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DIMENSION-FREE ENTANGLEMENT DETECTION
IN MULTIPARTITE WERNER STATES

FELIX HUBER, IGOR KLEP, VICTOR MAGRON, AND JURIJ VOLČIČ

Abstract. Werner states are multipartite quantum states that are invariant under the

diagonal conjugate action of the unitary group. This paper gives a complete character-

ization of their entanglement that is independent of the underlying local Hilbert space:

for every entangled Werner state there exists a dimension-free entanglement witness.

The construction of such a witness is formulated as an optimization problem. To solve

it, two semidefinite programming hierarchies are introduced. The first one is derived

using real algebraic geometry applied to positive polynomials in the entries of a Gram

matrix, and is complete in the sense that for every entangled Werner state it converges

to a witness. The second one is based on a sum-of-squares certificate for the positivity of

trace polynomials in noncommuting variables, and is a relaxation that involves smaller

semidefinite constraints.
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1. Introduction

1.1. Entanglement. An n-partite quantum state with local dimension d is represented

by a positive semidefinite matrix with trace one in the space L((Cd)⊗n) of linear operators

acting on (Cd)⊗n. A quantum state ̺ ∈ L((Cd)⊗n) is said to be separable or classically

correlated, if it can be written as a convex combination of product states
∑

i

pi̺
(1)
i ⊗ · · · ⊗ ̺

(n)
i ,

where ̺
(j)
i ∈ L(Cd) are states, and pi ≥ 0 satisfy

∑
i pi = 1. We denote the set of separable

states on n systems with d levels each as SEP(d, n). A state is termed entangled if it is not

separable [GT09]. The detection of entanglement can be done with linear operators known

as entanglement witnesses. These are operators W ∈ L((Cd)⊗n) for which tr(W̺) ≥ 0

holds for all separable states ̺ and tr(Wϕ) < 0 holds for at least one entangled state ϕ.

Note that since separable sets are defined as the convex hull of product states, it suffices

to ascertain that tr(W̺) ≥ 0 holds for all product states ̺ only.

Nevertheless, characterizing the set of entangled states is computationally hard [Gur03]

and it helps to restrict the set of states under consideration. Here we focus on Werner

states [Wer89, EW01, CKMR07, MK19, Hub21]: these are invariant under the diagonal

action of the unitary group Ud, i.e., ̺ = U⊗n̺(U †)⊗n for all U ∈ Ud. As a consequence of

the Schur-Weyl duality [Pro07, Theorem 9.3.1], Werner states are linear combinations of

permutation operators. Note that an element σ in the symmetric group Sn acts on the

Hilbert space (Cd)⊗n by permuting its tensor factors. With some abuse of notation we

can then write a Werner state ̺ as

(1) ̺ =
∑

σ∈Sn

rσσ, rσ ∈ C .

That is, Werner states are parametrized by elements of the group algebra CSn. It is inter-

esting to note that Werner states have applications both in quantum information theory

as well as in many-body physics: they were introduced to show that entanglement and

non-locality are distinct concepts [Wer89], and their entanglement structure can be used

to characterize correlations close to phase transitions in magnetic systems [SanRP+14].

To detect entanglement in Werner states, it is easy to see that one can restrict to

entanglement witnesses W that exhibit the same invariance as the states. Thus we can

represent them by w =
∑

σ∈Sn
wσσ with wσ ∈ C. We say that w ∈ CSn is a dimension-

free witness if the operator W represented by w is a witness regardless of the local

dimension d.

The description (1) of Werner states removes the underlying local Hilbert space, which

is especially useful when the latter has large dimension. This raises a natural question:

can the entanglement of Werner states be also described in a dimension-independent

manner? Furthermore, does such a dimension-free description yield a computationally

efficient procedure for entanglement detection? This paper provides affirmative answers

to both questions.

For three-partite Werner states, a description of entanglement without referring to the

local dimension was given in [EW01]. Here we present a complete characterization for the

entire class of Werner states (for any number of local systems). To efficiently detect their

entanglement, we employ semidefinite programming hierarchies.
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1.2. SDP hierarchies. Semidefinite programming (SDP) hierarchies have emerged as

powerful tools applicable to a wide range of problems in quantum information the-

ory [VD06, CS16, Mir18, Wan18, BBFS21]. Solving an SDP [AL12] means minimizing a

linear function under linear matrix inequality constraints, which is a convex problem. The

advantages of SDPs lie with the existence of efficient algorithms, the ready availability

of numerical solvers, and ability to provide solution certificates [VB96, BPT13]. When

formulated in this framework, many quantities that are otherwise difficult to compute can

be approximated by a converging sequence of increasingly larger SDP instances.

A well-known example is the Navascués-Pironio-Aćın hierarchy for finding the maxi-

mum violation levels of Bell inequalities [NPA08]. This hierarchy gives a sequence of outer

approximations to the set of correlations that can be obtained from quantum systems of

arbitrarily large (even infinite-dimensional) local Hilbert space. This is in contrast with

the hierarchies used in entanglement detection: here the available hierarchies detect en-

tanglement of quantum states where the local dimension is fixed [DPS04, BV04, JMG11,

NOP09, LGSH15, EHGC04, BWBG17, HNW17, FBA21]. While extremely powerful for

small systems, these hierarchies are afflicted by the exponential scaling of the problem

size with the local Hilbert space dimension.

It is thus of interest to not only approach non-locality, but also entanglement in a

dimension-free manner. With the help of methods from commutative and noncommuta-

tive polynomial optimization [Las01, SH06, KMV21], we use our dimension-free charac-

terization of Werner states to detect their entanglement with SDP hierarchies that do not

depend on the local Hilbert space dimension.

1.3. Main results. The first main contribution of this paper reveals the dimension-

independent nature of entanglement for Werner states.

Theorem A. For all d, n and every entangled Werner state ̺ ∈ L((Cd)⊗n) there exists a

dimension-free witness w ∈ CSn detecting it.

For the proof of Theorem A see Corollary 7 below. Thus the set of separable Werner

states can be described using hyperplanes of the form w =
∑

σ∈Sn
wσσ whose n! pa-

rameters are entirely independent of the local dimension. A key step in bypassing the

dependence on the local dimension is replacing the usual description (1) of Werner states

in terms of the symmetric group with a special weighted version arising from the repre-

sentation theory of Sn. A characterization of entangled Werner states without referring

to the local Hilbert space is given in Theorem 4.

The second main contribution of this paper are two SDP hierarchies for finding dimension-

free entanglement witnesses for Werner states as in Theorem A. Both of them arise from

the optimization problem for a given Werner state ̺:

(2)

ε∗ = inf
ε∈R, w∈CSn

ε

subject to tr(W̺) = −1 ,

W is represented by w ,

w + ε is a dimension-free witness .

Then ̺ is entangled if and only if ε∗ < 1. The difference between our two hierarchies

stems from encoding the last constraint in (2).
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The first hierarchy SDP-POP encodes positivity of w + ε on product states with poly-

nomials in commuting variables zij that represent angles between unit vectors. These

variables can be seen as entries of a positive semidefinite Gram matrix with 1s on the

diagonal, corresponding to extremal points of the set of separable states. Using Putinar’s

Positivstellensatz from real algebraic geometry, optimization of a polynomial in variables

zij over all Gram matrices with 1s on the diagonal can then be cast as a sequence of SDPs

as in Lasserre’s hierarchy [Las01].

Theorem B. Let ̺ be a Werner state. Then ̺ is entangled if and only if a term in

the hierarchy SDP-POP returns a value less than 1, in which case it also produces a

dimension-free entanglement witness for ̺.

The second hierarchy SDP-TPOP applies the trace polynomial optimization framework

introduced by the second, third and fourth author [KMV21] to the correspondence be-

tween positive trace polynomials and Werner state entanglement witnesses by the first

author [Hub21]. Trace polynomials are polynomial-like expressions in noncommuting vari-

ables x1, . . . , xn and traces of their products. It turns out that positivity of a trace poly-

nomial over all tracial von Neumann algebras can be characterized with a sum-of-squares

certificate [KMV21, Theorem 4.4]. Since matrices are special cases of tracial von Neumann

algebras, we can use sum-of-squares representations of trace polynomials to confirm their

positivity on matrices. Finally, since Werner state witnesses correspond to trace polyno-

mials positive on tuples of positive semidefinite matrices ([Hub21, Theorem 16], also see

Theorem 12), this leads to the hierarchy SDP-TPOP for entanglement detection.

Theorem C. Let ̺ be a Werner state. If a term in the hierarchy SDP-TPOP returns a

value less than 1, then ̺ is entangled and a corresponding dimension-free entanglement

witness is produced.

While the hierarchy SDP-POP is complete since it converges to an entanglement wit-

ness for every entangled Werner state, it is not clear whether SDP-TPOP detects every

entangled Werner state. However, the latter hierarchy’s first steps involve much smaller

semidefinite constraints than the hierarchy SDP-POP, which makes it more suitable for

concrete calculations. As a demonstration, we use SDP-TPOP to produce an exact en-

tanglement witness for a 4-partite Werner state, for which the Peres-Horodecki criterion

(i.e., a negative partial transpose signals entanglement [Per96, HHH96]) fails (Section 6).

2. Dimension-free entanglement witnesses for Werner states

In this section we present a parametrization of Werner states with the group algebra

of the symmetric group that admits a dimension-free characterization of entanglement.

Our approach generalizes [EW01] where tripartite Werner states were considered. We

start by introducing notions from the representation theory of the symmetric group that

are required throughout the paper. Then we build towards Theorem 4 which relates

entanglement of Werner states with a certain system of polynomial inequalities that is

independent of the local dimension. As a consequence we prove the existence of dimension-

free entanglement witnesses (Corollary 7).

The group algebra CSn has a canonical conjugate-linear involution † given by inverting

group elements, (
∑

σ∈Sn
aσσ)

† =
∑

σ∈Sn
aσσ

−1. Furthermore, there is a natural trace

τ : CSn → C, τ(a) = n!aid
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where aid is the coefficient of the identity id in a ∈ CSn. Throughout the paper we

view CSn as a Hilbert space with the scalar product induced by τ ; that is, 1√
n!
Sn is an

orthonormal basis of CSn. We define the set of states as

{r ∈ CSn : r = aa†, a ∈ CSn, τ(r) = 1}

The terminology is justified by Lemma 1(2) below. Note that r = aa† for some a ∈ CSn if

and only if r is a positive semidefinite element of the finite-dimensional C∗-algebra CSn,

which is further equivalent to Φ(r) � 0 for every ∗-representation Φ of CSn.

We now outline the necessary facts from the representation theory of the symmetric

group [FH04, Pro07]. To each partition λ ⊢ n is associated an irreducible representation

of Sn (cf. [FH04, Chapter 4]); let χλ be its character. Let {ωλ : λ ⊢ n} be a complete set

of centrally primitive idempotents for CSn [FH04, Section 3.4]. They can be written as

ωλ =
χλ(id)

n!

∑

σ∈Sn

χλ(σ)σ
−1 ,

where χλ(id) is both the multiplicity and the dimension of the irreducible representation

corresponding to λ in CSn.

The trace τ can be seen as the linear extension of the character of the regular repre-

sentation of Sn. If σ ∈ Sn, then the Schur column orthogonality relations [FH04, Section

2.2] imply

(3) τ(σ) =
∑

λ⊢n
χλ(id)χλ(σ) =

{∑
λ⊢n χλ(id)

2 = n! if σ = id ,

0 otherwise .

Here χλ(id) is both the multiplicity and the dimension of an irreducible representation

corresponding to λ in CSn. In particular, τ(ωλ) = χ2
λ(id).

Let ηd be the representation of Sn on (Cd)⊗n that permutes the tensor factors,

ηd(σ)(|v1〉 ⊗ · · · ⊗ |vn〉) = |vσ−1(1)〉 ⊗ · · · ⊗ |vσ−1(n)〉

for σ ∈ Sn and |v1〉 , . . . , |vn〉 ∈ Cd. Under ηd, the idempotents ωλ are mapped to the

central Young projections pλ = ηd(ωλ). These satisfy

p2λ = pλ = p†λ ,

pλpµ = pλδλµ ,

ηd(σ)pλ = pληd(σ) ∀σ ∈ Sn .

Importantly, they form a resolution of the identity
∑

λ⊢n
h(λ)≤d

pλ = 1 ∈ L(Cd) .

By [Pro07, Proposition 9.3.1],

(4) ker ηd =
∑

λ⊢n
h(λ)>d

ωλ · CSn .

Let

Jd =
∑

λ⊢n
h(λ)≤d

ωλ ·CSn .
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Then Jd and ker ηd are complementary (both as orthogonal subspaces and ideals) in

CSn. Furthermore, J1 ⊂ J2 ⊂ · · · ⊂ Jn = Jn+1 = · · · = CSn. Next consider the map

µd : CSn → L((Cd)⊗n) defined as

µd(r) = n!Wg(d, n)ηd(r) ,

where

Wg(d, n) =
1

n!

∑

λ⊢n
h(λ)≤d

τ(ωλ)

tr(pλ)
pλ(5)

is the (Formanek-) Weingarten operator [CŚ06, Pro20]. The action of Wg(d, n) scales

each isotypic component according to its multiplicity in CSn and L((Cd)⊗n). Note that

the restriction of µd to Jd is bijective onto the image of ηd since Jd = (ker ηd)
⊥.

The definition of µd is motivated by the following properties:

Lemma 1.

(1) For all a ∈ Jd and b ∈ CSn it holds that

tr(µd(a)ηd(b)) = τ(ab) .

(2) Let r ∈ Jd. Then r is a state if and only if µd(r) is a state in L((Cd)⊗n).

Proof. (1) Since Jd is an ideal, we have ab ∈ Jd. Next,

(6) τ(ωλ) · tr(ηd(ωλc)) = tr(pλ)χλ(id) · χλ(c)

for all c ∈ CSn and λ ⊢ n. Indeed, both sides of (6) restrict to traces on the central simple

algebra ωλ · CSn. As ηd(ωλ) = pλ and τ(ωλ) = χλ(id)
2, (6) holds for c = id. Since traces

of central simple algebras over C are unique up to a scalar multiple, we thus conclude

that (6) holds for every c ∈ CSn. Therefore

tr(µd(a)ηd(b)) = tr
(
n!Wg(d, n)ηd(a)ηd(b)

)

=
∑

λ⊢n
h(λ)≤d

τ(ωλ)

tr(pλ)
tr(ηd(ωλab))

=
∑

λ⊢n
h(λ)≤d

χ(id)χλ(ab) = τ(ab) ,

(7)

by (6) and (3).

(2) (⇒) Suppose τ(r) = 1 and r = aa† for some a ∈ CSn. Then

µd(r) = n!Wg(d, n)ηd(aa
†) = n!Wg(d, n)1/2ηd(a)ηd(a

†)Wg(d, n)1/2 � 0

and tr(µd(r)) = τ(r) = 1 by (7), so µd(r) is a state in L((Cd)⊗n).

(⇐) Suppose that µd(r) is a state in L((Cd)⊗n). Then µd(r) � 0 implies pληd(r) � 0

for all λ ⊢ n with h(λ) ≤ d. Therefore ηd(r) � 0 because r ∈ Jd. Since the restriction of

ηd to Jd is a ∗-embedding, we have r = aa† for some a ∈ Jd. Finally, τ(r) = tr(µd(r)) = 1

by (7). �

Let z = (zij : 1 ≤ i < j ≤ n) be a tuple of
(
n
2

)
complex variables. Denote by Z the

n× n matrix over C[z, z] with entries Zii = 1, Zij = zij and Zji = zij for i < j. Let

Z = {α ∈ C(
n
2) : Z(α) ≥ 0}
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be the corresponding bounded spectrahedron, also known as the elliptope [Vin14]. For

d ∈ N also let

Zd = {α ∈ Z : rkZ(α) ≤ d}.

Note that Z1 ⊂ Z2 ⊂ · · · ⊂ Zn = Zn+1 = · · · = Z. Furthermore, α ∈ Zd if and only if

αij = 〈vi|vj〉 for some unit vectors |v1〉 , . . . , |vn〉 ∈ Cd.

To each w =
∑

σ∈Sn
wσσ ∈ CSn we assign the polynomial

(8) fw =
∑

σ∈Sn

wσ

n∏

i=1

ziσ(i) ∈ C[z, z]

where zii denotes 1 and zji for i < j denotes zij. These polynomials are also known as

generalized matrix functions [MM65]. If α ∈ Z is given as αij = 〈vi|vj〉 for unit vectors

|v1〉 , . . . , |vn〉 ∈ Cd, then

(9) fw(α) =
∑

σ∈Sn

wσ

n∏

i=1

〈vi|vσ(i)〉 = tr
(
ηd(w)(|v1〉〈v1| ⊗ · · · ⊗ |vn〉〈vn|)

)

by [Pro07, Theorem 9.6.1].

We require two technical lemmas.

Lemma 2. Let

ud =
∑

λ⊢n
h(λ)>d

ωλ ∈ ker ηd .

Then fud
is nonnegative on Z and Zd = Z ∩ {fud

= 0}.

Proof. Let M be the set of all (d + 1)-minors of Z, and let P be the set of all principal

(d + 1)-minors of Z. Observe that P ⊆ {fw : w ∈ CSn}, and α ∈ Zd if and only if

p(α) = 0 for all p ∈ P. On the other hand, if I is the ideal in C[z, z] generated by M,

then {fw : w ∈ ker ηd} = I ∩{fw : w ∈ CSn} by [Pro07, Section 11.6.1]. Therefore α ∈ Zd

if and only if fw(α) = 0 for all w ∈ ker ηd.

Let |v1〉 , . . . , |vn〉 ∈ Cn be arbitrary unit vectors, and denote V = |v1〉〈v1| ⊗ · · · ⊗

|vn〉〈vn| ∈ L((Cd)⊗n). Since V and ηn(ωλ) are projections, we have

tr(ηn(ωλ)V ) = 0 =⇒ tr(ηn(aωλ)V ) = 0

for every a ∈ CSn by the Cauchy-Schwarz inequality. Furthermore, since the projec-

tions ηn(ωλ) with h(λ) > d are orthogonal and generate ker ηd as a left ideal, we have

tr(ηn(ud)V ) ≥ 0 and

tr(ηn(w)V ) = 0 ∀w ∈ ker ηd

⇐⇒ tr(ηn(ωλ)V ) = 0 ∀ h(λ) > d

⇐⇒ tr(ηn(ud)V ) = 0 .

Finally, since every α ∈ Z is of the form αij = 〈vi|vj〉 for some unit vectors |v1〉 , . . . , |vn〉 ∈

Cn, the preceding two paragraphs and (9) imply that fud
is nonnegative on Z, and α ∈ Zd

if and only if fud
(α) = 0. �

Lemma 3. Suppose that p ∈ C[z, z] is nonnegative on Zd, and let ε > 0. Then there is

u = u† ∈ ker ηd such that p+ ε+ fu is nonnegative on Z.
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Proof. By Lemma 2 we have fud
(α) > 0 for every α ∈ Z \ Zd. Since p + ε is positive

on Zd, it is also positive on some Euclidean open subset U ⊂ Z that contains Zd. Since

Z \ U is compact, there exists M > 0 such that

M · min
α∈Z\U

fud
(α) ≥ − min

α∈Z\U
(p(α) + ε).

Then Mud ∈ ker ηd and p+ ε+ fMud
= p + ε+Mfud

is nonnegative on Z. �

We are now ready to treat entanglement of Werner states in a dimension-independent

manner.

Theorem 4. Given a state r ∈ Jd, the following are equivalent:

(i) µd(r) is entangled;

(ii) there is w = w† ∈ CSn such that

fw(α) ≥ 0 ∀α ∈ Z ,

τ(wr) < 0.

Proof. (ii)⇒(i) By Lemma 1(1) we have tr(ηd(w)µd(r)) = τ(wr) < 0, and by (9) we have

tr
(
ηd(w)(|v1〉〈v1| ⊗ · · · ⊗ |vn〉〈vn|)

)
≥ 0

for all unit vectors |v1〉 , . . . , |vn〉 ∈ CN , and N ∈ N. Since every separable state is

a conic combination of operators of the form |v1〉〈v1| ⊗ · · · ⊗ |vn〉〈vn|, we conclude that

tr
(
ηN(w)̺

)
≥ 0 for all ̺ ∈ SEP(N, n) and N ∈ N. In particular, ηd(w) is an entanglement

witness for µd(r).

(i)⇒(ii) Since µd(r) is entangled, there exists w0 = w†
0 ∈ CSn such that ηd(w0) is

an entanglement witness for µd(r). Therefore τ(w0r) = tr(ηd(w0)µd(r)) < 0 and fw0
is

nonnegative Zd. Let ε = −1
2
τ(wr) > 0. By Lemma 3 there exists u ∈ ker ηd such that

fw0
+ ε+ fu = fw0+εid+u

is nonnegative on Z. Thus w = w0+ εid+u satisfies τ(wr) = 1
2
τ(w0r) < 0 and fw(α) ≥ 0

for all α ∈ Z. �

Corollary 5. Let r ∈ Jd and d < e. Then:

(1) µd(r) is a state if and only if µe(r) is a state;

(2) µd(r) is entangled if and only if µe(r) is entangled.

Proof. By definition we have Jd ⊆ Je. Then (1) holds by Lemma 1 and (2) holds by

Theorem 4. �

Remark 6. The assumption r ∈ Jd in Corollary 5 is necessary; if d < n then there exists

s ∈ Je \ Jd, and so µd(ss
†) = 0 � 0 and µe(ss

†) 6� 0. Furthermore, the direct analog of

Corollary 5 fails for ηd (which is a more conventional parametrization of Werner states

than µd), as already the maximally mixed state fails to remain normalized. Actually,

the inadequacy of using ηd for studying entanglement in a dimension-free way stretches

beyond normalization. For example, if r = id − 1
2
(12) ∈ CS2, then 1

tr(η2(r))
η2(r) is a

separable state and 1
tr(η3(r))

η3(r) is an entangled state [Wer89].

An witness w = w† ∈ CSn is called dimension-free if tr(ηd(w)̺) ≥ 0 for all ̺ ∈

SEP(d, n) and all d ∈ N. Another important consequence of Theorem 4 is the existence

of dimension-free witnesses.
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Corollary 7. For all d, n and every entangled Werner state ̺ ∈ L((Cd)⊗n) there exists a

dimension-free witness w ∈ CSn detecting it.

Proof. If a state ̺ = µd(r) is entangled, then w from Theorem 4(ii) is a dimension-free

entanglement witness for ̺, which follows from the proof of (ii)⇒(i). �

Remark 8. Theorem 4 shows that describing Werner states in L((Cd)⊗n) with Jd via

µd reveal the dimension-free nature of entanglement. While the map µd is defined using

the Weingarten operator and is of a rather representation-theoretic nature, its unique

preimages in Jd can be computed in a very elementary way if one has access to the more

common map ηd. Suppose A ∈ L((Cd)⊗n) is invariant under the diagonal conjugate action

of Ud. There is a unique a =
∑

π∈Sn
aππ ∈ Jd such that A = µd(a). By Lemma 1(1), the

coefficients of a are given by

aσ =
1

n!
τ(aσ−1) =

1

n!
tr
(
µd(a)ηd(σ

−1)
)
=

1

n!
tr
(
Aηd(σ)

†)

for σ ∈ Sn.

Alternatively, if say ̺ = ηd(ss
†)/ tr(ηd(ss

†)) with s ∈ CSn is given, then r in ̺ = µd(r)

is proportional to

W̃g(d, n)−1
( ∑

λ⊢n
h(λ)≤d

ωλ

)
ss†

with an overall normalization such that the coefficient of id is 1/n!, and where W̃g(d, n)−1

is the inverse of the analog of Wg(d, n) in CSn,

W̃g(d, n)−1 = n!
∑

λ⊢n
h(λ)≤d

tr(pλ)

τ(ωλ)
ωλ .

3. Entanglement witnesses via commutative polynomial optimization

With the help of Theorem 4 we now show how semidefinite programming allows us to

find entanglement witnesses for Werner states. The key idea is that finding entanglement

witnesses of this type can be formulated as optimizing a multilinear polynomial over a

compact semialgebraic set. We recall the matrix version of Putinar’s Positivstellensatz

[Put93] from real algebraic geometry in a form suitable for our application.

Corollary 9 (Complex version of the matrix Positivstellensatz [SH06, Corollary 1]). A

polynomial q ∈ C[z, z] is nonnegative on Z if and only if q+ ε ∈ Q for every ε > 0, where

Q =
{∑

j

p†jZpj : pj ∈ C[z, z]n
}
⊂ C[z, z]

is the quadratic module generated by Z.

Sandwiching Z with polynomials of at most degree ℓ yields the ℓ-truncated quadratic

module

(10) Qℓ =
{
tr((uℓ ⊗ 1n)

†G(uℓ ⊗ 1n)Z) : G � 0
}
,

where uℓ is the vector of ordered monomials in z, z of degree at most ℓ, and G is a mℓ×mℓ

matrix with mℓ = n
(
n(n−1)+l
n(n−1)

)
. Clearly, Q =

⋃
ℓQℓ. Note that fw can be of degree n; to

consider whether fw + ε ∈ Qℓ for some ε > 0, it is therefore sensible to restrict ℓ ≥ ⌈n
2
⌉.
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A matrix polynomial P (z) ∈ C[z, z]n×n is a sum of squares (SOS) if there is a matrix

polynomial S(z) ∈ C[z, z]m×n such that P (z) = S†(z)S(z). By writing G = Y †Y , the

polynomial matrix (uℓ ⊗ 1n)
†G(uℓ ⊗ 1n) is easily seen to be SOS,

(uℓ ⊗ 1n)
†G(uℓ ⊗ 1n) = (Y (uℓ ⊗ 1n))

†Y (uℓ ⊗ 1n) =

(
∑

i

Yi(uℓ)i

)†(∑

i

Yi(uℓ)i

)
,

where Y = (Y1, . . . , Ymℓ
) is understood as a block 1× mℓ

n
matrix with mℓ × n blocks Yi.

Given r ∈ Jd, consider the following commutative polynomial optimization problem:

(POP)

ε∗ = inf
ε∈R, w∈CSn

ε

subject to w = w†

τ(rw) = −1

fw + ε ≥ 0 on Z .

This gives rise to the following hierarchy of SDP relaxations for POP, indexed by ℓ ∈ N:

(SDP-POP)

ε∗ℓ = inf
ε∈R, w∈CSn,
G∈L(Cmℓ )

ε

subject to w = w†

G � 0

τ(rw) = −1

fw + ε = tr((u†
ℓ ⊗ 1n)G(uℓ ⊗ 1n)Z) .

Corollary 10. Let r ∈ Jd. Then µd(r) is entangled if and only if ε∗ℓ < 1 for some ℓ ∈ N.

Proof. (⇒) If µd(r) is entangled, then there is w = w† ∈ CSn such that τ(rw) < 0

and fw|Z ≥ 0 by Theorem 4. After rescaling w we can assume that τ(rw) = −1. By

Corollary 9, there exists ℓ ∈ N such that fw + 1
2
∈ Qℓ. Then ε∗ℓ ≤

1
2
< 1.

(⇐) Suppose ε∗ℓ < 1 for some ℓ ∈ N. Then

τ(r(w + ε∗ℓ id)) = τ(rw) + ε∗ℓτ(r) = −1 + ε∗ℓ < 0

and fw+ε∗
ℓ
id is nonnegative on Z. Therefore µd(r) is entangled by Theorem 4. �

Remark 11. Fix n ∈ N. The ℓth SDP SDP-POP has

1 + n! + n2

(
n(n− 1) + ℓ

n(n− 1)

)2

= O(ℓ2n(n−1))

real variables (ε, coefficients of w = w†, and entries of G), and its semidefinite constraint

has size n
(
n(n−1)+ℓ
n(n−1)

)
. Thus the size of SDP-POP grows polynomially in ℓ.

4. Entanglement witnesses via trace polynomial optimization

In this section we associate Werner state witnesses with multilinear trace polynomials

with certain positivity properties (Theorem 12). Thus we translate the problem of finding

Werner state witnesses to trace polynomial optimization, and produce a second SDP

hierarchy for entanglement detection.
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4.1. Trace polynomials. Trace polynomials are polynomials in noncommuting variables

where some terms are traced, for example

tr(x1x2)x3 − tr(x2x3x1)1+ 2 tr(x1x3)
2x2 + x1x3 − x3x1 + 1 .

Here we only work with linear combinations of terms of the form

Tσ = tr(xα1
· · ·xαr

) · · · tr(xζ1 · · ·xζt) ,

where σ = (α1 . . . αr) . . . (ζ1 . . . ζt) is a permutation. For example, T(132)(4) = tr(x1x3x2) tr(x4).

As before, let ηd be the representation of Sn on (Cd)⊗n that permutes the tensor factors.

Then a direct calculation in L((Cd)⊗n) shows [Kos58, Lemma 4.9]

(11) tr (ηd(σ)(X1 ⊗ · · · ⊗Xn)) = Tσ−1(X1, . . . , Xn)

for all X1, . . . , Xn ∈ L(Cd). In particular,

(12) tr(ηd(σ)) = dNcyc(σ)

where Ncyc(σ) is the number of cycles in σ. This leads to the following consequence of

[Hub21, Theorem 16].

Theorem 12. Let ϕ =
∑

π∈Sn
aπηd(π) be a state, and let W =

∑
σ∈Sn

wσηd(σ). The

following are equivalent:

(i) W detects entanglement in ϕ;

(ii) the trace polynomial
∑

σ∈Sn
wσTσ−1(x1, . . . , xn) satisfies

∑

σ∈Sn

wσTσ−1(X1, . . . , Xn) ≥ 0 ∀Xi ∈ L(Cd), Xi ≥ 0 ,

∑

σ,π∈Sn

wσaπd
Ncyc(σπ) < 0 .

Proof. The set of separable states SEP(d, n) is convex and it suffices to ascertain that

tr(W̺) ≥ 0 holds for all product states ̺. With Eq. (11) one has

tr(W̺1 ⊗ · · · ⊗ ̺n) =
∑

σ∈Sn

wσTσ−1(̺1, . . . , ̺n) .

The expression is multilinear so we can replace the ̺i by arbitrary Xi ≥ 0 in L(Cd). With

Eq. (12) it is immediate that

tr(Wϕ) =
∑

σ,π∈Sn

wσaπd
Ncyc(σπ) . �

4.2. Trace polynomial optimization. In this subsection we give an alternative way of

confirming Werner state entanglement using a recently introduced framework for trace

polynomial optimization [KMV21]. The key idea is the following: for the trace polyno-

mials appearing in Theorem 12, instead of requiring positivity in matrix variables of size

d, one asks for positivity in operator variables from any tracial von Neumann algebra.

This is of course a stronger requirement; however, positivity of trace polynomials over

all tracial von Neumann algebras can be exactly described by sums of squares and their

traces.

Let M be the monoid generated by x1, . . . , xn subject to relations x2
j = xj for j =

1, . . . , n. Namely, M is the set of words in x1, . . . , xn without consecutive repetitions of

letters, and for v, w ∈ M define vw as the concatenation of v and w with consecutive
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repetitions of letters removed. The empty word in M is denoted by 1. Also define a

natural involution † that reverses words, and an equivalence relation: v ∼ w if w can be

obtained by a cyclic rotation of the letters in v.

Denote the equivalence class of u ∈ M \ {1} by τ(u). The defining relations for M

(namely x2
j = xj for j = 1, . . . , n) describe projections, and so τ simulates a tracial state

on a product of projections. Let A be the complex polynomial ring in symbols τ(u)

for u ∈ M \ {1}, and let A = A ⊗ CM. Thus A is a noncommutative algebra which

inherits the involution ∗ from M. Assigning elements from M to their equivalence classes

A-linearly extends to a unital trace map τ : A → A. For example, if

a = 3iτ(x1)x2x1x3x2 + τ(x2)x2 ∈ A

then

a† = −3iτ(x1)x2x3x1x2 + τ(x2)x2 ,

τ(a) = 3iτ(x1)τ(x2x1x3) + τ(x2)
2 .

Let a ∈ A. Given a von Neumann algebra F with a tracial state ω : F → C and a

tuple X = (X1, . . . , Xn) of projections Xj ∈ F , there is a naturally defined evaluation

a(X) ∈ C, determined by τ(xj1 · · ·xjℓ)(X1, . . . , Xn) = ω(Xj1 · · ·Xjℓ).

The elements from A of the form τ(u1) · · ·τ(um)u0 for u0, . . . , um ∈ M are called tracial

words. Let us fix some total ordering of tracial words that respects their word length. For

ℓ ∈ N let Wℓ be the vector of ordered tracial words in A of length at most ℓ. Given a ∈ A

let

(13) ǫℓ = inf
{
ǫ : a + ǫ = τ(W †

ℓ GWℓ), G � 0
}
.

Note that τ(W †
ℓGWℓ) yields a trace of sum of squares in A. The value ǫℓ relates to

optimization over all tracial von Neumann algebras in the following way.

Corollary 13 (Complex analog of [KMV21, Corollary 5.7]). The sequence (ǫℓ)ℓ in Eq. (13)

is decreasing and bounded; let ǫ∗ be its limit. Then −ǫ∗ is the infimum of a(X) over all

tuples X of projections from tracial von Neumann algebras.

We now look at the tracial words arising from elements in Sn. Given a permutation

σ = (α1 . . . αr) . . . (ζ1 . . . ζt) ∈ Sn define

(14) tσ = nNcyc(σ)
τ(xα1

· · ·xαr
) · · ·τ(xζ1 · · ·xζt) ∈ A .

We extend this notation linearly to the group algebra CSn. The definition (14) is mo-

tivated by the following observation. Let w ∈ CSn and let X ∈ L(Cn)n be a tuple of

projections. On one hand, we can evaluate the trace polynomial Tw on X to obtain

Tw(X) ∈ C. On the other hand, L(Cn) is a tracial von Neumann algebra with the unique

tracial state 1
n
tr; since elements of A can be evaluated at tuples of projections from von

Neumann algebras, we can also talk about tw(X) ∈ C. The choice of the cycle-counting

scalar factor in (14) ensures that

(15) Tw(X) = tw(X) .

Note that (15) is valid only for projections on Cn, and not for those on spaces of other

dimensions.
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Proposition 14. Let r ∈ Jd be a state. Suppose that there is a w = w† ∈ CSn such that

τ(rw) = −1 ,

tw + ϑ = τ(W †
ℓ GWℓ) ,(16)

for some ϑ < 1, ℓ ∈ N, and G � 0. Then µe(r) is entangled for every e ≥ d, with a

dimension-free witness w̃ = w + ϑid.

Proof. By Theorem 4 it suffices to check that µn(r) is entangled. Firstly,

tr
(
µn(r)ηn(w̃)

)
= τ(rw̃) = τ(rw) + ϑτ(r) = −1 + ϑ < 0

by (16) and Lemma 1(1). On the other hand, since tw+ϑ is the trace of a sum of hermitian

squares in A by (16), it attains nonnegative values on all tuples of projections from any

von Neumann algebra F with a tracial state ω. Therefore

(17) 0 ≤ ϑ+ inf
(F ,ω)
X∈Fn

Xj=X†
j=X2

j

tw(X) ≤ ϑ+ inf
X∈L(Cn)n

Xj=X†
j=X2

j

tw(X) = ϑ+ inf
X∈L(Cn)n

Xj=X†
j=X2

j

Tw(X)

where the last equality holds by (15). Note that Tw̃(X) = Tw(X) + ϑ tr(X1) · · · tr(Xn)

for every X ∈ L(Cn)n, and tr(P ) ≥ 1 for every nonzero projection P ∈ L(Cn). Therefore

(17) implies

0 ≤ inf
X∈L(Cn)n

Xj=X†
j=X2

j

Tw̃(X) .

Since Tw̃ is multilinear and every positive semidefinite operator is a conic combination

of projections, we conclude that Tw̃ is nonnegative on all tuples of positive semidefinite

operators on Cn. Thus ηn(w̃) is an entanglement witness for µn(r) by Theorem 12. �

Given a state r ∈ CSn, let us consider the following trace polynomial optimization

problem:

(TPOP)

ϑ∗ = inf
ε∈R, w∈CSn

ε

subject to w = w†

τ(rw) = −1

tw + ε ≥ 0 on A .

This gives rise to the following hierarchy of SDP relaxations for TPOP, indexed by ℓ ≥

⌈n
2
⌉:

(SDP-TPOP)

ϑ∗
ℓ = inf

ε∈R, w∈CSn,
G

ε

subject to w = w†

G � 0

τ(rw) = −1

tw + ε = τ

(
W †

ℓGWℓ

)
.

As a consequence of Proposition 14 we have:

Corollary 15. If ϑ∗
ℓ < 1 for some ℓ ∈ N, then µn(r) is an entangled state.
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Remark 16. Fix n ∈ N. Since M is a subset of tracial words in A, a very crude lower

bound on the length of the vector Wℓ is

Mℓ =
ℓ∑

i=1

n(n− 1)i−1 = n
(n− 1)ℓ − 1

n− 2
,

so the number of variables in the ℓth SDP SDP-TPOP is at least exponential in ℓ,

1 + n! +
(Mℓ + 1)Mℓ

2
= O((n− 1)2ℓ) .

5. Comparison of hierarchies

Some remarks on the two SDP hierachies are in order.

The trace polynomial optimization framework in Proposition 14 shares analogies with

both Theorems 12 and 4. Like the latter, Proposition 14 gives a dimension-independent

certificate of entanglement. On the other hand, the trace polynomial context is closer to

Theorem 12, although Proposition 14 employs a different parametrization of witnesses (as

it appeals to von Neumann algebras and their tracial states which are necessarily unital),

leading to a dimension-independent statement.

However, it is important to mention that Proposition 14 is possibly weaker than The-

orem 4 in the sense that it is unclear whether it detects entanglement of every entangled

Werner state. While a positive resolution of the Connes embedding conjecture would

likely imply the converse of Proposition 14, the former turned out to be false [JNV+20].

Nevertheless, Proposition 14 leads to the hierarchy SDP-TPOP for entanglement de-

tection with smaller initial SDPs than the ones in SDP-POP. Comparing the number of

variables from Remark 11 and 16 we see the following: for large ℓ, the (commutative) SD-

P-POP is much smaller than the (noncommutative) SDP-TPOP. However, when utilizing

SDP hierarchies in practice, one usually computes only the first few steps of the hierarchy,

with the hope that they already give the sought answer. Since projections and tracial

states of their products satisfy several relations, the first few steps of the second hierar-

chy SDP-TPOP are actually much smaller than the first few steps of the first hierarchy

SDP-POP. Table 1 below compares the sizes of semidefinite constraints and numbers of

equations in the first two steps of hierarchies (ℓ = ⌈n
2
⌉ and ℓ = ⌈n

2
⌉+ 1).

A further reduction is possible if one is interested in real states and real separability.

Then one can take a coarser equivalence relation on M that identifies v and v† (thus τ

simulates a tracial state on a product of real projections) and restrict the scalars of A

to be real numbers. Encoding these additional symbolic constraints into A decreases the

number of tracial words of a given length, and thus decreases the size of the semidefinite

constraint in the resulting analog of SDP-TPOP.

6. An example

In this section we use the second hierarchy SDP-TPOP to detect entanglement in a

four-qubit Werner state which has positive partial transposes across all bipartitions. Let

s = 41 · id+5 · (12)+5 · (34)+20 · (1234) ∈ CS4 . There is a unique r ∈ J2 ⊂ CS4 such that

̺ = µ2(r) =
η2(ss

†)

tr(η2(ss†))



DIMENSION-FREE ENTANGLEMENT DETECTION 15

SDP-POP SDP-TPOP

n step 1 step 2 step 1 step 2

3 (84, 211) (252, 925) (31, 86) (109, 443)

4 (364, 1821) (1820, 18565) (53, 246) (253, 2432)

5 (8855, 230231) (53130, 3108106) (491, 9722) (2681, 157492)

Table 1. Pairs of sizes of semidefinite constraints and numbers of equa-

tions in SDP-POP and SDP-TPOP for the first two steps in the hierarchies.

is a four-qubit Werner state. More explicitly, as in Remark 8 we get

r = 1
24
id + 1069

34302
[(12) + (34)] + 7247

274416
[(14) + (23)] + 6947

274416
(13) + 7547

274416
(24)(18)

+ 707
34302

[(123) + (132) + (134) + (143)] + 1489
68604

[(234) + (243) + (124) + (142)]

+ 8101
548832

[(1324) + (1423)] + 8251
548832

[(1243) + (1342)] + 13171
548832

[(1234) + (1432)]

+ 3811
274416

(13)(24) + 6271
274416

(14)(23) + 7651
274416

(12)(34) .

One can check that the partial transposes of ̺ = µ2(r) are positive semidefinite for all

bipartitions. Consequently the Peres-Horodecki or PPT criterion does not detect entan-

glement in ̺. However, already the first step (ℓ = ⌈4
2
⌉ = 2) of the hierarchy SDP-TPOP

confirms that ̺ is entangled. Since r ∈ RS4, it suffices to optimize over w ∈ RS4 and real

symmetric G in SDP-TPOP. The numerical solution is ϑ2 ≈ 0.8537 < 1, from which a

corresponding witness numerical w̃ ∈ RS4 as in Proposition 14 can be extracted.

Since 0.8537 is close to 1, one might wish for an exact w ∈ QS4 to clear doubts about

numerical errors. To achieve this, we choose some rational ϑ′
2 ∈ (ϑ2, 1), for example

ϑ′
2 =

9
10
, and solve the feasibility SDP

(19) w = w† , G � 0 , τ(rw) = −1 , tw + ϑ′
2 = τ

(
W †

ℓGWℓ

)
.

Geometrically, (19) looks for a point in the intersection of the positive semidefinite cone

with an affine subspace. In our example, the 53 × 53 floating point solution G produced

by the interior-point method SDP solver is positive definite. Therefore rationalizing, i.e.,

choosing a sufficiently fine rational approximation of G, and then projecting onto the

affine subspace will result in a rational solution of (19), cf. [PP08, CKP15].

Concretely, we obtain the exact dimension-free witness w̃ = 9
10
id + w ∈ QS4,

w̃ = 70530553080581117
73043335638912450

id

+ 2153437054
34127477475

[(12) + (34)]− 1084798063661
17296968712275

[(14) + (23)]− 6399721673153
58543548235200

(13)− 166092679
1576051425

(24)

− 128169
202825

(12)(34)− 112106999
38636465420

(13)(24)− 5
66
(14)(23)

+ 441051017
1988704319

[(234) + (243) + (124) + (142)]

+ 626723
2766720

[(123) + (132) + (134) + (143)]

+446599
678600

[(1243) + (1342)] + 23599
171600

[(1324) + (1423)]− 5220239
3065280

[(1234) + (1432)] .

The symmetry with respect to the parametrization of r in (19) is evident.
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Note that due to Corollary 5, the state in Eq. (18) is entangled in every dimension

d ≥ 2.

7. Additional remarks

In this section we indicate how the techniques developed in this paper can be applied

to non-Werner states and immanants.

7.1. States invariant under a different unitary action. It is well known that n-

partite Werner states require fewer parameters (that is, n!) for their description than

arbitrary n-partite states on (Cd)⊗n for d > n. In this article we made use of this

parametrization to remove the local dimension from the problem of detecting entangle-

ment entirely. This leads to the question: for which other sets of states can entanglement

be detected in a dimension-free manner?

We presented our results for Werner states, however it is not hard to see that they

can also be applied to quantum states ̺ ∈ L((Cd)⊗n) that are invariant with respect to

U⊗(n−k) ⊗ U⊗k for any k. Such states are relevant for efficient port-based teleportation

schemes [SMKH20] and are elements of the walled Brauer algebra [MSH18]. Thus they

can be expanded in terms of partially transposed permutation operators,
∑

σ∈Sn

aσηd(σ)
Tk , aσ ∈ C

where ·Tk is the partial transpose acting on the last k systems [EW01, Lemma 6]. As in

the case of Werner states, it suffices to consider entanglement witnesses W for which the

same invariance holds.

In contrast with ηd, the map η̃d = ηTk

d is not a ∗-representation of the algebra CSn.

However, one can choose a ring structure on the vector space CSn in a natural way,

resulting in the aforementioned walled Brauer algebra Bn, so that the map η̃d is a ∗-

representation of Bn. By looking at the irreducible representations of Bn, one obtains

a map µ̃d : Bn → L((Cd)⊗n) by mimicking the construction of µd before, only now

relying on a different ring structure (centrally primitive idempotents in Bn). If ̺ = µ̃d(r)

and W = η̃d(w) for some r, w ∈ Bn, then tr(W̺) equals the trace of rw under the

regular representation of Bn. Similarly, the minimization of an operator containing partial

transposes
∑

σ∈Sn
wσηd(σ)

Tk over the set of separable states,

min
|v1〉,...,|vn〉∈Cn

tr
( ∑

σ∈Sn

wσηd(σ)
Tk |v1〉〈v1| ⊗ · · · ⊗ |vk〉〈vk| ⊗ · · · ⊗ |vn〉〈vn|)

)

= min
|v1〉,...,|vn〉∈Cn

tr
( ∑

σ∈Sn

wσηd(σ)|v1〉〈v1| ⊗ · · · ⊗ |vk〉〈vk|
T ⊗ · · · ⊗ |vn〉〈vn|

T )
)

= min
|v1〉,...,|vn〉∈Cn

tr
( ∑

σ∈Sn

wσηd(σ)|v1〉〈v1| ⊗ · · · ⊗ |vk〉〈vk| ⊗ · · · ⊗ |vn〉〈vn|)
)
,

reduces to that of an operator
∑

σ∈Sn
wσηd(σ) with all partial transposes removed. There-

fore nonnegativity of W = η̃d(w) on separable states corresponds to nonnegativity of fw
on the spectrahedron Z as before. It follows that:

Corollary 17. Analogs of Theorems 4 and 12, Corollaries 5 and 7, and the two hierarchies

SDP-TPOP and SDP-POP hold for states with U⊗(n−k) ⊗ U⊗k-invariance.
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7.2. Witnesses for arbitrary states. Our approach also allows to detect entanglement

in arbitrary states: given some state ̺ ∈ L((Cd)⊗n), the twirl

(20) E(̺) =

∫

U∈Ud

U⊗n̺(U †)⊗ndU

yields a Werner state which can then be subjected to our hierarchies. Note that not

every entangled state remains entangled under the twirling (20). The computation of the

integral (20) can be done in the following way [CŚ06, Pro20]. Define

Φ(̺) =
∑

σ∈Sn

tr(σ−1̺)ηd(σ)

If d ≥ n then

E(̺) = Φ(̺)Wg(d, n) .

where Wg is the (Formanek-) Weingarten operator from Eq. (5). This yields an invariant

state expanded in terms of the permutation operators, which can be subjected to our

hierarchies SDP-POP and SDP-TPOP.

7.3. Immanant inequalities. We end with noting that the methods presented are di-

rectly applicable to the positivity of generalized matrix functions [cf. Eq. (8)] and are of

particular interest in the context of long-standing open conjectures on immanant inequal-

ities [GMW88, Zha16, HM21]. For this is will likely be useful to take into account further

symmetries [RTAL13] and sparsity [KMP21, WM21] in the semidefinite programs.
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