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Adaptive Rate NOMA for Cellular IoT Networks
G. Sreya, S. Saigadha, Praful D. Mankar, Goutam Das, Harpreet S. Dhillon

Abstract—Internet-of-Things (IoT) technology is envisioned to
enable a variety of real-time applications by interconnecting
billions of sensors/devices. These IoT devices rely on low-power
wide-area wireless connectivity for transmitting, mostly fixed- but
small-size, status updates of the random processes observed by
them. Owing to their ubiquity, cellular networks are seen as a
natural candidate for providing reliable wireless connectivity to
IoT devices. Given the massive number of IoT devices, enabling
non-orthogonal multiple access (NOMA) for the mobile users and
IoT devices is appealing in terms of the efficient utilization of
spectrum compared to the orthogonal multiple access (OMA). For
instance, the uplink NOMA can also be configured such that the
mobile users adapt their transmission rates depending upon the
channel conditions while the IoT devices transmit at a fixed rate.
For this setting, we analyze the ergodic capacity of the mobile
users and the mean local delay of IoT devices using stochastic
geometry. Our analysis demonstrates that the aforementioned
NOMA configuration provides better ergodic capacity for mobile
users compared to OMA when delay constraint of IoT devices is
strict. We also show that NOMA supports a larger packet size
at IoT devices than OMA under the same delay constraint.

Index Terms—Adaptive rate NOMA, cellular networks, ergodic
rate, IoT networks, mean local delay, stochastic geometry.

I. INTRODUCTION

The IoT networks provide a digital fabric interconnecting

billions of wireless devices for exchanging application-specific

information without any human intervention. Many IoT appli-

cations, such as smart cities and traffic surveillance, rely on the

real-time processing of information received from a massive

number of sensors/devices deployed over a large area. The key

research challenges for realizing such IoT applications are to

facilitate flexible deployment, wide-area coverage, low power

devices, and low device complexity. The cellular networks are

seen as a natural candidate for providing wide coverage to

IoT devices on a massive scale [1]. However, the low-cost IoT

devices may not be capable of performing complex signal pro-

cessing needed for the advanced antenna array communication

techniques (such as millimeter communication). Besides, the

IoT devices may experience much higher pathloss if they are

deployed in places like tunnels or basements or are simply

located far away from the BSs. Thus, efficient link budget

planning is also crucial for low-power IoT devices. For these

reasons, the sub-6 GHz band is primarily being considered

to support low power wide area (LPWA) links of the low-cost

IoT devices [2]. However, the sub-6 GHz band is crowded with

the existing mobile services. This motivates spectral resource

sharing between IoT devices and mobile users [3].
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Further, the IoT devices are generally deployed to share

observations/measurements of some physical process in the

form of fixed and small payloads at random intervals. As a

result, the BSs require to support small size data packet trans-

missions from a massive number of low-power IoT devices

[4], [5]. In release 13, 3GPP LTE included enhanced machine

type communications (eMTC) and narrowband IoT (NB-IoT)

communication to offer narrowband LPWA links to IoT de-

vices in the sub-6 GHz band [6], [7]. On the other hand, non-

orthogonal multiple access (NOMA) can be used as a viable

alternative to improve spectral utilization as well as enable

massive access in IoT networks [8]. In the literature, the design

of NOMA-based IoT networks is extensively investigated.

For instance, [9] presents NOMA-aided NB-IoT networks for

enhanced connectivity, [10] presents ALOHA-based NOMA

scheme for scalable and energy-efficient deployment of IoT

networks, and [11] studies the performance of NOMA-based

wireless powered IoT networks. However, most existing works

on the design of NOMA-aided IoT networks are investigated

in simplified settings, such as a single-cell system.

Recently, stochastic geometry has emerged as a powerful

tool for modeling and analyzing a variety of large-scale

wireless networks. However, works on the analysis of NOMA-

aided IoT networks using stochastic geometry are relatively

sparse, a few of which are briefly discussed below. The

authors of [12] analyze aggregators-assisted two-hop NOMA-

enabled cellular IoT network by modeling the locations of

IoT devices, aggregators and BSs as independent Poisson

point processes (PPPs). Therein, aggregators are employed

to relay the NOMA transmissions from the IoT devices to

the BS. The authors of [13] analyze RF energy harvesting

based cellular IoT networks under the PPP setting. The IoT

devices first harvest energy using downlink signals and then

perform the uplink data transmission using NOMA. While the

existing works in this direction consider pairing of IoT devices

for non-orthogonal access, NOMA can also offer an efficient

solution to the co-existence of mobile users and IoT devices

by pairing their transmissions in the same spectral resource,

as considered in this paper. The authors of [14] analyze the

throughput performance of NOMA-based uplink transmission

of mobile users and IoT devices in cellular networks under

the PPP setting. However, the authors apply random pairing

(i.e., mobile user and IoT device are randomly selected for a

cell), which undermines the NOMA performance gains.

The authors of [15] show that it is imperative to pair

devices with distinctive link qualities for harnessing maximum

performance gains from fixed-power NOMA. The authors of

[16] characterized the performance gain of NOMA over OMA,

termed the large-scale near-far gain, which is a result of the

variation in link distances of NOMA users. Inspired by this,

we consider a new pairing scheme that selects a mobile user

http://arxiv.org/abs/2108.08235v2
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from the Johnson Mehl (JM) cells [17] to ensure the mobile

user with shorter link distance (i.e., good channel quality)

is selected for pairing, as will be discussed shortly. In most

cases, this approach will ensure distinctive link qualities of the

mobile user and IoT device selected for pairing.

Contributions: This paper presents a new stochastic

geometry-based analysis of uplink NOMA for the non-

orthogonal transmission of mobile users and IoT devices

in cellular networks with power control. In particular, we

consider adaptive rate NOMA wherein the mobile users adapt

modulation and coding scheme (MCS) according to the time-

varying channel and the IoT devices transmit fixed but small-

size data packets. We assume that the locations of IoT devices,

mobile users and BSs follow independent PPPs. Further, we

consider mobile users with serving link distance below thresh-

old L for pairing to ensure the distinct link quality criteria for

harnessing the optimum NOMA performance gain [15]. As a

result, the mobile user and IoT device are selected for pairing

from the Johnson Mehl (JM) cell [17] and Poisson Voronoi

(PV) cell, respectively, corresponding to their associated BS.1

For this setup, we first derive the moments of the meta

distribution [18] for both mobile users and IoT devices. Next,

we use these results to characterize the achievable ergodic

capacity for the typical mobile user and the mean local delay

observed by the typical IoT device. Finally, our numerical

results validate the analytical findings and demonstrate that

adaptive rate NOMA is more spectrally-efficient than OMA

when the delay constraint of IoT devices is strict.

II. SYSTEM MODEL

We assume that the locations of BSs, mobile users and IoT

devices form independent homogeneous PPPs Φ′

b, Φm and Φt

of densities λb, λm and λt, respectively, on R
2. We present

the uplink analysis for the typical BS placed the origin o by

adding an additional point at o to Φ′

b. Let Φb = Φ′

b ∪ {o}.

For more details on this typical cell viewpoint, please refer to

[19]. Mobile users and IoT devices are assumed to associate

with their nearest BSs. Thus, the mobile users and IoT devices

associated with BS at x must lie within Poisson Voronoi (PV)

cell which is Vx = {y ∈ R
2 : ‖x− y‖ ≤ ‖z− y‖ , z ∈ Φb}.

It is important to pair devices with distinct link qualities to

achieve NOMA benefits [15]. Therefore, we pair mobile users

with serving link distances shorter than L with the IoT devices.

This ensures that the mobile users experiencing good channel

quality are involved in the NOMA pairing. Thus, the NOMA

pair associated with a BS at x includes the mobile user within

the JM cell Vx = Bx(L) ∩ Vx [17] and the IoT device within

the PV cell Vx, where Bx(L) is a ball of radius L centered at

x. Note that L controls the fraction of mobile users available

for pairing. This fraction is equal to AL = 1− exp(−πλbL
2)

[20], which clearly increases with L.

In the proposed uplink NOMA, we consider that the BS first

decodes the mobile users’ signal in the presence of intra-cell

interference from its paired IoT device. Next, the BS applies

1This paper considers only a subset of the mobile users (from JM cells)
for NOMA pairing, and the remaining mobile users (outside of JM cells) are
assumed to be served in a conventional manner. The analysis for users outside
the JM cell can be followed from [18] with small improvisations.

successive interference cancellation (SIC) technique to remove

the intra-cell interference to the IoT device from the mobile

user. After that, it decodes the IoT devices’ signal. Thus, we

effectively consider multi-user detection by SIC.

We assume that each mobile user has perfect knowledge of

its uplink signal to interference ratio (SIR) and can employ

infinitely many MCS levels such that there is an MCS level

that achieves Shannon capacity with an arbitrarily small BER
for a realized SIR. Under this SIR adaptive MCS selection,

the transmission rate of the mobile user is log2(1+βm) when

the realized SIR is βm. This is also beneficial to improve the

rate of successful transmission for the IoT devices as the BS

will always be able to successfully perform the SIC operation

because of the mobile user’s channel adaptive transmission

strategy. We term this scheme the adaptive rate NOMA. The

IoT devices are assumed to transmit at a fixed rate as they

may not be complex enough to transmit with adaptive MCS.

This paper assumes that each BS employs NOMA trans-

mission of IoT devices and mobile users (from JM cells)

over the same spectral band and uses different spectral band

for the transmission of mobile users lying outside of the JM

cells. We assume the standard power law path-loss model

with exponent α, and consider that both mobile users and IoT

devices transmit using a distance-proportional fractional power

control scheme. We use subscript i ∈ {m, t} for denoting the

mobile user (i.e., i = m) and the IoT device (i.e., i = t).
Thus, the transmit power of device i is ρiR

αǫi
i where Ri,

ρi and ǫi ∈ [0, 1] denote its serving link distance, baseline

transmit power and power control fraction, respectively. Let Ψt

and Ψm denote the point processes of the inter-cell interfering

IoT devices and mobile users, respectively. Let Rxi
and Dxi

denote the distances of device i located at x from its serving

BS and the typical BS placed at o. We assume independent

Rayleigh fading over all links. The received SIR at the typical

BS at o from the mobile user in Vo is

SIRm =
ρmhmR

α(ǫm−1)
m

ρthtR
α(ǫt−1)
t + Im + It

, (1)

and the SIR received at the typical BS at o from the IoT device

in Vo after removing the intra-cell interference via SIC is

SIRt =
ρthtR

α(ǫt−1)
t

Im + It
, where (2)

Im =
∑

x∈Ψm

ρmhxm
R

αǫm
xm

D
−α
xm

and It =
∑

x∈Ψt

ρthxt
R

αǫt
xt

D
−α
xt

,

where hi ∼ exp(1) and hxi
∼ exp(1) are the small scale

fading gains of intended device and interfering device at x,

respectively, for i ∈ {m, t}.

The conditional success probability (conditioned on the

locations of the mobile user ym, IoT device yt and the inter-

cell interferers’ point process Ψ = Ψm ∪ Ψt) for the mobile

user and the IoT device with SIR thresholds βm and βt are

Pm(βm;y,Ψ) = P(SIRm > βm|y,Ψ), and (3)

Pt(βm, βt;y,Ψ) = P(SIRm > βm, SIRt > βt|y,Ψ), (4)

where y = ym ∪ yt. The success probability of the IoT
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device depends on the joint decoding of messages of both the

devices. However, because of the assumption of the adaptive

transmission, the mobile user’s signal is always decodable at

the BS with arbitrarily small error probability. Hence, its intra-

cell interference to the IoT devices can be eliminated using

SIC because of which (4) reduces to

Pt(βt;y,Ψ) = P(SIRt > βt|y,Ψ). (5)

The distribution of conditional success probability, termed

meta distribution [18], is useful in studying the network per-

formance in terms of the percentage of devices experiencing

success probability above some pre-defined threshold. Hence,

we aim to derive the meta distributions for both the mobile

user and IoT device under the aforementioned NOMA strategy.

Under the adaptive transmission strategy, the ergodic rate

of the typical mobile user is

Rm = E[log2(1 + SIRm)]. (6)

As the IoT devices are deployed to transmit their observations

in a timely manner, it is meaningful to characterize their

performance using the mean local delay. The mean local delay

is defined in [18] as the mean number of transmissions needed

for the successful delivery of a packet.

III. ANALYSIS OF ADAPTIVE RATE NOMA

The link distance distribution and the point processes of

the inter-cell interfering devices are crucial for the meta

distribution analysis, which we will discuss next. Recall, we

assume that the paired mobile user and IoT device are located

uniformly at random within Vo and Vo, respectively. The

probability density function (pdf) of the link distance Rt of

IoT device can be approximated as

fRt
(r) = 2πρλbr exp(−πρλbr

2), r ≥ 0 , (7)

where ρ = 9/7 [20]. The serving link distance Rm of the

mobile user is bounded by L as it is selected from Vo. Hence,

its pdf can be obtained by truncating (7) as

fRm
(r) =

2πρλbr exp
(

−πρλbr
2
)

1− exp (−πρλbL2)
, 0 ≤ r ≤ L. (8)

Now, we characterize the inter-cell interferers’ point processes

Ψm and Ψt in the following. Both these processes are non-

stationary since the inter-cell interfering devices lie outside

Vo. It is well-known that the exact characterization of uplink

interferers’ point process is difficult. However, an accurate

approximation of the pair correlation function (pcf) of Ψm

as seen from the typical BS is derived in [17] as gm(r) =
1−exp(−2πV̄−1

o r2), where V̄−1
o = E[|Vo|

−1] and |A| denotes

the area of set A. Using this pcf and the fact that there is a

single interfering user from each cell, we can approximate Ψm

using a non-homogeneous PPP with density

λ̃m(r) = λbgm(r). (9)

The pcf of Ψt can be obtained simply by replacing V̄−1
o with

E[|Vo|
−1] ≈ 7

5λb (which corresponds to the case L → ∞)

as gt(r) = 1 − exp(− 14
5 πλbr

2), which exactly matches with

the pcf derived in [21]. Thus, similar to Ψm, we can also

approximate Ψt using a non-homogeneous PPP with density

λ̃t(r) = λbgt(r). (10)

Now, in the following, we analyze the meta distributions of

SIRm and SIRt. It is well-known that the exact expression for

meta distribution is difficult to derive. Hence, similar to [18],

we focus on deriving the moments of these meta distributions.

Theorem 1. The b-th moment of meta-distribution of the

typical mobile user under the adaptive rate NOMA is

Mm
b = ERm

[I1(sm)I2(sm)M(sm)] , (11)

wheresm = βm

ρm
R

α(1−ǫm)
m ,

I1(sm) = ERt

[

(

1 + smρtR
α(ǫt−1)
t

)

−b
]

,

I2(sm) = exp

(

−2π

∫

∞

0

λ̃t(u)

(

1−

∫ u

0

(1+

smρtr
αǫtu

−α)−b
fRxt

(r|u)dr

)

udu

)

,

M(sm) = exp

(

−2π

∫

∞

0

λ̃m(u)

(

1−

∫ min(u,L)

0

(1+

smρmr
αǫmu

−α)−b
fRxm

(r|u)dr

)

udu

)

,

and pdfs of Rt, Rm, Rxt
and Rxm

are given in (7), (8), (22)

and (21).

Proof. Please refer to the Appendix for the proof.

Corollary 1. The b-th moment of meta-distribution of the

typical mobile user under OMA is

M̃m
b = ERm

[M(sm)] , (12)

where sm and M(sm) are given in Theorem 1.

Now, we present moments of meta distributions for the IoT

device under the adaptive rate NOMA and OMA strategies.

Theorem 2. The b-th moment of meta-distribution of the

typical IoT device under the adaptive rate NOMA is

M t
b = ERt

[I2(st)M(st)] , (13)

where st =
βt

ρt

R
α(1−ǫt)
t , I2(st) and M(st) are given in (11).

Proof. From (5), the conditional coverage probability of the

typical IoT device located at yt is

Pt(βt;y,Ψ) = P (ht > Imst + Itst|y,Ψ) ,

(a)
=

∏

x∈Ψm

1

1 + stρmR
αǫm
xm

D−α
xm

∏

x∈Ψt

1

1 + stρtR
αǫt
xt

D−α
xt

,

where (a) follows from the assumption that ht, hxm
and hxt

∼
exp(1) and since Ψm and Ψt are independent.

Now, b-th moment of meta distribution can be obtained as

M t
b = E[Pb

t (βt;y,Ψ)]. Further, following the similar steps

given in the proof of Theorem 1, we obtain (13).

Corollary 2. The b-th moment of meta-distribution of the

typical IoT device under OMA is given by

M̃ t
b = ERt

[I2(st)] , (14)
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where st and I2(st) are given in Theorem 2.

The first moment of the conditional success probability is

the spatially averaged distribution of SIR. Thus, the comple-

mentary CDFs of SIRm under NOMA and OMA becomes

F̄m(βm) = Mm
1 and F̃m(βm) = M̃m

1 , (15)

respectively. In OMA, each BS is considered to schedule its

associated mobile users and IoT devices for η and 1 − η
fractions of time. Using (15), we now present the ergodic rate

of the typical mobile user in the following theorem.

Corollary 3. Ergodic rates of the typical mobile user under

NOMA and OMA, respectively, are

Rm =
1

ln(2)

∫

∞

0

1

1 + γ
F̄m(γ)dγ, (16)

and R̃m =
η

ln(2)

∫

∞

0

1

1 + γ
F̃m(γ)dγ. (17)

Corollary 4. Mean local delay of the typical IoT device under

NOMA and OMA, respectively, are

Dt(βt) = M t
−1 and D̃t(βt) = (1− η)−1M̃ t

−1. (18)

The optimal selection of power control fractions ǫm and ǫt
is crucial to maximize the ergodic rate for the mobile user.

However, maximizing the ergodic rate of the mobile user may

negatively impact the mean local delay for the IoT device.

Therefore, we consider maximizing the ergodic rate of the

mobile user under the constraint of maximum mean local delay

of the IoT device for NOMA and OMA cases as below

PNOMA : max
(ǫm,ǫt)

Rm, s.t Dt(βt) ≤ τ, (19)

POMA : max
(η,ǫm,ǫt)

R̃m, s.t. D̃t(βt) ≤ τ, (20)

where τ represents a predefined threshold. Under the fixed-

rate NOMA, the successful transmission of IoT device is

conditioned on the successful decoding of the mobile device’s

signal. Thus, the fixed-rate NOMA will lead to an inferior

mean local delay performance for the IoT device compared

to the adaptive rate NOMA. As a result, the IoT device

requires smaller transmission power (and thus smaller intra-

cell interference to the mobile user) to ensure the mean local

delay is below threshold τ under the adaptive rate NOMA

compared to the fixed-rate NOMA. Therefore, the adaptive

rate NOMA provides higher ergodic rate compared to the

throughput achievable under the fixed rate NOMA.

IV. NUMERICAL RESULTS AND DISCUSSIONS

We consider λb = 10−4, AL = 0.25, α = 4, βt = −5 dB

and ρm = ρt = 1, unless mentioned otherwise. Fig. 1 (left)

verifies the accuracy of the first moment of meta distribution

derived for the mobile users and IoT devices under the adaptive

rate NOMA for different values of (ǫm, ǫt). The first moments

of meta distribution of mobile users decreases and IoT devices

increases with the increase in ǫt for a given ǫm.

We compare the proposed NOMA with the conventional

OMA in terms of the rate distribution and optimal ergodic

rate of mobile users in Fig. 1 (middle) and the mean local

delay of IoT devices in Fig. 1 (right). Fig. 1 (middle) presents

the rate distribution and ergodic rate for optimally configured

NOMA and OMA. It is not surprising to see that the NOMA

provides improved rate distribution compared of OMA for τ =
2 (i.e., a strict delay constraint). This is because in OMA, the

IoT device requires higher medium access probability (i.e.,

1 − η) to ensure its delay constraint when τ is small which

allows smaller transmission times for mobile user. Whereas

NOMA allows continuous medium access to mobile users with

some interference from IoT devices. Besides, the figure shows

that NOMA underperforms for τ = 10 (i.e., a loose delay

constraint). This is because under OMA, the IoT device require

smaller 1− η to ensure delay constraint for higher τ and thus

it allows the mobile user to transmit more often.

Fig. 1 (right) shows the mean local delay for the IoT device

with full power control. It can be observed that the delay is

better under NOMA compared to OMA. Besides, it is not

sensitive to ǫm since SIC is always successful for the adaptive

NOMA. However, the delay performance under OMA is very

sensitive to η, which is expected. The figure also shows that the

mean local delay degrades with the increase of SIR threshold

βt and also with the increase of ǫm under NOMA and η
under OMA. It also demonstrates that for a given threshold

τ , NOMA can be configured such that it meets the delay

constraint with a larger βt compared to that under OMA case.

This implies that NOMA can support a larger message size as

compared to OMA under the same delay constraint. Besides,

it also shows that the mean delay does not significantly change

for a wide range of ǫm under the NOMA whereas it drastically

degrades with a moderate increase in η under OMA.

Furthermore, it is expected that the ergodic rate under both

NOMA and OMA degrades with the increase of L. This is

because a larger JM cell accommodates more mobile users

with lower SIRms. The optimal fraction AL of mobile users

involved in the non-orthogonal transmission with IoT devices

depends on the network design parameters, such as bandwidth

partitioning for NOMA and non-NOMA users, scheduling

policy, and load distributions of mobile and IoT services. This

investigation is a promising direction for future research.

V. CONCLUSION

We proposed an adaptive rate NOMA scheme for enabling

massive access in cellular-supported IoT applications wherein

an IoT device and a mobile user are paired for non-orthogonal

transmission. The proposed adaptive rate NOMA assumes that

the mobile users adapt their MCS according to the channel

conditions whereas IoT devices transmit small size packets

using fixed MCS. Using stochastic geometry, we characterized

the moments of the meta distribution for both types of devices,

which are then used to characterize the ergodic rate for the

typical mobile user and the mean local delay for the typical IoT

device. Our results demonstrated that the adaptive rate NOMA

provides better transmission rates for the mobile users as

compared to the OMA under strict mean local delay constraint

of IoT devices. This suggests that the proposed NOMA scheme

is a spectrally-efficient solution for meeting capacity and delay

requirements of mobile users and IoT devices, respectively.
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Figure 1. Left: Verification of M1 of both devices. The lines and markers correspond to simulation and analytical results, respectively. Middle: rate distribution
and ergodic rate for optimally configured NOMA and OMA. Right: mean local delay of IoT devices for various power control fractions (ǫm, ǫt).

APPENDIX

Letting sm = βmρ
−1
m R

α(1−ǫm)
m , the conditional success prob-

ability of the mobile user located at ym can be obtained as

Pm(βm;y,Ψ) = P

(

hm > sm

(

ρthtR
α(ǫt−1)
t + Im + It

)

|y,Ψ
)

(a)
=

∏

x∈Ψm

1 + smρtR
α(ǫt−1)
t

1 + smρmR
αǫm
xm

D−α
xm

∏

x∈Ψt

1

1 + smρtR
αǫt
xt

D−α
xt

,

where (a) follows since hm, ht, hxm
and hxt

∼ exp(1). Since

Rxm
≤ Dxm

, for x ∈ Ψm, pdf of Rxm
can be truncated as

fRxm
(r|Dxm

) =
2πρλbr exp

(

−πρλbr
2
)

1− exp(−πρλbmin(L,Dxm
)2)

. (21)

Besides, Rxt
≤ Dxt

. Thus, the pdf of Rxt
becomes

fRxt
(r|Dxt

) =
2πρλbr exp(−πρλbr

2)

1− exp(−πρλbD2
xt
)
, 0 ≤ r ≤ Dxt

. (22)

The b-th moment of Pm(βm;y,Ψ) can be obtained as

Mm
b = ERm

[

ERt

[

(

1 + smρtR
α(ǫt−1)
t

)−b
]

EΨm,Rxm

[

∏

x∈Ψm

1

(1 + smρmR
αǫm
xm

D−α
xm

)b

]

EΨt,Rxt

[

∏

x∈Ψt

1

(1 + smρtR
αǫt
xt

D−α
xt

)b

]

]

= ERm

[

ERt

[

(

1 + smρtR
α(ǫt−1)
t

)−b
]

EΨm

[

∏

x∈Ψm

∫ min(Dxm
,L)

0

1

(1+ρmsmrαǫmD
−α
xm

)b
fRxm

(r|Dxm
)dr

]

EΨt

[

∏

x∈Ψt

∫ Dxt

0

1

(1+ρtsmrαǫtD
−α
xt

)b
fRxt

(r|Dxt
)dr

] ]

.

Next, using conditional pdfs of Rxm
and Rxt

(given in (21)

and (22)), and the probability generating functional of approxi-

mate non-homogeneous PPPs Ψm and Ψt with densities λ̃m(r)
and λ̃t(r) (given in (9) and (10)), we get (11).
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