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Abstract: In this work we revisit the problem of solving multi-matrix systems through

numerical large N methods. The framework is a collective, loop space representation which

provides a constrained optimization problem, addressed through master-field minimization.

This scheme applies both to multi-matrix integrals (c = 0 systems) and multi-matrix quan-

tum mechanics (c = 1 systems). The complete fluctuation spectrum is also computable in

the above scheme, and is of immediate physical relevance in the later case. The complexity

(and the growth of degrees of freedom) at large N have stymied earlier attempts and in the

present work we present significant improvements in this regard. The (constrained) mini-

mization and spectrum calculations are easily achieved with close to 104 variables, giving

solution to Migdal-Makeenko, and collective field equations. Considering the large number

of dynamical (loop) variables and the extreme nonlinearity of the problem, high precision

is obtained when confronted with solvable cases. Through numerical results presented, we

prove that our scheme solves, by numerical loop space methods, the general two matrix

model problem.
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1 Introduction

Large N multi-matrix problems are at the center of many theories of current interest,

involving membranes [1], reduced super Yang-Mills theories [2–6], field theory of critical

and noncritical strings [7–22], phase transitions and black holes [23–31], and M-atrix theory

[32]. At the same time, apart from very special cases, these systems are not solvable due

to the fact that they are highly nonlinear. At finite N one has numerical Monte-Carlo

methods [33], which have provided definite and most relevant results [32] with increase of

simulations towards large N . The limiting theory, infinite N , features a rapid growth of
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the degrees of freedom, represented by (Wilson) loop variables, which are physical, gauge

invariant collective variables for the description of matrix and non-Abelian gauge theories.

As is well known, (Wilson) loops become independent degrees of freedom at infinite N , and

the exact theory is governed by non-linear Schwinger-Dyson (Migdal-Makeenko) equations

[34], or alternatively in the collective field theory representation, in terms of an effective

action [35] and/or a collective Hamiltonian [36]. The later provides a unified approach

in which 1/N = G appears as a coupling constant, and has been used through the years

for non perturbative studies. For coupled systems (of matrices) at quantum level, only

simple systems are solvable. However, numerical approaches were developed in [37, 38].

In these previous studies the nature of the (infinite N) planar solution was understood as

related to a constrained minimization problem, where a significant role is played by a set

of inequalities associated with invariants (loops) in the collective description. An effective

scheme for dealing with this constrained minimization was identified, through the use of

master-field variables [38]. These methods were also seen to apply at sub-leading order in

N and in particular, to consideration of the spectrum [39, 40].

Recently, there is a renewed interest in large N optimization [41], with studies [42–44]

that overlap with earlier work, and which re-discover the importance of loop space inequality

constraints.

Due to potential high relevance in problems of emergent geometry, thermalization and

black hole formation we revisit the earlier collective field constrained minimization and nu-

merical master field methods, with interest in increasing the numbers of degrees of freedom,

and the potential for high precision results. These are developed in the present work. For

concreteness, and with purpose of making comparisons (with analytical results, when pos-

sible) we mostly deal with systems of two hermitian matrices, but the methods are seen to

apply for any number, with arbitrary single or multi trace interactions.

The content of this paper is as follows: In the overview Section 2 we provide a short

summary of the collective large N method [38]. In particular, the infinite N constrained

minimization scheme is summarized, featuring the associated complete set of (loop space)

inequalities. We then give a summary of the unconstrained master variable method which

applies for the large N ground state and also for spectrum studies [39, 40]. We explain the

study of multi-matrix integrals through the Hamiltonian description [45] given by Fokker-

Planck. In Section 3 we describe the numerical methods used for constrained minimization.

In Section 4 we give a list of models studied and present the numerical solution of the

associated matrix integrals. In Section 5 we present results, giving numerical solutions for

one- and two-matrix large N quantum Hamiltonian problems. At the large N level these

essentially correspond to giving a (numerical) solution of the fully nonlinear Schwinger-

Dyson equations with approximately 104 loop variables. Correspondingly methods (and

evaluation) of large N ground state energies, gaps and low lying spectra are also given.

Conclusions and future applications to problems of interest are commented in Section 6.
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2 Overview

In this article we will study and develop numerical techniques for solving the large N multi-

matrix theories. We will consider two classes of the multi-matrix systems. The first one is

the multi-matrix integral (c = 0 systems) whose partition function reads

∫ d∏

l=1

dMl e
−S(M1,M2,...,Md) , (2.1)

where S(M) is a multi trace action. The second one is matrix quantum mechanics (MQM)

(c = 1 systems), whose dynamics is given by a Hamiltonian of the form

H =
1

2
Tr(Π2

1 +Π2
2 + · · ·+Π2

d) + V (M1,M2, . . . ,Md) , (2.2)

where Πl is the canonical conjugate of Ml.

The large N expansion in the collective field formulation is developed after a change

of variables from the original matrix valued variables to invariant variables, which we refer

to as “loops”. This terminology has its origins in lattice gauge theory, where the basic field

degrees of freedom are unitary matrices Ul, one for each link in the lattice. In that case

the invariant variables, Wilson loops φ(C), are obtained by taking the trace of an ordered

product of unitary matrices, one for each link of a closed path C. It is common to continue

to refer to invariant variables as “loops” even for theories of hermitian matrices Ml where

invariants are given by the trace of products of the matrices. As an example, for the case

of two hermitian matrices we have

φ(C) = Tr(Mn1
1 Mn2

2 M
n′

1
1 M

n′

2
2 · · · ) . (2.3)

In this case the invariant φ(C) is not labeled by a closed path, but rather by specifying a

word C in the alphabet of the matrices. The word specifies the order in which matrices

are multiplied before tracing. The invariant loop variables are then described by all of the

words with cycling identification. For example, Tr(M1M1M2) is equal to Tr(M1M2M1) and

Tr(M2M1M1) due to the cyclicity of trace, hence they all refer to the same invariant loop

variable. It is in this sense that we use the loop terminology. For the purpose of counting

the number of loops, it is useful to enumerate the loops with a permutation σ. The loop

corresponding to permutation σ is denoted φσ. Consider loops built as single trace products

of n M1s and m M2s. The permutation σ ∈ Sn+m specifies the loop φσ as follows

φσ =Tr(σM⊗n
1 M⊗m

2 )

=(M1)i1 iσ(1)
· · · (M1)in iσ(n)

(M2)in+1 iσ(n+1)
· · · (M2)in+m iσ(n+m)

. (2.4)

The cycle structure of the permutation translates into the trace structure of φσ. For a single

trace σ must be an n+m cycle. This parametrization is not unique as distinct permutations

do not necessarily define distinct loops. This follows by noting that

φτ−1στ =Tr(στM⊗n
1 M⊗m

2 τ−1)

=(M1)iτ(1) iσ(τ(1))
· · · (M1)iτ(n) iσ(τ(n))

(M2)iτ(n+1) iσ(τ(n+1))
· · · (M2)iτ(n+m) iσ(τ(n+m))

,

(2.5)
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so that if τ ∈ Sn × Sm = the permutation group swapping M1s with each other and M2s

with each other, then

φτ−1στ = φσ . (2.6)

In general, two loops φσ1 and φσ2 are the same if

τ−1σ1τ = σ2 (2.7)

for some τ ∈ Sn × Sm. Removing this redundancy, we are left with a complete set of

(infinitely many) loops. To develop some intuition for this description, note that if τ

belongs to the cyclic group Zn+m generated by the n +m cycle given by (123 · · · n +m),

then the equality (2.6) expresses nothing but the cyclicity of the trace. In general, we need

to divide by more than just cyclicity and (2.6) is a convenient way to correctly account for

all redundancies.

A relevant class of observables for the c = 0 systems are provided by correlation func-

tions of the loops

〈φ(C)〉 =
〈
Tr
(
Mk

1M
l
2M

m
3 · · ·

)〉

=

∫ N∏

a,b=1

d∏

l=1

d(Ml)ab e−S Tr
(
Mk

1M
l
2M

m
3 · · ·

)
. (2.8)

These expectation values can be determined through equations of motion for the loop

expectation values. The loop equation is derived as a Schwinger-Dyson equation for the

loops. In the case of a theory of unitary matrices the equation of motion for the Wilson

loops are known as the Migdal-Makeenko loop equations [34]. For the case of hermitian

matrices, the loop equations follow by inserting the matrix derivative under the integral:

0 =

∫ d∏

l=1

dMl

d∑

a=1

∂

∂(Ma)ij

(
∂φ(C)

∂(Ma)ji
e−S

)
. (2.9)

The loop equation is a quadratic equation in the large N limit which takes the form

∑

C1,C2

p(C;C1, C2)〈φ(C1)〉〈φ(C2)〉 −
∑

s

j(C, s;C ′)

〈
φ(C ′)

∂S

∂φ(s)

〉
= 0 . (2.10)

The integer p(C;C1, C2) specifies the number of ways in which a loop C can be split into

loops C1 and C2, while the integer j(C, s;C ′) specifies the number of ways loops C and s

can be joined to produce C ′. Both will be described in detail below. Solving these non-

linear coupled equations is highly non-trivial. Using collective field theory one obtains an

effective potential which, when minimized, gives the large N solution to the Schwinger-

Dyson equations.

As for the c = 1 MQM systems, changing to invariant variables we obtain a collective

potential Vcol, which when minimized, again determines the large N expectation values of

loops. These will be discussed in detail below.
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2.1 Collective (Loop Space) Representation

The collective representation of multi-matrix systems can be given both at the action level

for matrix integrals (c = 0), and at the Hamiltonian level for coupled quantum mechanical

(c = 1) systems. These are closely related, so in formulating numerical methods one can

work in the Hamiltonian framework [36]. To proceed, let us define the adjoint of the loop

variable. For a loop φ(C), we define its adjoint as φ(C̄), where C̄ is the reverse of the

word C. For example, for a word C = abaab, where a = M1 and b = M2, its reverse is

C̄ = baaba. In hermitian matrix models, this corresponds to taking a hermitian conjugate

of the matrix products. As such the adjoint φ(C̄) is simply the complex conjugate of φ(C)

in hermitian matrix systems:

φ(C̄) = φ̄(C) . (2.11)

The “bar” symbol on the right hand side of the above formula denotes complex conjugate.

We note in the hermitian one-matrix models case, the adjoint of a loop is itself since all

loops are real valued. The use the loop adjoints makes the hermiticity of the collective

representation manifest as we will see below.

Matrix integrals. Let us start with the collective representation of the multi-matrix

integral problem with any number d of matrices which at large N is efficiently described

using an effective action. This is obtained by a change of integration variables (from matrices

to loops)

∫ N∏

a,b=1

d∏

l=1

d(Ml)ab e−S =

∫ ∏

C

dφ(C)J(φ) e−S =

∫ ∏

C

dφ(C) e−Seff , (2.12)

resulting in a large N collective action Seff = S− ln J . The main ingredient in this effective

description is the Jacobian J and its form is in general specified by the collective formalism.

Variation of this collective action correctly produces the Schwinger-Dyson (SD) equations

(2.9). The derivative of the collective action [35] gives

ω̄(C)−
∑

C′

Ω(C,C ′)
∂S

∂φ(C ′)
= 0 . (2.13)

The functional ω(C) stands for

ω(C;φ) ≡ 2Êα
l Ê

α
l φ(C) =

∑

(C1,C2)

p(C;C1, C2)φ(C1)φ(C2) , (2.14)

representing the splitting of contour C into sub-contours (C1, C2).
1 The split occurs at the

pinched link, so in general there are several distinct ways for the process, which necessitates

the sum. The integer p(C;C1, C2) counts the number of ways loop C can be partitioned,

by the splitting operation, into loops C1 and C2. In a similar way one has

Ω(C1, C2;φ) ≡ −2Êα
l φ̄(C1) Ê

α
l φ(C2) =

∑

C

j(C1, C2;C)φ(C) (2.15)

1For unitary (Ml)ab matrices, Êα

l =
√
2 tαab(Ml)bc

∂

∂(Ml)ac
. The generators of the Lie algebra of U(N)

are normalized such that
∑

α
t
α

abt
α

a′b′ =
1
2
δab′δa′b. For hermitian matrix systems, Êα

l → Ê
ab

l = −i
∂

∂(Ml)ba
,

with (Ml)ab hermitian.
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for the opposite operation of joining contours. We note the use of loop adjoint in the

definition. The integer j(C1, C2;C) counts the number of ways in which C1 and C2 can be

joined to produce C. A computer algorithm was developed to generate loops and also these

loop processes which we call loop algebra.

For numerical minimization it is useful to follow [45], where it was established (through

a stochastic quantization) that the above SD problem can be represented through (Fokker-

Planck type) the quantum mechanical Hamiltonian: H = K+Veff . The solution of nonlinear

SD equations is then obtained by minimization of an effective potential of the following form

Veff =
1

8
ω̄(C)Ω−1(C,C ′)ω(C ′)− 1

4
ω̄(C)

∂V

∂φ(C)
+

1

8

∂S

∂φ(C)
Ω(C,C ′)

∂S

∂φ(C ′)
, (2.16)

where the “bar” symbols again denote complex conjugates. This effective potential also

gives the leading large N configuration of the bosonic sector of multi matrix Marinari-

Parisi [46] type models. Expansion around the stationary point leads to equations for small

fluctuations and a systematic 1/N expansion scheme.

Matrix quantum mechanics. We now describe the collective field formulation of the

large N MQM in detail. Considering a general multi-matrix quantum mechanics problem,

in the operator formalism, one has a transition to the collective description by performing a

change to curvilinear (loop space) variables (with a Jacobian J) which induces the collective

Hamiltonian, taking the form

Hcol =
1

2

∑

C,C′

π†(C)Ω(C,C ′)π(C ′) + Vcol[φ] (2.17)

with

Vcol[φ] =
~

8

∑

C,C′

ω̄(C)Ω−1(C,C ′)ω(C ′) + V [φ] , (2.18)

and π(C) representing the conjugates to the loops φ(C). Here V [φ] is the original potential

written in terms of loops. The collective Hamiltonian is manifestly hermitian, and is equiv-

alent to the original MQM Hamiltonian (2.2). We have used the notation Vcol to denote the

collective potential obtained for MQM systems, which plays an analogue role of the effective

potential Veff for matrix integral problems, as described above.

Notation emphasis. To proceed, let us emphasize that throughout we will use Veff to

denote the effective potential associated with matrix integrals (c = 0 systems), and Vcol to

denote the collective potential associated with MQM (c = 1 systems).

Large N background and fluctuation spectrum. In the next subsection we explain

that the N → ∞ limit is obtained by minimizing the potential Veff or Vcol and that this

minimization is subject to a sequence of inequalities which constrain the range of the loop

variables. The relevance of constrained minimization becomes even more fundamental when

one proceeds to study the spectrum at large N . Ordinarily this would be given directly in
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loop space by expanding about the stationary field

φ(C) = φ0(C) +
1

N
η(C), (2.19)

π(C) = NP (C), (2.20)

and reducing the collective Hamiltonian to a quadratic, small fluctuation Hamiltonian

H
(2)
col =

N2

2

∑

C,C′

P †(C)Ω0(C,C ′)P (C ′) +
1

2N2

∑

C,C′

η̄(C)V (2)(C,C ′)η(C ′) , (2.21)

Ω0(C,C ′) = Ω(C,C ′)
∣∣∣
φ0(C)

, V (2)(C,C ′) =
∂2Vcol

∂φ̄(C)∂φ(C ′)

∣∣∣∣
φ0(C)

. (2.22)

This H(2), and its diagonalization provides the spectrum at large N . Essentially, it is

determined by eigenvalues of the matrix:

ε2i = eig(Ω0V (2)) = eig(V (2)Ω0) . (2.23)

As we will explain next, these are to be found subject to obeying a set of (loop) space

inequalities that are central for reaching the correct minima.

2.2 Loop Space Inequalities and Constrained Minimization

Positivity of the loop joining matrix Ω. In the collective Hamiltonian description, the

N → ∞ limit (and the sum of planar diagrams) is given by the semiclassical approximation.

The problem is therefore to solve for the static stationary configuration denoted φ0(C),

which minimizes the potential Vcol. This would be generally given by the equation

∂Vcol[φ]

∂φ(C)
= 0 . (2.24)

However, as was understood earlier [37, 38], in the minimization a role is also played by

a sequence of inequalities (analogous to Schwarz inequalities) which constrain the range

of loop variables. Such a sequence of inequalities is generic, and will be present for any

set of variables representing invariants. In the collective description the inequalities are

directly visible and can be generally specified and given in terms of the loop space matrix Ω.

This matrix participates in the kinetic term of the Hamiltonian and defines the loop space

symplectic form. As such the matrix Ω must be positive semi-definite. Indeed from the

definition of the matrix Ω one has the fact that it can be written as

Ω
(
C,C ′) =

∑

i

ĀiCAiC′ =
∑

i

A†
CiAiC′ , (2.25)

i.e. it is explicitly positive semi-definite. Indeed, in our case, defining2

AiC ≡ ∂φ(C)

∂(Ml)ab
, i ≡ (a, b, l) , (2.26)

2Here we consider the case that (Ml)ab is a unitary matrix, but the same conclusion holds when (Ml)ab
is hermitian.
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we obtain

Ω(C,C ′) = −2
∑

α

Êαφ̄(C)Êαφ(C ′)

= 2
∑

lα

(M †
l )cat

α
ab

∂φ̄(C)

∂(M †
l )cb

tαa′b′(Ml)b′c′
∂φ(C ′)
∂(Ml)a′c′

=
∑

l

∂φ̄(C)

∂(M †
l )cb

∂φ(C ′)
∂(Ml)bc

=
∑

l

∂φ̄(C)

∂(M̄l)bc

∂φ(C ′)
∂(Ml)bc

=
∑

i

ĀiCAiC′ .

Positivity constraints. The minimization therefore must be done subject to the positivity

condition of the loop joining matrix Ω. In general the positive semi-definiteness of the loop

valued matrix Ω gives the complete set of inequalities, which schematically reads

eig
(
Ω(C,C ′)

)
≥ 0. (2.27)

We can write the complete set of these generalized loop space (Schwarz) inequalities as

follows. A convenient basis (and explicit form) turns out to be given by the sequence of

the sub-determinants detk(Ω) ≥ 0. The sub-determinant is defined by (repeated indices are

summed)

detl(Ω) =
1

l!(NΩ − l)!
ǫC1···Cla1···aNΩ−l

ǫC1···Cla1···aNΩ−l
Ω(C1, C

′
1) · · ·Ω(Cl, C

′
l)

=
1

l!(NΩ − l)!
ǫC1···Cla1···aNΩ−l

ǫC′

1···C′

l
a1···aNΩ−l

Āi1C1Ai1C′

1
· · · ĀilCl

AilC
′

l

= T̄i1···ila1···aNΩ−l
Ti1···ila1···aNΩ−l

, (2.28)

where NΩ is the dimension of the loop space joining matrix Ω and

Ti1···ila1···aNΩ−l
=

1√
l!(NΩ − l)!

ǫC′

1···C′

l
a1···aNΩ−l

Ai1C′

1
· · ·AilC

′

l
. (2.29)

The expression in the last line of (2.28) makes the positivity of the sub-determinant mani-

fest. An alternative formula for the sub-determinant is provided by

detl(Ω) = χ(1l)(Ω) , (2.30)

where χ(1l)(·) is a Schur polynomial and (1l) is the Young diagram with a single column and

l rows. This formula is simple with the normalization chosen in (2.28). The sub-determinant

basis is particularly useful when some of the constraints are saturated, in which case certain

eigenvalues of Ω vanish. If p eigenvalues vanish, then there are p independent vanishing

sub-determinants

detk(Ω) = 0 , k = NΩ − p+ 1, NΩ − p+ 2, . . . , NΩ . (2.31)
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Once expressed in terms of loops, this positivity condition implies highly non-trivial

inequality constraints among the φ(C)’s. The positivity inequalities constrain the eigenval-

ues of the loop space matrix Ω, leading to a constrained minimization of Veff or Vcol.
3 The

stationary minimum solution is generally characterized by saturation of a certain number

of inequalities, whereby the loop space matrix Ω develops zero eigenvalues.

2.3 Master Field

A most complete way to deal with the constrained optimization at large N is through

variables that automatically assure the positivity condition of the loop space matrix Ω.

These are the master field variables, or simply the original matrix valued variables of the

system. In terms of such variables the expectation values of loops are determined by a

direct stationary-point equation of the loop space effective (c = 0) or collective (c = 1)

potential
∂

∂(Ml)ab
Veff/col = 0 . (2.32)

Here the notation Veff/col represents either Veff or Vcol. This saddle-point equation in terms

of the master variables is correct in all phases of the theory, both the weak- and strong-

coupling. Let us also mention how the correct loop-space equation follows from the master

equation. Multiplying and summing over the appropriate factors, we obtain

∑

ab,l

∑

C′

∂φ̄(C)

∂(M̄l)ab

∂φ(C ′)
∂(Ml)ab

∂Veff/col

∂φ(C ′)
=
∑

C′

Ω(C,C ′)
∂Veff/col

∂φ(C ′)
= 0 , (2.33)

This fact that the saddle-point equation in terms of the master variable produces the correct

loop-space equation can be taken as another argument for the existence of the master field.

Denote the set of master variables and their complex conjugates by φα and φ̄α, re-

spectively. To see that the positivity of Ω is assured when working in terms of the master

variables, note that we can write Ω as

Ω(C,C ′) =
∑

α

∂φ̄(C)

∂φ̄α

∂φ(C ′)
∂φα

=
∑

α

A†
Cα AαC′ , AαC =

∂φ(C)

∂φα
. (2.34)

The set {φα, φ̄α} is always assumed to be at least as large as the set of invariants {φ(C)}.
We can think of these variables as the original variables of the theory, in which case they

transform non-trivially under the existing internal symmetries and form a larger set than

that of the invariants that can be obtained from them. Nevertheless, we have also other

situations in mind: one may truncate the effective potential, in which case the number of

φα variables must be larger than the number of loop variables included in the potential.

In general, the set {φα} is at least as large as the set of invariants. This is the case in

one-matrix models, for instance, where one identifies the φα’s with the matrix eigenvalues.

3Numerically and for unitary matrices systems, one finds that down to a certain critical value of the

coupling, a standard unconstrained minimization procedure converges giving the correct minima. However,

at a critical point (and below) the procedure breaks down. For single unitary matrix systems this is the

Gross-Witten phase transition [47], also present in the single unitary matrix hamiltonian systems [48–50].
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The important characteristic of these variables then is that they solve the positivity

constraint explicitly. Therefore, in the large-N limit, the ground state configuration is

determined by the saddle-point condition

∂Veff/col

∂φα
=
∑

C

∂φ(C)

∂φα

∂Veff/col

∂φ(C)
= 0 . (2.35)

It is clear that it is useful to reduce the problem to unconstrained minimization. In

[37, 38] we have presented and tested numerically such a framework developing a hybrid

loop space + master field approach. The use of master variables [38] is simple. In terms of

the original variables the inequalities are automatically obeyed so we can think of changing

back to these master variables but keeping the collective loop space Hamiltonian. This

is because it is the loop space Hamiltonian that generates the 1/N expansion. Now the

ground state and the fluctuation spectrum will be given by unconstrained minimization,

satisfying
∂Veff/col[φ(C{φα})]

∂φα
= 0 , ∀φα . (2.36)

This represents an implicit equation for the master field φα since it enters Veff/col through

the loop variables φ(C{φα}). As such it is not very useful at the analytic level but it can

be easily implemented numerically [37].

We will consider systems of two hermitian matrices in this article. Systems of her-

mitian matrices are always in the phase in which some of the constraints are saturated.

Consequently for these systems the use of master variables is of particular importance. The

loop invariants consist of single trace products of these matrices. As a result, one of the

matrices can be chosen to be diagonal, and the other will be parametrized in the Lie algebra

of the unitary group. The master variables are then real, which is something we use in the

following.4

The master eigenvalue equations for the fluctuation spectrum are similarly obtained in

this hybrid scheme. Denote in our Hamiltonian formulation the master field solution by

φ0
α. We are then led to appropriate spectrum eigenvalue equations through a shift in the

loop space collective Hamiltonian. One essentially considers a ‘canonical’ transformation

[40] from loops to master fields

Pβ =
∑

C

∂φ(C)

∂φβ

∣∣∣∣
φ0
α

P (C), ηβ =
∑

C

[
∂φ(C)

∂φβ

∣∣∣∣
φ0
α

]−1

η(C) , (2.37)

to obtain the following quadratic Hamiltonian

H(2) =
1

2

∑

α

PαPα +
1

2

∑

α,β

ηα Mαβ ηβ . (2.38)

Note that the term linear in η vanishes as a result of equation (2.35). The mass matrix

Mαβ is then to be computed from

Mαβ =
∂φ̄(C)

∂φα

∣∣∣∣
φ0
α

∂2Vcol

∂φ̄(C)∂φ(C ′)

∣∣∣∣
φ0{φ0

α}

∂φ(C ′)
∂φβ

∣∣∣∣
φ0
α

. (2.39)

4The general case is discussed in [40].
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Here the repeated indices C and C ′ are summed, which in principle range from 1 to infinity.

To compute it numerically we must perform the truncation discussed below. The fluctuation

spectrum is obtained by solving for the square root of the nonzero eigenvalues of the mass

matrix. In Section 5 we will show in detail that this is equivalent to the direct computation

of fluctuation spectrum in loop space.

We will see that in numerical evaluations of multi-matrix problems, the hybrid loop

space + master field formalism turns out to be advantageous, converging rapidly and giving

excellent agreement already at small loop and color cutoffs. With interest in precision opti-

mization we will furthermore test the method for larger sizes and number of minimization

variables (∼ 9× 103).

3 Methods

3.1 Loop truncation

A numerical implementation of the large N minimization of the collective potential neces-

sarily involves a truncation of the infinite dimensional loop space. We will truncate the loop

space by restricting to loops that limit the number of matrices appearing in the trace to be

smaller than some fixed cut off Lmax. This loop truncation is reminiscent of level truncation

in string field theory [51]. To gather some insight into this truncation, in this section we

consider the counting of loops as a function of the cut off. A convenient approach towards

this counting uses permutations to enumerate loops.

Loop counting. Consider the hermitian two-matrix model. The truncation of loop space

that we employ restricts n+m ≤ Lmax a fixed maximum loop length, where n and m denote

the number of M1 and M2 in a loop, respectively. It is interesting to count the number of

loops as a function of Lmax. This counting is a useful input to the numerical implementation

since it specifies how many variables appear in the numerical minimization. There is an

extremely rapid growth of the number of loops with increasing Lmax. The counting problem

can be solved with a standard application of Polya theory [52]. We start by introducing

the single letter partition function, which for two matrices is

Z1 = x+ y . (3.1)

The single trace partition function, which counts the number of loops, is now given by

F (x, y) =
∑

n

∑

n|d

ϕ(d)

n
Z1(x

d, yd)
n

d

=

∞∑

n,m=1

Nn,mxnym . (3.2)

The sum is over all integers n. At each n there is a second sum over d which runs over

the divisors of n, i.e. all the integers that can be divided into n without remainder. The

function ϕ(d) is the Euler totient function. The degree L contribution to F (x, y) counts

single trace operators constructed from L matrices. The coefficient Nn,m of the monomial
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of degree n in x and degree m in y counts the number of loops that can be constructed

using n M1s and m M2s. The first few terms of F (x, y) are

F (x, y) =(x+ y) +
(
x2 + xy + y2

)
+
(
x3 + x2y + xy2 + y3

)

+
(
x4 + x3y + 2x2y2 + xy3 + y4

)

+
(
x5 + x4y + 2x3y2 + 2x2y3 + xy4 + y5

)

+
(
x6 + x5y + 3x4y2 + 4x3y3 + 3x2y4 + xy5 + y6

)
+ · · ·

(3.3)

To interpret this answer, note that for example, the contribution 2x3y2 implies that there

are two independent loops that can be constructed using 3M1s and 2M2s. These two loops

are Tr(M3
1M

2
2 ) and Tr(M2

1M2M1M2).

To explore how the total number of loops grows, it is useful to consider the blind

partition function, obtained by setting y = α = x. The coefficient of αn counts the total

number of loops constructed using n matrices. The blind partition function is

F (α,α) =2α+ 3α2 + 4α3 + 6α4 + 8α5 + 14α6 + 20α7 + 36α8 + 60α9 + 108α10 + 188α11

+ 352α12 + 632α13 + 1182α14 + 2192α15 + 4116α16 + 7712α17 ++14602α18

+ 27596α19 + 52488α20 + 99880α21 + 190746α22 + 364724α23 + 699252α24

+ 1342184α25 + 2581428α26 + 4971068α27 + 9587580α28 + · · ·
(3.4)

demonstrating an extremely rapid growth in the number of invariants (loops).

Loop space truncation. Our numerical implementation of loop space dynamics trun-

cates to the subspace of invariants, given by all loops with Lmax = 2l−2 matrices or less in

the trace. In this scheme Ω is an NΩ ×NΩ matrix, where NΩ is the number of loops with l

matrices or less in the trace. Ω itself depends on a total of NLoops, which is the number of

loops with 2l−2 matrices or less. For this reason, our minimization scheme minimizes with

respect to NLoops independent variables. The values of Lmax, NΩ and NLoops for values

3 ≤ l ≤ 10 are given in Table 1 below.

Lmax NΩ NLoops

4 9 15

6 15 37

8 23 93

10 37 261

12 57 801

14 93 2615

16 153 8923

18 261 31237

Table 1: Truncating loop space.
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For the minimization, we parametrize M1 and M2 using N + N2 real valued master

variables. These are the N eigenvalues for M1 and the N2 matrix elements in M2. For a

given l we must choose the number of colors N large enough that N2 + N ≥ NLoops. To

obtain the large N background, our numerical experiments focus on l = 9, so that we keep

a total of 8923 loops. We choose N = 94 so that there are a total of 8930 master variables.

Spectrum calculation. To obtain the fluctuation spectrum based on master variables,

one needs to preserve the matrix structure of the loop derivatives (3.7) with respect to both

M1 and M2. We then truncate the mass matrix equation (2.39) as follows

Mij =

NLoops∑

C,C′=1

ĀiC

∣∣∣
φ0
α

∂2Vcol

∂φ̄(C)∂φ(C ′)

∣∣∣∣
φ0{φ0

α}
AjC′

∣∣∣
φ0
α

, i, j = 1, . . . , 2N2 . (3.5)

Here the “bar” symbols represent the complex conjugate. The mass matrix Mαβ is a matrix

of dimension

2N2 × 2N2,

obtained from the multiplication of

[2N2 ×NLoops]× [NLoops ×NLoops]× [NLoops × 2N2]

matrices. It is essential that one sums over all NLoops in the equation above.5 One obtains

NΩ nonzero eigenvalues and 2N2 −NΩ (numerically) zero eigenvalues.

We now observe that

Ω̂0(C,C ′) ≡
∑

i

ĀiC

∣∣∣
φ0
α

AiC′

∣∣∣
φ0
α

, C,C ′ = 1, ..., NLoops ,

is a (NLoops × NLoops) matrix which, in loop space, would include all loops up to length

4l − 6. In practice, it is not feasible to obtain such Ω̂ directly in loop space, given the size

of the truncations considered in this article (e.g., for l = 9 , 4l − 6 = 30). However, it can

be generated from the master variables.

The nonzero eigenvalues of (3.5) can then be matched with those of the loop space

spectrum matrix

MC,C′′ =

NLoops∑

C′=1

Ω̂0(C,C
′)V (2)(C ′, C ′′) , C,C ′′ = 1, ..., NLoops . (3.6)

This is a NLoops ×NLoops matrix, and is expressed explicitly in terms of loop variables. It

has NΩ nonzero eigenvalues and NLoops −NΩ (numerically) zero eigenvalues. Throughout,

we have checked that the nonzero eigenvalues of (3.5) and (3.6) are identical.

5Indeed, it was shown in [40] that if the sum is restricted to NΩ loops, every non-zero eigenvalue of

(2.23) is also an eigenvalue of (3.5), with NLoops replaced by NΩ. Except in the strong coupling phase of

unitary matrix systems, the spectrum obtained simply on the basis of (2.23), with Ω0 a (NΩ ×NΩ) matrix

is not accurate.
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3.2 Optimization Procedure

A Python code was developed to obtain the computational results. The first step is to

generate all the distinct single trace loops of a given length l. There are different ways of

generating them, including using Mathematica and Polya theory. A simple procedure is to

generate the list of Cn
l combinations for 0 ≤ n ≤ l, which index the position of (say) the

matrix M2 in the string (word) of M1 and M2 matrices, and then remove loops which are

identical up to cyclic permutations. They are then indexed and stored as a list of arrays,

eg. [1, 1, 1], [1, 1, 2], [1, 2, 2], [2, 2, 2], etc., and stacked for different lengths, to obtain the list

of NΩ and NLoops loops described in Section 3.1, reproducing Table 1. The zeroth indexed

element of the list is the empty array corresponding to φ(0) = Tr(I)/N = 1. It is fixed

throughout.

The next step is to generate the loop joining matrix Ω

Ω(c, c′) =
2∑

a=1

∂φ̄(c)

∂(Ma)ij

∂φ(c′)
∂(Ma)ji

=

NLoops∑

c′′=0

j(c, c′; c′′)φ(c′′), c, c′ = 1, . . . , NΩ .

Here we use little ‘c’ instead of capital ‘C’ to emphasize the loop truncation: the loop joining

matrix Ω now is a finite matrix of dimension NΩ × NΩ instead of an infinite dimensional

matrix. The code implements explicitly the first equality in the above equation, recalling

that6

∂

∂(M1)ij
Tr(· · ·M1 · · ·) =

∂

∂(M1)ij
Tr(M1 g(· · ·M1 · · ·M2 · · · )) + · · ·

= gji(· · ·M1 · · ·M2 · · · ) + · · · (3.7)

(gij is obtained by extracting M1 from the loop). The joined loop φ(c′′) is identified, and

the nonzero joining coefficients j(c, c′; c′′) are stored. It should be emphasized that, through

a joining process higher loops are generated, and the NΩ × NΩ matrix Ω contains higher

loops up to length NLoops. It is this full set of loops contained in and generated by Ω that

will participate in the optimization process.

A similar procedure is followed to generate ω defined through loop splitting

ω(c) =
2∑

a=1

∂

∂(Ma)ij

∂φ(c)

∂(Ma)ji
=

NLoops∑

c′,c′′=0

p(c; c′, c′′)φ(c′)φ(c′′), c = 1, ..., NΩ .

The split loops φ(c′), φ(c′′) are identified, and the nonzero splitting coefficients p(c; c′, c′′)
are stored. Since a given loop always splits into two smaller loops, ω only depends on the

subset of NΩ loop variables.

The master variables are the N×N matrices M1 and M2. For the minimization, due to

the single trace nature of the invariant loops, M1 is chosen diagonal and M2 is an arbitrary

N ×N hermitian matrix which we parametrize in the Lie algebra of U(N)

(M1)ij =

N∑

a=1

aaat
aa
ij , (M2)ij =

N∑

a=1

baat
aa
ij +

N∑

a<b

babt
ab
ij +

N∑

a>b

babt
ab
ij .

6in the equation below ‘· · · ’ stands for terms generated when the derivative does not act on the M1

shown on the left hand side of the first line.
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Here tabij (a < b) is the set of real off-diagonal generators (σ1 in the entries (ij) and (ji)).

tabij (a > b) are the purely imaginary generators (σ2 in the entries (ij) and (ji)), and taaij are

the entries of a diagonal matrix.

In order to extract the explicit dependence on the powers of N from the loops, they

are defined as

φ(c) = Tr(· · ·M1 · · ·M2 · · ·M1 · · ·M2 · · ·)/N
len(c)

2
+1 , (3.8)

where len(c) is length of the word c, i.e. the number of matrices in the loop.

The function to be minimized is (2.16) for matrix integrals or (2.18) for matrix quantum

mechanics. The argument of the function is the real concatenated array aaa, a = 1, ..., N

with the flattened matrix array bab , a, b = 1, ..., N . At each iteration, for a given con-

figuration of master variables, the NLoops loops are evaluated from (3.8) and Ω and ω are

evaluated with the values of the loops together with the coefficients j(c, c′; c′′) and p(c; c′, c′′).
Inversion of Ω is avoided by solving the relevant linear equations.

We used a standard minimize function from the scipy.optimize library. We used

two methods, the BFGS and the CG methods. We found that the BFGS method is slightly

faster, but for large loop truncations, the CG method is more stable. Both these methods

require the evaluation of the gradient. This is achieved by calculating for each iteration the

derivatives of the loops with respect to the master variables

∂φ(c)

∂φα
, φα ≡ (aaa, bab), a, b = 1, . . . , N .

The initial master variables configuration consists of a randomly generated real vector

and of a randomly generated real matrix. For Fokker-Planck (and the underlying c = 0)

type systems, we have set as convergence criteria that the norm of the gradient vector

becomes less than
√

N(N + 1) 10−16. In other words, at convergence, a typical gradient

vector element has norm of order 10−16. Convergence of the algorithm is remarkably stable,

with the energy monotonically decreasing to zero in successive iterations. Depending on

the size of the truncation, the energy at convergence is ∼ 10−24 − 10−31. The norm of the

gradient components typically range from ∼ 10−15−10−20. At convergence, the Schwinger-

Dyson equations are satisfied to typical accuracy ∼ 10−10−10−18. With a 3.0 GHz Mac, the

codes take from about a few seconds for NLoops = 37, about two hours for NLoops = 2615

and more than a day for NLoops = 8923.

For spectra of the MQM (c = 1) systems discussed in 5, we use N = 94 to generate

large N background. The initial master variables configuration again consists of a randomly

generated real vector and of a randomly generated real matrix. The convergence criteria

is that the norm of the gradient vector becomes less than
√

N(N + 1) 10−16. Again, for

NLoops = 37, converge is achieved in hours, while for NLoops = 8923 convergence takes days.

For a given loop truncation size NLoops, starting with the lowest N satisfying N(N +

1) ≥ NLoops and increasing N , loop values are seen not to change much. Loop values quickly

converge to their exact values (when known) as NLoops is increased. This is particularly

so for the NΩ small loops. This is evidenced, for example, in the matrix integrals case, in

Table 8.
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4 SD Models

As a first application of the methods outlined above, we will study matrix integrals. For

these models (in the decoupled case) there are exact analytic calculations which can be used

to validate our numerical results. In all cases we are able to confirm that our numerical

results are essentially exact for loops of lower length, with the accuracy falling off as we

approach Lmax which is the maximal length of loops admitted in the minimization. We

note that all these models have a Hamiltonian quantum mechanical interpretation (Fokker-

Planck). We also consider a variety of problems with two matrices to demonstrate the

methods. It will be clear that the extensions to more matrices proceed in the same way,

without difficulty.

Numerically we are evaluating the integral (2.8) with the action S given by

S = V (M1) + V (M2) + kTr(M1M2) , (4.1)

where the potential is given by

V (M) =
1

2
Tr
(
M2
)
+

g3√
N

TrM3 +
g4
N

TrM4 . (4.2)

When the coupling k = 0 we will refer to the system as a “single matrix system” and when

k 6= 0 as a “two-matrix system”. Note however, that for both types of systems we evaluate

mixed loops φ(C) obtained by tracing products involving both matrices M1 and M2, so

that even when k = 0 the problem is still a multi matrix problem.

4.1 Single Matrix Systems

Free theory. The potential of the zero dimensional model is

V (M) =
1

2
TrM2 , (4.3)

so that we have set g3 = g4 = 0. We also set k = 0. The effective potential is

Veff =
1

8
ωΩ−1ω +

1

8
Tr(M2

1 ) +
1

8
Tr(M2

2 )−
1

2
N2 . (4.4)

Quartic theory. The potential of the corresponding zero dimensional model is

V (M) =
1

2
TrM2 +

g4
N

TrM4 , (4.5)

so that we have set k = g3 = 0. The effective potential is

Veff =
1

8
ωΩ−1ω +

(
1

8
− 2g4

)
Tr(M2

1 ) +

(
1

8
− 2g4

)
Tr(M2

2 )−
1

2
N2

−g4
N

(
Tr(M1)

2 +Tr(M2)
2
)
+

g4
N

(
Tr(M4

1 ) + Tr(M4
2 )
)

+
2g24
N2

(
Tr(M6

1 ) + Tr(M6
2 )
)
. (4.6)
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Cubic model. We use

V (M) =
1

2
TrM2 +

g3√
N

TrM3 , (4.7)

so that we have set k = g4 = 0. The effective potential is

Veff =
1

8
ωΩ−1ω +

1

8
Tr(M2

1 ) +
1

8
Tr(M2

2 ) +
3g3

4
√
N

Tr(M3
1 ) +

3g3

4
√
N

Tr(M3
2 )−

1

2
N2

+
9g23
8N

Tr(M4
1 ) +

9g23
8N

Tr(M4
2 )−

3g3

2
√
N

Tr(M1)−
3g3

2
√
N

Tr(M2) . (4.8)

4.2 Two-Matrix Systems

Quadratic model. The potential of the zero dimensional model is

V (M) =
1

2
TrM2 , (4.9)

so that we have set g3 = g4 = 0. In this case we keep k 6= 0. The effective potential is

Veff =
1

8
ωΩ−1ω +

k2 + 1

8
Tr(M2

1 ) +
k2 + 1

8
Tr(M2

2 ) +
k

4
Tr(M1M2)−

1

2
N2 . (4.10)

Coupled cubic two-matrix model. We keep k > 0 and we set

V (M) =
1

2
TrM2 +

g3√
N

TrM3 , (4.11)

so that we have set g4 = 0. The effective potential is

Veff =
1

8
ωΩ−1ω +

1 + k2

8
Tr(M2

1 ) +
1 + k2

8
Tr(M2

2 ) +
k

4
Tr(M1M2)−

1

2
N2

+
3g3

4
√
N

Tr(M3
1 ) +

3g3

4
√
N

Tr(M3
2 ) +

9g23
8N

Tr(M4
1 ) +

9g23
8N

Tr(M4
2 )

+
3g3k

4
√
N

Tr(M2
1M2) +

3g3k

4
√
N

Tr(M1M
2
2 )−

3g3

2
√
N

Tr(M1)−
3g3

2
√
N

Tr(M2) . (4.12)

4.3 Results

In tables 2-10 we present results for SD models, obtained with l = 9 and N = 94.7 The

results show that for small loops we essentially obtain the exact answer. For larger loops

(with more than l matrices in the trace, in the notation of Section 3) the results are less

accurate, but even for the longest loops accuracy is typically always better than 5%.

7In the following tables the traces are scaled by appropriate factors according to (3.8) so that the results

of loops are independent of the matrix size N .
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g4 0 1 10

Exact Numerical Exact Numerical Exact Numerical

Tr(M2
1 ) 1 0.9999565 0.3125 0.3139285 0.113752 0.1166236

Tr(M1M2) 0 0.0002630 0 8.846× 10−6 0 0.0002037

Tr(M4
1 ) 2 1.9998894 0.171875 0.1732885 0.0221562 0.0230570

Tr(M2
1M

2
2 ) 1 0.9999058 0.0976563 0.09810712 0.0129395 0.0132793

Tr(M6
1 ) 5 4.9997429 0.113281 0.11462865 0.00513368 0.0054013

Tr(M2
1M

4
2 ) 2 1.9998074 0.0537109 0.05394868 0.00252031 0.0025842

Tr(M4
1M

2
2 ) 2 1.9997449 0.0537109 0.05415388 0.00252031 0.0026246

Tr(M4
1M

4
2 ) 4 3.9994546 0.029541 0.02977492 0.000490897 0.0005107

Table 2: Results for the g3 = k = 0 as g4 is varied. The table shows loops with lengths

≤ 8.

g4 0 1 10

Exact Numerical Exact Numerical Exact Numerical

Tr(M10
1 ) 42 41.898479 0.0629883 0.064156 0.000350126 0.000376

Tr(M8
1M

2
2 ) 14 13.986907 0.0256348 0.026020 0.000148213 0.000157

Tr(M5
1M

5
2 ) 0 0.014260 0.0 1.030×10−5 0.0 -5.322×10−7

Tr(M12
1 ) 132 130.63810 0.050354 0.051447 0.0000978653 0.000106

Tr(M6
1M

6
2 ) 25 25.130274 0.0128326 0.012996 2.635×10−5 2.779×10−5

Tr(M14
1 ) 429 417.95735 0.041458 0.042414 2.816×10−5 3.053×10−5

Tr(M4
1M

10
2 ) 84 84.278562 0.0108261 0.010975 7.757×10−6 8.111×10−6

Tr(M16
1 ) 1430 1359.7222 0.0349121 0.035647 8.283×10−6 8.941×10−6

Table 3: Results for the g3 = k = 0 as g4 is varied. The loops shown have lengths ≥ 10

and ≤ 16.

g3 0.01 0.025 0.05

Exact Numerical Exact Numerical Exact Numerical

Tr(M2
1 ) 1.00363 1.00363 1.02358 1.02358 1.11155 1.11155

Tr(M1M2) 0.000906539 0.000909 0.00589 0.00589 0.027799 0.027798

Tr(M4
1 ) 2.02182 2.02182 2.14427 2.14429 2.73465 2.73462

Tr(M2
1M

2
2 ) 1.00727 1.00727 1.04771 1.04771 1.23554 1.23554

Tr(M6
1 ) 5.10951 5.10950 5.73859 5.73869 9.1135 9.1131

Tr(M2
1M

4
2 ) 2.02915 2.02916 2.19482 2.19485 3.0397 3.03967

Tr(M4
1M

2
2 ) 2.02915 2.02915 2.19482 2.19485 3.0397 3.03967

Tr(M4
1M

4
2 ) 4.08777 4.08779 4.59788 4.59810 7.47831 7.47913

Table 4: Results for g4 = k = 0 as g3 is varied. The table shows loops with lengths ≤ 8.
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g3 0.01 0.025 0.05

Exact Numerical Exact Numerical Exact Numerical

Tr(M10
1 ) 44.3207 44.2172 58.4568 58.3197 156.937 156.449

Tr(M8
1M

2
2 ) 14.5658 14.5441 17.9569 17.9432 39.9365 39.8981

Tr(M5
1M

5
2 ) 0.207449 0.2311 1.4793 1.5072 10.4007 10.4477

Tr(M12
1 ) 142.267 140.851 207.031 204.9967 732.18 723.9593

Tr(M6
1M

6
2 ) 26.1071 26.2563 32.9314 33.1235 83.0558 83.4798

Tr(M14
1 ) 473.759 462.0533 767.231 748.6339 3570.97 3476.2509

Tr(M4
1M

10
2 ) 89.6086 89.8709 125.347 125.4809 429.168 427.3324

Tr(M16
1 ) 1623.11 1546.8709 2943.81 2808.6594 17971.5 17086.8

Table 5: Results for g4 = k = 0 as g3 is varied. The loops shown have lengths ≥ 10 and

≤ 16.

k 0 1

2

3

4

Exact Numerical Exact Numerical Exact Numerical

Tr(M2
1 ) 1 0.9999565 1.33333 1.333362 2.28571 2.28559

Tr(M1M2) 0 0.0002630 -0.666667 -0.666619 -1.71429 -1.71416

Tr(M4
1 ) 2 1.999885 3.55556 3.555304 10.449 10.447

Tr(M2
1M

2
2 ) 1 0.9999058 2.22222 2.221766 8.16327 8.16228

Tr(M6
1 ) 5 4.9997429 11.8519 11.8497 59.7085 59.6988

Tr(M2
1M

4
2 ) 2 1.9998074 6.51852 6.51612 44.035 44.0271

Tr(M4
1M

2
2 ) 2 1.9997449 6.51852 6.51603 44.035 44.0271

Tr(M4
1M

4
2 ) 4 3.9994546 19.9506 19.9388 256.0 255.9

Table 6: Results for g3 = g4 = 0 as k is varied. The table shows loops with length ≤ 8.

k 0 1

2

3

4

Exact Numerical Exact Numerical Exact Numerical

Tr(M10
1 ) 42 41.898479 176.988 178.1885 2620.35 2649.95

Tr(M8
1M

2
2 ) 14 13.986907 88.4938 88.7473 1856.08 1869.81

Tr(M5
1M

5
2 ) 0 0.014260 -61.2346 -61.2468 -1605.73 -1610.73

Tr(M12
1 ) 132 130.63810 741.663 759.5443 18823.7 19572.3

Tr(M6
1M

6
2 ) 25 25.130274 263.111 264.3137 11215.9 11339.8

Tr(M14
1 ) 429 417.95735 3213.87 3378.6847 139833 151758

Tr(M4
1M

10
2 ) 84 84.278562 1170.09 1169.2822 84618.9 85304.5

Tr(M16
1 ) 1430 1359.7222 14283.9 15516.1101 1.0654×106 1.2204×106

Table 7: Results for g3 = g4 = 0 as k is varied. The loops shown have lengths ≥ 10 and

≤ 16.

– 19 –



NLoops 93 93 261 261 801 801

NΩ 23 23 37 37 57 57

N 10 12 16 18 28 30

Tr(M2
1 ) 1.398558 1.398550 1.398602 1.398606 1.398608 1.398608

Tr(M1M2) 0.724017 0.724014 0.724058 0.724062 0.724064 0.724064

Tr(M4
1 ) 4.078131 4.075882 4.083250 4.083690 4.083917 4.083920

Tr(M2
1M

2
2 ) 2.584743 2.584708 2.588234 2.588669 2.588752 2.588754

Tr(M6
1 ) 14.627466 13.991341 15.388399 15.430672 15.477357 15.477725

Tr(M2
1M

4
2 ) 8.479602 8.622227 8.692989 8.740663 8.739481 8.739705

Tr(M4
1M

2
2 ) 8.404034 8.284243 8.688555 8.727894 8.738072 8.738460

Tr(M4
1M

4
2 ) 56.718119 52.025168 63.460122 64.980069 66.088900 66.155167

Table 8: Results for g3 = 0.05, k = 0.5 for l = 5, 6, 7 and increasing N . Note that the

length of the last loop is > 7.

NLoops 37 93 261 801 2615 8923

NΩ 15 23 37 57 93 153

ε1 0.49236511 0.49236370 0.49236470 0.49236443 0.49236443 0.49236463

ε2 0.49342716 0.49343864 0.49344212 0.49344752 0.49344586 0.49344757

Table 9: The two lowest lying states for k = g4 = 0 and g3 = 0.05/3 = 0.0167.

NLoops 37 93 261 801 2615 8923

NΩ 15 23 37 57 93 153

ε1 5.44592002 5.25941037 5.13024606 5.20001164 5.18903527 5.15228747

ε2 5.81626188 5.33316170 5.41489587 5.40011675 5.36702168 5.33021481

Table 10: The two lowest lying states for k = g3 = 0 and g4 = 10.
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5 Matrix Quantum Mechanics Spectrum

In this section, we consider multi-matrix quantum mechanical models, which includes the

evaluation of (Wilson) loop expectation values at large N , ground state energies at large

N , and the spectrum of fluctuations (which corresponds to N0, i.e. order 1). The coupled

two-matrix Hamiltonian reads

H =
1

2
Tr(Π2

1 +Π2
2) + V (M1,M2) , (5.1)

with a potential

V (M1,M2) =
1

2
Tr
(
M2

1 +M2
2

)
+ kTr(M1M2) +

g4
N

Tr
(
M4

1 +M4
2

)
. (5.2)

We note, that the SD models featured in the previous section are also of this form, but an

effective potential containing double trace couplings. Consequently the numerical methods

for evaluating the stationary points and the spectrum apply to both with no difference in

degree of difficulty. Likewise, our methods can be applied to multi-matrix models with

arbitrary number of matrices. We describe evaluation of the spectrum for the above case.

For normalization purposes, we will also give numerical (and analytical) one-matrix results.

5.1 Fluctuations

The general strategy for the spectrum calculation of small fluctuations in loop space, which

holds for all multi-matrix quantum mechanics in the limit of large N , has been described in

previous sections, and is easily implementable on a computer. In this subsection we explain

the subtly about truncation further. As in the optimization procedure, we truncate the

infinite dimensional loop space. Let l denote the chosen loop length truncation, and NΩ

denote the number of loops whose lengths are less or equal to l. Ω then is a NΩ by NΩ

matrix which involves NLoops loops in total, and the loop of maximal length it contains is

L = 2l − 2. Sending Ω → N−2Ω, we obtain the collective Hamiltonian

Hcol =
1

2N2

NΩ∑

c=1

P †(c)Ω(c, c′)P (c′) +N2Vcol[φ] , (5.3)

where

Vcol[φ] =
1

8

NΩ∑

c=1

ω̄(c)Ω−1(c, c′)ω(c′) + v[φ] . (5.4)

Here N2v[φ] is the original potential written in terms of loops. We then expand Hcol to

order O(1), which is accomplished by shifting loop variables around the ground state

φ(C) = φ0(C) +
1

N
η(C), P (C) = Np(C), where C = 1, . . . , NLoops , (5.5)

and omitting the constant background terms. We use Capital C to emphasize that here

the loop labels run from 1 to NLoops, instead of NΩ, because Vcol in equation (5.4) involves

NLoops independent loops. Accordingly there are also NLoops canonical conjugates, which
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1 NΩ NLoops

1

NΩ

NLoops







Figure 1: Illustration of Ω truncation for spectrum calculation.

requires us to use the NLoops by NLoops dimensional loop joining matrix denoted as Ω̂. The

choice of the loop joining matrix is illustrated in Figure 1, where the deep blue blocks are

used for truncation in Vcol, and the deep plus light blue blocks, i.e. Ω̂, are used in the

following H
(2)
col .

The Taylor expansion then gives

H
(2)
col =

NLoops∑

C=1

(
1

2
p†(C)Ω̂0(C,C

′)p(C ′) +
1

2
η̄(C)V

(2)
0 (C,C ′)η(C ′)

)
, (5.6)

in which V
(2)
0 is the Hessian matrix of Vcol at the ground state. We note that all elements

in Ω are linear functions of loops. Their second derivatives therefore are 0, and hence do

not contribute to V
(2)
0 . For the same reason, the second derivative of v[φ] vanishes if it only

contains single trace terms.

To evaluate the spectrum, one can diagonalize the kinetic term in (5.6) and then solve

the eigenvalues of the resulting mass matrix. As pointed out earlier, we see that using Ω̂

also resolves the mismatch of the dimensions between Ω0 and V
(2)
0 . Since Ω̂0 is positive

definite, one can perform a canonical transformation

η →
√

Ω̂0 η, p →
√

Ω̂−1
0 p . (5.7)

The spectrum is then given, in terms of the nonzero eigenvalues of the spectrum matrix

Ω̂0V
(2)
0 , by

εn =


eign




NLoops∑

C′=1

Ω̂0(C,C
′)V (2)

0 (C ′, C ′′)





1/2

, n ∈ Z
+ , (5.8)

where eign denotes the nth nonzero eigenvalue. Here n starts from 1 instead of 0, because

the zero mode is excluded in the definition of Ω (or Ω̂). The spectrum is independent of

truncation loop length l, as we will see in the following concrete examples. In principle,

the size of the spectrum one can obtain is equal to the NΩ. Besides, there are precisely

NLoops − NΩ zero eigenvalues of Ω̂0V
(2)
0 , therefore the truncation scheme automatically
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projects out the higher modes. As l is increased, higher modes are included, and one is able

to obtain higher frequencies.

Depending on the size of the truncation and particularly for multi-matrix systems, it

is not feasible in general to obtain Ω̂0 directly in loop space. But Ω̂0 can be always be

constructed with master variables. The spectrum equation (5.8) then takes the form

εn =


eign




NLoops∑

C′=1

∑

a

∑

i,j

∂φ̄(C)

∂(M̄a)ij

∂φ(C ′)
∂(Ma)ji

V
(2)
0 (C ′, C ′′)





1/2

. (5.9)

For example, the spectrum that is presented in Section 5.3 is obtained in the background

of 801 (this is the number of loops for a cut off of Lmax = 2× 7− 2) loops, whose value is

determined by the master field after minimization. This results in a spectrum eigenvalue

matrix of size ≈ 103 × 103. Note also that 401 947 loops are effectively included in the

computation of Ω̂0. This is only possible through the use of master variables and a direct

loop space evaluation would not be possible. It is visible that the spectrum calculation in

terms of master fields should give the same results, except for different numbers of zero

eigenvalues of Ω̂0V
(2)
0 .

We observe that in the free theory cases, interestingly, one can actually obtain exact

results by working with a smaller V
(2)
0 matrix, whose matrix indices range only from 1

to NΩ, and correspondingly with the smaller Ω0 matrix. This has been verified in both

one- and two-matrix quantum mechanics. This is no longer the case the moment coupling

constants are switched on.

5.2 One-Matrix Example

We then proceed to employ our general strategy to compute the spectrum of the hermitian

one-matrix quantum mechanics:

H = −1

2
Tr

(
∂2

∂M2

)
+

1

2
Tr
(
M2
)
+

g4
N

Tr
(
M4
)
. (5.10)

In this simple case the all loop variables are real, and are labeled by a nonnegative integer

n so that φ(n) = Tr(Mn)/Nn/2+1. The loop joining and splitting have components

Ω(n,m) = N−2 nmφ(n+m− 2), ω(n) = n

n−2∑

m=0

φ(m)φ(n −m− 2) . (5.11)

Some analytical results including the spectrum formula are summarized in Appendix B.

With the analytical loop values (B.4) we can also obtain the spectrum using a computer.

A Mathematica program was developed for the spectrum calculation. The one-matrix case

has the simple feature that NΩ = l and also NLoops = Lmax, which provides us a canonical

example to illustrate our general strategy. To calculate the spectrum using the general

strategy at loop length truncation l = 6, for example, there are totally Lmax = 10 loops

contained in Vcol. Ω0 then is a 6 × 6 matrix, but Ω̂0 and V
(2)
0 are both 10 × 10 matrices.

In Table 11 we present both the exact (B.7) and numerical low lying spectrum results for
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g4

ε1
ε2
ε3
ε4
ε5
ε6

exact results

0 0.1 1 10 100

1 1.223 2.014 4.037 8.557

2 2.447 4.027 8.074 17.115

3 3.67 6.041 12.111 25.672

4 4.894 8.055 16.148 34.23

5 6.117 10.069 20.185 42.787

6 7.34 12.082 24.222 51.344

numerical results

0 0.1 1 10 100

1 1.223 2.014 4.037 8.557

2 2.447 4.027 8.074 17.115

3 3.67 6.041 12.111 25.672

4 4.894 8.055 16.148 34.229

5 6.117 10.069 20.189 42.798

6 7.34 12.083 24.229 51.362

Table 11: One-matrix spectrum.

1 5 10 15 20
0

20

40
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n

ε n

g4 = −0.05
g4 = 0
g4 = 1
g4 = 5
g4 = 10

(a) Frequencies versus level numbers with dif-

ferent couplings.

0 2 4 6 8 10
0

1

2

3

4

g4

ε 1

analytic
numeric

(b) The first frequency ε1 versus the quartic

coupling g4.

Figure 2: Spectrum of the large N Hermitian one-matrix quantum mechanics.

various g4, showing excellent agreement. These results are also relevant to the following

two-matrix example. In Figure 2a we present several numerical results of spectrum εn versus

level indices n. They all fit into a straight line, revealing the simple relation εn = nε1, which

is also a property predicted by the exact result (B.7). When g4 = 0, the model reduces to

decoupled harmonic oscillators, therefore we have εn = n, as is verified. For other couplings

we present the first level frequency ε1 in Figure 2b. The exact and numerical results again

agree very well, including the critical region g ∼ gc = −1/3
√
2π.

5.3 Two-Matrix example

By applying the same strategy, and using the numerical minimization results, we are also

able to evaluate the spectrum of the hermitian two-matrix quantum mechanics (5.1) and

(5.2), using a Mathematica program.

At first we present in Table 12 the comparison of the ground state energies, in which the

two-matrix results are obtained from numerical minimization, and the one-matrix results
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g4 2×one-matrix two-matrix

0 1 1

0.1 1.08479 1.08479

1 1.48047 1.48044

10 2.68896 2.68894

100 5.54551 5.54549

Table 12: E
(0)
gs comparison.

are obtained from the analytical expression (B.5). The two-matrix model in c = 0 cases

doubles the one-matrix model interaction, and one expects that the ground state energy

should therefore be twice that of the corresponding one-matrix result. Table 12 exhibits

excellent agreement, verifying the expectation.

As for the spectrum computation, the multi-matrix models lose the simple feature

NΩ = l, and a rapid growth of NΩ has already been observed in the two-matrix case. Based

on the l = 9 (l = 7) numerical minimization data for interacting (free) case, we present

some spectrum results evaluated at truncation l = 4, 5, 6, 7 in Table 13, 14, 15, 16 and 17.

Taking the l = 6 case for example, one has NΩ = 37, so that Ω in Veff is 37 × 37. On the

other hand, the fact L = 10 requires us to use the NLoops = 261 dimensional Ω̂0 and V
(2)
0 ,

which implies a large amount (261 − 37 = 224) of the zero eigenvalues of Ω̂0V
(2)
0 . This

was verified by our Mathematica program. Comparing the two-matrix spectrum results, we

see that as l is increased, low lying spectrum are stable and convergent, and higher level

frequencies are obtained.

Let us now examine in more detail the primary characteristics of the two-matrix spectra.

As the results show, in free theory, k = g4 = 0, the spectrum values coincide with the

one-matrix case. Besides, a high degeneracy pattern is observed. Let N (n) denote the

number of inequivalent loops of length n. The degeneracy at level n is precisely equal to

N (n). For instance, at level 2 the degeneracy is 3, since there are 3 independent loops,

namely Tr(M1M1), Tr(M1M2), and Tr(M2M2). As we turn on the quartic coupling g4
while fixing k = 0, the degeneracy is lifted slightly, and a different degeneracy pattern is

obtained. Comparing with the one-matrix results Table 11, one can obviously see that the

two-matrix spectrum contains the corresponding one-matrix spectrum as a subset, and with

a degeneracy number 2. These subsets are filled in light blue colors in each k = 0 and g 6= 0

column of the two-matrix spectrum results. When turning on coupling k, the degeneracy

patterns are nearly destroyed. The lifting of the degeneracy due to k and g4 is presented in

Figure 3 based on data in Table 15. We conjecture that these properties are universal for

multi-matrix models.
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k

g4

ε1
ε2
ε3
ε4
ε5

ε6
ε7
ε8
ε9
ε10
ε11
ε12
ε13
ε14
ε15

0

0

1

1

2

2

2

3

3

3

3

4

4

4

4

4

4

0 0 0 0

0.1 1 10 100

1.225 2.025 4.072 8.642

1.225 2.026 4.079 8.644

2.314 3.542 6.883 14.46

2.449 4.05 8.143 17.276

2.45 4.05 8.148 17.279

3.546 5.635 11.164 23.604

3.546 5.635 11.178 23.607

3.691 6.228 12.695 27.031

3.691 6.23 12.697 27.04

4.631 7.121 13.881 29.201

4.773 7.684 15.324 32.436

4.774 7.691 15.335 32.469

4.775 7.702 15.386 32.569

4.921 8.301 16.932 36.077

4.922 8.302 16.945 36.083

0.5 0.5 0.5

0 0.1 1

0.707 1.011 1.904

1.225 1.422 2.148

1.414 1.946 3.444

1.932 2.428 4.049

2.121 2.777 4.147

2.45 2.939 5.354

2.639 3.418 5.784

2.828 3.835 6.279

3.157 3.918 6.325

3.346 4.173 7.007

3.674 4.397 7.418

3.864 4.623 7.609

3.864 4.84 7.986

4.381 5.224 8.381

4.899 5.562 8.412

Table 13: Two-matrix spectrum with loop length truncation l = 4.
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k

g4

ε1
ε2

ε3
ε4
ε5

ε6
ε7
ε8
ε9

ε10
ε11
ε12
ε13
ε14
ε15
ε16
ε17
ε18
ε19
ε20
ε21
ε22
ε23

0

0

1

1

2

2

2

3

3

3

3

4

4

4

4

4

4

5

5

5

5

5

5

5

5

0 0 0 0

0.1 1 10 100

1.225 2.024 4.063 8.62

1.225 2.024 4.07 8.622

2.314 3.542 6.883 14.46

2.449 4.05 8.143 17.276

2.45 4.05 8.148 17.279

3.54 5.581 10.989 23.189

3.54 5.581 11.003 23.191

3.674 6.091 12.197 25.839

3.674 6.103 12.233 25.913

4.631 7.121 13.881 29.201

4.773 7.684 15.324 32.436

4.774 7.691 15.335 32.469

4.775 7.702 15.386 32.569

4.921 8.301 16.932 36.077

4.922 8.302 16.945 36.083

5.858 9.164 18.058 38.031

5.859 9.175 18.069 38.05

5.998 9.732 19.444 41.179

6.001 9.745 19.47 41.264

6.003 9.808 19.574 41.368

6.008 9.828 19.607 41.464

6.156 10.844 20.795 43.978

6.178 11.257 21.488 44.988

0.5 0.5 0.5

0 0.1 1

0.707 1.011 1.903

1.225 1.421 2.146

1.414 1.946 3.444

1.932 2.428 4.049

2.121 2.777 4.147

2.45 2.924 5.285

2.639 3.399 5.712

2.828 3.818 6.155

3.157 3.918 6.215

3.346 4.163 7.007

3.535 4.397 7.418

3.674 4.623 7.609

3.864 4.84 7.986

3.864 4.907 8.381

4.053 5.224 8.412

4.381 5.378 8.858

4.571 5.562 9.319

4.571 5.67 9.48

4.899 5.831 9.692

5.088 6.066 9.962

5.089 6.243 10.222

5.606 6.614 11.082

6.124 6.949 11.517

Table 14: Two-matrix spectrum with loop length truncation l = 5.
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k

g4

ε1
ε2

ε3
ε4
ε5
ε6
ε7
ε8
ε9

ε10
ε11
ε12
ε13
ε14
ε15
ε16
ε17
ε18
ε19
ε20
ε21
ε22
ε23
ε24
ε25
ε26
ε27
ε28
ε29
ε30
ε31
ε32
ε33
ε34
ε35
ε36
ε37

0

0

1

1

2

2

2

3

3

3

3

3.961

3.972

3.987

3.991

3.998

4

4.987

4.989

4.994

4.996

4.998

4.999

4.999

5

6

6

6

6

6.001

6.001

6.003

6.004

6.006

6.009

6.021

6.028

6.048

6.062

0 0 0 0

0.1 1 10 100

1.221 2.009 4.029 8.546

1.222 2.01 4.042 8.552

2.306 3.535 6.884 14.456

2.443 4.008 8.061 17.099

2.45 4.022 8.075 17.108

3.535 5.576 10.997 23.206

3.542 5.58 11.013 23.211

3.682 6.063 12.104 25.62

3.688 6.077 12.14 25.709

4.625 7.081 13.759 28.924

4.747 7.583 15.039 31.786

4.763 7.59 15.05 31.808

4.773 7.609 15.127 31.959

4.889 7.923 16.108 34.323

4.907 7.992 16.258 34.534

5.863 9.164 18.051 38.027

5.866 9.171 18.07 38.045

6.002 9.713 19.378 40.997

6.01 9.728 19.406 41.036

6.019 9.762 19.459 41.193

6.032 9.774 19.502 41.28

6.158 10.663 20.553 43.419

6.19 10.682 20.776 43.648

6.87 10.988 21.123 44.304

6.955 11.036 22.095 46.691

7.078 11.173 22.176 46.723

7.096 11.205 22.19 46.852

7.109 11.219 22.238 46.923

7.11 11.244 22.259 46.954

7.18 11.391 22.399 47.149

7.233 11.735 23.444 49.503

7.239 11.834 23.478 49.806

7.252 11.921 23.688 49.88

7.259 11.972 23.703 50.107

7.341 12.001 23.734 50.372

7.376 12.961 24.536 51.909

7.488 13.176 25.326 53.015

0.5 0.5 0.5

0 0.1 1

0.707 1.009 1.893

1.227 1.421 2.137

1.413 1.941 3.44

1.932 2.423 4.02

2.12 2.777 4.127

2.453 2.923 5.293

2.64 3.395 5.706

2.827 3.816 6.138

3.159 3.895 6.206

3.347 4.168 6.94

3.536 4.37 7.319

3.68 4.61 7.453

3.863 4.812 7.808

3.865 4.901 8.064

4.054 5.206 8.156

4.242 5.371 8.857

4.386 5.552 9.312

4.572 5.673 9.475

4.572 5.822 9.669

4.761 5.892 9.919

4.904 6.071 10.206

5.091 6.238 10.508

5.093 6.357 10.811

5.272 6.548 10.916

5.278 6.612 11.115

5.281 6.688 11.144

5.611 6.818 11.243

5.796 6.952 11.285

5.799 7.016 11.321

5.8 7.03 11.597

5.811 7.097 11.643

6.129 7.25 11.751

6.315 7.405 11.924

6.316 7.516 12.221

6.324 7.645 12.388

6.836 8.01 13.169

7.352 8.346 13.249

Table 15: Two-matrix spectrum with loop length truncation l = 6.
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k

g4

ε1
ε2
ε3
ε4
ε5
ε6
ε7
ε8
ε9
ε10
ε11
ε12
ε13
ε14
ε15
ε16
ε17
ε18
ε19
ε20
ε21
ε22
ε23
ε24
ε25
ε26
ε27
ε28
ε29
ε30
ε31
ε32
ε33
ε34
ε35
ε36
ε37

0

0

1

1

2

2

2

2.904

2.941

2.978

2.982

3.904

3.93

3.959

3.974

3.986

3.991

4.79

4.889

4.911

4.931

4.963

4.975

4.985

4.996

5.978

5.982

5.99

5.991

5.993

5.994

5.997

5.999

6

6.001

6.017

6.023

6.036

6.055

0 0 0 0

0.1 1 10 100

1.223 2.014 4.022 8.517

1.225 2.032 4.048 8.643

2.309 3.559 6.899 14.511

2.444 4.016 8.011 17.068

2.452 4.044 8.097 17.156

3.534 5.589 11.001 23.229

3.546 5.627 11.02 23.332

3.679 6.058 12.037 25.643

3.685 6.08 12.141 25.723

4.627 7.111 13.798 29.071

4.745 7.604 15.055 31.843

4.766 7.615 15.076 31.924

4.779 7.661 15.112 32.036

4.89 7.942 16.077 34.153

4.911 8.008 16.222 34.731

5.86 9.153 17.907 37.776

5.863 9.172 17.929 37.898

5.985 9.456 19.035 40.246

5.997 9.605 19.125 40.594

6.003 9.638 19.148 40.629

6.009 9.648 19.209 40.703

6.118 9.672 20.067 42.483

6.124 9.862 20.21 43.11

6.872 10.703 20.807 43.733

6.955 11.084 22.147 46.601

7.078 11.185 22.211 46.987

7.096 11.252 22.223 47.068

7.106 11.274 22.262 47.143

7.11 11.289 22.33 47.198

7.183 11.465 22.604 48.218

7.231 11.768 23.39 49.559

7.239 11.828 23.468 49.855

7.254 11.922 23.563 50.017

7.26 11.952 23.65 50.08

7.325 12.088 23.776 50.145

7.366 12.735 24.253 51.73

7.478 12.752 24.954 52.707

0.5 0.5 0.5

0 0.1 1

0.708 1.012 1.896

1.232 1.426 2.139

1.411 1.938 3.446

1.935 2.428 4.027

2.124 2.788 4.11

2.458 2.925 5.292

2.642 3.4 5.706

2.829 3.826 6.11

3.164 3.898 6.192

3.351 4.186 6.957

3.532 4.378 7.299

3.694 4.611 7.467

3.855 4.819 7.814

3.872 4.867 8.067

4.056 5.223 8.143

4.236 5.348 8.708

4.398 5.563 9.005

4.571 5.67 9.224

4.576 5.801 9.376

4.758 5.889 9.479

4.914 6.07 9.732

4.952 6.222 9.976

5.096 6.357 10.143

5.105 6.549 10.517

5.281 6.608 10.814

5.285 6.703 11.149

5.291 6.822 11.163

5.483 6.863 11.246

5.612 6.883 11.304

5.775 7.013 11.566

5.795 7.11 11.609

5.806 7.153 11.771

5.815 7.248 11.888

6 7.333 12.222

6.013 7.407 12.36

6.067 7.521 12.383

6.155 7.59 12.811

Table 16: Two-matrix spectrum with loop length truncation l = 7.
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k

g4

ε38
ε39
ε40
ε41
ε42
ε43
ε44
ε45
ε46
ε47
ε48
ε49
ε50
ε51
ε52
ε53
ε54
ε55
ε56
ε57

0

0

7.002

7.003

7.005

7.005

7.006

7.007

7.01

7.013

7.014

7.02

7.022

7.027

7.038

7.06

7.076

7.1

7.163

7.263

7.345

7.499

0 0 0 0

0.1 1 10 100

8.135 12.928 25.004 52.799

8.138 12.957 25.259 52.943

8.227 13.213 26.213 55.46

8.239 13.258 26.288 55.632

8.31 13.28 26.331 55.74

8.317 13.296 26.365 55.848

8.328 13.312 26.382 55.965

8.337 13.339 26.431 56.117

8.345 13.372 26.451 56.198

8.352 13.451 26.562 56.373

8.362 13.505 26.589 56.564

8.364 13.794 27.287 58.281

8.451 13.98 27.505 58.424

8.463 14.006 27.596 58.785

8.483 14.044 27.833 59.008

8.493 14.158 27.944 59.054

8.56 14.33 28.048 59.322

8.59 14.386 28.09 60.142

8.643 15.172 28.787 60.705

8.648 15.648 29.561 61.502

0.5 0.5 0.5

0 0.1 1

6.251 7.661 12.835

6.326 7.709 12.971

6.331 7.799 13.026

6.512 7.984 13.136

6.519 8.018 13.196

6.527 8.048 13.267

6.535 8.128 13.372

6.69 8.15 13.463

6.839 8.247 13.479

7.029 8.273 13.532

7.035 8.441 13.575

7.044 8.472 13.815

7.048 8.54 13.86

7.066 8.637 13.925

7.374 8.681 14.114

7.555 8.834 14.215

7.567 8.992 14.488

7.572 9.076 14.581

8.081 9.408 15.485

8.588 9.756 16.25

Table 17: Two-matrix spectrum with loop length truncation l = 7 continued.
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Figure 3: Two-matrix spectrum plots and degeneracy lifting due to g4 and k.
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6 Conclusions

We have applied previously developed numerical, master field methods to solve a variety

of coupled two-matrix models. These include matrix integrals and matrix quantum me-

chanics systems, with the fact that they all have a representation in terms of collective

Hamiltonians with (Wilson) loops as dynamical variables. The collective loop space rep-

resentation provides (nonlinear) Wilson loop equations, which in the former case (matrix

integral) are equivalent to Schwinger-Dyson (Migdal-Makeenko) equations. Solution as it

was understood in the original minimization schemes is to be accomplished subject to loop

space (Schwarz) inequalities which define the constrained minimization procedure. The

collective method includes not only the form of the large N Hamiltonian and potential but

also provides a complete set of inequalities, which we give in explicit determinate form).

The associated (constrained) minimization of the large N problem is implemented through

a master field, as explained in detail in the text (and also in original works). The numerical

solution of the nonlinear large N stationary point not only gives the leading large N Wilson

loop background, it also establishes in concrete terms the existence of the master field. This

existence. was questioned through the years in various works. Constrained minimization,

which is accomplished with fairly large number of (loop) variables (∼ 104) is seen to give

essentially exact results for large N expectation values, ground state energy and low ly-

ing spectra. This size can be further increased for added precision. The formulation, and

methods developed are such that there is no difference in having larger number of matrix

variables. The large N dynamics is evaluated in loop space, which is parametrized the same

way (and easily computer augmented). Regarding further works, and applications of the

methods developed in this work, one can contemplate many physical problems requiring

understanding through matrix models range from confinement [53] to cosmology [54]. More

specifically, extensions to supersymmetric versions of the multi-matrix QM can be consid-

ered. The four matrix BMN quantum mechanics (at large N) is clearly accessible by this

scheme, and we plan to present results in future work. Considering the two matrix case,

whose solution is accomplished in this work, an interesting application to entanglement [55],

thermodynamics and the matrix thermofield double (TFD) states. In general this requires

a study of QM defined on the Schwinger-Keldysh contour [56, 57]. The TFD state and

the corresponding wave functional of the O(N) vector theory based on the collective field

formulation was recently studied in [58]. Adjusting our optimization to matrix systems ap-

pears possible. An approximate version of the TFD involves coupling the system through

single trace interaction [59–61], this corresponds to interaction term in QM that we studied,

therefore these models provide a possibility to simulate temperature in the ground state.

Likewise will be a fuller exploration of the phase structure of this theory.
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A Analytic Results for Matrix Integrals

For the cases with k = 0 we can use the techniques [62] to get values of loops that the

numerics must reproduce. When k 6= 0 but g3 = g4 = 0 we are left with a quadratic

integral which is easily performed.

A.1 Quartic Model

For the matrix integral with action

S =
1

2
TrM2 +

g4
N

TrM4 . (A.1)

The density of eigenvalues obeys

−
∫ 2a

−2a

φ(y)

x− y
dy =

1

x
+ 2g4x

3 , |x| ≤ 2a , (A.2)

and the normalization condition
∫ 2a

−2a
φ(x)dx = 1 . (A.3)

This is solved by

φ(x) =
1

π

(
1

2
+ 4g4a

2 + 2g4x
2

)√
4a2 − x2 , (A.4)

where

12g4a
4 + a2 − 1 = 0 . (A.5)

Using this density we compute the following planar expectation values

1

N2
〈TrM2〉 =

∫ 2a

−2a
φ(x)x2 dx =

√
48g4 + 1 + 24g4

(
2
√
48g4 + 1− 3

)
− 1

864g24
(A.6)

1

N3
〈TrM4〉 =

∫ 2a

−2a
φ(x)x4 dx =

−√
48g4 + 1 + 24g4

(
36g4 − 2

√
48g4 + 1 + 3

)
+ 1

3456g34
(A.7)

1

N4
〈TrM6〉 =

∫ 2a

−2a
φ(x)x6 dx

=

√
48g4 + 1 + 8g4

(
7
√
48g4 + 1 + 12g4

(
4
√
48g4 + 1− 15

)
− 10

)
− 1

13824g44
(A.8)
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1

N5
〈TrM8〉 =

∫ 2a

−2a
φ(x)x8 dx

=− 7

373248g54

[√
48g4 + 1− 1

− 6g4

(
−11

√
48g4 + 1 + 72g4

(
20g4 − 2

√
48g4 + 1 + 5

)
+ 15

) ]
. (A.9)

A.2 Quadratic Two-Matrix Model

Doing the Gaussian integrals its simple to find

1

N2
〈Tr(M2

1 )〉 =
1

1− k2
1

N2
〈Tr(M1M2)〉 = − k

1− k2

1

N3
〈TrM4

1 〉 =
2

(1− k2)2
1

N3
〈Tr(M2

1M
2
2 )〉 =

1 + k2

1− k2

1

N4
〈Tr(M6

1 )〉 =
5

(1− k2)3
1

N4
〈TrM2

1M
4
2 〉 =

2 + 3k2

(1− k2)3

1

N4
〈Tr(M4

1M
2
2 )〉 =

2 + 3k2

(1− k2)3
1

N5
〈Tr(M4

1M
4
2 )〉 =

4 + 9k2 + k4

(1− k2)4

1

N6
〈Tr(M10

1 )〉 = 42

(1− k2)5
1

N6
〈Tr(M4

1M
4
2 )〉 =

14 + 28k2

(1− k2)5

1

N6
〈Tr(M5

1M
5
2 )〉 =

25k + 16k3 + k5

(1− k2)5
1

N7
〈Tr(M12

1 )〉 = 132

(1− k2)6

1

N7
〈Tr(M6

1M
6
2 )〉 =

25 + 81k2 + 25k4 + k6

(1− k2)6
1

N8
〈Tr(M14

1 )〉 = 429

(1− k2)7

1

N8
〈Tr(M10

1 M4
2 )〉 =

3
(
25k4 + 90k2 + 28

)

(1− k2)7
1

N9
〈Tr(M16

1 )〉 = 1430

(1− k2)8
(A.10)

A.3 Cubic Model

For the matrix integral with action

S =
1

2
TrM2 +

g3√
N

TrM3 . (A.11)

The density of eigenvalues obeys

−
∫ 2b

2a

φ(y)

x− y
dy =

1

x
+

3

2
g3x

3 , 2a ≤ x ≤ 2b , (A.12)

and the normalization condition
∫ 2b

2a
φ(x)dx = 1 . (A.13)

This is solved by

φ(x) =
1

π
(1 + 3g3(a+ b) + 3g3x)

√
(x− 2a)(2b− x) , (A.14)
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with a and b obtained from

3g3(b− a)2 + 2(a+ b)[1 + 3g3(a+ b)] = 0 , (A.15)

(b− a)2[1 + 6g3(a+ b)] = 4 . (A.16)

The solutions to these equations are ugly, so we will plug in definite values of g3. Note

that we must take g23 < 1
108

√
3
≈ 0.00534 to get convergence of planar perturbation theory.

We take g3 = 0.01 (a = −1.03198 and b = 0.971651), g3 = 0.025 (a = −1.08956 and

b = 0.934167), and g3 = 0.01 (a = −1.23513 and b = 0.880559). Using this density we

compute the following planar expectation values

1

N3/2
〈TrM〉 =

∫ 2b

2a
φ(x)x dx = −0.0301088 (g = 0.01) ,

= −0.0767683 (g = 0.025) ,

= −0.166732 (g = 0.05) . (A.17)

1

N2
〈TrM2〉 =

∫ 2b

2a
φ(x)x2 dx = 1.00363 (g = 0.01) ,

= 1.02358 (g = 0.025) ,

= 1.11155 (g = 0.05) . (A.18)

1

N3
〈TrM4〉 =

∫ 2b

2a
φ(x)x4 dx = 2.02182 (g = 0.01) ,

= 2.14427 (g = 0.025) ,

= 2.73465 (g = 0.05) . (A.19)

1

N4
〈TrM6〉 =

∫ 2b

2a
φ(x)x6 dx = 5.10951 (g = 0.01) ,

= 5.73859 (g = 0.025) ,

= 9.1135 (g = 0.05) . (A.20)

B Analytical Results of The One-Matrix Quantum Mechanics

We consider the hermitian one-matrix quantum mechanics with a quartic interaction

H = −1

2
Tr

(
∂2

∂M2

)
+

1

2
Tr
(
M2
)
+

g4
N

Tr
(
M4
)
. (B.1)

This model is dual to the D = 1 string theory in the double scaling limit. The model was

first solved in [19] and its spectrum was solved in [11] using a field theoretic approach. We

briefly summarize the analytical results derived there.
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Eigenvalue distribution. In the large N limit the eigenvalue distribution of the ground

state [36, 62] is

φ0(x) =
1

π

√
Λ2 + 2g4Λ4 − x2 − 2g4x4 , (B.2)

where x ∈ [−Λ,Λ], and Λ is determined by the constraint

∫ Λ

−Λ
φ0(x)dx =

Λ2

2

√
1 + 2g4Λ2

2F1

(
−1

2
,
1

2
, 2;− 2g4Λ

2

1 + 2g4Λ2

)
= 1 . (B.3)

The constraint is saturated at the critical value gc = −1/3
√
2π.

Loop values. The loops at the ground state are

φ(2C) ≡Tr
(
M2C

)

NC+1
=

∫ Λ

−Λ
φ0(x)x

2Cdx

=
Λ2C+2

√
1 + 2g4Λ2

2
√
π

Γ
(
C + 1

2

)

Γ (C + 2)
2F1

(
−1

2
, C +

1

2
, C + 2;− 2g4Λ

2

1 + 2g4Λ2

)
,

(B.4)

and all loops with odd powers are zero.

Ground state energy. The leading ground state energy is

E(0)
gs =

1

2
Λ2
(
1 + 2gΛ2

)
− 1

8
Λ4
(
1 + 2g4Λ

2
)3/2

2F1

(
−3

2
,
1

2
, 3;− 2g4Λ

2

1 + 2g4Λ2

)
. (B.5)

In the free case we have E
(0)
gs = 1/2. Figure 4 shows the results obtained from the above

analytic expression, as well as the collective potential Veff values, demonstrating an excellent

agreement.

0 0.2 0.60.4 0.8 1
0.4

0.5

0.6

0.7

0.8

g4

E
(0
)

g
s

analytic

V
(0)
eff

Figure 4: One-matrix E
(0)
gs versus the quartic coupling g4.
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Spectrum. In the large N limit the spectrum of small fluctuations is

εn(g4) =
nπ

2

[∫ Λ

0

dx

πφ0(x)

]−1

. (B.6)

The integral can be be evaluated analytically

εn(g4) =
nπ

2

√
1 + 2g4Λ2

[
K

(√
−2g4Λ2

1 + 2g4Λ2

)]−1

, (B.7)

where K is the complete elliptic integral of the first kind. The general feature of (B.7) is

that the level n frequency is proportional to n, no matter how g4 varies. One thus expects

that the spectrum fits a straight line when plotted as a function of level number.
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