measures, is Hölder continuous in
the marginals, with exponent 1/2 w.r.t. the marginals. It is also known that the exponent 1/2 is the
best possible, see Gigli (2011).

For entropy-regularised OT and the static Schrödinger bridge problem, the first qualitative result
appeared very recently in Ghosal et al. (2021), based on a version of cyclical monotonicity for entropy-
regularised OT introduced by Bernton et al. (2021). In the quantitative direction, Luise et al. (2019)
establish Lipschitz continuity of the potentials w.r.t. the marginals, measured in the total variation metric,
which is too strong to capture the situation where the marginals are being approximated by empirical
versions. For smooth cost functions, Luise et al. (2019) also establish that the sample complexity of
learning the potentials is of order n2, leveraging results from Genevay et al. (2019) on the regularity
of potentials and the duality between Maximum Mean Discrepancy type metrics and Sobolev spaces.
However, if one is interested in learning the Schrödinger bridge the situation is more complicated; the
Wasserstein-1 distance between two couplings is lower bounded by the distance of the marginals and so
the results by Fournier and Guillin (2015) imply that the sample complexity of learning the Schrödinger
bridge must scale at least as nd on Rd.

We present here the first, to the best of our knowledge, quantitative stability result for entropy-
regularised OT. In particular, this follows from a stronger result, namely the uniform in time stability
of IPFP, that is the Sinkhorn iterates, w.r.t. the marginal distributions. We think this result is of
particular importance for practical applications as IFPF is typically used for a finite number of iterations
to approximate the Schrödinger bridge. One interesting fact is that in contrast to the standard OT
problem, the solution of the entropy-regularised problem is Lipschitz continuous, in the Wasserstein
metric, w.r.t. the marginals. However, as the regularisation parameter ε vanishes, the Lipschitz constant
blows up as expected by the Hölder continuity of the OT plan.

The recent paper by Eckstein and Nutz (2021), which appeared a couple of months after the first
version of the present manuscript, uses very interesting methods, completely different to the ones in
the present paper, to establish the quantitative stability of the Schrödinger bridge w.r.t. the marginals
measured in the Wasserstein distance. On the one hand, the setting of Eckstein and Nutz (2021) is more
general than ours, as it does not require compactness. On the other hand, Eckstein and Nutz (2021) only
establish the stability of the Schrödinger bridge instead of the full iterates of IPFP and Hölder continuity
w.r.t. the marginals with exponent 1/2.
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2 Notation

For a metric space (Z, dZ), we write B(Z) for the Borel σ-algebra on Z and dZ for the diameter of Z,
that is dZ = sup{dZ(z, z

′) : z, z′ ∈ Z}. We also write P(Z) to denote the subspace of Borel probability
measures. For π ∈ P(X), we define the support of π as

supp(π) = {A ∈ B(X) : A is closed, π(Ac) = 0} .

For two metric spaces (X, dX), (Y, dY), P(X × Y) is always defined w.r.t. the product σ-algebra. For
P ∈ P(X × Y), we will write P0, P1 to denote the first and second marginals respectively. For µ ∈
P(X), ν ∈ P(Y), we let

T(µ, ν) = {P ∈ P(X× Y) : P0 = µ, P1 = ν}.

For a function f : X → Rd, we write ‖f‖∞ = supx∈X ‖f(x)‖, where ‖ · ‖ denotes the usual Euclidean
norm. For a function f : X → Y, we define its Lipschitz constant Lip(f) by

Lip(f) = inf{C ≥ 0 : dY(f(x0), f(x1)) ≤ CdX(x0, x1), x0, x1 ∈ X}.

We also define

Lip(X,Y) = {f : X → Y : Lip(f) < ∞}, Lip1(X,Y) = {f : X → Y : Lip(f) ≤ 1},

and write C(X,Y) for the class of continuous functions from X to Y.

3 Main results

Let (X, dX), (Y, dY) be two compact metric spaces and write X ,Y for their respective Borel σ-algebras.
We will use d to denote the metric for both X,Y when the context allows. Let π0 ∈ P(X), π1 ∈ P(Y). We
begin by recalling the Iterative Proportional Fitting Procedure (IPFP) solving the following Schrödinger
bridge problem

P⋆ ∈ argmin{KL(P|Q) : P ∈ P(X× Y), P0 = π0 ,P1 = π1}, (1)

where Q ∈ P(X×Y) is a reference measure admitting a density w.r.t. ρ0⊗ρ1, with ρ0 ∈ P(X) equivalent
to π0, and ρ1 ∈ P(Y), equivalent to π1; that is for any (x, y) ∈ X× Y

dQ/d(ρ0 ⊗ ρ1)(x, y) = K(x, y) = exp[−c(x, y)]. (2)

In the case where X = Y, we have that Problem (1) with the choice c(x, y) = ‖x − y‖2/ε is equivalent
to OTε(µ, ν), see e.g. (Peyré and Cuturi, 2019, Remark 4.2). First, we give a sufficient condition to
ensure that the solution of (1) exists and is unique. The proof of this proposition is a straightforward
consequence of (Csiszár, 1975, Corollary 3.2).

Proposition 1. Assume that KL (πi|ρi) < +∞ for i ∈ {0, 1} and that c ∈ C(X × Y,R). Then there
exists a unique solution to (1).

The following proposition, see (Peyré and Cuturi, 2019, Proposition 4.2) for instance, ensures that
we can assume without loss of generality that ρ0 = π0 and ρ1 = π1.

Proposition 2. Assume that KL (πi|ρi) < +∞ for i ∈ {0, 1} and that c ∈ C(X× Y,R). Let P⋆ solution
of (1) with Q given by (2) and P̂⋆ the solution of (1) with Q such that for any (x, y) ∈ X× Y

dQ/d(π0 ⊗ π1)(x, y) = K(x, y).

Then P⋆ = P̂⋆.

As a consequence, for the rest of this paper, we assume that ρ0 = π0 and ρ1 = π1. In order to
solve (1) we consider the IPFP sequence which iteratively solves each half-bridge problem, i.e. we define
(Pn)n∈N such that for any n ∈ N

P2n+1 = argmin{KL
(

P|P2n
)

: P ∈ P(X× Y),P0 = π0}, (3)

P2n+2 = argmin{KL
(

P|P2n+1
)

: P ∈ P(X× Y),P1 = π1},
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with P0 = Q and where we recall that P0,P1 denote the marginals of the joint distribution P. Note
that (Pn)n∈N is uniquely defined if c ∈ C(X × Y,R), see (Csiszár, 1975, Theorem 3.1). For discrete or
compact spaces it is known that IPFP converges at an exponential rate on compact or discrete spaces;
see e.g. Chen et al. (2016); Altschuler et al. (2017); Franklin and Lorenz (1989). For the non-compact
case, convergence, but without any rates, has been established under various regularity conditions in
Rüschendorf (1995).

We are now ready to state our main result which is a quantitative uniform stability estimate for the
IPFP.

Theorem 3. Assume that c ∈ Lip(X × Y,R). For any π0, π̂0 ∈ P(X), π1, π̂1 ∈ P(Y) let (Pn)n∈N and
(P̂n)n∈N the IPFP sequence with marginals (π0, π1) respectively (π̂0, π̂1). Then for any n ∈ N we have

W1(P
n, P̂n) ≤ C {W1(π0, π̂0) +W1(π1, π̂1)} ,

with
C = e17‖c‖∞{1 + 15 Lip(c)(dX + dY)}.

Corollary 4, establishing the quantitative stability of the Schrödinger bridge, can be obtained by
making minor modifications to the proof of Theorem 3.

Corollary 4. Assume that c ∈ Lip(X×Y,R). For any π0, π̂0 ∈ P(X), π1, π̂1 ∈ P(Y) let P⋆, respectively
P̂⋆, be the Schrödinger bridge with marginals (π0, π1), respectively (π̂0, π̂1). Then, we have

W1(P
⋆, P̂⋆) ≤ C {W1(π0, π̂0) +W1(π1, π̂1)} ,

with C as in Theorem 3.

Remark 5. Although the constants are far from sharp, Lipschitz continuity in the marginals is the best
one can hope. Indeed, for any P ∈ T(π0, π1), P̂ ∈ T(π̂0, π̂1) we have that

W1(P, P̂) = sup

{
∫

X×Y

f(x, y)dP(x, y)−

∫

X×Y

f(x, y)dP̂(x, y) : f ∈ Lip1(X× Y)

}

≥ sup

{
∫

X×Y

f(x)dP(x, y)−

∫

X×Y

f(x)dP̂(x, y) : f ∈ Lip1(X)

}

≥ W1(π0, π̂0),

and a similar calculation shows that W1(P, P̂) ≥ min{W1(π0, π̂0),W1(π1, π̂1)}. In the case where π̂0, π̂1,
are empirical versions of π0, π1 respectively with n samples, the Lipschitz continuity in the marginals
and the results by Fournier and Guillin (2015) also imply a sample complexity of nd for learning the
Schrödinger bridge when X = Y = Rd.

4 Proof

The proof is divided into four parts. First, we recall that the IPFP sequence is associated with a
sequence of potentials. In Section 4.1 we show quantitative regularity and boundedness properties for
these potentials. The boundedness is due to a reparameterization by Carlier and Laborde (2020). Then,
in Section 4.2 we recall a contraction property and show useful Lipschitz properties of the potentials
w.r.t. the Hilbert–Birkhoff metric. We then turn to the proof of the uniform quantitative stability of
the potentials w.r.t. this metric in Section 4.3. Finally, in Section 4.4 we show how uniform quantitative
bounds on the potentials translate into bounds onto probability measures which concludes the proof.

4.1 Regularity properties of the potentials

In this section, we fix π0 ∈ P(X) and π1 ∈ P(Y) and let (Pn)n∈N the IPFP sequence given by (3). The
IPFP sequence can be described by a corresponding sequence of (measurable) potentials (f̃n, g̃n)n∈N such
that for any n ∈ N, f̃n : X → (0,+∞), g̃n : Y → (0,+∞) and f̃0 = g̃0 = 1, see (Csiszár, 1975, Theorem
3.1).

Proposition 6. For any n ∈ N and (x, y) ∈ X× Y we have

(dP2n/dπ0 ⊗ π1)(x, y) = f̃n(x)K(x, y)g̃n(y),

4



(dP2n+1/dπ0 ⊗ π1)(x, y) = f̃n+1(x)K(x, y)g̃n(y),

f̃n+1(x) =
(∫

Y
K(x, y)g̃n(y)dπ1(y)

)−1
,

g̃n+1(y) =
(

∫

X
K(x, y)f̃n+1(x)dπ0(x)

)−1

.

For any n ∈ N, an > 0 and (x, y) ∈ X× Y we have also

(dP2n/dπ0 ⊗ π1)(x, y) = (anf̃n(x))K(x, y)(g̃n(y)/an).

In other words, the measure P2n is invariant w.r.t. rescaling of the potentials f̃n and g̃n. This observation
is at the core of the work of Carlier and Laborde (2020) which proves the geometric convergence of the
IPFP w.r.t. the Lp metric for bounded costs. For any n ∈ N, let ϕ̃n = log(f̃n) and Ψ̃n = log(g̃n) and
let an = exp[−

∫

X
ϕ̃n(x)dπ0(x)]. Finally, for any n ∈ N, let ϕn = ϕ̃n + log(an) and Ψn = Ψ̃n − log(an).

Similarly, for any n ∈ N we define

fn = exp[ϕn] , gn = exp[Ψn] .

The log-potentials (ϕn,Ψn)n∈N can be computed recursively using the following proposition.

Proposition 7. For any n ∈ N and (x, y) ∈ X× Y we have

ϕn+1(x) = − log
{∫

Y
K(x, y) exp[Ψn(y)]dπ1(y)

}

+
∫

X
log{

∫

Y
K(x, y) exp[Ψn(y)]dπ1(y)}dπ0(x),

Ψn+1(y) = − log
{∫

X
K(x, y) exp[ϕn+1(y)]dπ0(x)

}

,

(dP2n/d(π0 ⊗ π1))(x, y) = exp[ϕn(x) + Ψn(y)]K(x, y).

Recall that for any x, y ∈ X×Y we have K(x, y) = exp[−c(x, y)]. Using (Carlier and Laborde, 2020,
Lemma 3.1) we have the following result.

Proposition 8. For any n ∈ N we have max(‖ϕn‖∞, ‖Ψn‖∞) ≤ 3‖c‖∞.

We now establish the Lipschitz property of these potentials under the assumption that the cost
function c is Lipschitz; this is automatically satisfied in the case where c(x, y) = ‖x− y‖2/ε and X,Y are
compact, or when c is a metric by the triangle inequality.

Proposition 9. Assume that c ∈ Lip(X× Y,R). Then, for any n ∈ N,

max{Lip(ϕn),Lip(Ψn)} ≤ Lip(c).

Proof. Using Proposition 7 and the fact that c ∈ Lip(X× Y,R), we have for any x, x′ ∈ X

ϕn+1(x)− ϕn+1(x
′)

= log

{
∫

Y

K(x′, y) exp[Ψn(y)]dπ1(y)/

∫

Y

K(x, y) exp[Ψn(y)]dπ1(y)

}

= log

{
∫

Y

exp[−c(x, y) + c(x, y)− c(x′, y) + Ψn(y)]dπ1(y)

}

− log

{
∫

Y

exp[−c(x, y +Ψn(y)]dπ1(y)

}

≤ log

{
∫

Y

exp[−c(x, y) + Lip(c)dX(x, x
′) + Ψn(y)]dπ1(y)

}

− log

{
∫

Y

exp[−c(x, y) + Ψn(y)]dπ1(y)

}

≤ Lip(c)dX(x, x
′).

Similarly we obtain that for any x, x′ ∈ X, ϕn+1(x
′)− ϕn+1(x) ≤ Lip(c)dX(x, x

′), whence it follows that
Lip(ϕn+1) ≤ Lip(c). Similarly we have that for any y, y′ ∈ Y

Ψn+1(y
′)−Ψn+1(y)

5



= log

{
∫

X

K(x, y) exp[ϕn+1(y)]dπ0(x)/

∫

X

K(x, y′) exp[ϕn+1(y)]dπ0(x)

}

= log

{
∫

X

exp[−c(x, y′) + c(x, y′)− c(x, y) + ϕn+1(y)]dπ0(x)

}

− log

{
∫

X

exp[−c(x, y′) + ϕn+1(y)]dπ0(x)

}

≤ log

{
∫

X

exp[−c(x, y′) + Lip(c)dY(y, y
′) + ϕn+1(y)]dπ0(x)

}

− log

{
∫

X

exp[−c(x, y′) + ϕn+1(y)]dπ0(x)

}

≤ Lip(c)dY(y, y
′).

Remark 10. Notice that for any n ∈ N, Lip(ϕn),Lip(Ψn) are independent of the functions ϕn,Ψn and
only depend on the properties of the kernel K(·, ·).

Upon combining the two previous propositions and the fact that for any s, t ∈ [0,M ], |et − es| ≤
eM |t− s|, we obtain the following controls on the sequence of rescaled potentials (fn, gn)n∈N.

Proposition 11. Assume that c ∈ Lip(X× Y,R). Then, we have that for any n ∈ N

max(‖fn‖∞, ‖gn‖∞) ≤ e3‖c‖∞ , max(Lip(fn),Lip(gn)) ≤ Lip(c)e3‖c‖∞ .

4.2 The Hilbert–Birkhoff metric, contraction and Lipschitz properties

We now recall basic properties of the Hilbert–Birkhoff metric; see Lemmens and Nussbaum (2014);
Kohlberg and Pratt (1982); Bushell (1973) for a review. Let E be a real vector space and K a cone
in this vector space, i.e. K is convex, K∩ (−K) = {0} and λK ⊂ K for any λ ≥ 0. In what follows, we let
C be a part of the cone i.e. for any x, y ∈ C there exist α, β ≥ 0 such that αx− y ∈ K and βy−x ∈ K. In
addition, assume that C is convex and that for any λ > 0 λK ⊂ K. In this case we have for any x, y ∈ C

that
M(x, y) = inf{β ≥ 0 : βy − x ∈ K} > 0.

Similarly we define for any x, y ∈ C

m(x, y) = sup{α ≥ 0 : x− αy ∈ K}.

Note that m(x, y) = M(y, x)−1 > 0. Finally, the Hilbert–Birkhoff metric is defined for any x, y ∈ C by

dH(x, y) = log(M(x, y)/m(x, y)).

By (Lemmens and Nussbaum, 2014, Lemma 2.1), dH is a metric on C/ ∼ the space C quotiented by the
equivalence relation: x ∼ y if there exists λ > 0 such that y = λx. In particular, if ‖ · ‖ is a norm on V

then letting C̃ = {x ∈ C : ‖x‖ = 1}, we have that (C̃, dH) is a metric space.
Let (V, ‖ · ‖) and (V′, ‖ · ‖′) be two normed real vector space and K ⊂ V, K′ ⊂ V′ two cones. In

addition, let C and C′ be convex parts of K and K′ respectively, such that for any λ > 0, λC ⊂ C and
λC′ ⊂ C′. Let u : V → V′ be a linear mapping such that u(C) ⊂ C′. The projective diameter of u is
given by

∆(u) = sup{dH(u(x), u(y)) : x, y ∈ C̃}.

Similarly, we also define the Birkhoff contraction ratio of u

κ(u) = sup{κ : dH(u(x), u(y)) ≤ κdH(x, y), x, y ∈ C̃}.

Using the Birkhoff contraction theorem (Birkhoff, 1957; Bauer, 1965; Hopf, 1963) we have that

κ(u) ≤ tanh(∆(u)/4). (4)

In order to use the Birkhoff contraction theorem, we collect the following basic facts on cones in function
spaces.
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Proposition 12. Let Z be a compact space. F = [0,+∞)Z is a cone and F̃ = C(Z, (0,+∞)) is a convex
part of F such that for any λ > 0, λF̃ ⊂ F̃. In addition, we have that for any f, g ∈ F̃

dH(f, g) = log(‖f/g‖∞) + log(‖g/f‖∞).

In this case, we have that for any f, g ∈ F̃, dH(f, g) is the oscillation of log(f/g). In what follows,
we introduce key mappings which allow us to compute the IPFP potential (fn)n∈N and (gn)n∈N. Recall
that for any n ∈ N we have

fn+1(x) = an
(∫

Y
K(x, y)gn(y)dπ1(y)

)−1
, (5)

an = exp[
∫

X
log

(∫

Y
K(x, y)gn(y)dπ1(y)

)

dπ0(x)],

gn+1(y) =
(∫

X
K(x, y)fn+1(x)dπ0(x)

)−1
.

Let π0 ∈ P(X) and π1 ∈ P(Y). We define Ex
π0

and Ey
π1

such that for any f : X → [0,+∞) and
g : Y → [0,+∞) we have

Ex
π0
(f)(y) =

∫

X
K(x, y)f(x)dπ0(x), Ey

π1
(g)(x) =

∫

Y
K(x, y)g(y)dπ1(y).

The following proposition is a consequence of the Birkhoff contraction theorem, see also Chen et al.
(2016).

Proposition 13. For any π0 ∈ P(X) and π1 ∈ P(Y), Ex
π0
(C(X, (0,+∞))) ⊂ Lip(Y, (0,+∞)) and

Ey
π1
(C(Y, (0,+∞))) ⊂ Lip(X, (0,+∞)). In addition, we have

max(κ(Ex
π0
), κ(Ey

π1
)) ≤ tanh(‖c‖∞).

Proof. Let π0 ∈ P(X). Since K : X × Y → (0,+∞) is continuous and X × Y is compact we get that
for any f ∈ C(X, (0,+∞)), Ex

π0
(f) ∈ C(Y, (0,+∞)). In addition, let u ∈ C(Y, (0,+∞)) such that for any

y ∈ Y, u(y) = 1. Then, we have that

∆(Ex
π0
) ≤ 2 sup{dH(Ex

π0
(f), u) : f ∈ C(X, (0,+∞))}, (6)

∆(Ey
π1
) ≤ 2 sup{dH(Ex

π1
(g), u) : g ∈ C(Y, (0,+∞))}.

In addition, using Proposition 12, we have for any f ∈ C(X, (0,+∞))

dH(Ex
π0
(f), u) = log(sup{Ex

π0
(f)(y) : y ∈ Y})− log(inf{Ex

π0
(f)(y) : y ∈ Y}). (7)

For any f ∈ C(X, (0,+∞)) and y ∈ Y we have

Ex
π0
(f)(y) ≥ exp[−‖c‖∞]

∫

X
f(x)dπ0(x), Ex

π0
(f)(y) ≤ exp[‖c‖∞]

∫

X
f(x)dπ0(x).

Combining this result, (4), (6) and (7) we get that ∆(Ex
π0
) ≤ tanh(‖c‖∞). The proof that ∆(Ey

π1
) ≤

tanh(‖c‖∞) is similar. Lipschitz continuity follows from the definitions of Ex
π0
, Ey

π1
and the Lipschitz

continuity of K. In fact, for any function f : X → R, resp. g : Y → R, that does not vanish π0 a.e., resp.
π1-a.e., y 7→ Ex

π0
(f)(y), resp. x 7→ Ex

π0
(g)(x), is Lipschitz continuous.

Proposition 14. Let π0, π̂0 ∈ P(X) and π1, π̂1 ∈ P(Y). Then for any f ∈ Lip(X, (0,+∞)) and
g ∈ Lip(Y, (0,+∞)) we have

dH(Ex
π0
(f), Ex

π̂0
(f)) ≤ 2 ‖1/f‖∞ [Lip(f) + Lip(c) ‖f‖∞] exp[2 ‖c‖∞]W1(π0, π̂0),

dH(Ey
π1
(g), Ey

π̂1
(g)) ≤ 2 ‖1/g‖∞ [Lip(g) + Lip(c) ‖g‖∞] exp[2 ‖c‖∞]W1(π1, π̂1).

Proof. Let f ∈ Lip(X, (0,+∞)). We have

Ex
π0
(f)(y)/Ex

π̂0
(f)(y) = 1 +

∫

X
K(x, y)f(x)d(π0 − π̂0)(x)/

∫

X
K(x, y)f(x)dπ̂0(x). (8)

In addition, we have for any x, x′ ∈ X and y ∈ Y

|K(x, y)f(x)−K(x′, y)f(x′)|

≤ |K(x, y)f(x) −K(x′, y)f(x)|+ |K(x′, y)f(x)−K(x′, y)f(x′)|

≤ ‖f‖∞ Lip(K(·, y))dX(x, x
′) + ‖K(·, ·)‖∞ Lip(f)dX(x, x

′).
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Since K(x, y) = exp[−c(x, y)], using the fact that for |s|, |t| < M we have | exp[s]−exp[t]| ≤ exp[M ]|t−s|,
we have that for any x, x′ ∈ X and y ∈ Y

|K(x′, y)−K(x, y)| ≤ exp[‖c‖∞]|c(x′, y)− c(x, y)| ≤ exp[‖c‖∞] Lip(c)dX(x, x
′).

Therefore we have that for all y ∈ Y

Lip(K(·, y)f(·)) ≤ ‖f‖∞ exp[‖c‖∞] Lip(c) + exp[‖c‖∞] Lip(f).

Using this result we get that for any y ∈ Y

∣

∣

∫

X
K(x, y)f(x)d(π0 − π̂0)(x)

∣

∣ ≤ [Lip(f) + Lip(c) ‖f‖∞] exp[‖c‖∞]W1(π0, π̂0). (9)

In addition, we have that for any y ∈ Y

∫

X
K(x, y)f(x)dx ≥ exp[−‖c‖∞]/ ‖1/f‖∞ . (10)

Combining (8), (9) and (10) we get that for any y ∈ Y

Ex
π0
(f)(y)/Ex

π̂0
(f)(y)≤ 1 + ‖1/f‖∞ [Lip(f) + Lip(c) ‖f‖∞] exp[2 ‖c‖∞]W1(π0, π̂0). (11)

Similarly, we have that for any y ∈ Y

Ex
π̂0
(f)(y)/Ex

π0
(f)(y)≤ 1 + ‖1/f‖∞ [Lip(f) + Lip(c) ‖f‖∞] exp[2 ‖c‖∞]W1(π0, π̂0). (12)

Combining Proposition 12, (11), (12) and the fact that for any t ≥ 0, log(1 + t) ≤ t we get that

dH(Ex
π0
(f), Ex

π̂0
(f)) ≤ 2 ‖1/f‖∞ [Lip(f) + Lip(c) ‖f‖∞] exp[2 ‖c‖∞]W1(π0, π̂0).

The proof for dH(Ey
π1
(g), Ey

π̂1
(g)) is similar.

4.3 Quantitative uniform bounds on the potentials

In this section, we derive quantitative uniform bounds on the potentials w.r.t. the Hilbert–Birkhoff metric.
More precisely, we show the following theorem.

Theorem 15. For any π0, π̂0 ∈ P(X), π1, π̂1 ∈ P(Y) let (fn, gn)n∈N and (f̂n, ĝn)n∈N the rescaled IPFP
potential associated with (π0, π1), respectively (π̂0, π̂1) and given by (5). Then, for any n ∈ N we have

dH(fngn, f̂nĝn) ≤ 8 Lip(c)e10‖c‖∞(W1(π0, π̂0) +W1(π1, π̂1)).

Proof. Let n ∈ N, Dx : C(X, (0,+∞)) → C(X, (0,+∞)) and Dy : C(Y, (0,+∞)) → C(Y, (0,+∞)) such
that for any f ∈ C(X, (0,+∞)) and g ∈ C(Y, (0,+∞)) we have Dx(f) = 1/f and Dy(g) = 1/g. We
define Ey

π1,π0
: C(Y, (0,+∞)) → C(X, (0,+∞)) such that for any g ∈ C(Y, (0,+∞)) we have

Ey
π1,π0

(g) = Ey
π1
(g) exp[

∫

X
log(1/Ey

π1
(g)(x))dπ0(x)].

Using (5), we have for any n ∈ N

fn+1 = Dx ◦ Ey
π1,π0

◦Dy ◦ Ex
π0
(fn), (13)

f̂n+1 = Dx ◦ Ey
π̂1,π̂0

◦Dy ◦ Ex
π̂0
(f̂n),

gn+1 = Dy ◦ Ex
π0

◦Dx ◦ Ey
π1,π0

(gn),

ĝn+1 = Dy ◦ Ex
π̂0

◦Dx ◦ Ey
π̂1,π̂0

(ĝn).

Using the triangle inequality and Proposition 12 we have for any n ∈ N

dH(fngn, f̂nĝn) ≤ dH(fngn, fnĝn) + dH(fnĝn, f̂nĝn) ≤ dH(gn, ĝn) + dH(fn, f̂n). (14)

Recall that f0 = f̂0 = 1 and therefore dH(f0, f̂0) = 0. Using Proposition 12, Proposition 13, (13) and
the fact that Dx,Dy are isometries, we have for any n ∈ N

dH(fn+1, f̂n+1) = dH(Dx ◦ Ey
π1,π0

◦Dy ◦ Ex
π0
(fn),D

x ◦ Ey
π̂1,π̂0

◦Dy ◦ Ex
π̂0
(f̂n))

8



= dH(Ey
π1,π0

◦Dy ◦ Ex
π0
(fn), E

y
π̂1,π̂0

◦Dy ◦ Ex
π̂0
(f̂n))

= dH(Ey
π1

◦Dy ◦ Ex
π0
(fn), E

y
π̂1

◦Dy ◦ Ex
π̂0
(f̂n))

≤ dH(Ey
π1

◦Dy ◦ Ex
π0
(fn), E

y
π̂1

◦Dy ◦ Ex
π0
(fn))

+ dH(Ey
π̂1

◦Dy ◦ Ex
π0
(fn), E

y
π̂1

◦Dy ◦ Ex
π̂0
(f̂n))

≤ dH(Ey
π1

◦Dy ◦ Ex
π0
(fn), E

y
π̂1

◦Dy ◦ Ex
π0
(fn)) + κdH(Ex

π0
(fn), E

x
π̂0
(f̂n))

≤ dH(Ey
π1

◦Dy ◦ Ex
π0
(fn), E

y
π̂1

◦Dy ◦ Ex
π0
(fn))

+ κdH(Ex
π̂0
(f̂n), E

x
π0
(f̂n)) + κ2dH(fn, f̂n)

= dH(Ey
π1
(gn), E

y
π̂1
(gn)) + κdH(Ex

π̂0
(f̂n), E

x
π0
(f̂n)) + κ2dH(fn, f̂n), (15)

with κ = tanh(‖c‖∞) ≥ max{κ(Ey
π̂1
), κ(Ey

π̂0
)}. Using Proposition 14 we have for any n ∈ N

dH(Ex
π̂0
(f̂n), E

x
π0
(f̂n)) ≤ 2‖1/f̂n‖∞(Lip(f̂n) + Lip(c)‖f̂n‖∞) exp[2‖c‖∞]W1(π0, π̂0),

dH(Ey
π1
(gn), E

y
π̂1
(gn)) ≤ 2‖1/gn‖∞(Lip(gn) + Lip(c)‖gn‖∞) exp[2‖c‖∞]W1(π1, π̂1).

Combining this result and Proposition 11, we have for any n ∈ N

dH(Ex
π̂0
(f̂n), E

x
π0
(f̂n)) ≤ 4 Lip(c)e8‖c‖∞W1(π0, π̂0),

dH(Ey
π1
(gn), E

y
π̂1
(gn)) ≤ 4 Lip(c)e8‖c‖∞W1(π1, π̂1).

Combining this result and (15) we get that for any n ∈ N

dH(fn+1, f̂n+1) ≤ tanh(‖c‖∞)dH(fn, f̂n) + 4Lip(c)e8‖c‖∞(W1(π0, π̂0) +W1(π1, π̂1)).

Since dH(f0, f̂0) = 0 we have that for any n ∈ N

dH(fn+1, f̂n+1)≤ 4 Lip(c)e8‖c‖∞

∑n

k=0 tanh(‖c‖∞)k(W1(π0, π̂0) +W1(π1, π̂1))

≤ 4 Lip(c)e8‖c‖∞(1− tanh(‖c‖∞))−1(W1(π0, π̂0) +W1(π1, π̂1))

≤ 2 Lip(c)e8‖c‖∞(1 + e2‖c‖∞)(W1(π0, π̂0) +W1(π1, π̂1))

≤ 4 Lip(c)e10‖c‖∞(W1(π0, π̂0) +W1(π1, π̂1)). (16)

Similarly, we get that for any n ∈ N

dH(gn, ĝn) ≤ 4 Lip(c)e10‖c‖∞(W1(π0, π̂0) +W1(π1, π̂1)). (17)

Combining (14), (16) and (17) concludes the proof.

Unfortunately controlling dH is not enough to control the distance between Pn and P̂n for any n ∈ N.
Indeed, using the Hilbert–Birkhoff metric we control the oscillations of fngn/(f̂nĝn) for any n ∈ N but in

order to control probability distances between Pn and P̂n for any n ∈ N we need to derive an upper-bound
for ‖fngn − f̂nĝn‖∞ for any n ∈ N. The next lemma is key in order to obtain such bounds.

Lemma 16. For any π0, π̂0 ∈ P(X), π1, π̂1 ∈ P(Y) let (fn, gn)n∈N and (f̂n, ĝn)n∈N the rescaled IPFP
potential associated with (π0, π1), respectively (π̂0, π̂1) and given by (5). Then, for any n ∈ N there exist
x†
n ∈ X and y†n ∈ Y such that

|fn(x
†
n)gn(y

†
n)/(f̂n(x

†
n)ĝn(y

†
n))− 1| ≤ 4 Lip(c)e10‖c‖∞(W1(π0, π̂0) +W1(π1, π̂1)).

Proof. Let n ∈ N and
∆ := 4Lip(c)e10‖c‖∞(W1(π0, π̂0) +W1(π1, π̂1)).

Using that P2n(X× Y) = P̂2n(X× Y) = 1, we have

∫

X×Y
{fn(x)gn(y)/(f̂n(x)ĝn(y))− 1}f̂n(x)ĝn(y)dπ̂0(x)dπ̂1(y) (18)

=
∫

X×Y
fn(x)gn(y)dπ̂0(x)dπ̂1(y)− 1

=
∫

X×Y
fn(x)gn(y)dπ̂0(x)dπ̂1(y)−

∫

X×Y
fn(x)gn(y)dπ0(x)dπ1(y).
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In addition, using Proposition 11 we have

Lip(fngn) ≤ ‖fn‖∞ Lip(gn) + ‖gn‖∞ Lip(fn) ≤ 2 Lip(c)e6‖c‖∞ .

Combining this result, (18) and the fact that W1(π0 ⊗ π1, π̂0 ⊗ π̂1) ≤ W1(π0, π̂0) +W1(π1, π̂1), we get
that

∣

∣

∣

∫

X×Y
{fn(x)gn(y)/(f̂n(x)ĝn(y))− 1}dP̂2n(x, y)

∣

∣

∣

≤ 2 Lip(c)e6‖c‖∞W1(π0 ⊗ π1, π̂0 ⊗ π̂1)

≤ 2 Lip(c)e6‖c‖∞(W1(π0, π̂0) +W1(π1, π̂1)) < ∆/2.

Therefore

1−∆/2 ≤
∫

X×Y
fn(x)gn(y)/(f̂n(x)ĝn(y))dP̂

2n(x, y) ≤ 1 + ∆/2. (19)

Assume that for any (x, y) ∈ X× Y we have that

|fn(x)gn(y)/(f̂n(x)ĝn(y))− 1| > ∆.

Combining this with (19) there exist (x+
n , y

+
n ) ∈ X× Y and (x−

n , y
−
n ) ∈ X× Y such that

fn(x
+
n )gn(y

+
n )/(f̂n(x

+
n )ĝn(y

+
n )) > 1 + ∆, fn(x

−
n )gn(y

−
n )/(f̂n(x

−
n )ĝn(y

−
n )) < 1−∆,

whence it follows that ∆ < 1. Therefore, by Theorem 15 we get that

dH(fngn, f̂nĝn)

≥ log(fn(x
+
n )gn(y

+
n )/(f̂n(x

+
n )ĝn(y

+
n ))) − log(fn(x

−
n )gn(y

−
n )/(f̂n(x

−
n )ĝn(y

−
n )))

> log((1 + ∆)/(1−∆)) ≥ 2∆ ≥ dH(fngn, f̂nĝn),

which is absurd.

Finally, we conclude this section by deriving bounds on ‖fngn− f̂nĝn‖∞ combining Theorem 15 with
Lemma 16.

Theorem 17. For any π0, π̂0 ∈ P(X), π1, π̂1 ∈ P(Y) let (fn, gn)n∈N and (f̂n, ĝn)n∈N the rescaled IPFP
potential associated with (π0, π1), respectively (π̂0, π̂1) and given by (5). Then, for any n ∈ N we have

‖fngn − f̂nĝn‖∞ ≤ 12 Lip(c)e16‖c‖∞(W1(π0, π̂0) +W1(π1, π̂1)).

Proof. Let n ∈ N, x ∈ X and y ∈ Y. Using Proposition 8 and the fact that for any s, t ∈ B̄(0,M) with
M ≥ 0 we have |es − et| ≤ eM |s− t| we get

|fn(x)gn(y)− f̂n(x)ĝn(y)| ≤ e6‖c‖∞ | log(fn(x)gn(y)/(f̂n(x)ĝn(y)))| (20)

Assume that fn(x)gn(y)/(f̂n(x)ĝn(y)) ≥ 1. Then using that for any t > 0, log(t) ≤ t − 1, Theorem 15
and Lemma 16 we have, with (x†

n, y
†
n) from Lemma 16,

| log(fn(x)gn(y)/(f̂n(x)ĝn(y)))| = log(fn(x)gn(y)/(f̂n(x)ĝn(y)))

+ log(f̂n(x
†
n)ĝn(y

†
n)/(fn(x

†
n)gn(y

†
n))) + log(fn(x

†
n)gn(y

†
n)/(f̂n(x

†
n)ĝn(y

†
n)))

≤ dH(fngn, f̂nĝn) + log(fn(x
†
n)gn(y

†
n)/(f̂n(x

†
n)ĝn(y

†
n)))

≤ dH(fngn, f̂nĝn) + fn(x
†
n)gn(y

†
n)/(f̂n(x

†
n)ĝn(y

†
n))− 1

≤ 12 Lip(c)e10‖c‖∞(W1(π0, π̂0) +W1(π1, π̂1)).

Combining this result and (20) we get that

|fn(x)gn(y)− f̂n(x)ĝn(y)| ≤ 12 Lip(c)e16‖c‖∞(W1(π0, π̂0) +W1(π1, π̂1)).

The proof in the case where fn(x)gn(y)/(f̂n(x)ĝn(y)) ≤ 1 is similar.
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4.4 From potentials to probability metrics

Using Theorem 17 we are now ready to prove Theorem 3.

Proof of Theorem 3. Let n ∈ N and F ∈ Lip(X × Y,R), that is F : X × Y → R such that for any
x0, x1 ∈ X and y0, y1 ∈ Y we have

|F (x0, y0)− F (x1, y1)| ≤ dX(x0, x1) + dY(y0, y1).

We will be considering quantities of the form
∫

X×Y
F (x, y)[dµ − dµ′](x, y) where µ, µ′ ∈ P(X × Y);

therefore possibly replacing F with F − a for some constant a, we may assume that there exist x̄ ∈ X

and ȳ ∈ Y such that F (x̄, ȳ) = 0. Therefore, we have that

‖F‖∞ = sup{|F (x, y)− F (x̄, ȳ)| : x ∈ X, y ∈ Y} ≤ dX + dY.

We write Lip⋆ = {F ∈ Lip1 : F (x̄, ȳ) = 0}. Using this result and Proposition 11, we get that

Lip(FKfngn) ≤ Lip(F )‖K‖∞‖fn‖∞‖gn‖∞ + Lip(K)‖F‖∞‖fn‖∞‖gn‖∞

+ Lip(fn)‖F‖∞‖K‖∞‖gn‖∞ + Lip(gn)‖F‖∞‖K‖∞‖fn‖∞

≤ e7‖c‖∞ + 3Lip(c)e7‖c‖∞(dX + dY).

Combining this result with Theorem 17 and the fact that W1(π0⊗π1, π̂0⊗π̂1) ≤ W1(π0, π̂0)+W1(π1, π̂1),
we get that

∫

X×Y
F (x, y)K(x, y)fn(x)gn(y)dπ0(x)dπ1(y)−

∫

X×Y
F (x, y)K(x, y)f̂n(x)ĝn(y)dπ̂0(x)dπ̂1(y)

≤
∫

X×Y
F (x, y)K(x, y)fn(x)gn(y)dπ0(x)dπ1(y)−

∫

X×Y
F (x, y)K(x, y)fn(x)gn(y)dπ̂0(x)dπ̂1(y)

+
∫

X×Y
F (x, y)K(x, y) sup ‖fngn − f̂nĝn‖∞dπ̂0(x)dπ̂1(y)

≤
[

Lip(FKfngn) + 12(dX + dY) Lip(c)e
17‖c‖∞

]

[W1(π0, π̂0) +W1(π1, π̂1)]

≤
(

e7‖c‖∞ + 3Lip(c)(dX + dY)e
7‖c‖∞ + 12(dX + dY) Lip(c)e

17‖c‖∞

)

[W1(π0, π̂0) +W1(π1, π̂1)]

≤ e17‖c‖∞{1 + 15 Lip(c)(dX + dY)}(W1(π0, π̂0) +W1(π1, π̂1)).

Therefore, we have that

W1(P
2n, P̂2n) = sup{

∫

X×Y
F (x, y)dP2n(x, y)−

∫

X×Y
F (x, y)dP̂2n(x, y) : F ∈ Lip}

= sup{
∫

X×Y
F (x, y)dP2n(x, y)−

∫

X×Y
F (x, y)dP̂2n(x, y) : F ∈ Lip⋆}

≤ e17‖c‖∞{1 + 15 Lip(c)(dX + dY)}(W1(π0, π̂0) +W1(π1, π̂1)).

Proof of Corollary 4. Let n ∈ N. Using (Chen et al., 2016, Lemma 4) we have that dH(fn+1, fn) ≤
κndH(f1, f0) and dH(gn+1, gn) ≤ κndH(g1, g0). Thus

dH(fn+1gn+1, fngn) = dH(fn+1, fn) + dH(gn+1, gn) ≤ κn [dH(f1, f0) + dH(g1, g0)] .

As explained earlier this is not enough on its own to control ‖fn+1gn+1 − fngn‖∞. However, we can use
a similar technique as Lemma 16. We have that

∫

X×Y

[fn+1(x)gn+1(y)/(fn(x)gn(y))]K(x, y)fn(x)gn(y)dπ0(x)dπ1(y) = 1. (21)

In what follows, we assume that for all (x, y) ∈ X × Y, |fn+1(x)gn+1(y)/(fn(x)gn(y))− 1| ≥ ∆ with
∆ = κn [dH(f1, f0) + dH(g1, g0)] /2. Combining this with (21), we get that there exist (x+

n , y
+
n ), (x

−
n , y

−
n ) ∈

X× Y such that

fn+1(x
+
n )gn+1(y

+
n )/(fn(x

+
n )gn(y

+
n )) ≥ 1 + ∆, fn+1(x

−
n )gn+1(y

−
n )/(fn(x

−
n )gn(y

−
n )) ≤ 1−∆.

This implies that ∆ < 1. Hence, we have that

dH(fn+1gn+1, fngn)

≥ log(fn+1(x
+
n )gn+1(y

+
n )/(fn(x

+
n )gn(y

+
n ))) − log(fn+1(x

−
n )gn+1(y

−
n )/(fn(x

−
n )gn(y

−
n )))
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≥ log((1 + ∆)/(1−∆)) > 2∆ ≥ dH(fn+1gn+1, fngn).

This is absurd, hence there exists (x⋆, y⋆) ∈ X× Y such that

|fn+1(x
⋆)gn+1(y

⋆)/(fn(x
⋆)gn(y

⋆))− 1| ≤ κn [dH(f1, f0) + dH(g1, g0)] .

Therefore, we have that for any x ∈ X and y ∈ Y

|log (fn+1(x)gn+1(y)/(fn(x)gn(x)))|

≤ |log (fn+1(x
⋆)gn+1(y

⋆)/(fn(x
⋆)gn(y

⋆)))|+ dH(fn+1gn+1, fngn)

≤ 2κn [dH(f1, f0) + dH(g1, g0)] .

Combining this result, Proposition 11 and the fact that for any s, t ∈ [0,M ], |et − es| ≤ eM |t− s| we get
that for any x ∈ X and y ∈ Y

|fn+1(x)gn+1(y)− fn(x)gn(y)| ≤ e6‖c‖∞ |log (fn+1(x)gn+1(y)/fn(x)gn(x))|

≤ 2e6‖c‖∞κn [dH(f1, f0) + dH(g1, g0)] .

Therefore, we have

‖fn+1gn+1 − fngn‖∞ ≤ 2e6‖c‖∞κn [dH(f1, f0) + dH(g1, g0)] .

Let F ∈ Lip1(X × Y,R), and without loss of generality we may assume that F (x̄, ȳ) = 0 for a fixed pair
(x̄, ȳ) ∈ X× Y. We then have

∫

X×Y

F (x, y)fn+1(x)gn+1(y)K(x, y)dπ0(x)dπ1(y)

−

∫

X×Y

F (x, y)fn(x)gn(y)K(x, y)dπ0(x)dπ1(y)

≤

∫

X×Y

‖F (x, y)‖∞‖fn+1gn+1 − fngn‖∞‖K‖∞dπ0(x)dπ1(y)

≤ 2(dX + dY)e
7‖c‖∞κn [dH(f1, f0) + dH(g1, g0)] .

Taking the supremum over {F ∈ Lip1(X× Y,R) : F (x̄, ȳ) = 0}, we have that

W1(P
n+1,Pn) ≤ 2(dX + dY)e

7‖c‖∞κn [dH(f1, f0) + dH(g1, g0)] .

By completeness of (P(X× Y),W1) we have that Pn converges in (P(X × Y),W1) to P∗ ∈ P(X× Y).

Similarly P̂n → P̂∗ ∈ P1(X× Y). Combining these results and Theorem 3 we have

W1(P
∗, P̂∗) ≤ W1(P

∗,Pn) +W1(P
n, P̂n) +W1(P̂

n, P̂∗)

≤ C {W1(π0, π̂0) +W1(π1, π̂1)}+W1(P
∗,Pn) +W1(P̂

n, P̂∗).

We conclude upon letting n → +∞.
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