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Abstract

This paper studies a distributed multi-agent convex optimization problem. The
system comprises multiple agents in this problem, each with a set of local data
points and an associated local cost function. The agents are connected to a server,
and there is no inter-agent communication. The agents’ goal is to learn a parameter
vector that optimizes the aggregate of their local costs without revealing their local
data points. In principle, the agents can solve this problem by collaborating with
the server using the traditional distributed gradient-descent method. However,
when the aggregate cost is ill-conditioned, the gradient-descent method (i) requires
a large number of iterations to converge, and (ii) is highly unstable against pro-
cess noise. We propose an iterative pre-conditioning technique to mitigate the
deleterious effects of the cost function’s conditioning on the convergence rate of
distributed gradient-descent. Unlike the conventional pre-conditioning techniques,
the pre-conditioner matrix in our proposed technique updates iteratively to facilitate
implementation on the distributed network. In the distributed setting, we provably
show that the proposed algorithm converges linearly with an improved rate of
convergence than the traditional and adaptive gradient-descent methods. Addi-
tionally, for the special case when the minimizer of the aggregate cost is unique,
our algorithm converges superlinearly. We demonstrate our algorithm’s superior
performance compared to prominent distributed algorithms for solving real logistic
regression problems and emulating neural network training via a noisy quadratic
model, thereby signifying the proposed algorithm’s efficiency for distributively
solving non-convex optimization. Moreover, we empirically show that the pro-
posed algorithm results in faster training without compromising the generalization
performance.

1 Introduction

In this paper, we consider solving multi-agent distributed convex optimization problems. Precisely,
we consider m agents in the system. The agents can only interact with a common server and the
overall system is assumed to be synchronous. Each agent i ∈ {1, . . . ,m} has a set of local data
points and a local cost function f i : Rd → R associated with its local data points. The aim of the
agents is to compute a minimum point of the aggregate cost function f : Rd → R, taking values
f(x) =

∑m
i=1 f

i(x) for each x ∈ Rd, across all the agents in the system. Formally, the goal of the
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agents is to distributively compute a common parameter vector x∗ ∈ Rd such that

x∗ ∈ X∗ = arg min
x∈Rd

m∑
i=1

f i(x). (1)

Since each agent only partially knows the collective data points, they collaborate with the server for
solving the distributed problem (1). However, the agents cannot share their local data points to the
server. An algorithm that enables the agents to jointly solve the above problem in the aforementioned
settings is defined as a distributed algorithm.

In principle, the optimization problem (1) can be solved using the distributed gradient-descent
(GD) algorithm [1]. Built upon the prototypical gradient-descent method, several adaptive gradient
algorithms have been proposed, which distributively solve (1) [2, 3, 4, 5, 6, 7, 8]. Amongst them,
some notable distributed algorithms are Nesterov’s accelerated gradient-descent (NAG) [2], heavy-
ball method (HBM) [3], adaptive momentum estimation (Adam) [4], BFGS method [5]. All these
methods are iterative in nature, wherein the server maintains an estimate of a solution defined in (1)
and iteratively refines it using the sum of local gradients computed by the agents.

If the aggregate cost function f is convex, the distributed GD method converges at a rate of O(1/t),
where t is the number of iterations [9]. The momentum-based methods, such as NAG, HBM,
and Adam, improve upon the convergence rate of GD. In particular, the Adam method has been
demonstrated to compare favorably with other optimization algorithms for a wide range of machine
learning problems [10, 11, 12]. However, for general convex cost functions f , these algorithms
converges at a sublinear rate [13, 14]. For the special case of strong convex cost function f , the
aforementioned methods converge linearly [9, 13, 14]. Quasi-Newton methods, such as BFGS,
explore second-order information of the cost functions. If the aggregate cost function’s Hessian
is positive definite at a solution of (1), then the BFGS method locally converges to a solution at
superlinear rate [5].

Figure 1: Estimation error ‖x(t)− x∗‖ of different al-
gorithms for the noisy quadratic model of neural network
training [15]. All the algorithms have the same initial
estimate {xi(0) ∈ N (0, 1), i = 1, . . . , d}. Other pa-
rameters are in the supplemental material.

We propose an adaptive gradient algorithm
for improving the convergence rate of the dis-
tributed gradient-descent method when solv-
ing the convex optimization problem (1) in dis-
tributed networks. The key concept in our pro-
posed method is iterative pre-conditioning. The
idea of iterative pre-conditioning has been orig-
inally proposed in [16], wherein the server up-
dates the estimate using the sum of the agents’
gradient multiplied with a suitable iterative pre-
conditioning matrix. However, [16] considers
only quadratic cost functions. Note that the it-
erative pre-conditioning in [16] does not triv-
ially extend to general cost functions due to
non-linearity in the gradients. The proposed
algorithm rigorously extends that idea of iter-
ative pre-conditioning to general convex opti-
mization problems (1). Using real-world datasets, we empirically show that the proposed algorithm
converges in fewer iterations compared to the aforementioned state-of-the-art methods for solving
the distributed convex optimization problem (1). Besides empirical results, we also present a formal
analysis of the proposed algorithm’s convergence.

Several research works have used quadratic models for approximating the loss functions of neural
networks [17, 18, 19, 20, 21, 22]. Quadratic model-based analyses of neural networks have produced
vital insights, including learning rate scheduling [18], and the Bayesian viewpoint of SGD with fixed
stepsize [23]. The noisy quadratic model (NQM) with carefully chosen model parameters is a proxy
for neural network training. The NQM parameters proposed in [15] make predictions that are aligned
with deep neural networks in realistic experimental settings. The results in [15] are supported by
further evidence from [24], which rigorously show that quadratic loss function model governs infinite
width neural network of arbitrary depth. The theoretical NQM in [21] correctly captures the short-
horizon bias of learning rates in neural network training. Thus, although the general optimization
model of neural networks is non-convex, noisy convex quadratic models such as [15] trim away
inessentials features while capturing the key aspects of real neural network training, including
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generalization performance [22] and the effects of pre-conditioning on gradients. This motivates us
to implement our proposed iterative pre-conditioning scheme on the noisy quadratic model [15] of
neural networks and empirically validating it for solving general non-convex optimization problems,
including neural network training.

1.1 Summary of our contributions

Our key contributions can be summarized as follows.

• We formally show that our algorithm converges linearly for a general class of convex cost
functions when the Hessian is non-singular at a solution of (1). In the special case when the
solution of (1) is unique, the convergence of our algorithm is superlinear. Formal details are
presented in Theorem 1 and Theorem 2 in Section 2.2.

• We rigorously show that the convergence rate of our algorithm compares favorably to
prominent distributed algorithms, namely the GD, NAG, HBM, and Adam methods.

- When the solution (1) is unique, our algorithm converges superlinearly which is only
comparable to the BFGS method [5]. The convergence of the other aforementioned
algorithms, on the other hand, is only linear [9, 13, 14].

- Moreover, in the general case, our algorithm converges linearly. On the other hand, the
convergence of GD, NAG, HBM, and Adam is sublinear [9, 13, 14]. Only the BFGS
method has superlinear rate in this case.

• Though numerical experiments on real-world data analysis problems, we demonstrate the
improved convergence rate of our algorithm.

- The noisy quadratic model in [15] has been claimed to emulate neural network training.
Our empirical study shows that the proposed algorithm converges faster than the
aforementioned distributed methods on this model, thereby demonstrating the proposed
algorithm’s efficiency for distributed solution of non-convex optimization problems.
Please refer to Section 3.1 for further details.

- Our empirical results for distributed binary logistic regression problem on the “MNIST”
and “CIFAR-10” datasets validate the proposed algorithm’s superior convergence
rate and comparable test accuracy, particularly under the influence of process noise
in the system and the stochastic mini-batch setting. Our algorithm’s final estimated
training loss is favorable to BFGS and comparable to the other methods. Please refer
to Section 3.2 for further details.

2 Proposed algorithm: Iteratively Pre-conditioned Gradient-descent (IPG)

In this section, we present our algorithm. Our algorithm follows the basic prototype of the distributed
gradient-descent method. However, a notable difference is that in our algorithm, the server multiplies
the aggregate of the gradients received from the agents by a pre-conditioner matrix. The server uses
the pre-conditioned aggregates of the agents’ gradients to update its current estimates. This technique
is commonly known as pre-conditioning [25]. When the aggregate cost f is strongly convex, the best
pre-conditioner matrix for the gradient-descent method is the inverse Hessian matrix ∇2f(x(t))−1,
resulting in Newton’s method which converges superlinearly [5]. However, ∇2f(x(t))−1 cannot
be computed directly in a distributed setting as it requires the agents to send their local Hessian
matrices ∇2f i(x(t)) to the server, which may require the agents to share their local data points,
such as the quadratic optimization problem [16]. Thus, we propose a distributed scheme where the
server iteratively updates the pre-conditioner matrix without requiring the agents to share their local
Hessian and their local data points in such a way that it linearly converges to ∇2f(x(t))−1. Thus,
our algorithm eventually converges to Newton’s method and has superlinear convergence rate for
strongly convex problems, as shown later in Section 2.2.

Next, we describe the proposed Iteratively Pre-conditioned Gradient-descent (IPG) algorithm. The
algorithm is iterative when in each iteration t ∈ {0, 1, . . .}, the server maintains an estimate x(t)
of a minimum point (1), and a pre-conditioner matrix K(t) ∈ Rd×d. Both the estimate and the
pre-conditioner matrix are updated using steps presented below.
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Initialization: Before starting the iterative process, the server chooses an initial estimate x(0) and a
pre-conditioner matrix K(0) from Rd and Rd×d, respectively. Further, the server chooses a sequence
of non-negative scalar parameters {α(t), t ≥ 0} and two non-negative scalar real-valued parameters
δ, β. The server broadcasts parameter β to all the agents. The specific values of these parameters are
presented later in Section 2.2.

2.1 Steps in each iteration t

In each iteration t, the algorithm comprises four steps that are executed collaboratively by the server
and the agents.

• Step 1: The server sends the estimate x(t) and the matrixK(t) to each agent i ∈ {1, . . . ,m}.
• Step 2: Each agent i ∈ {1, . . . ,m} computes the gradient gi(t) of its local cost function,

defined as

gi(t) = ∇f i(x(t)). (2)

Let I denote the (d × d)-dimensional identity matrix. Let ej and kj(t) denote the j-th
columns of matrices I and K(t), respectively, so that K(t) = [k1(t), . . . , kd(t)].
In the same step, each agent i computes a set of vectors

{
Rij(t) : j = 1, . . . , d

}
such that

for each j,

Rij(t) =

(
∇2f i(x(t)) +

(
β

m

)
I

)
kj(t)−

(
1

m

)
ej . (3)

• Step 3: Each agent i sends gradient gi(t) and the set of vectors
{
Rij(t), j = 1, . . . , d

}
to

the server.
• Step 4: The server updates the estimate x(t) to x(t+ 1) such that

x(t+ 1) = x(t)− δK(t)

m∑
i=1

gi(t). (4)

The server updates the pre-conditioner matrix K(t) to K(t+ 1) such that

kj(t+ 1) = kj(t)− α(t)

m∑
i=1

Rij(t), j = 1, ..., d. (5)

Next, we formally analyze convergence of the proposed IPG algorithm. For analysis, we consider
only full batched-data. However, IPG is applicable also to the stochastic setting, as we show later in
the experimental results (ref. Section 3).

2.2 Convergence guarantee

We make the following assumptions for our theoretical results. Recall that f denotes the aggregate
cost function, i.e., f =

∑m
i=1 f

i, and x∗ denotes a minimum point of f , defined in (1).
Assumption 1. Assume that the minimum of function f exists and is finite, i.e., |minx∈Rd f(x)| <∞.
Assumption 2. Assume that each local cost function f i is convex and twice continuously differen-
tiable over a convex domain D ⊆ Rd containing the set of minimum points X∗, defined in (1).
Assumption 3. Assume that the Hessian∇2f is Lipschitz continuous over the domainD with respect
to the 2-norm with Lipschitz constant γ. Specifically, for any x, y ∈ D,∥∥∇2f(x)−∇2f(y)

∥∥ ≤ γ ‖x− y‖ .
Assumption 4. Assume that the Hessian∇2f is non-singular at any minimum point x∗ ∈ X∗.

Assumption 2 implies that the aggregate cost function f =
∑m
i=1 f

i, defined in (1), is twice
continuously differentiable over D. Thus, its gradient, denoted by ∇f is Lipschitz continuous over
D. In other words, there exists a positive real valued constant scalar l such that for any x, y ∈ D,

‖∇f(x)−∇f(y)‖ ≤ l ‖x− y‖ . (6)

Notation: To formally state our convergence result we introduce some notation below.
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• For β > 0, we define
K∗ =

(
∇2f(x∗) + βI

)−1
.

Under Assumption 2; the function f is convex, thus
(
∇2f(x∗) + βI

)
is positive definite

when β > 0, and hence K∗ is well-defined.
• We let η denote the induced 2-norm of K∗, i.e., η = ‖K∗‖.
• For each iteration t ≥ 0, we define

ρ(t) =
∥∥I − α(t)

(
∇2f(x(t)) + βI

)∥∥ .
• We let λmax [·] and λmin [·], respectively denote the largest and smallest eigenvalue of a

matrix.

Lemma 1 below states a preliminary result about the convergence of the sequence of pre-conditioner
matrices {K(t), t ≥ 0} to K∗. This lemma is important for our key results presented afterward.
Proof of Lemma 1 is deferred to Appendix A.2.
Lemma 1. Consider the IPG Algorithm with parameters β > 0 and α(t) subject to

0 < α(t) <
1

λmax [∇2f(x(t))] + β
, ∀t ≥ 0. (7)

Then, under Assumptions 1 and 2, ρ(t) ∈ [0, 1) for all t ≥ 0.

Note that under the conditions assumed in Lemma 1,

ρ := sup
t≥0

ρ(t) exists, and is less than 1.

We now present below in Theorem 1 a key convergence result of our proposed IPG method. Proof of
Theorem 1 is deferred to Appendix A.3. Recall that x∗ denotes a minimum point of f , defined in (1).
Theorem 1. Suppose that Assumptions 1, 2, 3 and 4 hold true. Consider the IPG Algorithm with
parameters β > 0, δ = 1 and α(t) satisfying (7) for all t ≥ 0. Let the parameter β, the initial
estimate x(0) ∈ D and pre-conditioner matrix K(0) be chosen such that

ηγ

2
‖x(0)− x∗‖+ l ‖K(0)−K∗‖+ ηβ ≤ 1

2µ
(8)

where µ ∈
(

1, 1
ρ

)
and η = ‖K∗‖. If for t ≥ 0,

α(t) < min

{
1

λmax [∇2f(x(t))] + β
,

µt(1− µρ)

2l(1− (µρ)t+1)

}
, (9)

then we obtain that, for all t ≥ 0,

‖x(t+ 1)− x∗‖ ≤ 1

µ
‖x(t)− x∗‖ . (10)

Since µ > 1, Theorem 1 implies that the sequence of estimates {x(t), t ≥ 0} locally converges
to a solution x∗ ∈ X∗ with a linear convergence rate 1

µ . To obtain a simpler condition on α(t),
compared to (9), we can use a more conservative upper bound. Specifically, let Λ be an upper bound
of λmax

[
∇2f(x(t))

]
that holds true for each iteration t. From condition (8) in Theorem 1, we have

0 < µρ < 1 and µ > 1. Thus,

µt(1− µρ)

2l(1− (µρ)t+1)
>
µt(1− µρ)

2l
.

Ultimately, from above we infer that if

α(t) < min

{
1

Λ + β
,
µt(1− µρ)

2l

}
, ∀t ≥ 0,

then condition (9) is implied, and Theorem 1 holds true.
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The case of strong convexity: We further show that our algorithm attains superlinear convergence
when the aggregate cost function f is strongly convex (however, the local costs may only be convex),
as stated in the assumption below.
Assumption 5. Assume that the aggregate cost function f is strongly convex over the domain D.

In this case, the Hessian ∇2f is positive definite over the entire domain D. Thus, solution to
problem (1) is unique, which we denote by x∗. Under Assumption 5, we show that IPG method with
parameter β = 0 converges superlinearly.
Theorem 2. Consider the IPG Algorithm presented in Section 2.1, with parameters β = 0, δ = 1,
and α(t) for each iteration t ≥ 0. If Assumptions 1-3, Assumption 5, and the conditions (8)-(9) are
satisfied, then the following statement holds true:

lim
t→∞

‖x(t+ 1)− x∗‖
‖x(t)− x∗‖

= 0. (11)

Proof of Theorem 2 is deferred to Appendix A.4.

3 Experimental results

This section presents our results on three different experiments, validating the convergence of our
proposed algorithm on real-world problems and its comparison with related methods.

3.1 Distributed noisy quadratic model

In the first experiment, we implement our proposed algorithm for distributively solving (1) in the case
of the noisy quadratic model (NQM) [15], which has been shown to agree with the results of training
real neural networks. The noisy quadratic model of neural networks consists of a quadratic aggregate
cost function f(x) = 1

2x
THx, x ∈ Rd whereH is a (d×d)-dimensional diagonal matrix whose i-th

element in the diagonal is 1
i , and each gradient query is corrupted with independent and identically

distributed noise of zero mean and the diagonal covariance matrix H . In the experiments, we choose
d = 104, which is also the condition number of the Hessian H . The distributed implementation of
the aforementioned noisy quadratic model is set up as follows. The data points represented by the
rows of the matrix H are divided amongst m = 10 agents. Thus, each agent 1, . . . , 10 has a data
matrix of dimension 103 × 104. Since the Hessian matrix H in the noisy quadratic model is positive
definite, the optimization problem (1) has a unique solution x∗ = 0d.

Table 1: Comparisons between the number of iterations required by different algorithms to attain the
specified values for the relative estimation errors εtol.

Dataset εtol IPG GD NAG HBM Adam BFGS

Noisy
Quadratic 10−3 242 > 104 > 104 > 104 > 104

unstable
after 245

MNIST
(deterministic) 0 214 > 104 486 462 851 39

CIFAR-10
(deterministic) 0 196 > 104 627 634 3750 79

We compare the performance of our proposed IPG algorithm with other algorithms when implemented
on the above NQM in the distributed architecture. Specifically, these algorithms are the distributed
versions of gradient-descent (GD) [1], Nesterov’s accelerated gradient-descent (NAG) [2], heavy-ball
method (HBM) [3], adaptive momentum estimation (Adam) [4], and BFGS method [5].

The parameters of the respective distributed algorithms are selected such that each of these methods
converges in a fewer number of iterations. Specifically, these parameters are selected as described
below. For the GD, NAG, and HBM methods, the algorithm’s parameters are set such that each of
these methods achieves the optimal (smallest) rate of convergence. The specific definition of these
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optimal parameters can be found in [26]. Since the Hessian of the noisy quadratic model is positive
definite, Assumption 5 holds. So, we set the parameter β = 0 for the IPG method. The optimal
convergence rate of the linear version of the proposed IPG method is obtained when α = 2

λ1+λd
[16].

Here, λ1 = 1 and λd = 1
d respectively denote the largest and the smallest eigenvalue of H . We

find that the IPG method implemented for the NQM converges fastest when the parameter α is set
similarly as α(t) = 2

λ1+λd
. The step-size parameter α(t) of Adam is selected from the set {c, c√

t
, ct}

where c is from the set {0.01, 0.05, 0.1, 0.5, 1, 2}. The other parameters of Adam are set at their usual
values of β1 = 0.9, β2 = 0.999, and ε = 10−8. The step-size of the BFGS method is obtained using
the backtrack routine. The best parameter combinations from above are reported in the supplemental
material.

The initial estimate x(0) for these algorithms is randomly drawn from the standard normal distribution.
The initial pre-conditioner matrix K(0) for the IPG algorithm is the zero matrix of dimension (d×d).
The initial approximation of the Hessian matrix B(0) for the BFGS algorithm is the identity matrix
of dimension (d× d).

We compare the number of iterations needed by these algorithms to reach a relative estimation error
defined as εtol = ‖x(t)−x∗‖

‖x(0)−x∗‖ . The results are recorded in Table 1 and Figure 1, from which we find
that the proposed IPG algorithm converges fastest among the distributed algorithms implemented on
the NQM.

Table 2: Comparisons between the number of iterations required by different algorithms to attain the
specified values for relative error in estimated cost εtol when subjected to noise.

Dataset εtol IPG GD NAG HBM Adam BFGS

MNIST
(process noise) 6e−8 216 > 104 > 104 532 878 43

MNIST
(mini-batch) 2e−3 737 > 104 > 104 > 104 > 104 > 104

CIFAR-10
(process noise) 4e−6 289 > 104 > 104 350 1191 > 104

CIFAR-10
(mini-batch) 2e−3 1960 > 104 3151 > 104 > 104 > 104

3.2 Distributed logistic regression

In the second and third experiments, we implement the proposed algorithm for distributively solving
the logistic regression problem, respectively on the “MNIST” [27] and “CIFAR-10” [28] datasets.

Table 3: Comparisons between the relative final error sse in estimated cost function obtained by
different algorithms when subjected to noise.

Dataset IPG GD NAG HBM Adam BFGS

MNIST
(process noise) 6e−8 6e−8 6e−8 6e−8 3e−8 ∞

MNIST
(mini-batch) 2e−3 3e−3 5e−3 1e−2 1e−1 1e−1

CIFAR-10
(process noise) 4e−6 3e−6 1e−5 0 2e−8 ∞

CIFAR-10
(mini-batch) 2e−3 2e−2 1e−3 8e−3 3e−3 ∞
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(a) MNIST: full-batch (b) MNIST: full-batch with process noise

(c) MNIST: mini-batch (d) CIFAR-10: full-batch

(e) CIFAR-10: full-batch with process noise (f) CIFAR-10: mini-batch

Figure 2: Estimated aggregate cost f(x(t)) of different algorithms represented by different colors.
For all the algorithms, {xi(0) ∈ N (0, 0.1), i = 1, . . . , d}. Additionally, K(0) = Od×d for IPG and
B(0) = Id×d for BFGS. The other parameters are enlisted in the supplemental material.

From the training examples of the “MNIST” dataset, we select 104 arbitrary instances labeled as
either the digit one or the digit five. For each instance, we calculate two quantities, namely the
average intensity and the average symmetry of the image [29]. Let the column vectors a1 and a2
respectively denote the average intensity and the average symmetry of those 104 instances. These two
features are then mapped to a second-order polynomial space. Then, our input data matrix before pre-
processing is

[
a1 a2 a1.

2 a1. ∗ a2 a2.
2
]
. Here, (.∗) represents element-wise multiplication

and (.2) represents element-wise squares. This raw data matrix is then pre-processed as follows.
Each column is shifted by the mean value of the corresponding column and then divided by the
standard deviation of that column. Finally, a 104-dimensional column vector of unity is appended to
this pre-processed matrix. This is our final input matrix A of dimension (104 × 6). The collective
data points (A,B) are then distributed among m = 10 agents, in the manner already described in
Section 3.1.

Similarly, from the training examples of the “CIFAR-10” dataset, we select 104 instances labeled
as either “airplane” or “automobile”. For each instance, we calculate six quantities, namely the
average intensity and the average symmetry of the image for each of the three pixel-colors. Let
the column vector a1, . . . , a6 respectively denote these six features of all 104 instances. We apply
a feature transform so that our input matrix before pre-processing is

[
a1 . . . a6 a1.

2 . . . a6.
2
]
.

The pre-processing step and splitting the data among agents is the same as described above.

We compare the performance of the proposed IPG method with other algorithms for distributively
solving the logistic regression problem on the “MNIST” and “CIFAR-10” datasets. As in Section 3.1,
the algorithm parameters are selected such that each of these methods converges in a fewer number of
iterations. Specifically, the parameter selection is described below. The best parameter combinations,
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Table 4: Comparisons between the test error obtained by training with different algorithms.

Dataset IPG GD NAG HBM Adam BFGS

MNIST
(process noise) 0.13 0.13 0.13 0.13 0.13 N/A

MNIST
(mini-batch) 0.14 0.14 0.14 0.14 0.14 0.15

CIFAR-10
(process noise) 0.20 0.20 0.20 0.21 0.21 N/A

CIFAR-10
(mini-batch) 0.21 0.21 0.21 0.21 0.21 N/A

for which the respective algorithms converge in a fewer number of iterations, are then reported for
each dataset in the supplemental material. The algorithms are initialized as described in Section 3.1.

IPG: The parameter α(t) is selected from the set {c × 10−3, c × 10−4} where c is from the set
{1, 2, 5}. The parameter δ is chosen from the set {1, 0.1, 0.05} and β from the set {0, 0.1, 1}.

GD: The GD algorithm has only one parameter α, which is selected from the set {c× 10−3, c×
10−4} where c is from the set {1, 2, 5}.

NAG and HBM: The parameter α is selected from the set {c× 10−3, c× 10−4} where c is from
the set {1, 2, 3, 5}. The parameter β is selected from the set {0.91, 0.92, . . . , 0.99}.

Adam: The parameters of Adam are selected from the set described in Section 1.

BFGS: The step-size α(t) is either obtained following the backtrack routine or chosen from the set
{c× 10−p} where c is from the set {1, 2, 5} and p is from {2, 3, 4, 5}.
For each dataset, we implement the distributed algorithms in three different settings as follows.

Full-batch or deterministic: In this setting, we compare the number of iterations needed by
different algorithms to reach a minimum point. Let f∗ denote the value of aggregate cost function at
this minimum point. The results are recorded in Table 1, Figure 2a, and Figure 2d. We observe that
only the BFGS algorithm converges in fewer iterations than IPG.

Full-batch with process noise: In this setting, we add random process noise to each iterated
variable of the respective algorithms. Specifically, the additive noise is uniformly distributed within
(0, 2.3× 10−4) and (0, 10−4), respectively for the MNIST and CIFAR-10 datasets. We compare (i)
the number of iterations needed to reach a relative estimated cost defined as εtol = f(x(t))−f∗

f∗ , and

(ii) the final error in aggregate cost, defined as sse = limt→∞
f(x(t))−f∗

f∗ , obtained by an algorithm.
For the criteria-(i), each iterative algorithm is run (ref. Figure 2b and Figure 2e) until its relative
estimated cost does not exceed εtol over a period of 10 consecutive iterations, and the smallest such
iteration is reported in Table 2. For the criteria-(ii), each iterative algorithm is run until the changes in
its subsequent estimated cost is less than 10−4 over 50 consecutive iterations, and the final relative
error in estimated cost is reported in Table 3. For the MNIST dataset, we observe that only the BFGS
algorithm reaches εtol in fewer iterations compared to IPG (ref. Table 2). However, the BFGS method
diverges after 83 iterations. The final estimated cost for IPG is comparable to the other algorithms,
except for BFGS, which diverges (ref. Table 3). For the CIFAR-10 dataset, the IPG algorithm needs
the least iterations (ref. Table 2). However, its final cost is slightly larger than HBM and Adam and
comparable to GD (ref. Table 3).

Mini-batch: Each agent computes its local gradients based on 10 randomly selected local data
points at each iteration in this setting. As there are m = 10 agents, the server updates the estimate
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based on an effective batch size of 100. We compare the algorithms based on criteria-(i) and -(ii)
described in the previous setting. From Table 2, the IPG algorithm requires the least number of
iterations to reach εtol for both the datasets. For the MNIST dataset, the IPG algorithm has the
smallest final estimated cost (ref. Table 3). For the CIFAR-10 dataset, only NAG has a smaller final
cost than IPG (ref. Table 3).

We compare the performance of the algorithms on the respective test datasets (ref. Table 4). We
observe that the test error of the logistic regression model trained with the proposed IPG algorithm is
comparable with the other distributed algorithm, including the GD method. Thus, the IPG algorithm
results in faster training without degrading the generalization performance.

4 Summary

We have proposed an adaptive gradient-descent algorithm for distributed learning without requiring
the agents to reveal their local data points. The key ingredient of our proposed algorithm is an iterative
pre-conditioning technique, which provably improves the convergence rate over the existing adaptive
gradient methods in the distributed architecture. We have empirically shown our algorithm’s faster
convergence, and comparable generalization performance, when compared to the state-of-the-art
distributed methods. In this work, we have assumed the distributed network to be synchronous. Our
theoretical results have been derived for the full-batch settings and convex cost functions. However,
through experiments we have also shown the efficacy of our algorithm in stochastic settings and in
training of non-convex neural network via a noisy quadratic model.
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A Supplemental material

A.1 Algorithm parameters used in the experiments

Table 5: The parameters used in different algorithms.*

Dataset IPG GD NAG HBM Adam BFGS

α(t), δ, β α α, β α, β
α(t), β1, β2,
ε

α(t)

Noisy
Quadratic 1.99, 1, 0 1.99 1.33, 0.97 3.92, 0.96

1
t , 0.9, 0.999,
1e−8

according to
backtrack [5]

MNIST
(determin-
istic)

5e−4, 1, 0 5e−4 5e−4, 0.97 1e−3, 0.94
2, 0.9, 0.999,
1e−8

1e−3

MNIST
(process
noise)

5e−4, 1, 0 5e−4 5e−4, 0.97 1e−3, 0.94
2, 0.9, 0.999,
1e−8

1e−3

MNIST
(mini-
batch)

1e−4, 0.05, 1 1e−4 5e−4, 0.97 1e−3, 0.95
1, 0.9, 0.999,
1e−8

0.05

CIFAR-10
(determin-
istic)

2e−4, 1, 0 2e−4 1e−4, 0.95 3e−4, 0.94
1√
t
, 0.9, 0.999,

1e−8
2e−4

CIFAR-10
(process
noise)

2e−4, 0.05, 0 2e−4 1e−4, 0.93 3e−4, 0.94
0.1, 0.9, 0.999,
1e−8

1e−5

CIFAR-10
(mini-
batch)

1e−3, 0.05, 0 2e−4 2e−4, 0.95 2e−4, 0.92
1√
t
, 0.9, 0.999,

1e−8
according to
backtrack

* The argument behind selection of these specific parameter values has been described in Section 3.1,
for the noisy quadratic model, and Section 3.2, for the MNIST and CIFAR-10 datasets.

A.2 Proof of Lemma 1

In this section, we prove the result in Lemma 1.

Recall the definition of K∗ from Section 2.2. For each iteration t ≥ 0, define the matrix

K̃(t) = K(t)−K∗. (12)

Consider an arbitrary iteration t ≥ 0. Upon substituting from (3) and (5) in the definition (12),

K̃(t+ 1) =K(t)− α(t)
((
∇2f(x(t)) + βI

)
K(t)− I

)
−K∗

=K(t)−K∗ − α(t)
((
∇2f(x(t)) + βI

)
K(t)−

(
∇2f(x(t)) + βI

)
K∗
)

− α(t)
((
∇2f(x(t)) + βI

)
K∗ −

(
∇2f(x∗) + βI

) (
∇2f(x∗) + βI

)−1)
.

Upon substituting above from (12) and the definition of K∗,

K̃(t+ 1) =
(
I − α(t)

(
∇2f(x(t)) + βI

))
K̃(t)− α(t)

(
∇2f(x(t))−∇2f(x∗)

)
K∗.

Applying Cauchy-Schwartz inequality above,∥∥∥K̃(t+ 1)
∥∥∥ ≤ ∥∥I − α(t)

(
∇2f(x(t)) + βI

)∥∥ ∥∥∥K̃(t)
∥∥∥+ α(t)

∥∥∇2f(x(t))−∇2f(x∗)
∥∥ ‖K∗‖ .

(13)

13



Under Assumption 2, each local cost function f i is convex, implying that the aggregate cost function
f =

∑m
i=1 f

i is convex. Thus,
(
∇2f(x(t)) + βI

)
is positive definite for β > 0. It follows that, if

α(t) < 1
λmax[∇2f(x(t))]+β then ρ(t) =

∥∥I − α(t)
(
∇2f(x(t)) + βI

)∥∥ < 1. This proves the lemma.

A.3 Proof of Theorem 1

In this section, we present a formal proof of our main result in Theorem 1. We proceed with the proof
in three steps as follows.

Before presenting the proof, we define the following notation. Recall the definition of the minimum
points X∗ in (1). For a minimum points x∗ ∈ X∗ and each iteration t ≥ 0, define the estimation
error

z(t) = x(t)− x∗. (14)

Step 1: In this step, we derive an upper bound of
∥∥∥K̃(t+ 1)

∥∥∥, provided with the iterations from 0

to t. In this step, we use (13) from the proof of Lemma 1.

Consider an arbitrary iteration t ≥ 0. From Section 2.2, recall that η denotes the induced 2-norm of
the matrix K∗. Then,

η = ‖K∗‖ =
∥∥∥(∇2f(x∗) + βI

)−1∥∥∥ =
1

λmin [∇2f(x∗)] + β
. (15)

Under Assumption 2 and 4, ∇2f(x∗) is positive definite. Then, λmin
[
∇2f(x∗)

]
> 0, and η < 1

β .
From Section 2.2, recall the definition ρ = supt≥0 ρ(t). From Lemma 1 we have 0 ≤ ρ < 1. Upon
substituting from (15) and the definition of ρ in (13),∥∥∥K̃(t+ 1)

∥∥∥ ≤ρ∥∥∥K̃(t)
∥∥∥+ η α(t)

∥∥∇2f(x(t))−∇2f(x∗)
∥∥ . (16)

Under Assumption 3,
∥∥∇2f(x(t))−∇2f(x∗)

∥∥ ≤ γ ‖x(t)− x∗‖. Upon substituting above from the
definition (14),

∥∥∇2f(x(t))−∇2f(x∗)
∥∥ ≤ γ ‖z(t)‖. Upon substituting from above in (16),∥∥∥K̃(t+ 1)
∥∥∥ ≤ρ ∥∥∥K̃(t)

∥∥∥+ ηγ α(t) ‖z(t)‖ .

Iterating the above from t to 0 we have∥∥∥K̃(t+ 1)
∥∥∥ ≤ρt+1

∥∥∥K̃(0)
∥∥∥+ ηγ α(t)

(
‖z(t)‖+ ρ ‖z(t− 1)‖+ . . .+ ρt ‖z(0)‖

)
. (17)

Step 2: In this step, we derive an upper bound on the estimation error ‖z(t+ 1)‖, provided iteration
t.

Upon substituting from (4) in (14), with the parameter δ = 1,

z(t+ 1) =z(t)−K(t)

m∑
i=1

gi(t).

Upon substituting above from (2) and the definition of aggregate cost function f =
∑m
i=1 f

i,

z(t+ 1) =z(t)−K(t)∇f(x(t)).

Upon substituting above from the definition of K̃(t) in (12),

z(t+ 1) =z(t)−K∗∇f(x(t))− K̃(t)∇f(t)

=−K∗
(
∇f(x(t))− (K∗)

−1
z(t)

)
− K̃(t)∇f(x(t)).

Since x∗ is a minimum point of the aggregate cost function f in (1), the first order necessary condition
states that∇f(x∗) = 0d. Here, 0d denotes the d-dimensional zero vector. Thus, the above equation
can be rewritten as

z(t+ 1) =−K∗
(
∇f(x(t))−∇f(x∗)− (K∗)

−1
z(t)

)
− K̃(t)∇f(x(t)). (18)
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Using the fundamental theorem of calculus [5],

∇f(x(t))−∇f(x∗) = (x(t)− x∗)
∫ 1

0

∇2f(yx(t) + (1− y)x∗)dy.

From above and the definition of K∗ =
(
∇2f(x∗) + βI

)−1
(see Section 2.2), we have

∇f(x(t))−∇f(x∗)− (K∗)
−1
z(t)

= (x(t)− x∗)
∫ 1

0

∇2f(yx(t) + (1− y)x∗)dy −
(
∇2f(x∗) + βI

)
z(t)

= (x(t)− x∗)
∫ 1

0

(
∇2f(yx(t) + (1− y)x∗)−∇2f(x∗)

)
dy − βz(t).

From (14), recall that z(t) = x(t)− x∗. Thus, from above we obtain that∥∥∥∇f(x(t))−∇f(x∗)− (K∗)
−1
z(t)

∥∥∥
≤ ‖z(t)‖

∫ 1

0

∥∥∇2f(yx(t) + (1− y)x∗)−∇2f(x∗)
∥∥ dy + β ‖z(t)‖ .

Under Assumption 3,
∥∥∇2f(yx(t) + (1− y)x∗)−∇2f(x∗)

∥∥ ≤ γ(1− y) ‖z(t)‖. Thus,∥∥∥∇f(x(t))−∇f(x∗)− (K∗)
−1
z(t)

∥∥∥ ≤ γ ‖z(t)‖2 ∫ 1

0

(1− y)dy + β ‖z(t)‖

=
γ

2
‖z(t)‖2 + β ‖z(t)‖ .

Upon using Cauchy-Schwartz inequality in (18), and then substituting from above, we obtain that

‖z(t+ 1)‖ ≤η γ
2
‖z(t)‖2 + ηβ ‖z(t)‖+

∥∥∥K̃(t)
∥∥∥ ‖∇f(x(t))‖ .

Since∇f(x∗) = 0d, the above can be rewritten as

‖z(t+ 1)‖ ≤η γ
2
‖z(t)‖2 + ηβ ‖z(t)‖+

∥∥∥K̃(t)
∥∥∥ ‖∇f(x(t))−∇f(x∗)‖ .

Upon using the Lipschitz property (6) in above,

‖z(t+ 1)‖ ≤η γ
2
‖z(t)‖2 + ηβ ‖z(t)‖+ l

∥∥∥K̃(t)
∥∥∥ ‖z(t)‖ . (19)

Upon substituting above from (17) in Step 1, we have

‖z(t+ 1)‖ ≤ η γ
2
‖z(t)‖2 + ηβ ‖z(t)‖

+ l ‖z(t)‖
(
ρt
∥∥∥K̃(0)

∥∥∥+ ηγ α(t− 1)
(
‖z(t− 1)‖+ ρ ‖z(t− 2)‖+ . . .+ ρt−1 ‖z(0)‖

))
. (20)

Step 3: In this final step of the proof, we prove (10) which is a direct result of the following claim.
Claim. Given the conditions of Theorem 1, for each iteration t ≥ 0 the following statement holds
true:

‖z(t+ 1)‖ ≤ 1

µ
‖z(t)‖ and ‖z(t)‖ < 1

µηγ
. (21)

Proof. We proof the aforementioned claim by the principle of induction. First, we show that the
claim is true for iteration t = 0. At t = 0, from (19) we have

‖z(1)‖ ≤‖z(0)‖
(
η
γ

2
‖z(0)‖+ ηβ + l

∥∥∥K̃(0)
∥∥∥) .

Upon substituting above from the condition (8),

‖z(1)‖ ≤ 1

2µ
‖z(0)‖ .
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Since µ > 1, from above we have

‖z(1)‖ < 1

µ
‖z(0)‖ .

Moreover, (8) implies that ‖z(0)‖ < 1
µηγ . Thus, the claim holds for t = 0. Now, we assume that the

claim is true for the iterations from 0 to t. We need to show that the claim is also true for the iteration
t+ 1. From the above assumption we have

‖z(t+ 1)‖ ≤ 1

µ
‖z(t)‖ ≤ 1

µ2
‖z(t− 1)‖ ≤ . . . ≤ 1

µt+1
‖z(0)‖ < 1

µt+1

1

µηγ
. (22)

Since µ > 1, the above implies that ‖z(t+ 1)‖ < 1
µηγ . Now, consider the expression

(‖z(t)‖+ ρ ‖z(t)‖+ . . .+ ρt ‖z(0)‖) in the R.H.S. of (20) for iteration t + 1. Upon substituting
from (22),

‖z(t)‖+ ρ ‖z(t)‖+ . . .+ ρt ‖z(0)‖ ≤ ‖z(0)‖
(

1

µt
+

ρ

µt−1
+ . . .+ ρt

)
= ‖z(0)‖ 1− (µρ)t+1

µt(1− µρ)
.

From the condition of Theorem 1 we have that µρ < 1. Upon substituting from above in (20) for
iteration t+ 1,

‖z(t+ 2)‖ ≤ ‖z(t+ 1)‖
(
η
γ

2
‖z(t+ 1)‖+ ηβ + lρt+1

∥∥∥K̃(0)
∥∥∥+ ηγl α(t) ‖z(0)‖ 1− (µρ)t+1

µt(1− µρ)

)
.

(23)

From Step 1 we have ρ < 1. Thus, lρt+1
∥∥∥K̃(0)

∥∥∥ < l
∥∥∥K̃(0)

∥∥∥. Additionally, if α(t) < µt(1−µρ)
2l(1−(µρ)t+1 ,

then ηγl α(t) ‖z(0)‖ 1−(µρ)t+1

µt(1−µρ) < η γ2 ‖z(0)‖. Using condition (8) then we have

ηβ + lρt+1
∥∥∥K̃(0)

∥∥∥+ ηγl α(t) ‖z(0)‖ 1− (µρ)t+1

µt(1− µρ)
<

1

2µ
. (24)

We have shown above that ‖z(t+ 1)‖ < 1
µηγ , which implies that η γ2 ‖z(t+ 1)‖ < 1

2µ . Upon
substituting from above and (24) in (23),

‖z(t+ 2)‖ ≤ 1

µ
‖z(t+ 1)‖ .

Thus, the claim holds for iteration t+ 1. Due to the principle of induction, the proof of the claim is
complete.

Equation (10) directly follows from the aforementioned claim, and concludes the proof of Theorem 1.

A.4 Proof of Theorem 2

In this section, we present the proof of Theorem 2. For this proof, we borrow the results (17) and (19)
from the proof of Theorem 1.

Under Assumption 5, ∇2f(x(t)) is positive definite for x(t) ∈ D. So, Assumption 5 is a special
case of Assumption 4. Moreover, since ∇2f(x(t)) is positive definite for x(t) ∈ D, Theorem 1 is
applicable with β = 0 in this case. To prove (11), consider (19) from the proof of Theorem 1. Upon
taking limits on both sides as t→∞ and substituting β = 0, we get

lim
t→∞

‖z(t+ 1)‖
‖z(t)‖

≤ lim
t→∞

(
η
γ

2
‖z(t)‖+ l

∥∥∥K̃(t)
∥∥∥) . (25)

Since µ > 1, from (10) of Theorem 1 we have that limt→∞ ‖z(t)‖ = 0. Since ρ < 1 and
limt→∞ ‖z(t)‖ = 0, from (17) we have limt→∞

∥∥∥K̃(t)
∥∥∥ = 0. Upon substituting them in (25) above,

we obtain (11). Hence, the proof.
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