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Abstract

A reconfigurable intelligent surface (RIS) consists of massive meta elements, which can improve the perfor-

mance of future wireless communication systems. Existing RIS-aided channel estimation methods try to estimate

the cascaded channel directly, incurring high computational and training overhead especially when the number of

elements of RIS is extremely large. In this paper, we propose a cost-efficient channel estimation method via rank-one

matrix factorization (MF). Specifically, if the RIS is employed near base station (BS), it is found that the RIS-aided

channel can be factorized into a product of low-dimensional matrices. To estimate these factorized matrices, we

propose alternating minimization and gradient descent approaches to obtain the near optimal solutions. Compared to

directly estimating the cascaded channel, the proposed MF method reduces training overhead substantially. Finally,

the numerical simulations show the effectiveness of the proposed MF method.

Index Terms

Channel estimation, matrix factorization, reconfigurable intelligent surface.

I. INTRODUCTION

Due to the increasing bandwidth requirement of modern wireless communication systems, many new

technologies such as millimeter wave, hybrid precoding, and massive multi-input and multi-output (MIMO)

have been introduced. Though these technologies can provide high spectral efficiency, the hardware cost

of these technologies is also large [1]. Recently, the reconfigurable intelligent surface (RIS) is proposed

as an aid to the wireless communications. An RIS directly reflects the received signal with many low-cost

meta elements [2], through which the performance of existing systems is improved without high hardware

cost. Another advantage of RIS is that it establishes a reflected transmission path for the communication

if the direct transmission is blocked [2]. By carefully deploying the RIS near the boundary of a cell, RIS

also helps to improve the performance of cell-edge users [3]. Overall, to achieve these benefits introduced

by RIS, channel state information is key.
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In RIS-aided communication systems, the signals are transmitted by the BS to RIS through the BS-RIS

link, and reflected passively by RIS, then received by UE through the RIS-UE link. The channel estimation

task is to obtain the estimate of the cascaded channel which consists of the BS-RIS link and RIS-UE link.

The recent works focusing on estimation of the RIS-aided channel can be categorized into two types. The

first type focuses on estimating the cascaded channel as a whole [4]–[6]. The work in [4] proposed a

minimum mean square error channel estimation approach. To handle the high training overhead, the work

in [5] divided the high-dimensional channel matrix into low-dimensional sub-groups. In [6], a compressed

sensing based method was proposed to estimate the angle-of-arrival (AoA) and angle-of-departure (AoD)

associated with the RIS-aided channel. Although the cascaded channel is sufficient to design transmit and

passive beamforming [7], [8], the structure of the cascaded channel is not fully considered in [4]–[6]. The

second type of existing works focus on estimating the channels of BS-RIS link and RIS-UE link [9]–[11].

A tensor decomposition method was proposed in [9], which leverages the parallel factor tensor modeling

of the received signals. The work [10] proposed a two-timescale framework based on the characteristic

that the BS-RIS link is quasi-static, while the RIS-UE link is mobile. The authors of [11] presented a two-

stage method that utilizes the techniques of sparse matrix factorization and matrix completion. However,

these methods [9]–[11] require high overhead [9] or additional system constraints, such as dual-link pilot

transmission in [10] or sparsity of RIS phase shifts in [11].

In this work, we develop a cost-efficient method for RIS-aided channel estimation by factorizing the

channel matrix as a product of low-dimensional matrices, which helps to reduce the training overhead

without any additional system constraints. Specifically, we perform rank-one matrix factorization (MF)

to formulate the RIS-aided channel estimation as a phase retrieval problem, which is solved by gradient

descent or alternating minimization methods. We then extend the proposed MF method into multi-user

scenarios. The simulations illustrate that the proposed MF method achieves more accurate estimation than

existing works and has low training overhead.

Notations: A bold lower case letter a is a vector and a bold capital letter A is a matrix. AT , A
∗,

A
H , A−1, tr(A), ‖A‖F and ‖a‖2 are, respectively, the transpose, conjugate, Hermitian, inverse, trace,

Frobenius norm of A, and 2-norm of a. [A]:,i and [A]i,: are, respectively, the ith column and ith row of

A. vec(A) stacks the columns of A and forms a long column vector. diag(a) returns a square diagonal

matrix with the vector a on the main diagonal. Re{z} and Im{z} are the real and imaginary parts of the

complex number z, respectively. A ⊗ B and A ◦ B denote the Kronecker and Hadamard product of A

and B, respectively.

II. CHANNEL MODEL

In this section, we introduce the signal and channel model of an RIS-aided communication system.
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Suppose the BS has N antennas, the RIS has M elements, and the UE has one antenna. The BS-RIS

channel is G ∈ CM×N , and RIS-UE channel is hr ∈ CM×1, and the BS-UE channel is hd ∈ CN×1. For the

RIS, θ ∈ CM×1 denotes the phase shifts, i.e., θ = [β1e
jθ1 , . . . , βme

jθm, . . . , βMe
jθM ]T , where θm ∈ [0, 2π)

and βm ∈ [0, 1] are the phase-shift value and amplitude reflection coefficient of the mth element. Here,

we let βm = 1, ∀m to maximize the signal reflection [4], [8].

In this work, we assume there is line-of-sight (LOS) path1 between BS and RIS. Then, the channel

model G is given by

G = βBRaR(φ)a
H
B (ψ), (1)

where βBR is the complex path gain, φ ∈ [0, 1) and ψ ∈ [0, 1) are the effective AoA and AoD of RIS

and BS, respectively. In this work, it is assumed BS and RIS have uniform linear antenna array (ULA)

[6], [11]. Thus,

aB(ψ) =
1√
N
[1, e−j2πψ, . . . , e−j2πψ(N−1)]T ∈ C

N×1,

aR(φ) =
1√
M

[1, e−j2πφ, . . . , e−j2πφ(M−1)]T ∈ C
M×1,

are the array response vectors of BS and RIS. The proposed method in this paper can be extended to the

planar antenna array at RIS by expressing aR(·) above in a 2D form [1].

For the channel hr between RIS and UE, we assume that there is no LOS path and it is the Rayleigh

fading channel [12], i.e., hr = βRUz, where βRU is the complex path gain, and z ∈ CM×1 is a complex

Gaussian random variable CN (0, 1).

III. RIS-AIDED CHANNEL ESTIMATION VIA MF

In this section, we discuss the down-link and single-user RIS-aided channel estimation by using the

MF method.

A. Problem Formulation

In the down-link transmission, the received signal at UE is

r = (hHd + h
H
r ΘG)x+ n, (2)

where Θ = diag(θ) ∈ CM×M , x ∈ CN×1 is the transmitted signal, and n ∈ C is noise distributed as

CN (0, σ2).

We assume that the channel of direct path hd is accurately estimated, which can be done by using

traditional channel estimation methods before enabling the RIS. Here, we suppose there are K ≥ M

transmit pilots for channel estimation. Then, the received signal at the kth training transmission is

rk = h
H
r ΘkGxk + nk = θ

T
k diag(hHr )Gxk + nk, (3)

1The LOS path between RIS and BS can be achieved by deploying RIS near BS. We extend it to other channel models in Section III-E.



4

Algorithm 1 Down-link and single-user RIS-aided channel estimation via matrix factorization

1: Input: BS antennas N , RIS elements M , transmitted signals {xk}Kk=1, received signals {rk}Kk=1, step

size η.

2: Initialization: ā(0) and ψ(0) are from (8) and (6).

3: for p = 0, 1, 2, . . . do

4: Update ā
(p), ψ(p) to ā

(p+1), ψ(p+1) according to gradient method in (11), (12) and (13) or the

alternating minimization method in (10) and (9).

5: If the iteration statures or the maximum iteration is attained, it terminates the iteration.

6: end for

7: Calculate the estimation of cascaded channel: Ĥe= ā
(p+1)

a
H
B (ψ

(p+1)).
8: Output: Ĥe.

where θk is the kth phase shifts of RIS, and xk is the kth transmitted signal with ‖xk‖2 = 1, thus

SNR = 1/σ2. The effective cascaded channel is expressed as He = diag(hHr )G ∈ CM×N . Plugging the

model of G in (1), we express (3) as

rk = θ
T
k āa

H
B (ψ)xk + nk, (4)

where ā = diag(hHr )βBRaR(φ) ∈ CM×1, and He = āa
H
B (ψ). Then, the task in this work is to estimate

ψ and ā from {rk}Kk=1. From the model expressed in (4), the problem formulation of maximal likelihood

estimation is,

min
ā,ψ

K∑

k=1

∣∣θTk āaHB (ψ)xk − rk
∣∣2 . (5)

For convenience, the objective function in (5) is defined as J(ā, ψ). If we ignore the structure of aB(ψ),

the problem in (5) is a conventional phase retrieval problem, which can be solved by low-rank matrix

recovery techniques [13]–[15]. However, these approaches do not take the structure of aB(ψ) into account.

In this work, we aim to estimate ā and ψ instead. As (5) is a non-convex problem, we consider the use of

alternating minimization and gradient descent approaches to find its solution. The details of the proposed

RIS-aided channel estimation are shown in Algorithm 1.

B. Initialization

Solving the non-convex optimization problem (5) using either alternating minimization or gradient

descent approach requires good initialization. In the following, we discuss how to initialize these variables.

According to (4), we define S =
√
N/K

∑K

k=1 rkθ
∗
kx

H
k ∈ CM×N . Then, the initialization of ψ is given

by

ψ(0) = argmax
ψ

‖SaB(ψ)‖22 , (6)

which means that aB(ψ
(0)) is most correlated with S. The problem in (6) is one-dimensional, which can

be solved by using coarse grid search and then refining the result gradually.

To initialize ā, we solve (5) with the initialized ψ(0),
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ā
(0) = argmin

ā

K∑

k=1

∣∣θTk āaHB (ψ(0))xk − rk
∣∣2 , (7)

which is a common least squares (LS) problem. Define r = [r1, . . . , rK ]
T ∈ CK×1 and B

(0) ∈ CK×M with

[B(0)]k,: = a
H
B (ψ

(0))xkθ
T
k , the problem in (7) is rewritten as

ā
(0) = argmin

ā

‖B(0)
ā− r‖22, (8)

where the solution is ā
(0) = ((B(0))HB(0))−1(B(0))Hr. Because we assume that K ≥ M , (B(0))HB(0) is

invertible.

C. Alternating Minimization

After initializing the ψ and ā with ψ(0) and ā
(0), respectively, we iteratively refine these variables as

follows:

• Fix ā, solve the optimization problem (5) over ψ.

• Fix ψ, solve the optimization problem (5) over ā.

We denote p as the index of iteration. For the optimization of ψ with fixed ā
(p), the sub-problem is

given by

ψ(p+1) = argmin
ψ

K∑

k=1

|θTk ā(p)
a
H
B (ψ)xk − rk|2.

By denoting A
(p) ∈ CN×K with [A(p)]:,k = θ

T
k ā

(p)
xk, the problem above can be simplified as

ψ(p+1) = argmin
ψ

‖aHB (ψ)A(p) − r
T‖22, (9)

which can be solved by using similar technique as (6). For optimizing ā with fixed ψ(p+1), the sub-problem

is ā
(p+1) = argmin

ā

∑K

k=1 |θTk āaHB (ψ(p+1))xk − rk|2, whose solution is

ā
(p+1) = ((B(p+1))HB(p+1))−1(B(p+1))Hr, (10)

with [B(p+1)]k,: = a
H
B (ψ

(p+1))xkθ
T
k .

D. Gradient Descent

Apart from the alternating minimization, we can also employ a gradient descent approach to obtain the

local optimal solution of (5). The gradient J(ā, ψ) in (5) with respect to the real and imaginary parts of

ā are given by

dJ

dRe{ā} = Re

{
K∑

k=1

2xHk aB(ψ)θ
∗
k(a

H
B (ψ)xkθ

T
k ā− rk)

}
,

dJ

d Im{ā} = Im

{
K∑

k=1

2xHk aB(ψ)θ
∗
k(a

H
B (ψ)xkθ

T
k ā− rk)

}
,
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respectively. From the chain rule, the gradient of J(ā, ψ) with respect to ψ is given by

dJ

dψ
=

(
dJ

dRe{aB}

)T
dRe{aB}

dψ
+

(
dJ

d Im{aB}

)T
d Im{aB}

dψ
,

where

dJ

dRe{aB}
= Re

{
K∑

k=1

2θTk āxk(ā
H
θ
∗
kx

H
k aB − rHk )

}
,

dJ

d Im{aB}
= Im

{
K∑

k=1

2θTk āxk(ā
H
θ
∗
kx

H
k aB − rHk )

}
,

dRe{aB}
dψ

=
−1√
N

sin(ψz) ◦ z, d Im{aB}
dψ

=
−1√
N

cos(ψz) ◦ z,
with z = 2π[0, 1, . . . , N − 1]T . Therefore, the updating rules of ā and ψ are explicitly,

Re{ā(p+1)} = Re{ā(p)}−η dJ

dRe{ā}

∣∣∣∣
ā=ā(p)

, (11)

Im{ā(p+1)} = Im{ā(p)}−η dJ

d Im{ā}

∣∣∣∣
ā=ā(p)

, (12)

ψ(p+1) = ψ(p) − η
dJ

dψ

∣∣∣∣
ψ=ψ(p)

, (13)

where η is the step size of gradient descent.

E. Discussions of the Proposed MF Method

In this subsection, we talk about the extension of proposed MF method when the channel model has

the different structures as provided Section II.

Remark 1: When there are more than one paths in BS-RIS link, i.e., G =
∑L

l=1 β
(l)
BRaR(φ

(l))aHB (ψ
(l)),

where L is the number of paths, the cascaded channel can be expressed as

He =

L∑

l=1

diag(hHr )β
(l)
BRaR(φ

(l))aHB (ψ
(l)) =

L∑

l=1

H
(l)
e .

Each H
(l)
e can be estimated by the proposed MF method after subtracting the contributions of the previously

estimated paths.

Remark 2: When the RIS is located near the UE resulting in a LOS path between RIS and UE and

no LOS path between BS and RIS. The channel of RIS-UE link is hr = βRUaR(φ), where βRU is the

complex path gain and φ is the AoD of RIS. The channel G ∈ CM×N of BS-RIS link is Rayleigh fading.

Thus, the received signal at kth transmission in (3) is

rk = (βRUaR(φ))
H
ΘkGxk + nk

= aR(φ)
H
ΘkḠxk + nk,

where Ḡ = βRUG. In this scenario, the channel problem is to estimate φ and Ḡ. The proposed MF

methods can also be applicable. It is worth noting that the number of minimal required training pilots is

MN because Ḡ is full rank.
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Algorithm 2 Up-link and multi-user RIS-aided channel estimation via matrix factorization

1: Input: BS antennas N , RIS elements M , number of users Q, transmitted signals xq,k,t, ∀q ≤ Q, k ≤
K, t ≤ T , received signals {Rk}Kk=1, phase shift {θk}Kk=1.

2: Obtain the signal of qth UE Sq through (16).

3: Estimate ψ̂ of the BS-RIS link through (19).

4: for q = 1, 2, . . . , Q do

5: Estimate {ˆ̄aq}Qq=1 of the RIS-UE link through (21).

6: Calculate the estimation of cascaded channel of qth UE: Ĥq = aB(ψ̂)ˆ̄a
H
q .

7: end for

8: Output: {Ĥq}Qq=1.

IV. EXTENSION TO MULTI-USER SCENARIOS

In the down-link and multi-user RIS-aided systems, each user can estimate the channel separately,

which is a trivial extension of the method discussed in Section III. Therefore, in this section, we mainly

focus on the up-link and multi-user RIS-aided channel estimation by using the MF method.

A. Problem Formulation

Suppose there are Q users, the channel between BS and RIS is G ∈ CN×M , the channel between the RIS

and UE q is hq ∈ C
M×1, which are all defined in a similar way as down-link scenario in Section III. The

received signal at the BS is the summation of Q UEs, i.e., r =
∑Q

q=1G diag(θ)hqxq +n ∈ CN×1, where

|xq| = 1 denotes the transmitted signal of qth UE and n ∈ CN×1 is noise distributed as CN (0, σ2
IN). For

the channel estimation framework, it is assumed that there are K transmitted blocks. In each block, the

RIS fixes the phase shifts, and each UE sends T symbols. Preciesly, in the kth block, the received signal

at BS is Rk ∈ CN×T , given by

Rk =

Q∑

q=1

G diag(θk)hqx
T
q,k +Nk, (14)

where xq,k = [xq,k,1, . . . , xq,k,T ]
T ∈ CT×1 is the transmitted signal of qth UE in kth block, θk ∈ CM×1

denotes the kth RIS phase shifts, and Nk = [nk,1, . . . ,nk,T ]∈C
N×T denotes the noise in kth block.

We assume the signals transmitted by different UEs are orthogonal, i.e., x
H
q,kxp,k = 0, ∀q 6= p and

x
H
q,kxq,k = T, ∀q, which can be achieved if T ≥ Q. Thus, we right multiply x

∗
q,k for (14) to obtain the

signal associated with qth UE as

Rkx
∗
q,k = TG diag(θk)hq +Nkx

∗
q,k. (15)

By defining sq,k = (1/T )Rkx
∗
q,k ∈ CN×1 and nq,k = (1/T )Nkx

∗
q,k ∈ CN×1, we rewrite the expression in

(15) as

sq,k = G diag(θk)hq + nq,k = G diag(hq)θk + nq,k,

where the entries in nq,k are i.i.d. with distribution of CN (0, σ2/T ). We then collect K blocks {sq,k}Kk=1
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of the qth UE as Sq = [sq,1, . . . , sq,K ]∈CN×K in the following,

Sq = G diag(hq)[θ1, . . . , θK ] + [nq,1, . . . ,nq,K ]

= G diag(hq)Θ̄ +Nq, (16)

where Θ̄ = [θ1, . . . , θK ] ∈ CM×K , and Nq = [nq,1, . . . ,nq,K ] ∈ CM×K . Therefore, from (16), the cascaded

channel for qth UE is Hq = G diag(hq) ∈ CN×M . Since G = βBRaB(ψ)a
H
R (φ) in (1), we express Sq in

(16) as

Sq = aB(ψ)ā
H
q Θ̄+Nq, (17)

where āq = (βBRa
H
R (φ) diag(hq))

H ∈ C
M×1. Then, the cascaded channel for qth UE is given by Hq =

aB(ψ)ā
H
q . Therefore, the channel estimation task is to estimate ψ and {āq}Qq=1. Because of the Guassian

distribution of Nq, we consider the following optimization problem:

min
ψ,{āq}

Q
q=1

Q∑

q=1

‖Sq − aB(ψ)ā
H
q Θ̄‖2F . (18)

In the following, we complete the estimation of ψ and {āq}Qq=1 from (18) in two steps. In the first step,

we estimate the channel associated with BS-RIS link, i.e., ψ, which is shared among multiple users. In

the second step, we estimate channel associated with the RIS-UE link, i.e., {āq}Qq=1.

B. Multi-User Channel Estimation

1) Estimate ψ: We collect the observations of Q UEs as S = [S1, . . . ,SQ] ∈ CN×KQ. It is from (17)

that S is a rank-one matrix, whose column subspace is spanned by aB(ψ). Thus, the estimation of ψ from

(18) is formulated as follows,

ψ̂ = argmax
ψ

‖aB(ψ)HS‖22, (19)

which can be solved by using similar technique as (6).

2) Estimate {āq}Qq=1: With the estimation of aB(ψ̂), solving the problem in (18) with respect to {āq}Qq=1

can then be separated. In particular, for the qth UE, we now need to solve the following problem,

ˆ̄aq = argmin
āq

‖Sq − aB(ψ̂)ā
H
q Θ̄‖2F . (20)

By vectorizing the notation as vec(aB(ψ̂)ā
H
q Θ̄) = Θ̄

T ⊗ aB(ψ̂) vec(ā
H
q ) = Θ̄

T ⊗ aB(ψ̂)ā
∗
q , the problem

in (20) can be rewritten as ˆ̄aq = argmin
āq
‖ vec(Sq)− Θ̄

T ⊗ aB(ψ̂)ā
∗
q‖22. Since this is a LS problem, and

the solution is given by

ˆ̄aq =
(
(V(ψ̂)HV(ψ̂))−1

V(ψ̂)H vec(Sq)
)
∗, (21)

where V(ψ̂) = Θ̄
T ⊗ aB(ψ̂) ∈ CNK×M . We can check that ‖V(ψ̂)‖2F = MK. Given ψ̂ in (19) and ˆ̄aq

in (21), the estimate of cascaded channel of qth UE is Ĥq = aB(ψ̂)ˆ̄a
H
q . The details of the multi-user RIS

channel estimation are in Algorithm 2.
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TABLE I: Training Overhead of Channel Estimation Methods

Channel Estimation Methods Minimal Training Pilots

Proposed MF-GD M

Proposed MF-AM M

LS [4] MN

LR [14] M +N

KBF [9] MN

3) Design of Phase Shifts of RIS: By denoting V(ψ̂)† = (V(ψ̂)HV(ψ̂))−1
V(ψ̂)H ∈ CM×NK , we can

calculate the mean-square error (MSE) of ˆ̄aq as follows,

E‖V(ψ̂)†vec(Sq)−ā
∗
q‖22=E‖V(ψ̂)†(V(ψ)ā∗

q+vec(Nq))−ā
∗
q‖22,

where the equality holds from Sq = V(ψ)ā∗
q+vec(Nq). Here, we assume that the estimation of ψ is

accurate, so we have V(ψ̂)†V(ψ) ≈ IM . Then, the MSE can be approximated as

MSE(āq)≈E‖V(ψ̂)†vec(Nq)‖22=
σ2

T
tr((V(ψ̂)HV(ψ̂))−1). (22)

Therefore, to minimize the MSE with respect to āq, we need to solve the following problem,

min
Θ̄

tr((V(ψ̂)HV(ψ̂))−1), subject to ‖V(ψ̂)‖2F =MK. (23)

The following lemma states the condition for Θ̄, which achieves the minimal MSE of āq in (22).

Lemma 1: When the phase shift matrix Θ̄ in (16) satisfies Θ̄Θ̄
H = KIM , the minimal MSE of

āq, q = 1, . . . , Q in (22) can be achieved, whose value is MSE(āq) = σ2M/(KT ).

Proof: Suppose the eigenvalues of V(ψ̂)HV(ψ̂) are given by λ1, . . . , λM . Because we have ‖V(ψ̂)‖2F =

MK, then λ1+, . . . ,+λM =MK. Thus, the problem in (23) becomes

min

M∑

i=1

1

λi
, subject to

M∑

i=1

λi =MK, λi ≥ 0.

The above problem is minimized when λi = K, ∀i, and the minimum is M/K. The optimality condition

means that V(ψ̂)HV(ψ̂) = KIM , precisely,

(Θ̄T ⊗ aB(ψ̂))
H
Θ̄
T ⊗ aB(ψ̂) = KIM . (24)

Using the fact aB(ψ̂)
H
aB(ψ̂) = 1, we can simplify the optimality condition in (24) as Θ̄Θ̄

H = KIM .

Substituting the design of Θ̄ into (22), the minimized MSE is given by σ2M/(KT ). This concludes the

proof.
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Fig. 1: NMSE vs. SNR (dB) in down-link and single-user scenario (N = 32,M = 50).
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V. NUMERICAL RESULTS

A. Training Pilot Overhead

In Table I, we compare the minimal training pilots of our proposed MF with gradient descent (MF-

GD) and MF with alternating minimization (MF-AM) with the existing LS method [4], low rank matrix

recovery (LR) method [14], and KBF method [9] in the down-link and single-user scenario. As shown in

Table I, the proposed MF-GD and MF-AM only require minimal M training pilots, which are much less

than that of the existing works in [4], [9], [14].

B. Single-User Scenario

In Fig. 1, we compare the estimation accuracy of our proposed MF-GD and MF-AM with the LS method

[4], LR method [14], and KBF method [9] in the down-link and single-user scenario. The normalized

MSE (NMSE) is defined as E[‖He − Ĥe‖2F/‖He‖2F ]. Since LS and KBF require K ≥ MN to obtain a
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Fig. 3: NMSE vs. SNR (dB) in up-link and multi-user scenario (N = 32,M = 50, Q = 5, T = 5).

valid channel estimation, in this work, we let K = 1700 for LS and KBF methods, but K=400≪MN for

our proposed MF methods. Observed from Fig. 1, though utilizing much less training pilots, the proposed

MF methods still outperform LS and KBF. Meanwhile, the proposed MF methods also outperform LR

method because they leverage on both the low-rank property and channel structure of the RIS-aided

channel. Moreover, compared to MF-AM, the MF-GD can achieve even more accurate estimation as SNR

increases.

In Fig. 2, we compare the spectral efficiency achieved by our proposed MF methods with benchmarks

[4], [9], [14]. The phase shifts of RIS are based on the estimated Ĥe through the method in [8]. The

performances of random and optimal phase shifts are also plotted as benchmarks, where phase shifts of

the former are uniformly distributed in [0, 2π) with zero training pilots, and the latter is designed from the

true He. As illustrated in Fig. 2, the proposed MF methods can achieve near optimal spectral efficiency

with much less training overhead.

C. Multi-User Scenario

In Fig. 3, we illustrate the estimation accuracy of proposed MF method in Section IV for up-link and

multi-user RIS-aided channel. The NMSE is defined as 1/Q
∑Q

q=1E[‖Hq−Ĥq‖2F/‖Hq‖2F ]. The simulation

parameters are N = 32,M = 50, Q = 5, T = 5. As can be seen from Fig. 3, with increasing transmitted

blocks K, the NMSE of cascaded channel decreases, which is consistent with our analysis.

VI. CONCLUSION

In this paper, we have investigated the RIS-aided channel estimation via MF. By using the proposed

MF method, it only estimates low-dimensional matrices to obtain the estimation of RIS-aided channel.
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Compared to the existing works which directly estimate the cascaded channel, the proposed method

achieves more accurate estimation with low training overhead.
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