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Abstract

In this paper, we deal with data-driven predictive control of linear time-invariant (LTI) systems. Specifically, we show for the
first time how explicit predictive laws can be learnt directly from data, without needing to identify the system to control.
To this aim, we resort to the Willems’ fundamental lemma and we derive the explicit formulas by suitably elaborating the
constrained optimization problem under investigation. The resulting optimal controller turns out to be a piecewise affine
system coinciding with the solution of the original model-based problem in case of noiseless data. Such an equivalence is
proven to hold asymptotically also in presence of measurement noise, thus making the proposed method a computationally
efficient (but model-free) alternative to the state of the art predictive controls. The above statements are further supported
by numerical simulations on three benchmark examples.
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1 Introduction

Model predictive control (MPC) is a widely recognized
and diffused technology for the solution of advanced con-
strained control (see e.g., [26,30]), yet still subject of ac-
tive research [20, 28]. MPC relies on (i) the formulation
of a finite-horizon open-loop optimal control problem,
that is iteratively solved in a receding-horizon fashion
to determine the optimal control move at each time in-
stant, and on (ii) the availability of a model describing
the dynamics of the system under control.

Nonetheless, solving a mathematical problem in real-
time might be infeasible or not advisable for certain
applications, mainly due to the cost of the computa-
tional equipment needed to retrieve the optimal action
within the sampling time or because of software certi-
fication concerns, that might arise in safety critical ap-
plications [1]. To cope with these limitations, over the
years several techniques have been proposed to improve
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the efficiency of MPC solvers [29] or to provide complex-
ity certifications of the latter [12, 13]. As an alternative
to these solutions, [8] propose to move the design effort
off-line, by exploiting the structure of the model pre-
dictive control problem to derive an explicit MPC law.
Although this seminal work focused on quadratic costs
and linear dynamic models, since then explicit MPC has
been extended to several classes of objectives, e.g., linear
costs [4], and to more complex models (see [1] for a com-
plete overview). Notably, when exploiting explicit MPC,
the computation of the control action entails a function
evaluation, thus not requiring sophisticated and poten-
tially demanding optimization procedures. Meanwhile,
the complexity of the explicit control law can become un-
manageable for large scale problems or when long predic-
tion horizons are considered, thus making this approach
mainly suited for relatively small control problems.

The need for a model of the controlled system can also be
a shortcoming of standard MPC, especially for those ap-
plications in which a mathematical model for the plant
is not available and it has to be retrieved from data. To
explain the dynamics of a system, several identification
techniques have been proposed over the years (see [27]
for an overview on classical identification techniques) to
learn dynamical models from data and learning-based
predictive control methods have been devised to handle
possible inaccuracies in these data-driven models, e.g.,
[2]. Nonetheless, identification procedures are known to
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Table 1
Requirements of E-DDPC as compared to implicit data-driven predictive control (DDPC), implicit and explicit MPC. The
crosses (x) indicate the elements needed for the design and deployment of the controller.

Implicit MPC Explicit MPC DDPC E-DDPC

Dataset x x x x

Identification x x - -

Online solver x - x -

be generally expensive and time consuming. Meanwhile,
identification techniques usually aim at achieving the
maximum model accuracy, often at the price of overly
complex model structures, while seldom accounting for
the application these models are learned for [24]. Indeed,
in some cases the added complexity introduced by the
identified model is unnecessary to achieve a given con-
trol goal. To overcome these limitations, different data-
driven control approaches have been proposed to skip
the identification phase and to directly learn the con-
troller from data, ranging from model-reference meth-
ods [11, 21, 23, 25] to approaches for the design of lin-
ear quadratic regulators [17] and state feedback con-
trollers [7, 31]. Along this research line, several data-
based predictive strategies have been recently proposed,
which ground on results in behavioral theory to for-
mulate purely data-driven control predictive problems
[9, 14]. These foundational approaches have then been
extended to handle tracking problems [8], to deal with
nonlinear systems [10], and to exploit regularization to
improve the performance of the final controller [15,19].

Along this line, in this paper we combine for the first time
the benefits of explicit MPC and the ones of purely data-
driven methods into a fully explicit data-driven predic-
tive control (E-DDPC) approach. The proposed proce-
dure leads to the definition of a purely data-based piece-
wise affine (PWA) control law, which is defined so as to
guarantee constraint satisfaction and the optimization
of a quadratic performance-oriented cost. A key condi-
tion for its derivation is the persistency of excitation of
the input signal, that allows us to exploit Willems et
al.’s lemma [33] to translate the explicit MPC solution
into its data-driven counterpart. The proposed deriva-
tion also allows us to prove the equivalence between
the model-based and the data-based solutions in case of
noiseless measurements, while we present a noise han-
dling strategy to obtain asymptotic equivalence in pres-
ence of measurement noise. As summarized in Table 1,
the presented explicit predictive controller only relies on
a single dataset to be designed, whereas complex iden-
tification procedures or online solvers are no longer re-
quired.

The paper is organized as follows. In Section 2, we lay out
the main assumptions on the data and we introduce the
control problem of interest. The standard model-based
predictive control problem and the main steps leading to
the formulation of its explicit solution are summarized

in Section 3. Section 4 introduces the main theoretical
results, leading to the definition of the data-driven ex-
plicit predictive controller. The implementation of the
data-based control law is then illustrated in Section 5,
along with the proposed practical procedure to handle
noisy data. Section 6 shows the results obtained using the
data-driven explicit predictive controller on three simu-
lation case studies, i.e., the stabilization of the bench-
mark system considered in [6], the regulation to zero of
a sparse system and the altitude control of a quadrotor.
The paper is ended by some concluding remarks.

Notation

Let N0 and R be the set of natural numbers, includ-
ing zero, and the set of real numbers, respectively. De-
note with Rn and Rn×m the set of real column vec-
tor of dimension n and the set of real matrices of di-
mension n × m, respectively. Given a rectangular ma-
trix B ∈ Rm×n, B′ ∈ Rn×m denotes its transpose and
B† indicates its right inverse. Given a squared matrix
A ∈ Rn×n, we define its inverse as A−1. We denote with
In the identity matrix of dimension n and with 0n×m a
zero matrix of dimension n×m. If Q � 0 (Q � 0), then
the matrix Q ∈ Rn×n is positive definite (semi-positive
definite). Let x ∈ Rn, the quadratic form x′Qx is com-
pactly denoted as ‖x‖2Q.

2 Problem formulation

Consider a linear time-invariant (LTI) system, whose
dynamics is described by the following unknown state-
space model:

S :

{
x(t+ 1) = Ax(t) +Bu(t),

y(t) = Cx(t) +Du(t),
(1a)

where x(t) ∈ Rn is the state of the system at time t ∈ N0,
u(t) ∈ Rm is an exogenous input and y ∈ Rp is the
corresponding noiseless output. Let us assume that the
unknown system S is controllable and that its state is
fully measurable, namely

y(t) = x(t), ∀t ∈ N0, (1b)

i.e., C = In and D = 0n×m.
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Assume that we can excite the system with an input
sequence UT = {u(t)}Tt=0, that is persistently exciting of
order n+ 1 according to the following definition.

Definition 1 (Persistently exciting input [33])
The input sequence UT is said to be persistently exciting
of order τ if the matrix

U0,τ,T =


u(0) u(1) · · · u(T − τ)

u(1) u(2) · · · u(T − τ + 1)
...

... · · ·
...

u(τ − 1) u(τ) · · · u(T − 1)

 ∈ Rmτ×T

(2)
is full row rank, namely rank(U0,τ,T ) = mτ .

Suppose that we can only measure the corresponding
noisy output sequence YnT = {yn(t)}Tt=0, with

yn(t) = y(t) + v(t), (3)

where v is a zero-mean white noise with covariance ma-
trix Σ ∈ Rn×n.

In this work, our goal is to exploit the available data
DnT = {UT ,YnT } and their features to directly and ex-
plicitly solve standard predictive control problems with-
out first identifying a model of S. More specifically, let
Nx, Nc, Nu, respectively denote the state, input and con-
straint horizons, withNu ≤ Nx. Our objective is to solve
the following model-based constrained optimal control
problem:

min
{u(k)}Nu−1

k=0

‖x(Nx)‖2P +

Nx−1∑
k=0

[
‖x(k)‖2Q+‖u(k)‖2R

]
(4a)

s.t. x(k + 1)=Ax(k) +Bu(k), k ≥ 0, (4b)

x(0) = x, (4c)

Cxx(k)+Cuu(k) ≤ d, k=0, . . . , Nc−1, (4d)

u(k) = Kx(k), Nu ≤ k < Nx, (4e)

which aims at finding the optimal sequence of inputs
{u(k)}Nu

k=0 steering the state of the system to zero from
the initial condition in (4d), while satisfying the convex
constraints in (4d), without identifying a model for the
system under control. Note that, at each time instant t,
the initialization in (4c) relies on the latest available in-
formation on the state, i.e., its measurement (x = x(t))
or estimate (x = x̂(t)). In this formulation, optimality is
thus dictated by: (i) the distance of the predicted state
from the origin, weighted by Q � 0; (ii) the control ef-
fort, penalized withR � 0, and (iii) a terminal cost, with
associated penalty P � 0. Moreover, whenever the state
and input horizon are different, the constraint in (4e) en-
tails that some precomputed feedback gain K ∈ Rm×n
is used to generate the input for k = Nu, . . . , Nx − 1.

3 From implicit to explicit MPC: an overview

In this section, we summarize the main steps required
to shift from the standard implicit MPC formulation
to the explicit solution of a predictive control problem
within a model-based setting. A similar procedure will
be key in the subsequent derivation of the fully data-
driven explicit predictive control solution.

To start with, we notice that, by rewriting the prediction
model in (4b) as

x(k) = Akx+

k−1∑
j=0

AjBu(k − j − 1), k ≥ 0, (5)

and accounting for the fact that u(k) is dictated by the
feedback law in (4e) whenever k ≥ Nu, the control prob-
lem in (4) can be recast as the following convex multi-
parametric quadratic program (mp-QP):

min
U

U ′HU + 2x′FU, (6a)

s.t. GU ≤W + Ex, (6b)

where U ∈ RNum stacks the sequence of control actions
to be optimized, and the matrices H, F , G, W and E
are functions of the penalties Q, R, P , the precomputed
feedback gainK and the matrices characterizing the evo-
lution of the system in (1). By completing the squares,
the mp-QP in (6) can be equivalently reformulated as

min
z

z′Hz, (7a)

s.t. Gz ≤W + Sx, (7b)

where H � 0, S , E +GH−1F ′ and the new optimiza-
tion variable is

z , U +H−1F ′x ∈ RNum. (8)

Since H in (7) is positive definite, the solution of the
mp-QP in (7) is unique and it can be retrieved in closed-
form from the Karush-Kuhn-Tucker (KKT) optimality
conditions. This procedure results into the following op-
timal control sequence:

U(x) =


F1x+ G1, if H1x ≤ K1,
...

FMx+ GM , if HMx ≤ KM ,
(9a)

where M denotes the number of polyhedral regions over
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which the sequence is defined, and

Fi = H−1G̃′i(G̃iH
−1G̃′i)

−1S̃i −H−1F ′, (9b)

Gi = H−1G̃′i(G̃iH
−1G̃′i)

−1W̃i, (9c)

Hi =

[
(G̃iH

−1G̃′i)
−1S̃i

GH−1G̃′i(G̃iH
−1G̃′i)

−1S̃i − S

]
, (9d)

Ki =

[
−(G̃iH

−1G̃′i)
−1W̃i

−GH−1G̃′i(G̃iH
−1G̃′i)

−1W̃i +W

]
, (9e)

with G̃i, W̃i, S̃i comprising the rows of G,W,S in (7b)
associated with the i-th set of active constraints, for i =
1, . . . ,M . As in the case of implicit MPC, only the first
control action is applied to the system, while the other
are discarded. Given the input sequence of the form (9a),
the control action thus results into the piecewise affine
(PWA) law

u(x) =


F1x+ g1, if H1x ≤ K1,
...

FMx+ gM , if HMx ≤ KM ,
(10)

which can be evaluated at each time instant t by replac-
ing x with the most recent information available on the
system state.

4 Explicit data-driven predictive control

Following the rationale of the previous section, we
present here the main results of this paper, leading to
a direct translation of the explicit predictive controller
in (10) into its data-driven counterpart. To this end, we
initially recall some results in [16] that are instrumental
for achieving our goal and, then, exploit these result to
obtain a fully data-driven explicit predictive controller.
Throughout this section, we assume that the noiseless
state is measurable, so that the dataset DT available for
the design of the predictive controller comprises a set of
noiseless output, i.e., DT = {u(t), y(t)}Tt=0.

4.1 On the data-based representation of the system

A stepping stone towards the achievement of our goal is
given in the following result.

Lemma 1 (Fundamental lemma) Let the input se-
quence UT be persistently exciting of order n+ 1 accord-
ing to Definition 1. Assume that the noiseless datasetDT
is sufficiently long, namely T ≥ (m+ 1)n+m. Then, it
holds that:

rank

U0,1,T

X0,T

 = n+m, (11)

where X0,T =
[
x(0) . . . x(T − 1)

]
. �

This result is a direct consequence of [33, Corollary 2],
which holds in the noiseless case whenever the design of
experiment guiding the data collection phase has been
properly performed.

Assuming that the available data satisfies the assump-
tions of Lemma 1, the condition in (11) is key to the
data-driven characterization of the open-loop behavior
of system (1). This data-based representation is given in
the next theorem, taken from [16].

Theorem 1 (Data-driven system representation)
Let condition (11) hold. Then, (1) can be equivalently
represented as

x(t+ 1) = X1,T

U0,1,T

X0,T

† [u(t)

x(t)

]
(12)

where X1,T =
[
xd(1) xd(2) . . . xd(T )

]
. �

4.2 Towards E-DDPC

To retrieve the data-driven explicit controller, we first
compute the data-based counterpart of (7). This can be
easily obtained by deriving again the mp-QP from (4)
but using the data-driven representation of the system
in Theorem 1.

Lemma 2 (Data-driven mp-QP) If condition (11)
holds, the control problem in (4) can be recast as the
following data-driven convex mp-QP:

min
z

z′Hdz (13a)

s.t. Gdz ≤Wd + Sdx, (13b)

with Hd, Gd,Wd, Sd depending only upon: the data, the
fixed horizons Nx, Nu and Nc, the penalties Q,P and R
and the given feedback gain. �

Proof: See Appendix A. �

Note that the optimization variable in (13) is given by:

z , U +H−1
d F ′dx ∈ RmNu , (14)

with Fd being the data-based counterpart of F in (8). We
remark that Hd is positive definite and, thus, invertible,
since the penalties Q, P and R have the same features
of the ones considered in problem (4). Therefore, the
cost (13a) is strictly convex and the solution of (13) is
unique.

By following the same procedure reviewed in Section 3,
Lemma 2 can be exploited to find a data-driven explicit
solution to the predictive control problem, as illustrated
next.
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Theorem 2 (E-DDPC) Let condition (11) hold. As-

sume that the rows G̃d of Gd in (13b) coupled with active
constraints are linearly independent. Then, problem (13)
admits one and only one solution, resulting in the data-
driven explicit predictive law

u(x) =


Fd,1x+ gd,1, if Hd,1x ≤ Kd,1,
...

Fd,Mx+ gd,M , if Hd,Mx ≤ Kd,M ,
(15)

which corresponds to the firstm components of the control
sequence

U(x)=


Fd,1x+ Gd,1, if Hd,1x ≤ Kd,1,
...

Fd,Mx+ Gd,M , if Hd,Mx ≤ Kd,M ,
(16a)

where

Fd,i = H−1
d G̃′d,i(G̃d,iH

−1
d G̃′d,i)

−1S̃d,i −H−1
d F ′d, (16b)

Gd,i = H−1
d G̃′d,i(G̃d,iH

−1G̃′d,i)
−1W̃d,i, (16c)

Hd,i=

[
(G̃d,iH

−1
d G̃′d,i)

−1S̃d,i

GdH
−1
d G̃′d,i(G̃d,iH

−1
d G̃′d,i)

−1S̃d,i − Sd

]
, (16d)

Kd,i=

[
−(G̃d,iH

−1
d G̃′d,i)

−1W̃d,i

−GdH−1
d G̃′d,i(G̃d,iH

−1
d G̃′d,i)

−1W̃d,i+Wd

]
,

(16e)

with Hd, Gd, Wd and Sd being the data-driven matri-
ces characterizing (13) and G̃d,i, W̃d,i, S̃d,i being the rows
of Gd,Wd, Sd associated with the i-th set of active con-
straints, for i = 1, . . . ,M . �

Proof: Since the problem in (13) is strictly convex, the
KKT conditions are necessary and sufficient to charac-
terize optimality. Therefore, to find the solution of (13)
analytically, let us consider the associated KKT condi-
tions, namely:

Hdz +G′dλ = 0, (17a)

λ′(Gdz −Wd − Sdx) = 0, (17b)

λ ≥ 0, (17c)

Gdz ≤Wd + Sdx, (17d)

where λ is the vector of Lagrange multipliers associated
with the inequality constraint in (13b). From the sta-
tionarity condition in (17a), we can derive the following
relationship between z in (8) and λ:

z = −H−1
d G′dλ, (18)

that, in turn, allows us to recast the complementary

slackness condition in (17b) as

λ′(−GdH−1
d G′dλ−Wd + Sdx) = 0.

Let λ̄ be the subset of Lagrange multipliers coupled with
the inactive constraints and λ̃ the remaining active ones.
By combining complementary slackness (see (17b)) and
the dual feasibility condition (17c), the Lagrange multi-
pliers λ̄ turn out to be zero. Moreover, straightforward
manipulations of the above equality allow us to equiva-
lently define λ̃ as:

λ̃ = −(G̃dH
−1
d G̃′d)

−1(W̃d + S̃dx), (19)

where G̃d, W̃d and S̃d collect the rows of Gd, Wd and
Sd associated with active constraints, respectively. Since
the rows of G̃d are assumed to be linearly independent,
it holds that

z = H−1
d G̃′d(G̃dH

−1
d G̃′d)

−1(W̃d + S̃dx), (20)

from which straightforward manipulations result into
(16b)-(16c). The primal and dual feasibility conditions
in (17c) and (17d) allow us to explicitly find the regions
of the state space where (20) holds, which are defined as

− (G̃dH
−1
d G̃′d)

−1(W̃d + S̃dx) ≥ 0 (21a)

GdH
−1
d G̃′d(G̃dH

−1
d G̃′d)

−1(W̃d+S̃dx)≤Wd+Sdx. (21b)

By relying on (20) and (21) and considering all possible
combinations of active constraints, straightforward ma-
nipulations result into the explicit control sequence in
(16a), thus concluding the proof. �

Remark 1 In case of degeneracy, namely when the
combinations of active constraints lead to linearly de-
pendent rows in G̃d, the problem can still be handled by
exploiting an approach similar to the one in [6]. Even in
this scenario, no identification step would be required to
explicitly solve the predictive control problem. �

Lemma 2 and Theorem 2 allows us to further infer the
following results.

Theorem 3 (Model/Data equivalence) Let the as-
sumptions of Theorem 2 hold. Then the data-driven ex-
plicit law in (15) is equivalent to the model-based predic-
tive controller in (10). �

Proof: Based on the results of Lemma 2, the data-driven
predictive control problem (13) originating the explicit
law in (15) is equivalent to (7) and, thus, to the MPC
problem in (4). Since the steps leading to the explicit
controller in (15) are the same performed to obtain the
model-based explicit predictive controller, the equiva-
lence straightforwardly follows. �
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Lemma 3 (Continuity) The data-driven PWA con-
trol law in (15) is continuous over the boundaries of the
polyhedral regions characterizing it. �

Proof: The continuity over the boundaries of the poly-
hedral regions can be inferred from the properties of the
model-based explicit predictive controller (see [6]) and
its equivalence with the data-driven solution, as dictated
by Theorem 3. A formal proof is thus omitted, as it
straightforwardly follows from the above results. �

5 Practical implementation and noise handling

The main steps to compute the E-DDPC law are sum-
marized in Algorithm 1. After an initial phase in which
the data are manipulated to cast the data-driven mp-QP
problem (see steps 1-4), one has to check if the consid-
ered problem is characterized by degenerate situations,
which can be handled by exploiting the same procedure
proposed in [6] without requiring any prior identification
of a model for the system S (see step 5.1). At step 6,
Theorem 2 can then be directly applied to retrieve the
explicit control law. Since the result in Theorem 2 re-
lies on the explicitation of the KKT conditions for prob-
lem (13), it leads to an enumeration of all possible com-
binations of active constraints. In turn, this procedure
might result in an overly-complex PWA controller. To
overcome this limitation, at step 7 polyhedral regions
characterized by the same control law are merged by fol-
lowing the approach in [5].

Once Algorithm 1 has been run, the control action at
time t solely requires to (i) explore all polyhedral re-
gions characterizing the reduced law (15) in order to lo-
cate the one the current state x(t) belongs to, and (ii)
compute the corresponding state-feedback affine input.
The computational time required for this operation in-
creases with the horizons Nc, Nu and with the number
of inputs and states, since the latter is assumed to be
fully measurable. Therefore, also the data-driven version
of the explicit solution is mainly appealing when short
horizons or blocking control moves are used [1].

5.1 Stability and recursive feasibility

Among the penalties characterizing the predictive cost
in (4a), it is known that the choice of the terminal weight
P � 0 and the static feedback K, dictating the input for
k ≥ Nu, influence the stability properties of the predic-
tive controller in (15) [6]. Based on the existing guide-
lines for their choice in the model-based case, we can
obtain their data-driven counterparts as follows.

If the system is known to be open-loop stable, it is pos-
sible to select K = 0 and set P as the solution to the
data-driven Lyapunov equation

P = ξ′dPξd +Q, (22)

Algorithm 1 Noiseless E-DDPC: offline procedure

Input: DatasetDT ; penaltiesQ,P � 0;R � 0; horizons
Nx, Nu, Nc>0; constraints Cx, Cu; feedback gain K.

1. Construct the data-based matrix in (11).
2. Build Hd, Gd, Wd, Sd in (13) based on the chosen

cost and constraints.
3. Find all possible combinations of active con-

straints.
4. Isolate the matrices G̃d, W̃d and S̃d comprising the

rows of Gd, Wd, Sd associated to the sets of active
constraints

5. If not all rows of G̃d are linearly independent
5.1. Handle the degeneracy, e.g., as in [6].

6. Find the PWA explicit law as in Theorem 2.
7. Merge polyhedral regions whenever possible, e.g.,

with the approach proposed in [5].

Output: Optimal explicit law u(x).

with

ξd = X1,T

U0,1,T

X0,T

† [0m×n

In

]
. (23)

When the system is not known to be open-loop stable or
it is known to be unstable, the terminal penalty P and
the feedback gain K can be instead selected as the solu-
tions of the linear quadratic regulation (LQR) problem,
as discussed in [17]. When these choices are performed,
the following asymptotic results can be directly inferred
from the model-based ones.

Theorem 4 (Stability and feasibility) Let condi-
tion (11) hold. Let Nx = ∞, K = 0 or K be the LQR
gain obtained as in [17], and Nc < ∞ be sufficiently
large to guarantee the existence of feasible input se-
quences at each time step. Then, the predictive control
law resulting from the solution of (13) asymptotically
stabilizes the system in (1), while enforcing the fulfill-
ment of constraints from all initial states x such that the
optimization problem is feasible at time t = 0. �

Proof: This result stems from the fact that Lemma 2
guarantees that the data-driven problem in (13) is ex-
actly equal to the model-based one in (7). The latter
corresponds to the one in (4), for which a similar asymp-
totic result hold as shown in [6]. The proof easily follows
from this concatenation of equalities. �

5.2 Tracking E-DPCC

As for the model-based case, problem (13) can be ex-
tended to attain offset-free tracking of a user-defined
reference signal. This entails a change in the cost to be
optimized from the one shown in (4a) to

Nx−1∑
k=0

[
‖x(k)− r(t)‖2Q + ‖δu(k)‖2R

]
, (24a)
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where δu(k) is defined as

u(k) = u(k − 1) + δu(k), k ≥ 0, (24b)

and it can be eventually subject to polytopic constraints
for 0 ≤ k ≤ Nu, while it satisfies the following

δu(k) = 0, ∀k ≥ Nu. (24c)

This reformulation leads to a data-driven problem simi-
lar to the one in (13), with a data-driven input increment
δu(x) that depends on the extended vector[

x(t)′ u(t− 1)′ r(t)′
]′
. (25)

Such a vector has to be considered instead of the state
x(t) to find the optimal control action at time t. We
remark that this formulation entails that no preview of
the reference is available, so that the set point is frozen to
r(t) ∈ Rn over the state horizonNx. If the set point to be
tracked is known in advance, the cost can be modified by
replacing r(t) with r(t+k) and augmenting the extended
vector in (25) accordingly.

5.3 Handling noise in E-DDPC

All results shown in the previous sections are derived
in the ideal case of noiseless data. Nonetheless, based
on the properties of the noisy dataset DnT introduced in
Section 2, our findings can be extended to the noisy case
by relying on the following lemma.

Lemma 4 (Consistency) Assume L noisy dataset

Dn,l
T = {UT ,Yn,lT }, with l = 1, . . . , L, can be gathered

by exciting the system with the same input sequence,
while observing different realization of the measurement
noise. Assume that the measurement noise is white and
with zero mean. Then, given the definition of the noisy
outputs in (3), the following asymptotic result holds:

lim
L→∞

1

L

L∑
`=1

yn(t; l) = y(t), ∀t = 0, . . . , T. (26)

�

Proof: Based on (3), each realization l of the output at
time t corresponds to

yn(t; l) = y(t) + v(t; l),

where y(t) is the noiseless output and v(t; l) is the l-th
realization of the measurement noise, for l = 1, . . . , L.
By replacing this definition into the samples mean on
the left-hand-side of (26), we obtain

1

L

L∑
`=1

yn(t; l) =
1

L

L∑
`=1

(y(t)+v(t; l)) = y(t)+
1

L

L∑
l=1

v(t; l).

Because of the assumptions on the measurement noise,
from the law of large numbers it straightforwardly fol-
lows that

lim
L→∞

1

L
v(t; l) = 0,

resulting in the asymptotic result in (26). �

Under the assumption that L experiments can be per-
formed on the system by applying to it the same persis-
tently exciting input sequence, we thus construct the av-
eraged dataset D̄LT = {UT , ȲLT }, with ȲLT = {ȳL(t)}Tt=0
comprising the average outputs

ȳL(t) =
1

L

L∑
l=1

yn(t; l), ∀t = 0, . . . , T. (27)

This dataset is at the core of the following asymptotic
equivalent result.

Theorem 5 (Model/Noisy data equivalence) Let
the assumptions of Lemma 4 hold. Consider the aver-
aged set D̄LT = {UT , ȲLT } and let X̄0,T and X̄1,T be the
following collection of averaged states

X̄0,T = [x̄(1), ..., x̄(T − 1)], (28a)

X̄1,T = [x̄(2), ..., x̄(T )]. (28b)

For L → ∞, the noisy predictive controller obtained by
explicitly solving (13) with X̄0,T and X̄1,T respectively re-
placing X0,T and X1,T in (12) converges to the noiseless
solution in (15). �

Proof: According to Lemma 4, the averaged dataset and
the noiseless one asymptotically coincide. Therefore, for
L → ∞, the data-based matrices used to construct the
noisy data-driven explicit controller are equal to the
noiseless one, from which the convergence straightfor-
wardly follows. �

As summarized in Algorithm 2, we thus propose to per-
form the same experiment multiple times, average the
available data and then run Algorithm 1 by using the
averaged dataset. We remark that the larger L is, the
more likely the asymptotic result is to hold. It is thus
crucial to perform as many experiments as possible, up
to the bound typically dictated by practical limitations.
Note that, by repeatedly performing the same experi-
ment and then averaging out the measured outputs, we
preserve the characteristics of the input sequence, thus
guaranteeing that condition (11) is still verified.

6 Simulation examples

The performance of E-DDPC are now assessed on three
benchmark simulation examples: two numerical case
studies of regulation to zero, i.e., the open-loop stable
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Algorithm 2 Noisy E-DDPC: offline steps

Input: Sequence UT ; number of experiments L ≥ 1;
penalties Q,P � 0; R � 0; horizons Nx, Nu, Nc > 0;
constraints Cx, Cu; feedback gain K.

1. Perform L experiments, by feeding S with UT .
2. Store the outputs {yn(t; l)}Tt=0, for l = 1, . . . , L.
3. Build the averaged dataset D̄LT according to (27).
4. Run Algorithm 1 by exploiting D̄LT .

Output: Noisy explicit law un(x).
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(a) State trajectories
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(b) Input

Figure 1. Open-loop stable system example: state and input
trajectories obtained with E-DDPC.

system of [6] and the sparse unstable system of [11, 18],
and a more realistic tracking application, namely the
altitude control of a quadcopter. In the last two ex-
amples, the data are collected in closed-loop, assuming
the systems to be preliminarily stabilized by an ex-
isting (unknown) controller. For simplicity, we impose
Nx = Nu = Nc = N . All computations are carried out
on an Intel Core i7-7700HQ processor, running MAT-
LAB 2019b.

6.1 Open-loop stable system

Consider the system introduced in [6], the dynamics of
which is characterized by the following system of differ-

-1.5 -1 -0.5 0 0.5 1 1.5
-1.5

-1

-0.5

0

0.5

1

1.5

Figure 2. Open-loop stable system example: polyhedral par-
tition of the explicit data-driven law, plotted with the Hy-
brid Toolbox [3].

ence equations:

x(t+1) =

[
0.7326 −0.0861

0.1722 0.9909

]
x(t)+

[
0.0609

0.0064

]
u(t), (29)

where we assume the state to be fully measurable. L
experiments are carried out by always exciting the sys-
tem with a random input sequence of length T = 20,
uniformly distributed within the interval [−5, 5], while
the output is assumed to be corrupted by a zero-mean
white noise sequence with standard deviation 0.024 1 .
As in [6], our task is to steer the system’s state to the
origin, while satisfying the following input constraint

−2 ≤ u(k) ≤ 2.

The cost of the optimal control problem is characterized
by the penaltiesQ = I2 andR = 0.01, while the terminal
weight P is selected by solving the data-driven Lyapunov
equation in (22). Nonetheless, differently from [6], we
assume the state, control and constraint horizon to be
equal, setting all of them to N = 2.

E-DDPC is designed for increasing values of L by carry-
ing out a Monte Carlo analysis with 20 different realiza-
tions of the input used to construct the L datasets and
the corresponding measurement noise. This allows us to
assess the robustness of the approach to different real-
izations of the persistently exciting input fed to the sys-
tem and the effectiveness of the proposed noise manage-
ment strategy. The results of this Monte Carlo analysis
are shown in Table 2, where the quality of the attained
closed-loop performance are assessed over a noiseless test

1 This corresponds to a Signal-to-Noise Ratio (SNR) around
20 dB, averaged with respect to the L dataset and the two
output components.
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Table 2
Open-loop stable system example: RMSEO in (30) (mean ± standard deviation) vs L.

L 1 5 10 50 100

RMSEO 0.075 ± 0.171 0.022 ± 0.016 0.020 ± 0.015 0.008 ± 0.008 0.006 ± 0.005

Table 3
Sparse unstable system example: RMSEO (30) for increasing
noise levels.

SNR [dB] 40 30 19.9 10 4.6

RMSEO 6.4·10−5 3.1·10−4 1.1·10−3 4.9·10−3 1.9·10−2

0 5 10 15

-5

0

5

10

Oracle Explicit MPC
DD-EPC

Figure 3. Sparse unstable example: evolution of the first
component of the state, E-DDPC vs Oracle explicit MPC
O. The two trajectory are almost always overlapped.

by looking at the following indicator:

RMSEO =
1

n

n∑
i=1

√√√√ 1

Tv

Tv−1∑
t=0

(xi(t)− x?i (t))2, (30)

with n = 2, which allows us to compare the obtained
state trajectory with the ideal one {x?(t)}Tv−1

t=0 , retrieved
by using the oracle explicit MPC law O, i.e., using the
real model of the system as in [6]. Clearly, augmenting
the number of experiments L used to construct the aver-
aged dataset leads to state trajectory that increasingly
matches (on average) the one resulting from the appli-
cation of the oracle explicit MPC, with a corresponding
reduction in the standard deviation of the results ob-
tained over the 20 realizations of the datasets. The state
trajectories, input and partition associated to E-DDPC
obtained for L = 50 are respectively shown in Figures 1-
2. Both the behavior of the system and the obtained par-
tition are almost identical to the ones shown in [6], as
expected from the theoretical results of Section 4, with
the partition characterizing the explicit law being char-
acterized by 9 polyhedral regions.

6.2 Sparse unstable system

Let the linear multi-input multi-output (MIMO) data-
generating system be characterized by the state-space

equations in (1), with

A =


1.01 0.01 0

0.01 1.01 0.01

0 0.01 1.01

 , B = In. (31)

The explicit predictive law for this system is designed by
setting N = 3, R = 0.01I3 and Q = P = I3, while im-
posing only the following box constraints on the inputs:

− 2 ≤ ui(k) ≤ 2, k = 0, 1, 2, i = 1, 2, 3. (32)

To retrieve the E-DDPC, we collect L = 10 datasets of
length T = 200 by stabilizing the system with the static
law introduced in [11], namely

u(t) = −I3x(t) + I3r(t),

selecting r(t) uniformly at random within the interval
[−5, 10], so as to guarantee that the input fed to the plant
is persistently exciting according to Definition 1. The
measured output is then corrupted by zero mean white
noise with variance Σ, whose effect on the data is eval-
uated through the average Signal-to-Noise Ratio (SNR)
over the three output channels and the L datasets, i.e.,

SNR=
1

3L

3∑
i=1

L∑
l=1

10 log

∑T
t=0(xi(t; l)−vi(t; l))2∑T

t=0 vi(t; l)
2

, [dB].

The available 2000 samples are used to construct the
averaged dataset according to (27), so as to handle the
noise via the strategy proposed in Section 5.3. By focus-
ing on a test of length Tv = 15 samples, we assess the
performance of E-DDPC with the noise management ap-
proach for increasing levels of noise. This evaluation is
performed by considering two performance indicators,
namely the one in (30) and

RMSE0 =
1

3

3∑
i=1

√√√√ 1

Tv

Tv−1∑
t=0

xi(t)2, (33)

with the latter allowing us to assess (on average) the ca-
pability of E-DDPC to bring the states of the system
to the origin. As shown in Table 3, the proposed noise
handling strategy allows us reproduce quite tightly the
trajectory resulting from using the explicit MPC com-
puted as in [6], with the result becoming relatively sensi-
tive to noise only for an average SNR lower than 10 dB.
Instead, the degradation on the regulation performance
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Table 4
Altitude control example: parameters of the quadcopter and
their physical meaning.

Name & symbol Value m.u.

Mass, m 0.5 kg

Inertia on x, Ix 5 · 10−3 Nms2

Inertia on y, Iy 5 · 10−3 Nms2

Inertia on z, Iz 9 · 10−3 Nms2

Motor inertia, Jm 3.4 · 10−5 Nms2

Drag factor, d 1.1 · 10−5 Nms2

Thrust factor, b 7.2 · 10−5 Ns2

Center-to-propeller distance, l 0.25 m

Gravitational acceleration, g 9.81 m/s2

Table 5
Altitude control example: parameters of the controllers in
(36).

k1 k2 k3 k4 k5 k6 k7 k8

4 2 4 2 4 2 2 2

due to noise is almost negligible, since RMSE0 ≈ 5.5 in-
dependently from the features of the noise affecting the
set used to design E-DDPC. Note that the latter result
is mainly due to the randomly chosen initial state con-
sidered in the tests 2 and, thus, to the initial transient of
the state trajectories. These conclusions are further sup-
ported by the comparison shown in Figure 3, obtained
when the training set is corrupted by noise yielding an
average SNR of 20 dB 3 . As expected, the differences be-
tween the state trajectories resulting from the use of the
data-driven explicit predictive controller and the model-
based ones turn out to be negligible 4 , thus confirming
the effectiveness of E-DDPC and the proposed noise han-
dling strategy.

6.3 Altitude control

We now consider the problem of controlling the alti-
tude of a quadcopter, by considering the same dynamical
model proposed in [22] to perform the data-collection ex-
periments and to assess the effectiveness of the altitude
E-DDPC. The data-generating system is thus described

2 x(0) =
[
12.88 10.95 −14.44

]′
.

3 In this case, the resulting partition comprises 791 regions.
4 For the sake of visualization, we solely show the trajec-
tory of the first state, since it reflect the behaviors of the
remaining states.
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(a) Takeoff
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(b) Landing

Figure 4. Altitude control example: measured (dotted–
dashed gray line) and actual (black line) altitude vs reference
(dashed red line).

by the following equations

ẍ = U1
(cosψ cosφ sin θ + sinψ sinφ)

m
,

ÿ = U1
(sinψ cosφ sin θ − sinφ cosψ)

m
,

z̈ = U1
(cos θ cosφ)

m
− g,

(34a)

ṗ =
(Iy − Iz)

Ix
qr +

1

Ix
U2 −

Jm
Ix
q ΩR,

q̇ =
(Iz − Ix)

Iy
pr +

1

Iy
U3 +

Jm
Iy
p ΩR,

ṙ =
(Ix − Iy)

Iz
pq +

d

Iz
U4,

(34b)

φ̇ = p+ sin(φ) tan(θ)q + cos(φ) tan(θ)r,

θ̇ = cos(φ)q − sin(φ)r,

ψ̇ =
sin(φ)

cos(θ)
q +

cos(φ)

cos(θ)
r,

(34c)

where (x, y, z) [m] denote the position of the quadrotor
center of mass with respect to the earth inertial reference
frame, (φ, θ, ψ) [deg] are the Euler angles indicating the
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orientation of the quadcopter with respect to the same
reference frame, and (p, q, r) [deg/s] are the associated
attitude velocities. By denoting the motors angular rates
as Ωi, i = 1, . . . , 4, the four inputs in (34) are defined so
as to be linear in the control variables, i.e.,

U1 = b

4∑
i=1

Ω2
i ,

U2 = bl(Ω2
4 − Ω2

2),

U3 = bl(Ω2
3 − Ω2

1),

U4 = d(−Ω2
1 + Ω2

2 − Ω2
3 + Ω2

4),

(35)

while ΩR = −Ω1 + Ω2−Ω3 + Ω4 and the remaining pa-
rameters are reported, along with their physical mean-
ing, in Table 4.

The data-collection phase is carried out in closed-loop,
by controlling the position and attitude of the quadro-
tor with the controller proposed in [22] and three pro-
portional derivative (PD) controllers, respectively, i.e.,

U1 =
mg − k1(z − ẑ)− k2ż

cosφ cos θ
, (36a)

U2 = −Ix(k3(φ− φ̂) + k4φ̇), (36b)

U3 = −Iy(k5(θ − θ̂) + k6θ̇), (36c)

U4 = −Iz(k7(ψ − ψ̂) + k8ψ̇). (36d)

whose parameters are reported in Table 5. By using these
controllers, which are assumed to be unknown through-
out the design of the predictive controller, we perform
L = 10 experiments of length 10 s, corresponding to
subsets comprising T = 400 samples, since the sampling
time is set to Ts = 0.025 s. For the system to lie within
the framework considered in the paper, the PD con-
trollers are exploited to keep θ and φ close to zero both
in the data-collection 5 and testing phases, thus allow-
ing us to decouple the altitude dynamics from the one of
the other variables in (34) and to set the problem into
the framework considered in the paper. Instead, since we
aim at exploiting the E-DDPC to replace the controller
in (36a), the closed-loop is fed with a piecewise-constant
reference for the altitude, which is randomly generated
within [0, 4] [m] to guarantee that the altitude dynamics
is persistently excited. Both the height z [m] and the ver-
tical velocity ż [m/s] of the quadrotor are assumed to be
measured, with the available measurements corrupted
by white zero-mean noise yielding an average SNR ap-
proximately equal to 35 [dB] over the two channels and
experiments.

5 When gathering data, the set point for both angles are
selected as slowly varying signals, randomly generated within
[−0.2, 0.2] [deg]. This choice allows us to retain information
on possible configurations in which the attitude angles are
not exactly zero.

Table 6
Altitude control example: performance indicators vs values
of q1.

q1 10−1 1 10 102

Tsett [s] 1.0 1.9 2.4 2.5

Smax [%] 1.6 0 0 0

B% [%] 1.3 1.3 2.5 3

Table 7
Altitude control example: performance indicators vs values
of R.

R 10−4 10−3 10−2

Tsett [s] 1.4 2.4 2.4

Smax [%] 6.6 2.6 0

B% [%] 7.2 4.2 1.3

Based on our choices, we can focus on designing the
E-DDPC attitude controller via the available noisy
measurements only, which are averaged prior to the
actual control design phase to exploit the strategy
presented in Section 5.3. The design is performed by
pre-compensating the gravitational force, namely we
introduce

u1 =
U1

m
− g, (37)

which is the actual variable of the predictive con-
trol problem. By considering the tracking formulation
in (24), E-DDPC is retrieved for Q = diag([1, 0]),
thus solely penalizing altitude tracking, R = 0.01,
P = diag([100, 100]), and setting N = 5. To avoid
crashes, the altitude is forced to be grater than or equal
to zero, while the input u1 is forced to lie within the
following interval

− 9.81 ≤ u1 ≤ 9.564, (38)

where the lower bound correspond to a null action U1

and the upper bound is dictated by the features of the
motors used to control the quadcopter.

The obtained E-DDPC law is then tested in both take-
off and landing maneuvers, while the attitude PD con-
trollers in (36b)-(36d) are used to track zero roll and
pitch references. Specifically, we use the explicit con-
troller to bring the quadcopter to a cruise altitude of
1 [m] in the first case, while we exploit it to return to the
ground from such an altitude in the second case. Figure 4
shows the results of the two test, performed when the
measured altitude and vertical velocity are corrupted by
noise with the same intensity considered in the data gen-
eration phase. Despite the noise acting on the data that
guide the selected control action at each time step, both
maneuvers are successfully performed, as proven by the
actual trajectories of the quadcopter.
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Figure 5. Altitude control example: quadcopter trajectory vs
R. The red dashed line indicates the cruise altitude.

Table 8
Altitude control: E-DDPC vs implicit and explicit MPC.
CPU times, storage requirements and regions of the PWA
laws.

Implicit MPC Explicit MPC E-DDPC

# regions - 723 736

T̄ [s] 1.5 ·10−3 0.5 ·10−3 0.5 ·10−3

Twc [s] 82 ·10−3 1.3 ·10−3 1.4 ·10−3

Storage [kB] 1.4 570 586

6.3.1 Sensitivity to the tuning parameters

We now analyze how the performance of E-DDPC are
shaped by different choices of the tunable weights Q and
R, still fixing the second element in the diagonal of Q
equal to zero. For the sake of clarity, we here consider
noiseless take-off tests only, and we quantitatively as-
sess the performance attained by the explicit altitude
controller by looking at: (i) the settling time Tsett [s] at
which the cruise altitude is reached; (ii) the maximum
overshoot Smax [%] with respect to the target altitude,
and (iii) the percentage B% [%] of instants over the test
horizon for which the control bounds are hit.

Let q1 be the element in position (1, 1) in the penalty
matrix Q. As shown in Table 6, when R = 0.01, the
higher the first component, the more the control action
is prone to hit the operational bounds dictated by the
constraints in (38). Instead, the lower the weight on the
tracking error, the prompter is the tracking, at the price
of an overshoot in the transient. Note that the latter is
yet rather small. As expected, in take-off, for q1 = 1 and
different weights R, the lower the weight, the more the
bounds in (38) are hit (see Table 7). These saturations
are paired with more consistent overshoots in altitude
and oscillations around the target, as shown in Figure 5.

6.3.2 Comparison with model-based solutions

The performance attained with E-DDPC are eventu-
ally compared with the ones obtained by designing an
explicit MPC, with a model retrieved with the n4SID
method [32]. To train the model, we consider one dataset

0 2 4 6 8 10
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0.5

1

1.5

Figure 6. Altitude control example: E-DDPC vs explicit
MPC with the identified model. The difference between the
two solutions is almost negligible over the horizon, except for
the slight deviation of the quadrotor trajectory around 2 s.
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Figure 7. Altitude control example: distributions of the CPU
times needed to retrieve the control action at each time step
with E-DDPC, explicit and implicit MPC. As expected, the
explicit solutions are more computationally efficient than the
implicit one.

of length T = 4000 samples, with the same features as
the ones used to design the data-driven controller. This
choice yields a fair comparison of the two control laws,
since the dimensions of the dataset and their character-
istics are the same. The comparative tests are performed
within a noiseless scenario. As shown in Figure 6 for a
landing test, both the controllers result into the same
behavior of the quadcopter. We remark that this equiv-
alent response comes at the price of an additional effort
required when designing the explicit MPC law, due to
the identification phase needed to retrieve the model of
the quadcopter.

Differences between the two solutions arise when com-
paring them in terms of the time required to compute
the control action to be applied at each instant. Indeed,
as reported in Figure 7, less exploration time is generally
needed when considering E-DDPC over 100 tests per-
formed for randomly generated initial conditions. As ex-
pected, the time required for an implicit MPC (designed
with the identified model) to compute the control action
is generally higher, since the use of the implicit controller
entails the solution of a QP at each time step. These con-
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clusions are further supported by results reported in Ta-
ble 8, indicating that both the explicit solutions consid-
erably reduce the computational load to determine the
control action, at the price of an increase in the on-board
memory required to store the explicit laws rather than
the matrices of the implicit control problem only. Note
that, when considering the explicit controllers, the con-
trol action is always found within the considered sam-
pling time (see the average time T̄ [s] and the worst case
time Twc [s] reported in Table 8). Instead, in some tests
(not shown in Figure 7), the time required for the im-
plicit MPC to find the control action even exceeds the
CPU time dictated by Ts.

7 Conclusions

In this paper, we have derived an explicit data-driven
predictive control (E-DDPC) solution. Our formulation
relies on the Willems’ fundamental lemma, leading to a
fully data-driven piecewise affine law, that is designed
so as to optimize a quadratic performance index and
satisfy a set of user-defined constraints. To account for
the pervasive presence of noise in real data, we further
propose a noise handling strategy, the effectiveness of
which has been assessed on three numerical examples.

Future research will be devoted to generalize E-DDPC
to a purely input/output setting, and to extend it to
nonlinear systems. Moreover, alternative strategies to
merge the regions of the explicit law and to manage noise
will be investigated.
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A Proof of Lemma 2

Let us recast the equation in (4b) as

x(k + 1) =M

[
u(k)

x(k)

]
, (A.1)

according to which the dynamics of the system over the
prediction horizon can be compactly expressed as:

X = Ξx+

[
Γ

0n(Nx−Nu−1)×Num

]
︸ ︷︷ ︸

Γ̄

U, (A.2)

whereX ∈ RnNx stacks the predicted states {x(i)}k=Nx

k=1 ,
Γ ∈ RnNu×mNu is defined as

Γ =


γ 0n×m · · · · · · 0n×m

ξγ γ 0n×m · · · 0n×m
...

...
...

. . .
...

ξNu−1γ ξNu−2γ · · · · · · γ

 ,

and Ξ ∈ RnNx×n is

Ξ =
[
ξ′ . . .

(
ξNu

)′
(ξNu+1
K )′ . . . (ξNx

K )′
]′
, (A.3)

with

ξ =M

[
0m×n

In

]
, γ =M

[
Im

0n×m

]
, (A.4)

ξK = ξ +Kγ. (A.5)

By exploiting (A.1), it can also be shown that H in (7)
is given by

H = R+ Γ̄′QΓ̄, (A.6)

whereQ ∈ RnNx×nNx andR ∈ RmNu×mNu are diagonal
matrices defined as

Q=diag([Q, · · · , Q,Q+K ′RK, · · · , Q+K ′RK,P ]),

R=diag([R, · · · , R]).

These definition allows us to translate (4) into (7) by
performing the manipulations summarized in Section 3.
Indeed, since the assumption of Theorem 1 holds, by
exploiting the data-driven representation of the system,
(A.2) and (A.6) can be directly translated into their fully
data-driven counterparts. Specifically, we can define ξd
as in (23) and

γd = X1,T

U0,1,T

X0,T

† [ Im

0n×m

]
, (A.7a)

which are equivalent to (A.4) and (A.6) due to the re-
sult of Theorem 1. We can thus find the data-dependent
equivalents of Ξ and Γ, namely

Ξd=



ξd
...

ξNu

d

ξNu+1
K,d

...

ξNx

K,d


, Γd=


γd 0n×m · · · · · · 0n×m

ξdγd γd 0n×m · · · 0n×m
...

...
...

. . .
...

ξNu−1
d γd ξ

Nu−2
d γd · · · · · · γd

,

with ξK,d = ξd +Kγd, which allow us to recast (A.2) in
a data-driven fashion as

X = Ξdx+

[
Γd

0n(Nx−Nu−1)×Num

]
︸ ︷︷ ︸

Γ̄d

U, (A.8)

and to find the data-driven counterpart of H in (A.6) as

Hd = R+ Γ̄′dQΓ̄d. (A.9)

These quantities ultimately allow us to retrieve the data-
based predictive formulation in (13) through the same
manipulations discussed in Section 3, whose equivalence
with the model-based counterpart (7) straightforwardly
follows from the equivalence of (A.8) and (A.2), and the
one of (A.9) and (A.6).
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