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Abstract. We consider the convex minimization model with both linear equality and inequality
constraints, and reshape the classic augmented Lagrangian method (ALM) by balancing its sub-
problems. As a result, one of its subproblems decouples the objective function and the coefficient
matrix without any extra condition, and the other subproblem becomes a positive definite system of
linear equations or a positive definite linear complementary problem. The balanced ALM advances
the classic ALM by enlarging its applicable range, balancing its subproblems, and improving its
implementation. We also extend our discussion to two-block and multiple-block separable convex
programming models, and accordingly design various splitting versions of the balanced ALM for
these separable models. Convergence analysis for the balanced ALM and its splitting versions is
conducted in the context of variational inequalities through the lens of the classic proximal point
algorithm.

Keywords: Convex programming, augmented Lagrangian method, proximal point algorithm, prox-
imity

1 Introduction

The classic augmented Lagrangian method (ALM) was proposed in [25,30], and since then it has
been playing fundamental roles in algorithmic design for various convex programming problems.
For instance, it is the root of the alternating direction method of multipliers (ADMM) proposed
in [13], which is nowadays a benchmark algorithm used widely in many areas. We refer to,
e.g. [3, 6, 12,14,32], for insightful discussions on the ALM and its wide applications in different
areas such as PDEs, optimization, optimal control, image processing, and scientific computing.
In particular, it was shown in [32] that the ALM is an application of the classic proximal point
algorithm (PPA) which was originally proposed in [27].

Let us start with the following canonical convex minimization model with linear equality
constraints:

min{θ(x) | Ax = b, x ∈ X}, (1.1)

where θ : ℜn → ℜ is a closed proper convex but not necessarily smooth function; X ⊆ ℜn is a
closed convex set; A ∈ ℜm×n; and b ∈ ℜm. The iterative scheme of ALM for (1.1) reads as

(ALM)







xk+1 ∈ argmin
{

θ(x)− (λk)T (Ax− b) +
r

2
‖Ax− b‖2

∣

∣ x ∈ X
}

, (1.2a)

λk+1 = λk − r(Axk+1 − b), (1.2b)

in which r > 0 is the penalty parameter and λ ∈ ℜm is the Lagrange multiplier. Hereafter, x and
λ are referred to the primal and dual variables, respectively. In general, the subproblem (1.2a)
needs to be solved iteratively and thus outer-inner nested iterations are rendered to implement
the ALM (1.2). Therefore, how to solve the x-subproblem (1.2a) determines the difficulty of
implementing the ALM (1.2). An obvious obstacle is that the objective function θ(x), the
coefficient matrix A, and the set X are all aggregated to be considered simultaneously in the

1Department of Mathematics, Nanjing University, Nanjing, China. This author was supported by the NSFC

Grant 11871029. Email: hebma@nju.edu.cn
2Department of Mathematics, The University of Hong Kong, Hong Kong, China. Email: xmyuan@hku.hk

1

http://arxiv.org/abs/2108.08554v1


x-subproblem (1.2a). Thus, the x-subproblem (1.2a) dominates the computation while the λ-
subproblem (1.2b) is trivial. In this sense, these two subproblems in the classic ALM (1.2) are
unbalanced.

In this paper, we suggest to decouple the objective function θ(x) and the coefficient matrix
A in the subproblem (1.2a) so as to alleviate this subproblem substantially, and then shift the
consideration of the matrix A to the subproblem (1.2b). The classic ALM (1.2) is thus reshaped,
and the resulting subproblems are balanced in the sense that the difficulty of the x-subproblem
only depends on θ(x) and X , and that of the λ-subproblem becomes to depend on A. This
balancing idea has an immediate advantage when the function θ(x) has the favorable property
that its proximity operator can be represented by a closed-form. That is, the proximity operator
of the objective function θ(x), which is defined by

Proxrθ(x) := argmin
{

θ(y) +
r

2
‖y − x‖2

∣

∣ y ∈ ℜn
}

, ∀x ∈ ℜn, ∀r > 0, (1.3)

has a closed-form representation. This scenario arises in many applications, especially in con-
temporary data science domains. We refer to, e.g., [4, 8, 31], for some applications whose cor-
responding function θ(x) usually prompts sparsity- or low-rank properties of a desired solution
and hence can be specified as the l1-norm function (or the nuclear-norm function for the case
with matrix variables). Our idea of decoupling θ(x) and A can be further explained by the
following motivation. Ignoring some constant terms, we know that the subproblem (1.2a) can
be rewritten as

xk+1 ∈ argmin
{

θ(x) +
r

2
‖Ax− b− 1

r
λk‖2

∣

∣ x ∈ X
}

.

For the classic ALM (1.2), even when Proxrθ(x) can be represented by a closed-form and X = ℜn,
in general the subproblem (1.2a) may still be difficult when the matrix A is not identity. If θ(x)
and A are decoupled and the primeval x-subproblem (1.2a) is replaced by an easier one in form
of

xk+1 = argmin
{

θ(x) +
r

2
‖x− qk‖2

∣

∣ x ∈ X
}

, (1.4)

in which qk ∈ ℜn is a certain constant vector, then the solution of (1.4) can also be given by the
closed-form representation of Proxrθ(x) when X = ℜn.

Some existing algorithms in the literature can be applied to (1.1), and θ(x) and A can
be decoupled in their implementations. For example, as analyzed in [20], we can consider
regularizing the objective function of (1.2a) with a proximal term. The resulting proximal
version of the ALM (PALM for short) can be written as

(PALM)







xk+1 ∈ argmin
{

θ(x)− (λk)T (Ax− b) +
r

2
‖Ax− b‖2 + 1

2
‖x− xk‖2G

∣

∣ x ∈ X
}

, (1.5a)

λk+1 = λk − r(Axk+1 − b), (1.5b)

with G ∈ ℜn×n and the notation ‖x‖2G := xTGx. If we choose G = σIn − rATA in (1.5a) with
σ > 0, then the generic PALM (1.5) is specified as

(LALM)







xk+1 ∈ argmin
{

θ(x) +
σ

2

∥

∥x− (xk +
1

σ
AT (λk − r(Axk − b)))

∥

∥

2 ∣
∣ x ∈ X

}

, (1.6a)

λk+1 = λk − r(Axk+1 − b), (1.6b)

in which the subproblem (1.6a) is in form of (1.4) and thus it is reduced to Proxrθ(x) when
X = ℜn. The scheme (1.6) is called the linearized ALM (LALM for short) because the quadratic
term r

2‖Ax− b‖2 in (1.5a) is “linearized” by G = σIn− rATA. From an analytical point of view,
it is easy to see that if σ is large enough such that σ > r‖ATA‖, then the matrix G = σIn−rATA
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is positive definite, and essentially convergence of the LALM (1.6) can be conducted by following
existing works such as [11, 19, 34, 35]. This means the classic ALM (1.2) can be revised as the
LALM (1.6) to decouple θ(x) and A. But the subproblem (1.6a) is correlated implicitly with
A because of the condition σ > r‖ATA‖. On the other hand, note that the approximation of
(1.6a) to the primeval x-subproblem (1.2a) is less accurate when σ is larger, because of the higher
weight of the additional quadratic term 1

2‖x − xk‖2G with G = σIn − rATA. When ‖ATA‖ is
large, σ is forced to be large, and the consequence is that the step size for solving (1.6a) becomes
small and it is doomed that more outer iterations are needed, despite that the inner iterations
can be avoided. In [20], it is shown that the best bound of σ is 0.75 · r‖ATA‖ to ensure the
convergence of (1.6), while the mentioned difficult remains if ‖ATA‖ is too large.

There is another algorithm that can be applied to the problem (1.1), and θ(x) and A can
be decoupled in its implementation. More specifically, let us consider the Lagrangian function
of (1.1) and its saddle-point reformulation, and then apply the primal-dual method proposed
in [5]. With some tedious details skipped, the resulting iterative scheme can be written as











xk+1 = argmin
{

θ(x) +
r

2
‖x− (xk +

1

r
ATλk)‖2

∣

∣ x ∈ X
}

. (1.7a)

λk+1 = λk − 1

s

(

A(2xk+1 − xk)− b
)

, (1.7b)

where r > 0 and s > 0 are parameters for the primal- and dual-variable subproblems, respec-
tively. In (1.7a), θ(x) and A are also decoupled, and this subproblem is also reduced to Proxrθ(x)
when X = ℜn. Nearly at the same time as [5], the primal-dual method proposed in [5] was
explained as an application of the classic PPA in [22], and then this PPA explanation has been
used to analyze the convergence for variants of the primal-dual method (1.7), as well as other
first-order algorithms, in the literature, see, e.g. [2,7,29]. To ensure the convergence of (1.7), as
analyzed in [5], the condition

rs > ‖ATA‖ (1.8)

is required. Following the PPA explanation in [22], the condition (1.8) is used to ensure the
positive definiteness of the matrix that is used to definite the underlying PPA. We refer to,
e.g. [5, 6, 22, 24] for some efficient applications of the primal-dual method (1.7) to some image
reconstruction problems whose corresponding ‖ATA‖ is small. Therefore, despite that the ob-
jective function θ(x) and the coefficient matrix A are decoupled in notation, the subproblem
(1.7a) is correlated implicitly with A because of the condition (1.8). Clearly, the same difficulties
as those for implementing the PALM (1.5) should be tackled if ‖ATA‖ is too large.

Our main purpose is to balance the subproblems of the classic ALM (1.2) such that both
subproblems could be easy for some applications. More specifically, let r > 0 and δ > 0 be
arbitrary constants; and define the positive definite matrix H0 ∈ ℜm×n as

H0 :=
(1

r
AAT + δIm

)

. (1.9)

Then, with qk0 := xk + 1
r
ATλk, the classic ALM (1.2) for the problem (1.1) is balanced as

(Balanced ALM)







xk+1 = argmin
{

θ(x) +
r

2
‖x− qk0‖2

∣

∣ x ∈ X
}

, (1.10a)

λk+1 = λk −H−1
0 (A(2xk+1 − xk)− b). (1.10b)

Hence, for the model (1.1) with X = ℜn, the balanced ALM (1.10) is reduced to

{

xk+1 = Proxrθ(q
k
0 ), (1.11a)

λk+1 = λk −H−1
0 (A(2xk+1 − xk)− b). (1.11b)
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In the x-subproblem (1.10a), it is easy to discern that θ(x) and A are decoupled while the
parameter r is not restricted by any condition related to ‖ATA‖ explicitly or implicitly, and
thus it could be as easy as estimating Proxrθ when X = ℜn. Moreover, the λ-subproblem (1.10b)
is still very easy though it involves the matrix A and thus becomes slightly more difficult than
(1.2b) or (1.7b), see Remark 2.1 for more details. In this sense, the subproblems of the classic
ALM (1.2) are balanced in (1.10). Obviously, the balanced ALM (1.10) enjoys the proximity-
induced feature while it can avoid possible tiny step sizes for the subproblems (1.10a) even when
‖ATA‖ is large. This is an essential difference of the balanced ALM (1.10) from the PALM
(1.5) and the primal-dual method (1.7). We consider the balanced ALM (1.10) a necessary
supplement to the classic ALM (1.2), especially for the case where Proxrθ(x) has a closed-form
representation but ‖ATA‖ is large.

The rest of this paper is organized as follows. We state the model to be considered and
generalize the balanced ALM (1.10) for this model in Section 2. Then, we conduct convergence
analysis for the balanced ALM in Section 3. In Section 4, we extend our discussion to separable
convex programming models and propose a splitting version of the balanced ALM. An alternative
strategy for balancing is discussed in Section 5. In Section 6, from the PPA perspective, we briefly
discuss how to further generalize the algorithms to be proposed in Sections 2-5. Finally, some
conclusions are made in Section 7.

2 Model and algorithm

Note that the classic ALM (1.2) was proposed in the context of the canonical convex program-
ming model with linear equality constraints (1.1). Despite that our initial aim is to consider
the balanced ALM (1.10) for the model (1.1), the balanced ALM (1.10) does can be general-
ized to the more general convex programming model with both linear equality and inequality
constraints. We thus present our work in a more general setting as below.

2.1 Model

Instead of (1.1), let us consider the following more general convex programming model with
both linear equality and inequality constraints:

min{θ(x) | Ax = b (or ≥ b), x ∈ X}, (2.1)

in which the setting is same as (1.1) except that the linear inequality Ax ≥ b is also included.
The solution set of (2.1) is assumed to be nonempty throughout our discussion. With the
consideration of the more general model (2.1), the applicable range of the algorithm to be
proposed is thus wider than that of the classic ALM (1.2).

2.2 Algorithm

Now, let us generalize the balanced ALM (1.10) to the model (2.1), and the name remains for
simplicity. Recall that our main purpose is to balance the subproblems in the classic ALM (1.2).
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Algorithm: the balanced ALM for (2.1)

Let r > 0 and δ > 0 be arbitrary constants; H0 be defined in (1.9). Denote

qk0 := xk +
1

r
ATλk and sk0 := A(2xk+1 − xk)− b.

Then, with (xk, λk), the new iterate (xk+1, λk+1) is generated via the following steps:











xk+1 = argmin
{

θ(x) +
r

2
‖x− qk0‖2 | x ∈ X

}

, (2.2a)

λk+1 = argmin
{1

2
(λ− λk)H0(λ− λk) + (sk0)

Tλ | λ ∈ Λ
}

. (2.2b)

Remark 2.1. It is easy to see that the balanced ALM (2.2) is reduced to the aforementioned
(1.10) if the model (1.1) is considered. In particular, we have Λ = ℜm and thus the subproblem
(2.2b) is reduced to finding λk+1 such that

H0(λ− λk) = −sk0.

When Ax ≥ b is considered in (2.1), we have Λ = ℜm
+ . For this case, the subproblem (2.2b) is

reduced to the standard quadratic programming with non-negative sign constraints

min
{1

2
(λ− λk)H0(λ− λk) + (sk0)

Tλ | λ ∈ ℜn
+

}

,

or equivalently, the linear complementarity problem

0 ≤ λ ⊥
{

H0(λ− λk) + sk0} ≥ 0.

Recall that the matrix H0 defined in (1.9) is positive definite and it can be well conditioned with
appropriate choices of r and δ. Hence, it is extremely easy to decompose H0, e.g., by the Cholesky
decomposition. Then, many benchmark solvers including the well-known Lemke algorithm and
conjugate gradient method, can be found in various textbooks (e.g., [15, 28, 33]), monographs
(e.g., [9]), and papers (e.g., [17,18]).

Remark 2.2. Recall that the balanced ALM (2.2) is featured by the fact that the function θ(x)
and the coefficient matrix A are decoupled without any explicit or implicit condition related to
A in (2.2a). Compared with the PALM (1.5) and the primal-dual method (1.7), the balanced
ALM (2.2) also has two parameters, δ and r, whose only restriction is their sign. As we will
show in Section 3, the only essential role of δ is to theoretically ensure the positive definiteness
of the corresponding matrix H as defined in (3.7). Therefore, there is no particular motivation
to tune δ for different applications, and it can be just fixed as a small value beforehand. For the
parameter r, just as the same parameter in the classic ALM (1.2), there is full-extent flexibility
to tune this parameter. Certainly, how to tune r depends on the specific model and dataset under
discussion, whilst there is no generic and unified theory to determine the optimal choice for all
cases.

3 Convergence analysis

In this section, we prove the convergence of the balanced ALM (2.2), and estimate its worst-case
convergence rate measured by the iteration complexity.
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3.1 Variational inequality characterization of (2.1)

Following our previous works [22,23], our analysis will be conducted in the variational inequality
(VI) context. We first derive the VI characterization for the optimality condition of the model
(2.1). Let the Lagrangian function of the problem (2.1) be defined as

L(x, λ) = θ(x)− λT (Ax− b), (3.1)

with λ ∈ ℜm the Lagrange multiplier. Since both linear equality and inequality constraints are
considered in (2.1), let us define

Ω := X × Λ where Λ :=

{

ℜm, if Ax = b,
ℜm
+ , if Ax ≥ b.

(3.2)

The pair (x∗, λ∗) ∈ Ω is called a saddle point of the Lagrangian function (3.1) if it satisfies the
inequalities

Lλ∈Λ(x
∗, λ) ≤ L(x∗, λ∗) ≤ Lx∈X (x, λ

∗).

Alternatively, we can write these inequalities as the following VIs:

{

x∗ ∈ X , θ(x)− θ(x∗) + (x− x∗)T (−ATλ∗) ≥ 0, ∀x ∈ X ,
λ∗ ∈ Λ, (λ− λ∗)T (Ax∗ − b) ≥ 0, ∀ λ ∈ Λ,

(3.3)

or in the compact format

w∗ ∈ Ω, θ(x)− θ(x∗) + (w − w∗)TF (w∗) ≥ 0, ∀u ∈ Ω, (3.4a)

where

w =

(

x
λ

)

, F (w) =

(

−ATλ
Ax− b

)

and Ω = X × Λ. (3.4b)

Note that the operator F defined in (3.4b) is affine with a skew-symmetric matrix and thus we
have

(w − w̃)T (F (w)− F (w̃)) ≡ 0. (3.5)

We also call (3.4) a monotone mixed variational inequality because the function θ is convex and
the operator F has the property (3.5). We denote by Ω∗ the solution set of the VI (3.4); it is
also the set of the saddle points of the Lagrangian function (3.1).

3.2 Contraction

We need to show that the sequence generated by the balanced ALM (2.2) is contractive with
respect to Ω∗, the solution set of the VI (3.4). This is the key property to ensure its convergence.
Before that, let us recall a basic lemma whose proof is elementary and can be found in, e.g., [1].

Lemma 3.1. Let X ⊂ ℜn be a closed convex set, θ(x) and f(x) be convex functions. If f is
differentiable, and the solution set of the minimization problem

min{θ(x) + f(x) |x ∈ X}

is nonempty, then it holds that

x∗ ∈ argmin{θ(x) + f(x) |x ∈ X} (3.6a)

if and only if
x∗ ∈ X , θ(x)− θ(x∗) + (x− x∗)T∇f(x∗) ≥ 0, ∀x ∈ X . (3.6b)
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To show the contraction property of the sequence generated by the balanced ALM (2.2), the
first step is to fathom the difference of an iterate generate by the balanced ALM (2.2) from a
solution point w∗ ∈ Ω∗. Recall the definition of H0 in (1.9). Let us define

H =

(

rIn AT

A
1

r
AAT + δIm

)

=

(

rIn AT

A H0

)

. (3.7)

Proposition 3.1. The matrix H defined in (3.7) is positive definite.

Proof. Notice that

H =

(

rIn AT

A
1

r
AAT

)

+

(

0 0
0 δIm

)

=





√
rIn

√

1
r
A





(√
rIn,

√

1
r
AT
)

+

(

0 0
0 δIm

)

,

for any w = (x, λ) 6= 0. Thus, we have

wTHw =
∥

∥

√
rx+

√

1
r
ATλ

∥

∥

2
+ δ‖λ‖2 > 0,

and therefore the matrix H is positive definite. ✷

In the following theorem, we will express the difference of an iterate generated by the balanced
ALM (2.2) from a solution point w∗ ∈ Ω∗ in the context of VIs.

Theorem 3.1. Let {wk = (xk, λk)} be the sequence generated by the balanced ALM (2.2) and
H be defined in (3.7). Then we have

wk+1 ∈ Ω, θ(x)−θ(xk+1)+(w−wk+1)TF (wk+1) ≥ (w−wk+1)TH(wk−wk+1), ∀w ∈ Ω. (3.8)

Proof. According to Lemma 3.1, the solution xk+1 of the subproblem (2.2a) can be characterized
by the VI

xk+1 ∈ X , θ(x)− θ(xk+1) + (x− xk+1)T
{

−ATλk + r(xk+1 − xk)
}

≥ 0, ∀x ∈ X .

Then, for any unknown λk+1, we have

xk+1 ∈ X , θ(x)− θ(xk+1) + (x− xk+1)T (−ATλk+1)

≥ (x− xk+1)T
{

r(xk − xk+1) +AT (λk − λk+1)
}

, ∀x ∈ X . (3.9)

Similarly, because of Lemma 3.1, the solution λk+1 of the subproblem (2.2b) can be characterized
by the VI

λk+1 ∈ Λ, (λ− λk+1)T
{(

A[2xk+1 − xk]− b
)

+H0(λ
k+1 − λk)

}

≥ 0, ∀λ ∈ Λ.

Recall the definition of H0 in (1.9). We thus have

λk+1 ∈ Λ, (λ− λk+1)T (Axk+1 − b)

≥ (λ− λk+1)T
{

(A(xk − xk+1) +
(1

r
AAT + δIm

)

(λk − λk+1)
}

, ∀λ ∈ Λ. (3.10)

Combining (3.9) and (3.10), and using the notation in (3.4), we obtain the assertion (3.8). ✷

In the following theorem, we will prove an important inequality which measures the difference
of an iterate generated by the balanced ALM (2.2) from a solution point w∗ ∈ Ω∗ more explicitly
by H-norm-induced distances. This inequality is also the basis of estimating the convergence
rate measured by the iteration complexity for the balanced ALM (2.2).
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Theorem 3.2. Let {wk = (xk, λk)} be the sequence generated by the balanced ALM (2.2) and
H be defined in (3.7). Then we have

θ(x)− θ(xk+1) + (w − wk+1)TF (w)

≥ 1

2

(

‖w − wk+1‖2H − ‖w − wk‖2H
)

+
1

2
‖wk − wk+1‖2H , ∀w ∈ Ω. (3.11)

Proof. It follows from (3.5) that

(w − wk+1)TF (wk+1) = (w − wk+1)TF (w),

and thus the left-hand side of (3.8) equals

θ(x)− θ(xk+1) + (w −wk+1)TF (w).

Consequently, because of (3.8), we get

wk+1 ∈ Ω, θ(x)− θ(x̃k) + (w−wk+1)TF (w) ≥ (w−wk+1)TH(wk −wk+1), ∀w ∈ Ω. (3.12)

Applying the identity

bTH(b− a) =
1

2
{‖b‖2H − ‖a‖2H}+ 1

2
‖a− b‖2H

to the right-hand side of (3.12) with a = w −wk and b = w − wk+1, we thus obtain

(w − wk+1)TH(wk − wk+1) =
1

2

(

‖w − wk+1‖2H − ‖w − wk‖2H
)

+
1

2
‖wk − wk+1‖2H . (3.13)

Substituting (3.13) into the right-hand side of (3.12), we prove the assertion (3.11). ✷

Now, with Theorems 3.1 and 3.2, the contraction property of the sequence generated by the
balanced ALM (2.2) with respect to Ω∗ can be proved.

Theorem 3.3. Let {wk = (xk, λk)} be the sequence generated by the balanced ALM (2.2) and
H be defined in (3.7). Then we have

‖wk+1 − w∗‖2H ≤ ‖wk − w∗‖2H − ‖wk − wk+1‖2H , ∀w∗ ∈ Ω∗. (3.14)

Proof. Setting w in (3.11) as any fixed w∗ ∈ Ω∗, we get

‖wk − w∗‖2H − ‖wk+1 − w∗‖2H − ‖wk − wk+1‖2H
≥ 2

{

θ(xk+1)− θ(x∗) + (wk+1 −w∗)TF (w∗)
}

, ∀w∗ ∈ Ω∗.

Since w∗ ∈ Ω∗ and wk+1 ∈ Ω, according to (3.4), the right-hand side of the last inequality is
non-negative. Thus, the assertion of this theorem follows directly. ✷

3.3 Convergence

With the contraction property established in Theorem 3.3, it is easy to prove the convergence
of the sequence {wk} generated by the balanced ALM (2.2).

Theorem 3.4. Let {wk = (xk, λk)} be the sequence generated by the balanced ALM (2.2) and
H be defined in (3.7). Then, the sequence {wk} converges to some w∞ ∈ Ω∗.
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Proof. First of all, it follows from (3.14) that the sequence {wk} is bounded and

lim
k→∞

‖wk − wk+1‖2H = 0. (3.15)

Let w∞ be a cluster point of {wk} and {wkj} be a subsequence converging to w∞. It follows
from (3.8) that

wkj ∈ Ω, θ(x)− θ(xkj) + (w − wkj )TF (wkj ) ≥ (w − wkj )TH(wkj−1 − wkj ), ∀w ∈ Ω.

Since the matrix H is positive definite, it follows from (3.15) and the continuity of θ(x) and
F (w) that

w∞ ∈ Ω, θ(x)− θ(x∞) + (w − w∞)TF (w∞) ≥ 0, ∀w ∈ Ω.

This VI above indicates that w∞ is a solution point of (3.4). Finally, because of (3.14), we have

‖wk+1 − w∞‖2H ≤ ‖wk − w∞‖2H ,

and thus {wk} converges to w∞. The proof is complete. ✷

3.4 Convergence rate

Following the VI-based technique established in our earlier work [23], we can estimate the worst-
case O(1/t) convergence rate measured by the iteration complexity for the balanced ALM (2.2)
where t is the iteration counter.

Let us recall some necessary details which can also be found in [23]. If w̃ is a solution point
of the VI (3.4), then we have

w̃ ∈ Ω, θ(x)− θ(x̃) + (w − w̃)TF (w̃) ≥ 0, ∀w ∈ Ω.

Because of (3.5), w̃ also satisfies

w̃ ∈ Ω, θ(x)− θ(x̃) + (w − w̃)TF (w) ≥ 0, ∀w ∈ Ω.

Thus, for given ǫ > 0, w̃ ∈ Ω is called an ǫ-approximate solution of VI (3.4) if it satisfies

w̃ ∈ Ω, θ(x)− θ(x̃) + (w − w̃)TF (w) ≥ −ǫ, ∀ w ∈ D(w̃), (3.16)

where
D(w̃) = {w ∈ Ω | ‖w − w̃‖ ≤ 1}.

Thus, to establish the worst-case O(1/t) convergence rate for the balanced ALM (2.2), we need
to show that, for given ǫ > 0, after t iterations, we can find w̃ ∈ Ω, such that

w̃ ∈ Ω, and sup
w∈D(w̃)

{

θ(x̃)− θ(x) + (w̃ − w)TF (w)
}

≤ ǫ = O(1/t). (3.17)

We present this result in the following theorem.

Theorem 3.5. Let {wk = (xk, λk)} be the sequence generated by the balanced ALM (2.2) and
H be defined in (3.7). For any integer number t > 0, if we define

w̃t :=
1

t+ 1

t
∑

k=0

wk+1, (3.18)

then we have

w̃t ∈ Ω, θ(x̃t)− θ(x) + (w̃t − w)TF (w) ≤ 1

2(t+ 1)
‖w − w0‖2H , ∀w ∈ Ω. (3.19)
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Proof. First, it follows from (3.11) that, for all k ≥ 0, we have

wk+1 ∈ Ω, θ(x)−θ(xk+1)+(w−wk+1)TF (w)+
1

2
‖w−wk‖2H ≥ 1

2
‖w−wk+1‖2H , ∀w ∈ Ω. (3.20)

Summarizing the inequalities (3.20) over k = 0, 1, . . . , t, we obtain

(t+ 1)θ(x)−
t
∑

k=0

θ(xk+1) +
(

(t+ 1)w −
t
∑

k=0

wk+1
)T

F (w) +
1

2
‖w − w0‖2H ≥ 0, ∀w ∈ Ω.

It follows from (3.18) that

1

t+ 1

t
∑

k=0

θ(xk+1)− θ(x) + (w̃t − w)TF (w) ≤ 1

2(t+ 1)
‖w − w0‖2H , ∀w ∈ Ω. (3.21)

Note that w̃t defined in (3.18) is a convex combination of all iterates wk for k = 0, · · · , t, and
θ(x) is convex. We thus have

x̃t =
1

t+ 1

t
∑

k=0

xk+1,

and also

θ(x̃t) ≤
1

t+ 1

t
∑

k=0

θ(xk+1).

Substituting it into (3.21), the assertion (3.19) of this theorem follows directly. ✷

Then, because of (3.17), the inequality (3.19) indicates that w̃t defined in (3.18), which is the
average of the first t iterates generated by the balanced ALM (2.2), is an approximate solution
of the VI (3.4) with an accuracy of O(1/t). Hence, the worst-case O(1/t) convergence rate
measured by the iteration complexity is established for the balanced ALM (2.2) in the ergodic
sense.

4 Splitting versions of the balanced ALM (2.2) for separable

convex programming

The classic ALM (1.2) plays an extremely influential role in solving various separable cases of
the generic model (1.1) when the objective function of such a model can be represented as the
sum of multiple functions without coupled variables. For these separable models, the classic
ALM (1.2) has been adapted into various splitting versions by decomposing the primeval x-
subproblem (1.2a) into smaller ones. These splitting versions take advantage of the separable
structure in the model more effectively; the decomposed subproblems are usually easier in the
sense that each of them only needs to tackle one function component. For various applications
including the mentioned sparsity- and low-rank-promoted ones in data science domains, splitting
versions of the ALM (1.2) may generate subproblems that are easy enough to have closed-form
solutions. Among various splitting versions of the classic ALM (1.2), the most popular one is
probably the mentioned ADMM in [13], which suggests splitting the x-subproblem (1.2a) into
two sequentially when the model (1.1) has a two-block separable structure.

In this section, in parallel with the successful legacy of the classic ALM (1.2) and its splitting
versions, we also discuss how to design splitting versions for the balanced ALM (2.2) when the
model (2.1) is separable. For succinctness and without ambiguity, we reuse some letters and
notation as those in Sections 2 and 3.
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4.1 Model

Let us consider the separable convex programming model with both linear equality and inequality
constraints

min
{

p
∑

i=1

θi(xi)
∣

∣

p
∑

i=1

Aixi = b (or ≥ b), xi ∈ Xi

}

, (4.1)

where θi : ℜni → ℜ, i = 1, . . . , p, are closed proper convex functions and they are not necessarily
smooth; Xi ⊆ ℜni , i = 1, . . . , p, are closed convex sets; Ai ∈ ℜm×ni , i = 1, . . . , p, are given
matrices; and b ∈ ℜm is a given vector. The model (4.1) can be regarded as an extension of the
model (2.1) from p = 1 to p ≥ 1. Let us only consider the multiple-block separable case with
p ≥ 2 for (4.1). Similarly as (3.2), we reuse the letters and define

Ω =

p
∏

i=1

Xi × Λ where Λ =

{

ℜm, if
∑p

i=1Aixi = b,

ℜm
+ , if

∑p
i=1Aixi ≥ b.

(4.2)

4.2 Algorithm

Now, we extend the balanced ALM (2.2) to the multiple-block separable convex programming
model (4.1) and present a splitting version of (2.2) below.

Algorithm: A splitting version of the balanced ALM (2.2) for (4.1)

Let ri > 0 for i = 1, 2, · · · , p, and δ > 0 be arbitrary constants. Define

Hp =

p
∑

i=1

1

ri
AiA

T
i + δIm, (4.3)

qki := xki +
1

ri
ATλk, for i = 1, 2, · · · , p; and sk =

p
∑

i=1

Ai(2x
k+1
i − xki )− b.

Then, with wk = (xk1, x
k
2 , · · · , xkp, λk), the new iterate wk+1 = (xk+1

1 , xk+1
2 , · · · , xk+1

p , λk+1) is
generated via the following steps:











xk+1
i ∈ argmin

{

θi(xi) +
ri
2
‖xi − qki ‖2 | xi ∈ Xi

}

, i = 1, 2, · · · , p; (4.4a)

λk+1 = argmin

{

1

2
(λ− λk)THp(λ− λk) + (sk)Tλ | λ ∈ Λ

}

. (4.4b)

Remark 4.1. The subproblems in (4.4) are of the same structure as those in (2.2). For the xi-
subproblem (4.4a), the function θi(xi) and the coefficient Ai are decoupled without any explicit or
implicit condition related to Ai, and thus it is also reduced to estimating the proximity operator
of θi(xi) when Xi = ℜni. In addition, the λ-subproblem (4.4b) is a positive definite system of
linear equations or a standard quadratic programming with non-negative sign constraints. Note
that all ri’s have no other restriction than the sign requirement. Hence, the algorithm (4.4)
keeps all features of the balanced ALM (2.2).

Remark 4.2. For generality, we consider different ri for different xi-subproblems. They can be
identical for simplicity. Similarly as the balanced ALM (2.2), to implement the algorithm (4.4),
empirically we can fix δ as a small positive constant throughout.
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4.3 Convergence analysis

In this subsection, we follow the analysis in Section 3 and prove the convergence of the splitting
version of the balanced ALM (4.4).

4.3.1 Variational inequality characterization of (4.1)

For convergence analysis purpose, we also need the VI characterization for the optimality con-
dition of the model (4.1). Let λ ∈ ℜm be the Lagrange multiplier of (4.1) and the Lagrangian
function of the problem (4.1) be defined as

L(x1, . . . , xp, λ) =

p
∑

i=1

θi(xi)− λT
(

p
∑

i=1

Aixi − b
)

. (4.5)

Similarly as Section 3.1, we reuse the letters and know that finding a saddle point of L(x1, . . . , xp, λ)
can be written as the following VI:

w∗ ∈ Ω, θ(x)− θ(x∗) + (w − w∗)TF (w∗) ≥ 0, ∀w ∈ Ω, (4.6a)

where

w =











x1
...
xp

λ











, x =







x1
...
xp






, θ(x) =

p
∑

i=1

θi(xi), F (w) =











−AT
1 λ
...

−AT
p λ

∑p
i=1Aixi − b











, (4.6b)

and Ω is defined in (4.2). Again, we denote by Ω∗ the solution set of the VI (4.6).

4.3.2 Convergence

Let us recall the proofs in Section 3 for the convergence of the balanced ALM (2.2). It is easy
to see that the crucial step is to identify the difference between an iterate and a solution point
by the inequality (3.8) in Theorem 3.1, in which the matrix H should be positive definite as
proved in Proposition 3.1 so that the difference can be measured by distances defined by the
H-norm. After Proposition 3.1 and Theorem 3.1 are proved, the remaining part of the proof
for the convergence as well as the worst-case convergence rate is subroutine. Hence, to prove
the convergence of the splitting version of the balanced ALM (4.4), we only need to prove an
inequality similar as (3.8) in which the accompanying matrix is also positive definite.

Proposition 4.1. Let ri > 0 for i = 1, 2, · · · , p, and δ > 0 be arbitrary constants. The matrix
defined as

H =





























r1In1 0 · · · 0 AT
1

0
. . .

. . .
...

...

...
. . .

. . . 0
...

0 · · · 0 rpInp
AT

p

A1 · · · · · · Ap

p
∑

i=1

1

ri
AiA

T
i + δIm





























(4.7)

is positive definite.
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Proof. Note that

H =

p
∑

i=1

Hi +

(

0 0
0 δIm

)

,

where

Hi =

















riIni
AT

i

Ai

1

ri
AiA

T
i

















=





















...√
riIni

...
√

1

ri
Ai





















(

· · · √
riIni

· · ·
√

1

ri
AT

i

)

.

For any w = (x1, . . . , xp, λ) 6= 0, we have

wTHw =

p
∑

i=1

∥

∥

∥

√
rixi +

√

1

ri
AT

i λ
∥

∥

∥

2
+ δ‖λ‖2 > 0.

Hence, the matrix H is positive definite. ✷

Theorem 4.1. Let {wk = (xk1 , · · · , xkp, λk)} be the sequence generated by the balanced ALM
(4.4) and H be defined in (4.7). Then, we have

wk+1 ∈ Ω, θ(x)−θ(xk+1)+(w−wk+1)TF (wk+1) ≥ (w−wk+1)TH(wk−wk+1), ∀w ∈ Ω. (4.8)

Proof. According to Lemma 3.1, for i = 1, 2, . . . , p, we have

xk+1
i ∈ Xi, θi(xi)− θi(x̃

k
i ) + (x− xk+1

i )T {−AT
i λ

k + ri(x
k+1
i − xki )} ≥ 0, ∀xi ∈ Xi.

Then, for any unknown λk+1, we have

xk+1
i ∈ Xi, θi(xi)− θi(x

k+1
i ) + (xi − xk+1

i )T (−ATλk+1)

≥ (xi − xk+1
i )T

{

ri(x
k
i − xk+1

i ) +AT (λk − λk+1)
}

, ∀xi ∈ Xi. (4.9)

Also because of Lemma 3.1, λk+1 generated by (4.4b) is characterized by the VI

λk+1 ∈ Λ, (λ−λk+1)T
{(

p
∑

i=1

Ai[2x
k+1
i −xki ]−b

)

+
(

p
∑

i=1

1

ri
AiA

T
i +δIm

)

(λk+1−λk)
}

≥ 0, ∀λ ∈ Λ.

It can be rewritten as

λk+1 ∈ Λ, (λ− λk+1)T
(

p
∑

i=1

Aix
k+1
i − b

)

≥ (λ− λk+1)T
{

p
∑

i=1

Ai(x
k
i − xk+1

i ) +
(

p
∑

i=1

1

ri
AiA

T
i + δIm

)

(λk − λk+1)
}

,∀λ ∈ Λ.(4.10)

Combining (4.9) and (4.10), and using the notation in (4.6), we prove the assertion (4.8). ✷

As mentioned, based on Proposition 4.1 and Theorem 4.1, similar conclusions as Theorems
3.2-3.5 can be trivially proved. Thus, convergence results similar as those in Section 3 can be
obtained for the splitting version of the balanced ALM (4.4); we omit the details for succinctness.
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5 An alternative strategy for balancing

The balanced ALM (2.2) can be generalized to the splitting version (4.4) if the model under
discussion is changed from the one-block case (2.1) to the multiple-block case (4.1). There
are other ways for the generalization, in addition to the technique introduced in Section 4. In
(4.4), we see that each of the xi-subproblems does not involve any quadratic term in form of
ri
2 ‖Aixi − qki ‖2 so that it can be reduced to estimating the proximity operator of θi(xi) when
Xi = ℜni . In this sense, all such xi-subproblems are preferred when it is easy to estimate the
proximity operator of θi(xi). On the other hand, all Ai’s are aggregated in the λ-subproblem
(4.4b) because of the matrix Hp defined in (4.3). For some cases where some or all ‖AT

i Ai‖ are
large (or, some or all Ai’s are ill-conditioned), it is preferred to consider alleviating the quadratic
programming problem (4.4b) by removing such AT

i Ai from Hp. Hence, from methodological
point of view, it is also interesting to ask if we can keep terms in form of ri

2 ‖Aixi − qki ‖2 for
some xi-subproblems (4.4a), and meanwhile remove the corresponding AiA

T
i from the matrix

Hp in (4.3) so that the λ-subproblem (4.4b) becomes easier. Accordingly, we propose to revise
the splitting version of the balanced ALM (4.4) such that some xi-subproblems are in form of

xk+1
i ∈ argmin

{

θi(xi) +
ri
2
‖Aixi − qki ‖2 | xi ∈ Xi

}

,

with qki a certain constant vector, and the corresponding AiA
T
i is excluded in the λ-subproblem

(4.4b). This idea provides an alternative strategy for balancing the generated subproblems, and
it enables a user to determine how to balance the difficulty of subproblems in accordance with
the specific functions θi’s, coefficient matrices Ai’s, and sets Xi’s for a given application.

5.1 Model

For succinctness of notation, let us just take the special case of (4.1) with p = 2 and only linear
equality constraints to illustrate our idea:

min{θ1(x1) + θ2(x2) | A1x1 +A2x2 = b, x1 ∈ X1, x2 ∈ X2}. (5.1)

Again, without ambiguity, some letters and notation are reused.

5.2 Algorithm

An alternative splitting version of the balanced ALM (2.2) for the specific model (5.1) can be
presented as below.

Algorithm: An alternative splitting version of the balanced ALM for (5.1)

Let r > 0, s > 0 and δ > 0 be arbitrary constants. Define

H2 =
1

s
A2A

T
2 + (

1

r
+ δ)Im, (5.2)

qk2 := xk2 +
1

s
AT

2 λ
k and sk2 = A1(2x

k+1
1 − xk1) +A2(2x

k+1
2 − xk2)− b.

Then, with wk = (xk1 , x
k
2 , λ

k), the new iterate wk+1 = (xk+1
1 , xk+1

2 , λk+1) is generated via the
following steps:



























xk+1
1 = argmin

{

θ1(x1)− xT1 A
T
1 λ

k +
r

2
‖A1(x1 − xk1)‖2 +

δ

2
‖x1 − xk1‖2

∣

∣ x1 ∈ X1

}

, (5.3a)

xk+1
2 = argmin

{

θ2(x2) +
s

2
‖x2 − qk2‖2

∣

∣ x2 ∈ X2

}

, (5.3b)

λk+1 = argmin
{1

2
(λ− λk)H2(λ− λk) + (sk2)

Tλ | λ ∈ Λ
}

. (5.3c)
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Remark 5.1. In the algorithm (5.3), we see that only the x2-subproblem (5.3b) can be reduced
to estimating the proximity operator of θ2 if X2 = ℜn2, while the x1-subproblem (5.3a) is not
proximity-induced because the term ‖A1(x1 − xk1)‖2 is kept. As a balance, the matrix H2 de-
fined in (5.2) which determines the quadratic programming problem (5.3c) does not involve A1.
In this sense, the xi-subproblems and the λ-subproblem are balanced in another way. For the
generic model (4.1) with p > 2, the splitter version of the balanced ALM (4.4) can be revised in
the sense that some of its xi-subproblems are flexibly chosen to keep the terms ‖Ai(xi − xki )‖2
whilst the quadratic term determining the λk-subproblem does not involve the corresponding Ai’s.
Thus, different algorithms with different balanced subproblems can be designed analogously. The
algorithm (5.3) is just the simplest illustration with p = 2 for this philosophy.

5.3 Convergence results

As mentioned, to prove the convergence of the algorithm (5.3), we just need to prove an inequality
similar as (3.8) in Theorem 3.1 and show that the accompanying matrix is positive definite.

Proposition 5.1. Let r > 0, s > 0, and δ > 0 be arbitrary constants. Then, the matrix defined
as

H =







rAT
1 A1 + δIn1 0 AT

1

0 sIn2 AT
2

A1 A2
1

s
A2A

T
2 + (

1

r
+ δ)Im






(5.4)

is positive definite.

Proof. Note that

H =







rAT
1A1 + δIn1 0 AT

1

0 0 0

A 0
1

r
Im






+







0 0 0
sIn2 AT

2

0 A2
1

s
A2A

T
2






+





0 0 0
0 0 0
0 0 δIm



 .

For any w = (x, y, λ) 6= 0, we have

wTHw =
(∥

∥

∥

√
rA1x+

√

1
r
λ
∥

∥

∥

2
+ δ‖x‖2

)

+
∥

∥

∥

√
sy +

√

1
s
AT

2 λ
∥

∥

∥

2
+ δ‖λ‖2 > 0.

Thus, the matrix H is positive definite. ✷

Theorem 5.1. Let {wk = (xk1 , x
k
2 , λ

k)} be the sequence generated by the algorithm (5.3) and H
be defined in (5.4). Then, we have

wk+1 ∈ Ω, θ(u)−θ(uk+1)+(w−wk+1)TF (wk+1) ≥ (w−wk+1)TH(wk−wk+1), ∀w ∈ Ω. (5.5)

Proof. According to Lemma 3.1, xk+1 generated by (5.3a) is characterized by the VI

xk+1
1 ∈ X1, θ1(x1)−θ1(x

k+1
1 )+(x1−xk+1

1 )T
{

−AT
1 λ

k+(rAT
1 A1+δ)(xk+1

1 −xk1)
}

≥ 0, ∀x1 ∈ X1.

Then, for any unknown λk+1, we have

xk+1
1 ∈ X1, θ1(x1)− θ2(x

k+1
1 ) + (x1 − xk+1

1 )T (−AT
1 λ

k+1)

≥ (x1 − xk+1
1 )T

{

(rAT
1A1 + δ)(xk1 − xk+1

1 ) +AT
1(λ

k − λk+1)
}

, ∀x1 ∈ X1. (5.6)

Analogously, it follows from Lemma 3.1 that xk+1
2 generated by (5.3b) can be characterized by

the VI

xk+1
2 ∈ X2, θ2(x2)− θ2(x

k+1
2 ) + (x2 − xk+1

2 )T
{

−AT
2 λ

k + s(xk+1
2 − xk2)

}

≥ 0, ∀x ∈ X2.
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Then, for any unknown λk+1, we have

xk+1
2 ∈ X2, θ2(x2)− θ2(x

k+1
2 ) + (x2 − xk+1

2 )T (−AT
2 λ

k+1)

≥ (x2 − xk+1
2 )T

{

s(xk2 − xk+1
2 ) +AT

2 (λ
k − λk+1)

}

, ∀x2 ∈ X2. (5.7)

Similarly, according to Lemma 3.1, λk+1 generated by (5.3c) is characterized by the VI: Finding
λk+1 ∈ Λ such that

(λ−λk+1)T
{(

A1[2x
k+1
1 −xk1 ]+A2[2x

k+1
2 −xk2]−b

)

+
(1

s
A2A

T
2 +
(1

r
+δ
)

Im

)

(λk+1−λk)
}

≥ 0, ∀λ ∈ Λ.

It can be rewritten as

λk+1 ∈ Λ, (λ− λk+1)T (A1x
k+1
1 +A2x

k+1
2 − b)

≥ (λ− λk+1)T
{

A1(x
k
1 − xk+1

1 )+A2(x
k
2 − xk+1

2 )+
(1

s
A2A

T
2+
(1

r
+ δ
)

Im

)

(λk − λk+1)
}

,(5.8)

for all λ ∈ Λ. Combining (5.6), (5.7) and (5.8), and using the notation in (3.4), we get the
following assertion. ✷

5.4 Comparison with linearized versions of the ADMM

It is interesting to compare the proposed algorithm (5.3) with the well-known linearized versions
of the ADMM. For the model (5.1), the original ADMM scheme reads as















xk+1
1 ∈ argmin

{

θ1(x1)− xT1A
Tλk + r

2‖A1x1 +A2x
k
2 − b‖2

∣

∣ x1 ∈ X1

}

, (5.9a)

xk+1
2 ∈ argmin

{

θ2(x2)− xT2A
T
2 λ

k + r
2‖A1x

k+1
1 +A2x2 − b‖2

∣

∣ x2 ∈ X2

}

, (5.9b)

λk+1 = λk − r(A1x
k+1
1 +A2x

k+1
2 − b), (5.9c)

in which r > 0 is the penalty parameter and λ ∈ ℜm is the Lagrange multiplier. The first
proximal version of the ADMM (PADMM) which suggests regularizing both the x1- and x2-
subproblems in (5.9) with generic proximal terms was proposed in [19] (see also [10] for a special
case). For simplicity, let us assume that the x1-subproblem (5.9a) is easy but the x2-subproblem
(5.9b) is difficult. Then, the PADMM in [19] can be written as














xk+1

1 ∈ argmin
{

θ1(x1)− xT

1 A
T

1 λ
k + r

2
‖A1x1 +A2x

k

2 − b‖2
∣

∣ x1 ∈ X1

}

, (5.10a)

xk+1

2 ∈ argmin
{

θ2(x2)− xT

2 A
T

2 λ
k + r

2
‖A1x

k+1

1 +A2x2 − b‖2 + 1

2
‖x2 − xk

2‖2G
∣

∣ x2 ∈ X2

}

, (5.10b)

λk+1 = λk − r(A1x
k+1

1 +A2x
k+1

2 − b), (5.10c)

in which G ∈ ℜn2×n2 is a positive definite matrix. Because of the same reason as mentioned for
(1.5), it is interesting to consider “linearizing” the quadratic term “ r

2‖A1x
k+1
1 +A2x2− b‖2” and

thus alleviating the subproblem (5.10b) as estimating the proximity operator of θ2(x2) when
X2 = ℜn2 . Similar as (1.6), this can be done by choosing G := sIn2 − rAT

2 A2 in (5.10b). As
well discussed in the literature, e.g., [11, 21, 26, 34, 35], for various applications arising in image
processing, statistical learning, and others, the condition

s > r‖AT
2 A2‖ (5.11)

is required to ensure the positive definiteness of G and thus the convergence of (5.10). Recently,
the condition (5.11) is further optimally improved in [21] as s > 0.75 · r‖AT

2 A2‖. Similarly
as (1.5a) and (1.7a), though θ2(x2) and A2 are decoupled in notation if G := sIn2 − rAT

2 A2

in (5.10b), the subproblem (5.10b) is correlated implicitly with A2 via the condition (5.11) or
its improved one in [21]. Hence, efficiency of all existing linearized versions of the ADMM is
severely affected if ‖AT

2 A2‖ is large. In this sense, the algorithm (5.3) improves existing linearized
versions of the ADMM in the sense that the x2-subproblem (5.3b) can be reduced to estimating
the proximity operator of θ2 if X2 = ℜn2 , while it is not affected by ‖AT

2 A2‖ and thus possible
tiny step sizes could be avoided even if ‖AT

2 A2‖ is large.
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6 More generalized versions

In the preceding sections, the balanced ALM (2.2) is proposed for the generic model (2.1), and
then its splitting versions (4.4) and (5.3) are studied for the separable models (4.1) and (5.1),
respectively. As mentioned, it was shown in [32] that the classic ALM (1.2) is an application of
the PPA proposed in [27]. In view of the generalized version of the PPA studied in [16], all the
proposed algorithms (2.2), (4.4) and (5.3) can be further generalized. For instance, the balanced
ALM (2.2) can be generalized as































x̃k = argmin
{

θ(x) +
r

2
‖x− qk0‖2 | x ∈ X

}

, (6.1a)

λ̃k = argmin
{1

2
(λ− λk)H0(λ− λk) + (s̃k0)

Tλ | λ ∈ Λ
}

, (6.1b)
(

xk+1

λk+1

)

=

(

xk

λk

)

− α

(

xk − x̃k

λk − λ̃k

)

with α ∈ (0, 2), (6.1c)

where s̃k0 = A(2x̃k − xk) − b. Clearly, the scheme (6.1) includes the balanced ALM (2.2) as
a special case with α = 1. Numerically, the extra step (6.1c) has been shown to be able to
accelerate the convergence of the classic PPA for various problems. We refer to, e.g., [3, 22,24],
for some empirical studies. Hence, it is motivated to consider the generalized scheme (6.1) to
replace the balanced ALM (2.2).

To establish the convergence of (6.1), we just need to follow the roadmap in Section 3
and prove some similar theorems. For instance, the inequality (3.11) in Theorem 3.2 can be
generalized as

α
(

θ(x)− θ(x̃k) + (w − w̃k)TF (w)
)

≥ 1

2

(

‖w − wk+1‖2H − ‖w − wk‖2H
)

+
α(2 − α)

2
‖wk − w̃k‖2H , ∀w ∈ Ω.

Moreover, the inequality (3.14) in Theorem 3.3 can be generalized as

‖wk+1 − w∗‖2H ≤ ‖wk − w∗‖2H − α(2− α)‖wk − w̃k‖2H , ∀w∗ ∈ Ω∗.

Then, based on these inequalities, analogous as the analysis in Section 3, convergence results for
the generalized version of the balanced ALM (6.1) can be obtained trivially.

In addition, the extra step (6.1c) can be combined with the splitting versions of the balanced
ALM (4.4) and (5.3) as well, and thus some generalized versions of the algorithms (4.4) and
(5.3) can also be proposed. The details are omitted for succinctness.

7 Conclusions

In this paper, we reshape the classic augmented Lagrangian method (ALM) by balancing its sub-
problems. Convex programming problems with both linear equality and inequality constraints
are considered. We propose a balanced ALM for the generic case, and various splitting ver-
sions for the separable cases. The balanced ALM and its splitting versions have the common
feature that the subproblems are better balanced, and they are easier to be implemented for
various applications. The balanced ALM advances the classic ALM by enlarging its applicable
range, better balancing its subproblems, and improving its implementation. The balanced ALM
and its splitting versions substantially enhance the rich literature of the classic ALM and its
variants from a novel perspective, and open up the door to designing other application-tailored
algorithms of the same kind for more specific/complicated problems.
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