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Nonsmooth Mechanics Based on Linear
Projection Operator

Farhad Aghili∗

Abstract

This paper presents a unifying dynamics formulation for nonsmooth multibody sys-
tems (MBSs) subject to changing topology and multiple impacts based on linear projection
operator. An oblique projection matrix ubiquitously derives all characteristic variables of
such systems as follow: i) The constrained acceleration before jump discontinuity from
projection of unconstrained acceleration, ii) post-impact velocity from projection of pre-
impact velocity, iii) impulse during impact from projection of pre-impact momentum, iv)
generalized constraint force from projection of generalized input force, and v) post-impact
kinetic energy from pre-impact kinetic energy based on projected inertia matrix. All solu-
tions are presented in closed-form with elegant geometrical interpretations. The formula-
tion is general enough to be applicable to MBSs subject to simultaneous multiple impacts
with non-identical restitution coefficients, changing topology, i.e., unilateral constraints
becomes inactive or vice versa, or even when the overall constraint Jacobian becomes
singular. Not only do the solutions always exist regardless the constraint condition, but
also the condition number for a generalized constraint inertia matrix is minimized in or-
der to reduce numerical sensitivity in computation of the projection matrix to roundoff
errors. The model is proven to be energetically consistent if a global restitution coefficient
is assumed. In the case of non-identical restitution coefficients, the set of energetically
consistent restitution matrices is characterized by using Linear Matrix Inequality (LMI).

1 Introduction

The class of robotic systems with varying topology due to switching constraints or impact event
arises in many robotics applications involving multiple contacts or formations of closed-loop
topology [1–6] such as robotic assembly [7], force control of constrained robots [8,9], and legged
robotics [10]. These robotic systems can be generally treated as multibody systems (MBSs)
subject to unilateral kinematic constraints with a time-varying topology. In many cases, the
constraints arises from intermittent contacts, which can fundamentally change the dynamic
behavior of the system e.g., when passive unilateral constraints become active and vice versa.
There are two main challenges in dynamics formulation of these systems: i) time-varying struc-
ture of the systems due to activation and deactivation of unilateral constraints, ii) non-smooth
behaviors associated with the jump discontinuity in the velocities and impulsive constraint force
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during constraint activation events. More specifically, the unilateral constraints are defined so
that they are active when the corresponding relative displacements and constraint forces are
non-negative and otherwise they remain inactive. Consequently the dimension of the overall
constraint manifold, which is equal to the number of independent kinematic constraints, varies
over time and so does the number of degrees-of-freedom exhibited by the system. Moreover
when one or more inactive unilateral constraints become active, such events transpire impact,
which gives rise to impulsive constraint forces. The topology change is often modeled as in-
stantaneous events meaning that the system’s velocities cannot be assumed continuous during
constraint switching or impact events. In that case, the system states can not be calculated
from an acceleration model, instead they have to be derived from an impact model by incor-
porating the impulse-momentum balance of the entire system together with a restitution law.
Simulation and analysis of such constrained robotic systems with varying topology call for a
unifying formulation that be used not only for a single motion dynamics model of MBSs with
varying topology but for the impulsive motion problem as well. Ideally, a unified formulation
which yields closed-form solution is desirable not only for computational efficiency but for giving
geometrical interpretation of multiple impact phenomenon in MBSs.

In the literature, the primary approach to modeling impact in MBSs is based on combining
the equation of momentum-balance together with a restitution law [11, 12]. In this approach,
the impact is assumed to be an infinitesimal event and subsequently the set of the impulse-
momentum equations are algebraically solved to produce velocity jump rather than updating
the velocity from integration of the acceleration vector. In this formulation, the impact is char-
acterized by the coefficient of restitution, which is defined as the ratio of the local velocities after
and before collision. Other approaches assume smooth compliant modelling of impact where
the impulsive force is typically presented by a linear or nonlinear spring-damper model [11,13],
e.g., the Haunt-Crossley nonlinear spring-dashpot model. However, it has been established that
a linear or non-linear compliant model becomes equivalent to the momentum-balance model
if the coefficient of restitution is specifically selected according to the damping and stiffness
properties of the compliance model [10, 14, 15]. Impact model for collisions of a special class
of planar kinematic chains is presented in [16]. Impact dynamics of a five-link biped walk-
ing on level ground are studied in [17] for correlating the gait parameters with the contact
event following impact. Implementation and validation of theoretical impact model represent-
ing non-smooth dynamics exhibited in a bouncing dimer in a planar environment are reported
in [18, 19]. Impact models for humanoid robots for respective controllers are developed in [20]
to ensure smooth reaction control under both impact-force and continuous-force disturbances.
Although it is common practice to treat the coefficient of restitution to be independent of the
impact velocity, empirical observations have demonstrated otherwise [13, 21]. Dependency of
the coefficient of restitution to the local approach velocity implies that a global coefficient of
restitution may not be assumed for concurrent simulation of for multiple impacts even with
identical material properties of the contact surfaces [10, 15, 22–24].

Another challenge in modelling mechanical systems subject to unilateral constraints is that
they often have a time-varying topology. This is because when passive unilateral constraints
becomes active the dynamics behavior of the system changes and so do their numbers of degrees-
of-freedom. This means that it is not possible to find beforehand a global minimal-order model
characterized with an independent coordinates having a fixed dimension. Utilizing a set of non-
minimal models corresponding to different constraint situation necessitates switching between
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different models during simulation or control and thus this approach suffers from smoothness
and stability of the transition [1–4]. Another shortcoming of reduced-order dynamics model is
the non-unique relationship between the independent coordinates and the spatial configuration
of MBSs. Moreover, using the minimum-order independent coordinates becomes particularly
limiting for MBSs passing through singular configurations, which inevitably gives rise to the
numbers of DOF. Regularization of singularities of bilaterally constrained systems is studied
in the literature [25–28]. Explicit dynamics formulation in terms of dependent coordinates
was proposed in our earlier works based on the notion of orthogonal projection that does not
require a recourse to an iterative process [27, 29]. Subsequently, similar projection approaches
has been used for modelling and control of robots with switching topology such as walking
robots [24, 30–32].

This paper presents a unifying approach for modelling nonsmooth mechanics based on
oblique projection operator. More specifically, the acceleration of constrained MBS is simply
derived by projecting the acceleration computed from the same MBS without imposing the
constraints. Likewise, the velocity jump and impulse during impact are directly obtained by
obliquely projecting the pre-impact velocity and pre-impact momentum of the MBS, respec-
tively. Other post-impact variables such as impact and kinetic energy are elegantly derived
based on projection. Therefore, the dynamics model seemingly works not only when the uni-
lateral constraints remains active through a finite time interval but when changing topology
occurs, i.e., unilateral constraints becomes inactive or vice versa, or even when the overall con-
straint Jacobian becomes singular. The other advantages of the formulation are it can handle
MBSs with chain tree and close-loop topologies or subject to simultaneous multiple contacts
with non-identical restitution coefficients [24]. The formulation is energetically consistent if
a global restitution coefficient can be assumed, while for the case of non-identical restitution
coefficients the energetically consistency is satisfied upon a LMI condition.

2 Mechanical System with Bilataeral/Unilateral Con-

straints

Consider a mechanical system with generalized coordinate q ∈ R
n subject to a set of mb

bilateral constrains and mu unilateral constraints. Dynamics equation of such system can be
described by

M(q)q̈ + h(q, q̇) =u+AT
b λb +AT

uλu (1a)

φb(q) = 0 (1b)

φu(q) ≥ 0, λu ≥ 0 (1c)

φT
u (q)λu = 0 (1d)

where M(q) ∈ R
n×n is the inertia matrix; h(q, q̇) ∈ R

n contains Coriolis, centrifugal, and
gravitational terms, and u ∈ R

n represents collectively all actuation, dissipative, or external
forces acting on the system. In the above equation, φb(q) ∈ R

mb and φu(q) ∈ R
mu are

the set of bilateral and unilateral constraint equations; λb ∈ R
mb and λu ∈ R

mu are the
Lagrangian multipliers associated with the bilateral and unilateral constraints, and (1d) is the
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complementarity condition. The jacobians associated with the constraints are

Ab =
∂φb

∂q
and Au = Γ

∂φu

∂q
(2)

where Γ is a diagonal activation matrix whose entries are computed according to

Γii =

{
1 if φui

= 0 ∧ λui
≥ 0

0 otherwise
(3)

In other words, Γii = 1 implies activation of the ith unilateral constraint. Notice that (2)
simply ignores un-activated unilateral constraints as if they did not exist. This is because
if a unilateral constraint is not activated, then the corresponding switch Γii is zero making
the constraint passive. As a result, the rank of Jacobian matrix Au increases or decreases as
some of the passive unilateral constraints become active or vice versa. As shall be described
in Section 3, during the transition when the rank abruptly changes, the continuity may not be
ensured and therefore the system should be cast in the framework of non-smooth mechanics.

Denote the entire vector of Lagrangian multiplier by λ = [λT
b λT

u ]
T and the augmented

Jacobian matrix

A =

[
Ab

Au

]

, and hence f = ATλ (4)

is the generalized constraint force. The equations of the constrained mechanical system can be
transcribed as in the standard dynamics equations having only equality constraints

M(q)q̈ + h(q, q̇) = u+ f , (5a)

Aq̇ = 0 (5b)

The Jacobian matrix may not be full-rank, that is rank(A) = r and r ≤ m, where m = mu+mb

is the sum of all constraints. Alternatively, the constraint condition (5b) can be equivalently
described by P q̇ = q̇ [27], where the square matrix P ∈ R

n×n represents the orthogonal
projection onto the null-space of A, and hence P 2 = P = P T . The projection matrix can
be obtained from P , I − A+A where A+ is the pseudo-inverse of A. Hereafter, N and
N⊥ represent, respectively, the null-space and null-space complement of A. As shown in
Appendix .1, one can also show that the generalized velocity is linearly mapped to the N⊥

component of the generalized acceleration q̈⊥ := (I − P )q̈ through

q̈⊥ = Ωq̇, (6)

where Ω = ΛT −Λ is a skew-symmetric, and Λ = −A+ȦP .
On the other hand, since Pf = 0, the constraint force can be simply eliminated from

equation (5a) if both sides of the latter equation are pre-multiplied by P , i.e.,

PMq̈ = P (u− h), or

PMPq̈ = P (u− h)−PMΩq̇, (7)

where h denotes h(q, q̇) for brevity of notation. Pre-multiplying equation (6) by positive scalar
ν > 0, and then add both sides of the resulting equation with (7), we arrive at

Mcq̈ =
(
νI − PM

)
Ωq̇ + P (u− h), (8)
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where Mc = PMP + ν(I − P ) is the constraint inertia matrix. Equation (8) constitutes the
non-minimal order dynamics model of mechanical systems in the standard form where Mc(q)
can be treated as the constraint inertia matrix.

Properties 1 The constraint inertia matrix satisfies the following properties:

Mc � 0 (9a)

PMc = McP = PMP (9b)

PM−1
c = M−1

c P = PM−1
c P = M+

o (9c)

MM−1
c = P (9d)

νM−1
c Ωq̇ = Ωq̇ (9e)

minν cond(Mc) ⇐ λmin

6=0

(Mo) ≤ ν ≤ λmax(Mo) (9f)

where Mo = PMP .

That P commutes with both the constraint inertia matrix and its inverse, i.e., (9c), can be
inferred readily from definition of the constraint inertia matrix. The proofs of that matrixMc is
always symmetric positive-definite (9a), identity (9e), and minimizing the condition number of
the constraint inertia matrix are given in Appendix .2. Notice that condition (9f) is important
from a numerical point of view as computation of a projection matrix defined in the following
section will require inversion of the constraint inertia matrix.

2.1 Generalized acceleration through oblique projection

Let us define
S := I −M−1

c PM = I −M+

o M , (10)

which is not generally a symmetric matrix, i.e., ST 6= S. It can be inferred from properties (9c)
and (9d) that PMPM−1

c P = PMM−1
c P = P . Using the latter identity in the following

derivation leads to

S2 = I − 2MM−1

c P +MM−1

c PMPM−1

c P
︸ ︷︷ ︸

P

= S.

Therefore, since S2 = S and S is not a symmetric matrix then S must be an oblique projector.

Properties 2 It can be verified that projection matrix S satisfies the following identities

SP = PST = 0 (11a)

S(I − P ) = S (11b)

(I −P )S = I − P (11c)

MS = STM = STMS (11d)

(I − S)M−1 = M−1(I − ST ) = M+
o (11e)
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See Appendix .3 for the proofs. Since Mc is invertible, the acceleration of the dependent
generalized coordinates can be always computed from (8) regardless the ill-conditioning of the
constraint, i.e.,

q̈ = −M−1

c P (u− h) +
(
νM−1

c PΩ−M−1

c PMΩ
)
q̇

= M−1

c P (u− h) + SΩq̇ (12)

Now suppose vector q̈∗ = M−1(u − h) virtually represent the acceleration of the MBS when
all constraints are ignored. Then, by virtue of definition of the unconstrained acceleration and
Properties 1, one can equivalently rewrite (12) in the following form

q̈ = (I − S)q̈∗ + SΩq̇. (13)

Remark 1 Equation (13) reveals that the acceleration vectors of constrained and unconstrained
MBSs are related by the oblique projection matrix I − S.

Notice that the generalized velocities are not continuous at impacts and therefore the post-
impact velocities can not determined from (13). Nevertheless, it will be shown in the next
section (3) that the post-impact velocity can be also computed from the oblique projection.

2.2 Constraint force and oblique projection

Upon substitution of the acceleration from (12) into (5a) and rearranging the latter equation,
we arrive at the equation the constraint forces in the following compact form

f = ST
(
h− u

)
+ STMΩq̇ (14)

Since the projection matrix S is always well-defined, equation (14) gives a unique solution to
the constraint forces. However, the generalized Lagrangian multipliers cannot be determined
uniquely unless the constraints are linearly independent. In any case, the pseudo-inverse can
be used for a minimum-norm solution, i.e., λ = A+Tf .

3 Passive unilateral constraint becomes active: Gener-

alized Impact

When a passive unilateral constraint becomes active such event is usually accompanied by corre-
sponding negative velocity φ̇ui

< 0. This event causes impact accompanied by impulsive forces
and sudden change in the generalized velocity and therefore a discontinuity in the velocities.
Due to discontinuity of the velocities during impact event, the velocity instantaneously jumps
from q̇− to q̇+ and thus requiring infinitely large acceleration and constraint force. Therefore,
the acceleration model (13) is not adequate to determine post-impact velocities rather an im-
pact model is required to deal with the impulsive constraint force and discontinuities in the
velocities. This section presents a closed-form solution to the generalized impulse-momentum
equation of constrained MBSs by establishing explicit relationship between the pre- and post-
impact velocities based on the oblique projection S.
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Although it is not possible to calculate the velocity change at the time of impact through
integration of the equations of motion, it is possible to calculate the velocity change using the
Newton’s impact law. Suppose multiple impacts occur at time interval [t−, t+] and the impact
duration δt = t+ − t− is infinitesimal. Also, let us define the mu × mu switching matrix Γ∗

whose corresponding diagonal entries switch from zero to one upon detection of impact, i.e.,

Γ∗
ii =

{

1 if φi ≤ 0 ∧ φ̇i < 0
0 otherwise

(15)

Notice that simultaneous activation of more than one unilateral constraint is possible and
therefore matrix Γii may contain more than one nonzero entries. For instance, if occurrence
of simultaneous activation of the first and third unilateral constraints are detected, then the
switching matrix becomes

Γ∗ = diag
{
[1, 0, 1, 0, · · · , 0]

}
(16)

From the impact switching matrix, it follows the jacobian matrix during the impact as

Au = (Γ + Γ∗)
∂φu

∂q
, (17)

and subsequently (4) can be treated as the mapping from the lagrangian multipliers associated
with both bilateral constraints and the activated unilateral constraints to the joint torques.
In the followings, we assume the overall jacobian matrix A accounts for the simultaneously
activated unilateral constraints according to (17). Since the generalized coordinate q is constant
during the impact, the mass matrix M(q) and the JacobianA(q) remain unchanged during the
impact. Therefore, one can carry out integration of the differential equation (5a) over [t−, t+]
to obtain impact equation of the system as

M(q̇+ − q̇−) = iu +AT iλ. (18)

Here, iu and iλ are the impacts or the Dirac integrals of the input forces and lagrangian
multipliers, i.e.,

iu = lim
δt→0

∫ t−+δt

t−
u dt, iλ = lim

δt→0

∫ t−+δt

t−
λ dt, (19)

and q̇− = q̇(t−) and q̇+ = q̇(t+) are pre-impact and post-impact velocities. Notice that in
derivation of (18), we also assumed h to be a continuous function and therefore its integration
over [t−, t+] vanishes. Now suppose P be the projection matrix associated with the impact
Jacobian matrix. Then, by pre-multiplying both sides of (18) by P , we arrive at

PM(q̇+ − q̇−) = Piu (20)

The above equation does not yet completely describe the impact, because the impact laws
are still missing. The above equation constitutes the balance of momentum in the contact
that in conjunction with a restitution law can uniquely determine the relationship between the
pre-impact and post-impact velocities. There are different approaches to define the restitution
coefficient based on either kinematic treatment or energy considerations of the impact [11].
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There are three main definitions for the restitution coefficient. They are: i) Newton’s
definition (Kinematic), ii) Poisson’s definition (Kinetic), and iii) Stronge’s definitions (Ener-
getic) [33]. The pros and cons of restitution coefficient models based on these definitions have
been evaluated and a survey can found, for example, in [33]. It is known that all these def-
initions of coefficient of restitution are equivalent for frictionless contact, albeit the Stronge’s
definition might result in a better solution in terms of energy-inconsistency of the post-impact
if the configuration of impact involves with friction and the direction of the slip changes [34].
Nevertheless, the Newton’s rule is the most widely used restitution rule and it is reasonably
accurate for bulky bodies [11]. The Newton’s restitution law is a kinematic form which char-
acterizes the normal component of the velocities of two rigid bodies before and after impact by
a kinematic parameter called the restitution coefficient, i.e.,

Γ∗φ̇+

u = −eΓ∗φ̇−
u , (21)

where 0 < e < 1 is the global restitution coefficient. The assumption that all the multiple
contacts have identical restitution coefficients will be later relaxed in Section 4. The restitution
equations (21) can be equivalently written in terms of the generalized velocities before and after
the impact by

Γ∗Auq̇
+ = −eΓ∗Auq̇

− (22)

On the other hand, admissible pre- and post-impact velocities should remain in the null-space
of the Jacobian matrix (4), i.e., ΓAuq̇

+ = ΓAuq̇
− = 0. Thus, (22) can be equivalently written

as
Aq̇+ = −eAq̇− or A

(
q̇+ + eq̇−

)
= 0, (23)

which implies vector q̇+ + eq̇− should belong to the null-space of the impact jacobian matrix
A. Using the notion of the projection matrix, (23) can be equivalently written as follow

(I − P )q̇+ = −e(I − P )q̇−. (24)

Substituting expression q̇+ = P q̇+ − eq̇− + eP q̇− obtained from (24) into (20) gives

PMPq̇+ = (e + 1)PMq̇− − ePMPq̇− + Piu (25)

Equations (25) together with (24) complete the impact problem because they provide us with
sufficient equations to uniquely determine the post-impact velocity from the pre-impact velocity.
Pre-multiplying (24) by virtual mass ν and adding both sides of the resulting equation with
those of (25), we obtain

Mcq̇
+ = (e+ 1)PMq̇− − eMcq̇

− +M−1

c Piu (26)

where Mc is the constraint mass matrix. We are now able to propose the projection-based
generalized impact model of multibody system described in (18) and (21). Since Mc is always
invertible, the above equation can be solved through matrix inversion using identity (11e) as

q̇+ = q̇− − (e+ 1)Sq̇− +M−1(I − ST )iu

= q̇− − (e+ 1)Sq̇− +M+

o iu, (27)
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Remark 2 It can be inferred from (27) that the external or actuation impulse has no effect on
the post-impact velocity if iu ∈ R(ST ).

It worths mentioning that iu represents all external impulse acting on the MBSs including
those from the actuators. Most actuators can not respond quickly enough to generate impacts,
albeitimpact actuators also do exist.

To this end, it should be also mentioned that modelling the coefficient of restitution has
been the subject of intensive investigation by many researchers using theoretical, numerical,
and experimental methods [22, 23, 35, 36]. It is well known that the coefficient of restitution
changes with not only material properties such as yield strength, elastic modulus, density,
and Poisson’s ratio, but also with pre-impact velocity [10, 15, 22, 23, 36]. However, this is not
a limitation of the momentum-balance and restitution law method because the coefficient of
restitution can be predicted as a function of the pre-impact velocity when the specifics of the
collision are simplified.

3.1 Geometrical interpretation of generalized impact in the joint
space

It can be also readily inferred from (27) that for the case of perfectly elastic impact, i.e., e = 1,
and no external impulse, i.e., iu = 0, the relation (27) simply becomes

q̇+ = Rq̇− ← e = 1 (28a)

where R = I − 2S and
R2 = I. (28b)

Therefore, the transformation matrix R is involuntary meaning that the transformation is its
own inverse. In other words, R is a reflection matrix written in terms of projections. This
is interesting results because (28a) represents n-dimensional extension of elastic impact of a
simple point mass scenario. On the other hand, in the case of contact with zero-restitution
e = 0, the pos-impact velocity and pre-impact velocity are related by the oblique projection
operator I − S, i.e.,

q̇+ = (I − S)q̇− ← e = 0 (28c)

In practice, when e ∈ [0 1], the pos-impact velocity can be obtained by linear combination of
equations (28a) and (28c) as follow

q̇+ =
(

eR + (1− e)(I − S)
)

q̇−. (28d)

The geometrical interpretation of the projection-based impact model is given as follow

Remark 3 The pre-impact and post-impact velocities of a MBS with chain, tree and close-
loop topologies are related by the reflection matrix R when e = 1 and by the oblique projection
matrix I−S when e = 0, and by a linear combination of the two transformation matrices when
e ∈ [0, 1].
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Defining variables p− = Mq̇− and p+ = Mq̇+ as the pre-impact and post-impact general-
ized momentum of the MBS and using identity (11d) in (28), the pre- and post-impact states
of a MBS can be alternatively described in terms of the generalized momentums as follow

p+ = p− − (e+ 1)STp− ∀e ∈ [0, 1]

=
(

eRT + (1− e)(I − ST )
)

p− (29)

3.2 Impact calculation

Suppose if = AT iλ denotes the generalized impact in MBS. Then substituting the velocity
change q̇+−q̇− from (27) into (18) and using (11d), we arrive at the expression of the generalized
impact

if = −(e + 1)MSq̇− − ST iu

= −(e + 1)STp− − ST iu (30)

Remark 4 The input impact, iu, has not effect on the generalized impact, if , if iu ∈ R(I−ST ).
Moreover, the transition from non-contact to contact occurs with zero impact if p−, iu ∈ R(I−
ST ).

Remark 5 The generalized impact force in a MBS with chain, tree and close-loop topologies
is proportional to the projected version of its pre-impact generalized momentum.

Notice that if can be always uniquely determined from (30) but that is not the case for iλ.
One can conclude from (11c) and (11a) that N⊥(A) ≡ R(S) or equivalently R(ST ) ≡ R(AT ).
Therefore, the solution obtained from (30) must be in R(AT ), which means that at least
one solution to equation if = AT iλ is guaranteed and that can be obtained through pseudo-
inversion iλ = A+T if .

3.3 Energetic consistency

Energy lost during an impact is an important quantity not only to gain insight into complex
physical phenomenon during contact but to examine whether an impact model is physically
consistent [23,37,38]. Suppose K− = 1

2
q̇−TMq̇− and K+ = 1

2
q̇+TMq̇+ are the pre-impact and

post-impact values of the kinetic energy of the constrained system. Then, by virtue of identities
(27) and (11d) one can derive the expression of the difference between the post-impact and pre-
impact kinetic energy as

K+ −K− = −
1

2
(1− e2)q̇−TSTMSq̇− +

1

2
iTuM

+
o iu + q̇−T (I − ST )iu, (31)

which is in the form of a quadratic function of the pre-impact velocity, q̇−, and the external
impact, iu, variables. In the absence of external impact, the energy loss absorbed in the contact
is Wloss = K+ −K− with iu ≡ 0, i.e.,

Wloss = −
1

2
(1− e2)q̇−TSTMSq̇− (32)

where STMS is called projected inertia matrix.
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Properties 3 The projected inertia matrix satisfies

STMS � 0 (33a)

M − STMS � 0 (33b)

Inequality (33a) can be readily inferred from that M � 0. Moreover by virtue of (9b), we have

M − STMS = M −MS

= M −M +MPM−1
c M

= MPM−1

c PM � 0

which is a positive semi-definite matrix. In other words, (33b) implies

ζTSTMSζ ≤ ζTMζ ∀ζ ∈ R
n, (34)

which proves (33b). Equation (32) reveals that the energy absorbed in the impact is a quadratic
function of the pre-impact velocity is proportional to 1−e2, hence the energy loss becomes zero
when e = 1. Now, let us define quantity

γ =
K+

K−
= 1 +

Wloss

K−

= 1− (1− e2)
q̇−TSTMSq̇−

q̇−TMq̇−
(35)

which measures energy lost during an impact. For instance, in the case of perfect elastic impact
where e = 1 when γ = 1, i.e., no energy loss. From (33a) and (34), one can infer that γ should
remain in the following bound

0 ≤ γ ≤ 1 ← e ∈ [0, 1]. (36)

Thus
Wloss ≤ 0 and |Wloss| ≤ K−

In other words, the post-impact energy of the mechanical system is less than or equal to
the pre-impact energy level meaning that the projection-based impact law (28d) satisfies the
fundamental energetic consistency.

Remark 6 It is evident from (34) that the impact model for a MBS with chain, tree and close-
loop topologies is physically consistent, i.e., post-impact kinetic energy never exceeds that of
pre-impact, if the global restitution coefficients e is bounded within [0, 1] and that the energy at
impacts is conserved if e = 1.

It is worth noting from expression (35) that γ is affected not only by the coefficient of
restitution, but also the configuration of the whole multibody system and the direction of the
velocity vector. The energy dissipation done by the contact force f along the complete path of
compression and restitution can be expressed as

Wloss =

∮

f · dq =

∫ t+δt

t

(f · q̇)dt

= −
1

2
(1− e2)q̇−TSTMSq̇− (37)
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in which the last term is concluded from (32). On the other hand, from expressions (27) and
(30), one can infer

if · ¯̇q = −
1

2
(1− e2)q̇−TSTMSq̇− where ¯̇q =

1

2
(q̇− + q̇+) (38)

is defined as the average of pre- and post-impact velocities. Thus

Wloss =

∫ t+δt

t

(f · q̇)dt = if · ¯̇q (39)

Clearly, if the impact is lossless, then the inner product must be zero meaning that if ⊥ ¯̇q.

Defining ¯̇
φ=A¯̇q, one can verify that the following identity

if · ¯̇q = iλ ·
¯̇
φ = iλu

· ¯̇φu (40)

which indicate the work done by the contact at the joint space and the task space are equal. Note
that the latter equality in (40) is obtained from the fact that the bilateral constraints do not

perform any work because φ̇b ≡ 0. Moreover from the restitution law we have ¯̇
φu = 1

2
(1−e)φ̇−

u

and therefore we can say

iλu
· φ̇−

u =
2Wloss

1− e
= −(1 + e)q̇−TSTMSq̇− ≤ 0 (41)

Remark 7 For the case of e = 1, the kinetic energy ratio is one meaning that the kinetic
energy is preserved regardless the direction of the pre-impact velocity vector or configuration of
the whole multibody system.

4 Local coefficients of restitution

The projection-based formulation of the generalized impact law presented in the previous section
assumes a global restitution coefficient for all contacts. However, it is known that the restitution
coefficient depends on many factors such as the materials and the pre-impact velocity [23].
More specifically, the dependency of the coefficient of restitution to the surface topography in
addition to the material properties, e.g., Young’s modulus-to yield stress ratio, and incident
velocity is shown in [11, 39]. Therefore, one may not be able to assume global coefficient of
restitution to develop a multiple impact model, rather local coefficients of restitution have to be
incorporated in the model. This section prolongs the projection-based model presented in the
previous section for multiple simulations contacts with non-identical coefficients of restitution.

The restitution rule (21)-(41) for the case of non-identical coefficients of restitution can be
extended to the following matrix form

Aq̇+ = −EAq̇−, (42)

where matrix E contains local coefficients of restitution. For instance, the restitution matrix
may take the form

E = diag
(
0, · · · , 0, e1, e1, · · · , em

)
, (43)
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where ei represents the restitution coefficient at the ith contact as the zeros are associated
with the bilateral constraints. In order to be able to represent the impact formulation in a
closed-form, it becomes necessary to transform the restitution matrix into the following form

Ẽ = A+EA (44)

Notice that even if matrix E is chosen to be diagonal, matrix Ẽ is not necessarily diagonal.
From the above definition, one can really verify the following identities

ẼP = PẼ = 0 (45)

Pre-multiplying both sides of (42) by AA+ yields

Aq̇+ = −AẼq̇−, or A(q̇+ + Ẽq̇−) = 0, (46)

in which we use the property of pseudo-inverse AA+A = A. In view of (45), the above
equation can be equivalently written in terms of the corresponding projection matrix as follow

(I −P )q̇+ = −Ẽ(I − P )q̇− (47)

= −(I − P )Ẽq̇−, (48)

which resembles (24). Finally, in a development similar to (24)-(27), one can combine the
kinematic equation (48) with the momentum balance equation (20) to arrive at the following
expression

q̇+ = q̇− − S(Ẽ + I)q̇− +M+
o iu.

If iu ≡ 0, then the above equation becomes

q̇+ =
(
RẼ + (I − S)(I − Ẽ)

)
q̇−. (49)

Subsequently, the corresponding impulse can be found by substituting q̇+ from (49) into (18)

if = −MS(Ẽ + I)q̇− (50)

Equations (49) and (50) constitute the generalized impact model of multibody system involving
simultaneous multiple impacts with non-identical coefficients of restitution.

Similar to (32), the energy loss can be algebraically obtained from the expression of the
post-impact velocity (49) as follow

Wloss = −
1

2
q̇−T ẼTSTMq̇− −

1

2
q̇−TSTMq̇−

−
1

2
q̇−TMSq̇− −

1

2
q̇−TMq̇− +

1

2
q̇−T ẼTSTMSẼq̇−

+
1

2
q̇−T ẼTSTMSq̇− +

1

2
q̇−T ẼTSTMSẼq̇− +

1

2
q̇−TMq̇−

=
1

2
q̇−T ẼTSTMSẼq̇− −

1

2
q̇−TSTMSq̇− (51)

= −
1

2
q̇−T (I − ẼT )STMS(I + Ẽ)q̇− (52)
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Using expression (49) in a development similar to (32)-(35), one can derive the post-impact to
pre-impact energy ratio for the case of non-identical coefficients of restitution as

γ = 1−
ζT (I − ẼT )STMS(I + Ẽ)ζ

ζTMζ
.

The expression of energy loss in (51) can be also equivalently written in the following compact
form by changing the variable from q̇− to φ̇− = Aq̇−

Wloss =
1

2
φ̇−T

(
EQE −Q

)
φ̇−, (53)

where Q = QT � 0 is a semi-positive matrix defined as follow

Q = GTMG, and G = SA+. (54)

Clearly, energy loss during the impact is non-positive if the matrix EQE −Q is semi-negative
definite. However, the latter is not generally obvious unless for spacial cases. For instance, if
E = eI, the above matrix expression comes down to (e2 − 1)Q and if e ≤ 1 then the matrix
is automatically semi-negative definite because Q � 0. In general, we can say the multiple
impact model for the case of non-identical restitution coefficients is energetically consistent if
the restitution coefficient matrix E satisfies the following quadratic matrix inequality (QMI)

EQE −Q � 0 where E,Q � 0, (55)

in which matrix E is the variable. The QMI (55) inE is simplified version of generalized Riccati
inequality and therefore it can be also expressed as the following linear matrix inequality (LMI)
in E by applying the Schur complement lemma [40]:

[
GTMG EGT

GE M−1

]

� 0 (56)

A number of toolboxes are available [41, 42] for solving the above LMI problem to find the
feasible set of restitution matrix E that results that makes the system energetically consistent.

.1 Time-derivative of projection matrix

The Tikhonov regularization theorem [43] describes the pseudo-inverse as the following limit

A+ = lim
ǫ→0

AT (AAT + ǫI)−1 (57)

By differentiation of the above expression, one can verify that the time-derivative of the pseudo-
inverse can written in the following form

d

dt
A+ = lim

ǫ→0
ȦT (AAT + ǫI)−1 −AT (AAT + ǫI)−1[ȦAT +AȦT ](AAT + ǫI)−1

= −A+ȦA+ + lim
ǫ→0

ȦT (AAT + ǫI)−1 −A+AȦT (AAT + ǫI)−1

= −A+ȦA+ + lim
ǫ→0

PȦT (AAT + ǫI)−1 (58)
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On the other hand, using (58) in the time-derivative of the expression of the projection matrix
P = I −A+A yields

Ṗ = −
d

dt
A+A−A+Ȧ

= A+ȦA+A+ lim
ǫ→0

PȦT (AAT + ǫI)−1A−A+Ȧ

= A+Ȧ(I −P ) + PȦTA+T −A+Ȧ

= Λ+ΛT

where Λ = −A+ȦP . Note that identity PA+ = A+TP = 0 implies that ΛTP = 0 and hence
one can conclude q̈⊥ = Ṗ q̇ = Λq̇ = Ωq̇ [44].

.2 Properties of Mc

Consider non-zero vector a ∈ R
n and its orthogonal decomposition components a‖ = Pa and

a⊥ = (I − P )a. Then, one can say

aTMca = aT
‖Ma‖ + ν‖a⊥‖

2 > 0, (59)

Notice that both terms aT
‖Ma‖ > 0 and ‖a⊥‖2 > 0 are positive semi-definite. Moreover, for a

given non-zero vector a if a⊥ = 0 then aT
‖ 6= 0 and vice versa. This means that the summation

of the two orthogonal terms must be positive definite and so must be the constraint inertia
matrix Mc.

By definition we have
Ωq̇ = (I − P )Ωq̇

Since Mc is always invertible, i.e., M
−1
c Mc = I, the above equation can be equivalently written

as

Ωq̇ = M−1

c Mc(I − P )Ωq̇

= M−1

c ν(I − P )Ωq̇

= νM−1
c Ωq̇

which proofs (9e).
From definition we have McP = M and hence MM−1

c = McPM−1
c = McM

−1
c P = P ,

which proofs relationship (9d).
Now, consider the characteristic equation of the constraint mass matrix

(
PMP + ν(I − P )

)
x− λx = 0

Clearly λ = ν is the eigenvalue for all orthogonal eigenvectors which span N⊥(A) because
λ = ν means (PMP −P )x = 0 ∀x ∈ N⊥(A). The remaining set of orthogonal eigenvectors
must lie in N (A) that are corresponding to the non-zero eigenvalues of PMP

PMPx− λx = 0 λ 6= 0 ∀x ∈ N
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Therefore, the set of all eigenvalues of the p.d. matrix Mc is the union of the above sets
corresponding to the eigenvectors in N and N⊥, i.e.,

λ(Mc) =:
{
ν, · · · , ν
︸ ︷︷ ︸

r

, λmin

6=0

(PMP ), · · · , λmax(PMP )
︸ ︷︷ ︸

n−r

}
(60)

where {λmin

6=0

(PMP ), · · · , λmax(PMP )} are all non-zero eigenvalues of PMP . According to

(60) the condition number ofMc, which is simply the ratio of the largest to smallest eigenvalues,
is

cond(Mc) =
max(ν, λmax(PMP ))

min(ν, λmin

6=0

(PMP ))
(61)

Clearly, the RHS of (61) is at its minimum if ν is selected to be within the lower- and upper-
bounds defined in (9f).

By virtue of (60), the Singular Value Decomposition of Mc takes the form

Mc =
[
V1 V2

]
[
νI 0
0 Σ

] [
V T

1

V T
2

]

(62)

where matrix Σ = diag{λmin

6=0

(PMP ), · · · , λmax(PMP )} contains the non-zero singular values,

V = [V1 V2] is a unitary matrix so that span(V1) ≡ N⊥ and span(V2) ≡ N , i.e., P = V2V
T
2 ,

V T
2 V2 = I, and V T

1 V2 = 0. Thus

M−1
c P =

[
V1 V2

]
[
ν−1I 0
0 Σ−1

] [
V T

1

V T
2

]

V2V
T
2

= V2Σ
−1V T

2 = M+

o

.3 Properties of S

Using (9b) in the following derivations yields

SP = P −M−1

c PMP

= P −M−1
c McP

= P −P = 0,

which proves identity (11a). It follows

(I −P )ST = ST − PST = ST

On the other hand, by definition we have

(I − P )S = I − P −M−1

c PM + PM−1

c PM

= I − P −M−1
c PM +M−1

c P 2M

= I − P ,

which proves identity (11c).
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Finally

MS = M −MM−1

c PM

= M −MPM−1
c M

= (I −MPM−1

c )M

= STM

On the other hand, using the above result in the following derivation yields

STMS = STSTM = STM ,

which proves identity (11d).

References

[1] N. H. McClamroch and D. Wang, “Feedback stabilization and tracking in constrained
robots,” IEEE Trans. on Automation Control, vol. 33, pp. 419–426, 1988.

[2] J. Garcia de Jalón and E. Bayo, Kinematic and Dynamic Simulation of Multibody Systems:
The Real-Time Challenge. New York: Springer-Verlag, 1994.

[3] F. Aghili, M. Buehler, and J. M. Hollerbach, “Dynamics and control of direct-drive robots
with positive joint torque feedback,” in IEEE Int. Conf. Robotics and Automation, vol. 11,
1997, pp. 1156–1161.

[4] W. Blajer, W. Schiehlen, and W. Schirm, “A projective criterion to the coordinate parti-
tioning method for multibody dynamics,” Applied Mechanics, vol. 64, pp. 86–98, 1994.

[5] F. Aghili, “Control of redundant mechanical systems under equality and inequality con-
straints on both input and constraint forces,” ASME Journal of Computational and Non-
linear Dynamics, vol. 6, no. 3, July 2011.

[6] F. Aghili and C. Su, “Impact dynamics in robotic and mechatronic systems,” in 2017
International Conference on Advanced Mechatronic Systems (ICAMechS), Dec 2017, pp.
163–167.

[7] S. N. Gottschlich and A. C. Kak, “A dynamic approach to high-precision parts mating,”
IEEE Transactions on Systems, Man, and Cybernetics, vol. 19, no. 4, pp. 797–810, Jul
1989.

[8] K. Dupree, C. H. Liang, G. Hu, and W. E. Dixon, “Adaptive lyapunov-based control of
a robot and mass-spring system undergoing an impact collision,” IEEE Transactions on
Systems, Man, and Cybernetics, Part B (Cybernetics), vol. 38, no. 4, pp. 1050–1061, Aug
2008.

[9] F. Aghili, “Energetically consistent model of slipping and sticking frictional impacts in
multibody systems,” Multibody Syst Dyn, vol. 48, no. 2, pp. 193–209, June 2020.

17



[10] D. W. Marhefka and D. E. Orin, “A compliant contact model with nonlinear damping for
simulation of robotic systems,” IEEE Transactions on Systems, Man, and Cybernetics -
Part A: Systems and Humans, vol. 29, no. 6, pp. 566–572, Nov 1999.

[11] Y. A. Khulief, “Modeling of impact in multibody systems: An overview,” ASME Journal
of Computational and Nonlinear Dynamics, vol. 8, April 2013.

[12] B. Brogliato, “Kinetic quasi-velocities in unilaterally constrained lagrangian mechanics
with impacts and friction,”Multibody System Dynamics, vol. 32, no. 2, pp. 175–216, August
2014.

[13] K. H. Hunt and F. R. E. Crossley, “Coefficient of restitution interpreted as damping in
vibroimpact,” vol. 42, pp. 440–445, Jun. 1975, series E.

[14] W. Goldsmith, Impact: The Theory and Physical Behavior of Colliding Solids. London,
U.K.: Edward Arnol, 1960.

[15] H. M. Lankarani and P. E. Nikravesh, “A contact force model with hysteresis damping
for impact analysis of mutlibody systems,” ASME Journal of Mechanical Design, vol. 112,
pp. 369–376, Sep. 1990.

[16] Y. Hurmuzlu and T. H. Chang, “Rigid body collisions of a special class of planar kinematic
chains,” IEEE Transactions on Systems, Man, and Cybernetics, vol. 22, no. 5, pp. 964–971,
Sep 1992.

[17] X. Mu and Q. Wu, “On impact dynamics and contact events for biped robots via impact
effects,” IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics),
vol. 36, no. 6, pp. 1364–1372, Dec 2006.

[18] C. Liu, Z. Zhao, and B. Brogliato, “Frictionless multiple impacts in multibody systems. i.
theoretical framework,” in Proc. R. Soc. A, vol. 464, 2008, pp. 3193–3211.

[19] Z. Zhao, C. Liu, and B. Brogliato, “Planar dynamics of a rigid body system with frictional
impacts. ii. qualitative analysis and numerical simulations,” in Proc. R. Soc. A, vol. 465,
May 2009, pp. 2267–2292.

[20] Y. Yoshida, K. Takeuchi, Y. Miyamoto, D. Sato, and D. Nenchev, “Postural balance
strategies in response to disturbances in the frontal plane and their implementation with a
humanoid robot,” IEEE Transactions on Systems, Man, and Cybernetics: Systems, vol. 44,
no. 6, pp. 692–704, June 2014.

[21] W. Schiehlen, R. Seifried, and P. Eberhard, “Elastoplastic phenomena in multibody impact
dynamics,” Comput. Methods Appl. Mech. Eng., vol. 195, p. 6874–6890, 2006.

[22] X. Zhang and L. Vu-Quoc, “Modeling the dependence of the coefficient of restitution on the
impact velocity in elasto-plastic collisions,” International Journal of Impact Engineering,
pp. 317–341, 2002.

[23] S. M. Najafabadi, J. Kovecses, and J. Angeles, “Impacts in multibody systems: modeling
and experiments,” Multibody System Dynamics, vol. 120, pp. 163–176, 2008.

18



[24] F. Aghili, “Modelling and analysis of multiple impacts in multibody systems under unilat-
eral and bilateral constrains based on linear projection operators,” Multibody Syst. Dyn.,
vol. 46, no. 1, pp. 41–62, 2019.

[25] T. Arponen, “Regularization of constraint singularities in multibody systems,” Multibody
System Dynamics, vol. 6, pp. 355–375, 2001.

[26] W. Blajer, “Augmented lagrangian formulation: Geometrical interpretation and applica-
tion to systems with singularities and redundancy,” vol. 8, pp. 141–159, 2002.

[27] F. Aghili and J.-C. Piedbœuf, “Simulation of motion of constrained multibody systems
based on projection operator,” Journal of Multibody System Dynamics, vol. 10, pp. 3–16,
2003.

[28] A. Muller, “A conservtive elimination procedure for permanently redundant closure con-
straints in mbs models with relative coordinates,” Multibody System Dynamics, vol. 16,
pp. 309–330, 2006.

[29] F. Aghili, “A unified approach for inverse and direct dynamics of constrained multibody
systems based on linear projection operator: Applications to control and simulation,”
IEEE Trans. on Robotics, vol. 21, no. 5, pp. 834–849, Oct. 2005.

[30] M. Mistry, J. Buchli, and S. Schaal, “Inverse dynamics control of floating base systems
using orthogonal decomposition,” in Robotics and Automation (ICRA), 2010 IEEE Inter-
national Conference on, May 2010, pp. 3406–3412.

[31] M. Mistry and L. Righetti, “Operational space control of constrained and underactuated
systems,” in Proceedings of Robotics: Science and Systems, Los Angeles, CA, USA, June
2011.

[32] L. Righetti, J. Buchli, M. Mistry, and S. Schaal, “Inverse dynamics control of floating-base
robots with external constraints: A unified view,” in Robotics and Automation (ICRA),
2011 IEEE International Conference on, May 2011, pp. 1085–1090.

[33] M. Ahmad, K. A. Ismail, and F. Mat, “Impact models and coefficient of restitution: A
review,” ARPN Journal of Engineering and Applied Sciences, vol. 11, no. 10, pp. 6549–
6555, May 2016.

[34] K. A. Ismail and W. Stronge, “Impact of viscoplastic bodies: Dissipation and restitution,”
Journal of Applied Mechanics, vol. 75, no. 6, 2008.

[35] K. Kangur and I. Kleis, “Experimental and theoretical determination of the coefficient of
velocity restitution upon impact,” Mech Solids, vol. 23, no. 5, pp. 2–5, 1988.

[36] R. L. Jackson, I. Green, and D. B. Marghitu, “Predicting the coefficient of restitution of
impacting elastic-perfectly plastic spheres,” Nonlinear Dyn., pp. 1–13, September 2009.

[37] W. Stronge, “Unraveling paradoxical theories for rigid body collisions,” Journal of Applied
Mechanics, vol. 58, pp. 1049–1055, 1991.

19



[38] D. Stoianovici and Y. Hurmuzlu, “A critical study of the applicability of rigid-body collision
theory,” ASME Journal of Appl. Mech., vol. 63, no. 2, pp. 307–316, 1996.

[39] C. J. Lu and M. C. Kuo, “Coefficients of restitution based on a fractal surface model,”
Journal of Applied Mechanics, vol. 70, no. 3, pp. 339–345, 2003.

[40] J. G. V. amd R. D. Braatz, “A tutorial on linear and bilinear matrix inequalities,” Journal
of Process Control, vol. 10, pp. 363–385, 2000.

[41] A. J. L. P. Gahinet, A. Nemirovski and M. Chilali., “The LMI control toolbox,” in Proceed-
ings of the 3rd European Control Conference, Rome, Italy, September 1995, pp. 3206–3211.

[42] R. N. F. Delebecque and L. E. Ghaoui., LMITOOL: A Package for LMI Optimization in
Scilab –User’s Guide, 1995.

[43] G. H. Golub and C. F. V. Loan, Matrix Computations. Baltimore and London: The
Johns Hopkins University Press, 1996.

[44] F. Aghili, “Non-minimal order model of mechanical systems with redundant constraints
for simulations and controls,” IEEE Transactions on Automatic Control, vol. 61, no. 5,
pp. 1350–1355, May 2016.

20


