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Abstract. Perception algorithms in autonomous vehicles are vital for
the vehicle to understand the semantics of its surroundings, including de-
tection and tracking of objects in the environment. The outputs of these
algorithms are in turn used for decision-making in safety-critical scenar-
ios like collision avoidance, and automated emergency braking. Thus, it
is crucial to monitor such perception systems at runtime. However, due
to the high-level, complex representations of the outputs of perception
systems, it is a challenge to test and verify these systems, especially at
runtime. In this paper, we present a runtime monitoring tool, PerceMon
that can monitor arbitrary specifications in Timed Quality Temporal
Logic (TQTL) and its extensions with spatial operators. We integrate
the tool with the CARLA autonomous vehicle simulation environment
and the ROS middleware platform while monitoring properties on state-
of-the-art object detection and tracking algorithms.

Keywords: Perception Monitoring · Autonomous Driving · Temporal
Logic.

1 Introduction

In recent years, the popularity of autonomous vehicles has increased greatly.
With this popularity, there has also been increased attention drawn to the vari-
ous fatalities caused by the autonomous components on-board the vehicles, es-
pecially the perception systems [16, 24]. Perception modules on these vehicles
use vision data from cameras to reason about the surrounding environment,
including detecting objects and interpreting traffic signs, and in-turn used by
controllers to perform safety-critical control decisions, including avoiding pedes-
trians. Due to the nature of these systems, it has become important that these
systems be tested during design and monitored during deployment.

Signal temporal logic (STL) [17] and Metric Temporal Logic (MTL) [11] have
been used extensively in verification, testing, and monitoring of safety-critical
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systems. In these scenarios, typically there is a model of the system that is
generating trajectories under various actions. These traces are the used to test if
the system satisfies some specification. This is referred to as offline monitoring,
and is the main setting for testing and falsification of safety-critical systems.
On the other hand, STL and MTL have been used for online monitoring where
some safety property is checked for compliance at runtime [6,19]. These are used
to express rich specifications on low-level properties of signals outputted from
systems.

The output of a perception algorithm consists of a sequence of frames, where
each frame contains a variable number of objects over a fixed set of categories,
in addition to object attributes that can range over larger data domains (e.g.
bounding box coordinates, distances, confidence levels, etc.). STL and MTL
can handle mixed-mode signals and there have been attempts to extend them
to incorporate spatial data [3, 13, 18]. However, these logics lack the ability to
compare objects in different frames, or model complex spatial relations between
objects.

Timed Quality Temporal Logic (TQTL) [5], and Spatio-temporal Quality
Logic (STQL) [14] are extensions to MTL that incorporate the semantics for
reasoning about data from perception systems specifically. In STQL, which is
in itself an extension of TQTL, the syntax defines operators to reason about
discrete IDs and classes of objects, along with set operations on the spatial
artifacts, like bounding boxes, outputted by perception systems.

In this project, we contribute the following:

1. We show how TQTL [5] and STQL [14] can be used to express correctness
properties for perception algorithms.

2. An online monitoring tool, PerceMon1, that efficiently monitors STQL speci-
fications. We integrate this tool with the CARLA simulation environment [8]
and the Robot Operating System (ROS) [20].

Fig. 1: The PerceMon online monitoring pipeline.

Related work S-TaLiRo [2, 10], VerifAI [9] and Breach [7] are some exam-
ples of tools used for offline monitoring of MTL and STL specifications. The
presented tool, PerceMon, models its architecture similar to the RTAMT [19]
online monitoring tool for STL specifications: the core tool is written in C++
with an interface for use in different, application-specific platforms.

1 https://github.com/CPS-VIDA/PerceMon.git

https://github.com/CPS-VIDA/PerceMon.git
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2 Spatio-temporal Quality Logic

Spatio-temporal quality logic (STQL) [14] is an extension of Timed Quality Tem-
poral Logic (TQTL) [5] that incorporates reasoning about high-level topological
structures present in perception data, like bounding boxes, and set operations
over these structures.

STL has been used extensively in testing and monitoring of control systems
mainly due to the ability to express rich specifications on low-level, real-valued
signals generated from these systems. To make the logic more high-level, spatial
extensions have been proposed that are able to reason about spatial relations
between signals [3, 12, 13, 18]. A key feature of data streams generated by per-
ception algorithms is that they contain frames of spatial objects consisting of
both, real-values and discrete-valued quantities: the discrete-valued signals are
the IDs of the objects and their associated categories; while real-valued signals
include bounding boxes describing the objects and confidence associated with
their identities. While STL and MTL can be used to reason about properties
of a fixed number of such objects in each frame by creating signal variables to
encode each of these properties, it is not possible to design monitors that handle
arbitrarily many objects per frame.

TQTL [5] is a logic that is specifically catered for spatial data from per-
ception algorithms. Using Timed Propositional Temporal Logic [4] as a basis,
TQTL allows one to pin or freeze the signal at a certain time point and use
clock variables associated with the freeze operator to define time constraints.
Moreover, TQTL introduces a quantifier over objects in a frame and the ability
to refer to properties intrinsic to the object: tracking IDs, classes or categories,
and detection confidence. STQL [14] further extends the logic to reason about
the bounding boxes associated with these objects, along with predicate func-
tions for these spatial sets, by incorporating topological semantics from the S4u
spatio-temporal logic [12].

Definition 1 (STQL Syntax [14]). Let Vt be a set of time variables, Vf be a
set of frame variables, and Vo be a set of object ID variables. Then the syntax
for STQL is recursively defined by the following grammar:

ϕ ::= ∃{id1, id2, . . .}@ϕ | {x, f}.ϕ
| > | ¬ϕ | ϕ ∨ ϕ | ©ϕ | –©ϕ | ϕU ϕ | ϕ S ϕ

| C TIME− x ∼ t | C FRAME− f ∼ n
| C(idi) = c | C(idi) = C(idi) | P(idi) ≥ r | P(idi) ≥ r × P(idj)

| {idi = idj} | {idi 6= idj} | ∃�Ω | Π
Ω ::= ∅ | U | BB(id1) | Ω | Ω tΩ
Π ::= Area(Ω) ≥ r|Area(Ω) ≥ r × Area(Ω)

| ED(idi,CRT, idj ,CRT) ≥ r | Θ ≥ r | Θ ≥ r ×Θ
Θ ::= Lat(idi,CRT) | Lon(idi,CRT)

CRT ::= LM | RM | TM | BM | CT
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Here, idi ∈ Vo (for all indices i), x ∈ Vt, and f ∈ Vf . In the above grammar
r is a real-valued constant that allows for the comparison of ratios of object
properties.

In the above grammar, ¬ϕ and ϕ ∨ ϕ are, respectively, the negation and
disjunction operators from propositional logic while©ϕ, –©ϕ, ϕUϕ, and ϕSϕ
are the temporal operators next, previous, until, and since respectively. The
above grammar can be further used to derive the other propositional operators,
like conjunction (ϕ ∧ ϕ), along with temporal operators like always (�ϕ) and
eventually (♦ϕ), and their past-time equivalents holds ( –�ϕ) and once ( -♦ϕ).
In addition to that, STQL extends these by introducing freeze quantifiers over
clock variables and object variables. {x, f}.ϕ freezes the time and frame that
the formula ϕ is evaluated, and assigns them to the clock variables x and f ,
where x refers to pinned time variables and f refers to pinned frame variables.
The constants, C TIME,C FRAME refer to the value of the time and frame num-
ber where the current formula is being evaluated. This allows for the expression
x − C TIME and f − C FRAME to measure the duration and the number of
frames elapsed, respectively, since the clock variables x and f were pinned. The
expression ∃{id1}@ϕ searches over each object in a frame in the incoming data
stream — assigning each object to the object variable id1 — if there exists an
object that satisfies ϕ. The functions C(id) and P(id) refer to the class and
confidence the detected object associated with the ID variable. In addition to
these TQTL operations, bounding boxes around objects can be extracted using
the expression BB(id) and set topological operations can be defined over them.
The spatial exists operator ∃�Ω checks if the spatial expression Ω results in a
non-empty space or not. Quantitative operations like Area(·) measure the area
of spatial sets; ED computes the Euclidean distances between references points
(CRT) of bounding boxes; and Lat and Lon measure the latitudinal and longi-
tudinal offset of bounding boxes respectively. Here, CRT refers to the reference
points — left, right, top, and bottom margins, and the centroid — for bounding
boxes. Due to lack of space, we defer defining the formal semantics of STQL
to Appendix A and also refer the readers to [14] for more extensive details.

3 PerceMon: An Online Monitoring Tool

PerceMon is an online monitoring tool for STQL specifications. It computes the
quality of a formula ϕ at the current evaluation frame, if ϕ can be evaluated
with some finite number of frames in the past (history) and delayed frames from
the future (horizon).

The core of the tool consists of a C++ library, libPerceMon, which provides
an interface to define an STQL abstract syntax tree efficiently, along with a gen-
eral online monitor interface. The PerceMon tool works by initializing a monitor
with a given STQL specification and can receive data in a frame-by-frame man-
ner. It stores the frames in a first-in-first-out (FIFO) buffer with maximum size
defined by the horizon and history requirement of the specification. This enables
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(a) General architecture for PerceMon.
The frontend component is a generic wrap-
per around libPerceMon, the C++ library
that provides the online monitoring func-
tionality, for example, a wrapper for ROS,
a parser from some specification language,
or a Python library.

PerceMon 
ROS 

Frontend

CARLA Simulation

Perception 
Algorithms

Image Topic

Bounding 
Boxes, etc.

Satisfaction

PerceMon 
ROS 

Frontend

(b) Architecture of the integration of
PerceMon with the CARLA autonomous
vehicle simulator and ROS middleware
platform.

fast and efficient computation of the quality of the formula for the bounded
horizon. An overview of the architecture can be seen in Figure 2a.

The library, libPerceMon, designed with the intention to be used with wrap-
pers that convert application-specific data to data structures supported by the
library (signified by the “Frontend” block in the architecture presented in Fig-
ure 2a). In the subsequent section, we show an example of how such an integra-
tion can be performed by interfacing libPerceMon with the CARLA autonomous
vehicle simulator [8] via the ROS middleware platform [20].

3.1 Integration with CARLA and ROS

In this section, we present an integration of the PerceMon tool with the CARLA
autonomous vehicle simulator [8] using the ROS middleware platform [20]. This
follows the example of [9] and [26] which interface with CARLA, and [19], where
the tool interfaces with the ROS middleware platform for use in online monitor-
ing applications.

The CARLA simulator is an autonomous vehicle simulation environment that
uses high-quality graphics engines to render photo-realistic scenes for testing such
vehicles. Pairing this with ROS allows us to abstract the data generated by the
simulator, the PerceMon monitor, and various perception modules as streams
of data or topics in a publisher-subscriber network model. Here, a publisher
broadcasts data in a known binary format at an endpoint (called a topic) without
knowing who listens to the data. Meanwhile, a subscriber registers to a specific
topic and listens to the data published on that endpoint.

In our framework, we use the ROS wrapper for CARLA2 to publish all the
information from the simulator, including data from the cameras on the au-
tonomous vehicle. The image data is used by perception modules — like the

2 https://github.com/carla-simulator/ros-bridge/

https://github.com/carla-simulator/ros-bridge/
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YOLO object detector [22] and the DeepSORT object tracker [25] — to publish
processed data. The information published by these perception modules can in-
turn be used by other perception modules (like using detected objects to track
them), controllers (that may try to avoid collisions), and by PerceMon online
monitors. The architectural overview can be seen in Figure 2b.

The use of ROS allows us to reason about data streams independent of the
programming languages that the perception modules are implemented in. For
example, the main implementation of the YOLO object detector is written in
C/C++ using a custom deep neural network framework called Darknet [21],
while the DeepSORT object tracker is implemented in Python. The custom de-
tection formats from each of these algorithms can be converted into standard
messages that are published on predefined topics, which are then subscribed to
from PerceMon. Moreover, this also paves the way to migrate and apply Perce-
Mon to any other applications that use ROS for perception-based control, for
example, in the software stack deployed on real-world autonomous vehicles [15].

4 Experiments

(a) In this scenario, the configuration is
such that the sun has set. In a poorly lit
road, a cyclist tries to cross the road.

(b) Here, a partially occluded pedestrian
decides to suddenly cross the road as the
vehicle cruises down the street.

Fig. 3: The presented scenarios simulated in CARLA aim to demonstrate some
common failures associated with deep neural network-based perception modules.
These include situations where partially occluded objects are not detected or
tracked properly, and situations where different lighting conditions cause misla-
beling of detected objects. In both the above scenarios, we also add some passive
vehicles to increase the number of objects detected in any frame. This allows us
to compute the time it takes to compute the satisfaction values from the monitor
as the number of objects that need to be checked increases.

In this section, we present a set of experiments using the integration of Perce-
Mon with the CARLA autonomous car simulator [8] presented in Section 3.1.
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We build on the ROS-based architecture described in the previous section, and
monitor the following perception algorithms:

– Object Detection: The YOLO object detector [22,23] is a deep convolutional
neural networks (CNN) based model that takes as input raw images from the
camera and outputs a list of bounding boxes for each object in the image.

– Object Tracking : The SORT object tracker [25] takes the set of detections
from the object detector and associates an ID with each of them. It then
tries to track each annotated object across frames using Kalman filters and
cosine association metrics.

We use the OpenSCENARIO specification format [1] to define scenarios in
the CARLA simulation that mimic some real-world, accident-prone scenarios,
where there have been several instances where deep neural network based per-
ception algorithms fail at detecting or tracking pedestrians, cyclists, and other
vehicles. To detect some common failure cases, we initialize the PerceMon mon-
itors with the following specifications:

Consistent Detections ϕ1 : For all objects in the current frame that have
high confidence, if the object is far away from the margins, then the object must
have existed in the previous frame too with sufficiently high confidence.

ϕ1 := ∀{id1}@{f}. ((ϕhigh prob ∧ ϕmargins)⇒ –©ϕexists)

ϕhigh prob := P(id1) > 0.8

ϕmargins := Lon(id1,TM) > c1 ∧ Lon(id1,BM) < c2

∧ Lat(id1, LM) > c3 ∧ Lat(id1,RM) < c4

ϕexists := ∃{id2}. ({id1 = id2} ∧ P(id2) > 0.7)

(1)

Object detection algorithms are known to frequently miss detecting objects in
consecutive frames or detect them with low confidence after detecting them with
high confidence in previous frames. This can cause issues with algorithms that
rely on consistent detections, e.g., for obstacle tracking and avoidance. The above
formula checks this for objects that we consider “relevant” (using ϕmargins), i.e.,
the object is not too far away from the edges of the image. This allows us to filter
false alarms from objects that naturally leave the field of view of the camera.

Smooth Object Trajectories ϕ2 : For every object in the current frame, its
bounding box and the corresponding bounding box in the previous frame must
overlap more than 30%.

ϕ2 := ∀{id1}@{f1}. ( –© (∃{id2}@{f2}. ({id1 = id2} ⇒ ϕoverlap)))

ϕoverlap :=
Area(BB(id1) uBB(id2))

Area(BB(id1))
≥ 0.3

(2)

In consecutive frames, if detected bounding boxes are sufficiently far apart, it is
possible for tracking algorithms that rely on the detections to produce incorrect
object associations, leading to poor information for decision-making.
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We monitor the above properties for scenarios described in Figure 3, and
check for the time it takes to compute the satisfaction values of the above prop-
erties. As each scenario consists of some passive or non-adversarial vehicles, the
number of objects detected by the object detector increases. Thus, since the
runtime for the STQL monitor is exponential in the number of object IDs ref-
erenced in the existential quantifiers, this allows us to empirically measure the
amount of time it takes to compute the satisfaction value in the monitor. The
number of simulated non-adversarial objects are ranged from 1 to 10, and the
time taken to compute the satisfaction value for each new frame is recorded. We
present the results in Table 1, and refer the readers to [14] for theoretical results
on monitoring complexity for STQL specifications.

Table 1: Compute time for different properties, with increasing number of ob-
jects.

Average Number of Objects Average Compute Time (s)

ϕ1 ϕ2

2 7.0× 10−6 7.3× 10−6

5 1.4× 10−5 2.3× 10−5

10 5.4× 10−4 6.3× 10−4

5 Conclusion

In this paper, we presented PerceMon, an online monitoring library and tool for
generating monitors for specifications given in Spatio-temporal Quality Logic
(STQL). We also present a set of experiments that make use of PerceMon’s
integration with the CARLA autonomous car simulator and the ROS middleware
platform.

In future iterations of the tool, we hope to incorporate a more expressive
version of the specification grammar that can reason about arbitrary spatial
constructs, including oriented polygons and segmentation regions, and incorpo-
rate ways to formally reason about system-level properties (like system warnings
and control inputs).
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A Semantics for STQL

Consider a data stream ξ consisting of frames containing objects and annotated
with a time stamp. Let i ∈ N be the current frame of evaluation, and let ξi
denote the ith frame. We let ε : Vt ∪ Vf → N ∪ {NaN} denote a mapping from a
pinned time or frame variable to a frame index (if it exists), and let ζ : Vo → N
be a mapping from an object variable to an actual object ID that was assigned
by a quantifier. Finally, we let O(ξi) denote the set of object IDs available in the
frame i, and let t(ξi) output the timestamp of the given frame.

Let JϕK be the quality of the STQL formula, ϕ, at the current frame i, which
can be recursively defined as follows:

– For the propositional and temporal operations, the semantics simply follows
the Boolean semantics for LTL or MTL, i.e.,

J>K(ξ, i, ε, ζ) = >
J¬ϕK(ξ, i, ε, ζ) = ¬JϕK(ξ, i, ε, ζ)

Jϕ1 ∨ ϕ2K(ξ, i, ε, ζ) = JϕiK(ξ, i, ε, ζ) ∨ Jϕ2K(ξ, i, ε, ζ)

J©ϕK(ξ, i, ε, ζ) = JϕK(ξ, i+ 1, ε, ζ)

J –©ϕK(ξ, i, ε, ζ) = JϕK(ξ, i− 1, ε, ζ)

Jϕ1 U ϕ2K(ξ, i, ε, ζ) =
∨
i≤j

Jϕ2K(ξ, j, ε, ζ) ∧
∧

i≤k≤j

Jϕ1K(ξ, k, ε, ζ)


Jϕ1 S ϕ2K(ξ, i, ε, ζ) =

∨
j≤i

Jϕ2K(ξ, j, ε, ζ) ∧
∧

j≤k≤i

Jϕ1K(ξ, k, ε, ζ)



– For constraints on time and frame variables,

Jx− C TIME ∼ cK(ξ, i, ε, ζ) =

{
>, if ε(x)− t(ξi) ∼ c
⊥, otherwise.

Jf − C FRAME ∼ cK(ξ, i, ε, ζ) =

{
>, if ε(f)− i ∼ c
⊥, otherwise.
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– For operations on object variables,

J{idj = idj}K(ξ, i, ε, ζ) =

{
>, if ζ(idj) = ζ(idk)

⊥, otherwise.

JC(idj) = cK(ξ, i, ε, ζ) =

{
>, if O(ξi)(ζ(idj)).class = c

⊥, otherwise.

JC(idj) = C(idk)K(ξ, i, ε, ζ) =


>, if O(ξi)(ζ(idj)).class

= O(ξi)(ζ(idk)).class

⊥, otherwise.

JP(idj) ∼ rK(ξ, i, ε, ζ) =

{
>, if O(ξi)(ζ(idj)).prob ∼ r
⊥, otherwise.

JP(idj) ∼ r × P(idk)K(ξ, i, ε, ζ) =


>, if O(ξi)(ζ(idj)).prob ∼ r

×O(ξi)(ζ(idk)).prob

⊥, otherwise.

– For the area, latitudinal offset, and longitudinal offset,

JArea(T1) ∼ rK =

{
>, if Area(U(T1, ξ, ζ)) ∼ r
⊥, otherwise.

JLat(id1,CRT1) ∼ rK(ξ, i, ε, ζ) =

{
>, if flat(id1,CRT1, ξ, i, ε, ζ) ∼ r
⊥, otherwise.

JLon(id1,CRT1) ∼ rK(ξ, i, ε, ζ) =

{
>, if flon(id1,CRT1, ξ, i, ε, ζ) ∼ r
⊥, otherwise.

where, ∼∈ {<,>,≤,≥}, and

• flat computes the lateral distance of the CRT point of an object identified
by O(ζ(id1)) from the Longitudinal axis;

• flon computes the longitudinal distance of the CRT point of an object
identified by O(ζ(id1)) from the Lateral axis; and

• U(T , ξ, ζ) is the compound spatial object created after set operations on
bounding boxes (defined below).

– And, finally, for the spatial existence operator,

J ∃� T K(ξ, i, ε, ζ) =

{
>, if U(T , ξ, ζ) 6= ∅
⊥, otherwise.
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Here, the compound spatial function, U is defined as follows:

U(∅, ξ, ζ) = ∅
U(U, ξ, ζ) = U

U(BB(id), ξ, ζ) = ζ(id).bbox

U(T , ξ, ζ) = U \ U(T , ξ, ζ)

U(T1 t T2, ξ, ζ) = U(T1, ξ, ζ) ∪ U(T2, ξ, ζ)
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