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Abstract

We study abstract sufficient criteria for open-loop stabilizability of linear control sys-
tems in a Banach space with a bounded control operator, which build up and generalize
a sufficient condition for null-controllability in Banach spaces given by an uncertainty
principle and a dissipation estimate. For stabilizability these estimates are only needed
for a single spectral parameter and, in particular, their constants do not depend on the
growth rate w.r.t. this parameter. Our result unifies and generalizes earlier results ob-
tained in the context of Hilbert spaces. As an application we consider fractional powers
of elliptic differential operators with constant coefficients in Lp(Rd) for p ∈ [1,∞) and
thick control sets.
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1 Introduction

Let X,U be Banach spaces, (St)t≥0 a C0-semigroup on X with generator −A, B ∈ L(U,X),
x0 ∈ X. We consider the control system

ẋ(t) = −Ax(t) +Bu(t), t > 0, x(0) = x0 (1)

with a control function u ∈ Lr((0,∞);U) for some r ∈ [1,∞]. In this paper we focus on
the question whether the system (1) is open-loop stabilizable; that is, there is a control
function u ∈ Lr((0,∞);U) such that the corresponding mild solution decays exponentially.
We give a sufficient condition for open-loop stabilizability which is based on a well-known
strategy to prove null-controllability. The system (1) is called null-controllable in time T > 0
if there is a control function u ∈ Lr((0, T );U) such that the corresponding solution of (1)
satisfies x(T ) = 0. Clearly, null-controllability implies stabilizability. We weaken sufficient
conditions for null-controllability to obtain more general criteria for stabilizability.
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One possible approach to prove null-controllability is a method known as Lebeau-Robbiano
strategy, originating in the seminal work by Lebeau and Robbiano [LR95], see also [LZ98,
JL99]. Subsequently, this strategy was generalised in various steps to C0-semigroups on
Hilbert spaces, see, e.g., [Mil10, TT11, WZ17, BPS18, NTTV20], and more recently to C0-
semigroups on Banach spaces, see [GST20, BGST21]. The essence of this approach is to
show an uncertainty principle and a dissipation estimate for the dual system which are valid
for an infinite sequence of so-called spectral parameters, and prove that the growth rate in
the uncertainty principle is strictly smaller than the decay rate of the dissipation estimate.
In Section 3 we show that for proving stabilizability in general Banach spaces one can drop
the assumption on the growth and decay rate in the estimates. This was first observed
in [HWW21, LWXY20] in the context of Hilbert spaces. Similar to what was used in a
proof in [LWXY20], we show that it is sufficient to prove the uncertainty principle and the
dissipation estimate only for one single spectral parameter. This leads to a plain condition
for stabilizability in Banach spaces which does not involve assumptions on the constant in
the uncertainty principle. Let us stress that the latter improvement allows to apply our
result to models where an uncertainty principle is avaible only for some spectral parameters
as in [LSS20]. We will pursue this application in a forthcoming paper.
In order to prove the sufficient condition for stabilizability we introduce in Section 2 two

auxiliary concepts, namely α-controllability and a weak observability inequality. Similar to a
result in [TWX20] for Hilbert spaces, we show a duality result for these concepts in general
Banach spaces. In order to deal with this more general framework, we use a separation
theorem instead of a Fenchel-Rockafellar duality argument applied in [TWX20].
Finally, in Section 4, we verify the sufficient conditions for fractional powers of elliptic

differential operators −A with constant coefficients on Lp(Rd) for p ∈ [1,∞) and where
B = 1E : Lp(E)→ Lp(Rd) is the embedding from a so-called thick set E ⊂ Rd to Rd. This
complements recent results in the Hilbert space L2(Rd) for the fractional heat equation and
more general Fourier multipliers, see [HWW21, Lis20, LWXY20, Koe20, AM21].

2 Stabilizability and related concepts

Let X,U be Banach spaces, (St)t≥0 a C0-semigroup on X with generator −A, B ∈ L(U,X),
and x0 ∈ X. We consider the control system

ẋ(t) = −Ax(t) +Bu(t), t > 0, x(0) = x0 (2)

where u ∈ Lr((0,∞);U) with some r ∈ [1,∞]. The unique mild solution of (2) is given by
Duhamel’s formula

x(t) = Stx0 +

t∫
0

St−τBu(τ) dτ, t > 0.

For t > 0 the controllability map Lt ∈ L(Lr((0, t);U), X) is given by

Ltu =

t∫
0

St−τBu(τ) dτ. (3)
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Definition 2.1. The system (2) is called open-loop stabilizable w.r.t. Lr((0,∞);U) if there
are M ≥ 1 and ω < 0 such that for all x0 ∈ X there exists u ∈ Lr((0,∞);U) such that

‖x(t)‖ = ‖Stx0 + Ltu‖ ≤Meωt‖x0‖, t ≥ 0. (4)

Moreover, we call (2) cost-uniformly open-loop stabilizable w.r.t. Lr((0,∞);U) if there exists
M ≥ 1, ω < 0, and C ≥ 0 such that for all x0 ∈ X there exists u ∈ Lr((0,∞);U) such that

‖u‖Lr((0,∞);U) ≤ C‖x0‖ and ‖x(t)‖ = ‖Stx0 + Ltu‖ ≤Meωt‖x0‖, t ≥ 0.

Remark 2.2. Sometimes (4) is replaced by the weaker condition x ∈ L2((0,∞), X). For
r = 2 this is also called optimizability or finite cost condition. Recall that one says that the
system (2) is closed-loop stabilizable or stabilizable by feedback if there exists K ∈ L(X,U)
such that −A+BK generates an exponentially stable C0-semigroup. Then K is called state
feedback operator and the control u given by u(t) = Kx(t) yields an exponentially stable
solution x. For an open-loop stabilizable system in a Hilbert space, the existence of a state
feedback operator follows from classical Riccati theory, see e.g. [Zab08, Theorem IV.4.4].
Hence in Hilbert spaces every open-loop stabilizable system is also cost-uniformly open-loop
stabilizable.

Next we introduce two concepts, namely α-controllability and weak observability inequal-
ities, and discuss their close connection to open-loop stabilizability.

2.1 α-controllability

In this section we define α-controllability and show that for α ∈ [0, 1) it is equivalent to
cost-uniform open-loop stabilizability.

Definition 2.3. Let α ≥ 0. The system (2) is called α-controllable in time T w.r.t.
Lr((0, T );U) if for all x0 ∈ X there exists u ∈ Lr((0, T );U) such that

‖x(T )‖ = ‖STx0 + LTu‖ ≤ α‖x0‖.

Moreover, we call (2) cost-uniformly α-controllable in time T w.r.t. Lr((0, T );U) if there
exists C ≥ 0 such that for all x0 ∈ X there exists u ∈ Lr((0, T );U) such that

‖u‖Lr((0,T );U) ≤ C‖x0‖ and ‖x(T )‖ = ‖STx0 + LTu‖ ≤ α‖x0‖.

Remark 2.4. For α = 0 the concept of 0-controllability coincides with the usual notion
of null-controllability. If the system (2) is α-controllable for all α > 0, it is usually called
approximate null-controllable. For the control system (2), the quantity ‖u‖Lr((0,T );U) is called
cost. An α-controllable system is in general not cost-uniformly α-controllable, see [TWX20,
Section 3.2.1]. However, if α = 0 these two notions are equivalent, see [Câr89, Theorem 2.2].

Similarly to [TWX20, Lemma 31] (see also [TWX20, Theorem 26]) we obtain the following
relationship between cost-uniform α-controllability and cost-uniform open-loop stabilizabil-
ity.

Proposition 2.5. The system (2) is cost-uniformly open-loop stabilizable if and only if there
exists α ∈ [0, 1) and T > 0 such that (2) is cost-uniformly α-controllable in time T .
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Proof. Assume that (2) is cost-uniformly open-loop stabilizable, i.e. for all x0 ∈ X there
exists u ∈ Lr((0,∞);U) such that the solution of (2) satisfies ‖x(t)‖ = ‖Stx0 + Ltu‖ ≤
Meωt‖x0‖ for all t > 0 with uniform parameters M ≥ 1 and ω < 0. For all α ∈ (0, 1) there
exists T > 0 such that MeωT ≤ α and hence (2) is α-controllable in time T . Moreover, since
the cost ‖u‖Lr((0,∞);U) can be controlled uniformly w.r.t. the initial value x0, the system (2)
is even cost-uniformly α-controllable in time T .
We now show the converse and assume that (2) is cost-uniformly α-controllable in time T .

For α = 0 we have x(T ) = 0 and therefore x(t) = 0 for all t ≥ T , so the statement is trivial.
Thus, let α ∈ (0, 1). Let x0 ∈ X and u0 ∈ Lr((0, T );U) such that ‖u0‖Lr((0,T );U) ≤ C‖x0‖
and ‖STx0 + LTu0‖ ≤ α‖x0‖. For k ∈ N0 we recursively define xk+1 = STxk + LTuk and
choose uk ∈ Lr((0, T );U) such that

‖uk‖Lr((0,T );U) ≤ C‖xk‖ and ‖STxk + LTuk‖ ≤ α‖xk‖.

Define u : [0,∞)→ U as the concatenation

u(t) = uk(t− kT ) if t ∈ [kT, (k + 1)T ).

Then, ‖xk‖ ≤ αk ‖x0‖ for all k ∈ N0. For r ∈ [1,∞), we have

‖u‖rLr((0,∞);U) =

∞∫
0

‖u(τ)‖rdτ ≤
∞∑
k=0

(k+1)T∫
kT

‖u(τ)‖rdτ ≤ Cr
∞∑
k=0

‖xk+1‖r

≤ Cr
∞∑
k=0

αrk‖x0‖r ≤ Cr
1

1− αr
‖x0‖r,

and hence u ∈ Lr((0,∞);U). For r =∞, we similarly estimate

‖u‖L∞((0,∞);U) = sup
k∈N0

‖uk‖L∞((0,T );U) ≤ C sup
k∈N0

‖xk‖ ≤ C sup
k∈N0

αk ‖x0‖ ≤ C ‖x0‖ ,

and therefore also u ∈ L∞((0,∞);U).
The control u generates a trajectory

x(t) = Stx0 +

t∫
0

St−τBu(τ)dτ, t > 0

satisfying x(kT ) = xk for all k ∈ N0. Let MS ≥ 1 such that supt∈[0,T ]‖St‖L(X) ≤MS . Then
for all k ∈ N0 and t ∈ [kT, (k + 1)T ), by Hölder’s inequality, we have

‖x(t)‖ =
∥∥∥St−kTxk +

t−kT∫
0

St−kT−τBuk(τ − kT )dτ
∥∥∥ ≤MS‖xk‖+MS‖B‖

T∫
0

‖uk(τ)‖dτ

≤MS‖xk‖+MS‖B‖T 1/r′‖uk‖Lr((0,T );U) ≤MS(1 + ‖B‖T 1/r′C)αk‖x0‖,

where r′ ∈ [1,∞] such that 1/r + 1/r′ = 1 (and 1/∞ = 0 as usual). Since lnα < 0 and
αk+1 = e(k+1)T lnα

T ≤ e
lnα
T
t for t ∈ [kT, (k + 1)T ) we infer that

‖x(t)‖ ≤ MS

α
(1 + ‖B‖T 1/r′C)e

lnα
T
t‖x0‖.

Thus, we obtain the assertion with M = MS
α (1 + ‖B‖T 1/r′C) ≥ 1 and ω = lnα/T < 0.
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2.2 Weak observability inequalities

In this section we prove the duality between cost-uniform α-controllability and a weak ob-
servability estimate for the dual system.

Definition 2.6. Let X,Y be Banach spaces, (St)t≥0 a semigroup on X, C ∈ L(X,Y ),
T > 0, and assume that [0, T ] 3 t 7→ ‖CStx‖Y is measurable for all x ∈ X. Let r ∈ [1,∞].
Then we say that a weak observability inequality is satisfied if there exist Cobs ≥ 0 and α ≥ 0
such that for all x ∈ X we have

‖STx‖X ≤


Cobs

(∫ T
0 ‖CStx‖

r
Y dt

)1/r
+ α‖x‖X if r ∈ [1,∞),

Cobs sup
t∈[0,T ]

‖CStx‖Y + α‖x‖X if r =∞.
(5)

Remark 2.7. For α = 0 the weak observability inequality coincides with the usual observ-
ability inequality which corresponds to so-called final state observability. Note that for all
C0-semigroups with ‖St‖ ≤ Meωt for t ≥ 0 inequality (5) holds with α = Memax{ω,0}T for
all Cobs ≥ 0 and all operators C ∈ L(X,Y ). However, we are mainly interested in the case
α ∈ [0, 1), where weak observability inequalities are linked to open-loop stabilizability of the
predual system, see Proposition 2.5 and the following Theorem 2.8.

Theorem 2.8. Let X,U be Banach spaces, (St)t≥0 a C0-semigroup on X, T > 0, r ∈ [1,∞]
and LT ∈ L(Lr((0, T );U), X) the controllability map defined in (3). Let further C ≥ 0 and
α ≥ 0. Then the following statements are equivalent:

(a) For every x ∈ X and ε > 0 there exists u ∈ Lr((0, T );U) with

‖u‖Lr((0,T );U) ≤ C‖x‖X and ‖STx+ LTu‖X < (α+ ε)‖x‖X .

(b) For all x′ ∈ X ′ we have

‖S′Tx′‖X′ ≤


C
(∫ T

0 ‖B
′S′tx

′‖r′U ′dt
)1/r′

+ α‖x′‖X′ if r′ ∈ [1,∞),

C sup
t∈[0,T ]

‖B′S′tx′‖U ′ + α‖x′‖X′ if r′ =∞,

where r′ ∈ [1,∞] with 1/r + 1/r′ = 1.

Remark 2.9. Theorem 2.8 can be rephrased as: cost-uniform α-controllability for (2) is
equivalent to a weak observability inequality of the corresponding dual system. Note that
in the case α = 0 the above theorem gives the well-known duality between approximate
null-controllability and final state observability.

In contrast to [TWX20] we do not use a Fenchel-Rockafellar duality argument to prove
Theorem 2.8, but the following well-known separation theorem. We cite here a version from
[Câr89, Lemma 1.2], for a proof see [Gol66, Theorem I.5.10, Lemma II.4.1].

Lemma 2.10. Let A,B be convex sets in a Banach space X. Then A ⊂ B if and only if

sup
x∈A
〈x, x′〉X,X′ ≤ sup

x∈B
〈x, x′〉X,X′ for all x′ ∈ X ′.
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Proof of Theorem 2.8. We consider the convex sets

A = {STx : ‖x‖X ≤ 1} and B = {LTu+ αx : ‖u‖Lr((0,T );U) ≤ C, ‖x‖X ≤ 1}.

We observe that the following three statements are equivalent:

(a) A ⊂ B

(b) for all ε > 0 and x1 ∈ X with ‖x1‖X ≤ 1 there exists u ∈ Lr((0, T );U) with ‖u‖Lr((0,T );U)

≤ C and x2 ∈ X with ‖x2‖X ≤ 1 such that

‖STx1 + LTu+ αx2‖X < ε.

(c) for all ε > 0 and x1 ∈ X with ‖x1‖X ≤ 1 there exists u ∈ Lr((0, T );U) with ‖u‖Lr((0,T );U)

≤ C such that
‖STx1 + LTu‖X < α+ ε.

While (a)⇔(b) and (b)⇒(c) are obvious, we note that (b) follows from (c) by choosing
x2 = −(STx1 + LTu)/(α+ ε). Since∥∥STx/‖x‖+ LTu

∥∥
X

=
1

‖x‖
∥∥STx+ LT ‖x‖u

∥∥
X

for all x ∈ X \ {0}, we find that (c) (and thus also (a) and (b)) is equivalent to statement
(a) of the theorem. Next, for x′ ∈ X ′ we compute

sup
x∈A
〈x, x′〉X,X′ = sup

‖x‖X≤1
〈STx, x′〉X,X′ = ‖S′Tx′‖X′

and

sup
x∈B
〈x, x′〉X,X′ = sup

‖u‖Lr((0,T );U)≤C,
‖x‖X≤1

〈LTu+ αx, x′〉X,X′

= sup
‖u‖Lr((0,T );U)≤C

〈LTu, x′〉X,X′ + sup
‖x‖X≤1

α〈x, x′〉X,X′

= C‖L′Tx′‖(Lr((0,T );U))′ + α‖x′‖X′ .

Finally by [Vie05, Theorem 2.1] we have

‖L′Tx′‖(Lr((0,T );U))′ =


(∫ T

0 ‖B
′S′tx

′‖r′U ′dt
)1/r′

if r′ ∈ [1,∞),

sup
t∈[0,T ]

‖B′S′tx′‖U ′ if r′ =∞,

where r′ ∈ [1,∞] such that 1/r + 1/r′ = 1. Hence supx∈A〈x, x′〉X,X′ ≤ supx∈B〈x, x′〉X,X′ is
equivalent to statement (b) of the theorem and the claim follows from Lemma 2.10.

6



3 Sufficient conditions for stabilizability

In this section we give a sufficient condition for weak observability inequalities in terms of
an uncertainty principle and a dissipation estimate, similar to [HWW21, LWXY20]. We
emphasize that instead of assuming the uncertainty principle and the dissipation estimate
for a family (Pλ)λ>0 with certain dependencies of the constants on the “spectral parameter”
λ, we need these assumptions to hold only for one single operator P . We will relate our
result to Lemma 2.2 in [HWW21] and Theorem 2.1 in [GST20]. Using duality we give,
similar to [LWXY20, Theorem 4.1], a sufficient condition for open-loop stabilizability in
Banach spaces without any compatible condition between the uncertainty principle and a
dissipation estimate.

Proposition 3.1. Let X and Y be Banach spaces, C ∈ L(X,Y ), P ∈ L(X), (St)t≥0 a
semigroup on X, M ≥ 1 and ω ∈ R such that ‖St‖ ≤ Meωt for all t ≥ 0, and assume that
for all x ∈ X the mapping t 7→ ‖CStx‖Y is measurable. Further, let r ∈ [1,∞], T > 0 and
C1, C2 : (0, T ]→ [0,∞) continuous functions such that for all x ∈ X and t ∈ (0, T ] we have

‖PStx‖X ≤ C1(t)‖CPStx‖Y , (6)

and

‖(Id−P )Stx‖X ≤ C2(t)‖x‖X . (7)

Then there exist Cobs ≥ 0 and α ≥ 0 with

∀x ∈ X : ‖STx‖X ≤


Cobs

(∫ T
0 ‖CStx‖

r
Y dt

)1/r
+ α‖x‖X if r ∈ [1,∞),

Cobs sup
t∈[0,T ]

‖CStx‖Y + α‖x‖X if r =∞
(8)

satisfying for all δ ∈ [0, 1)

Cobs ≤
Meω+T

(1− δ)T 1/r
max

t∈[δT,T ]
C1(t) and α ≤ Meω+T

(1− δ)T

T∫
δT

(
C1(t)‖C‖L(X,Y ) + 1

)
C2(t)dt,

where ω+ = max{ω, 0} and T 1/r = 1 if r =∞.

Proof. Assume we have shown the statement of the proposition in the case r = 1, i.e. for all
x ∈ X we have

‖STx‖X ≤ Cobs

T∫
0

‖CStx‖Y dt+ α‖x‖X .

Then, for all r ∈ [1,∞] and all x ∈ X using Hölder’s inequality we obtain

‖STx‖X ≤ CobsT
1/r′

 T∫
0

‖CStx‖rY dt

1/r

+ α‖x‖X ,
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where r′ ∈ [1,∞] is such that 1/r + 1/r′ = 1. Since T−1T 1/r′ = T−1/r the statement of the
proposition follows. Thus, it is sufficient to prove the case r = 1.
Let t ∈ (0, T ] and x ∈ X. Using (6) and (7) we obtain

‖Stx‖ ≤ ‖PStx‖+ ‖(Id−P )Stx‖ ≤ C1(t)‖CPStx‖+ ‖(Id−P )Stx‖
≤ C1(t)‖CStx‖+ C1(t)‖C‖L(X,Y )‖(Id−P )Stx‖+ ‖(Id−P )Stx‖
≤ C1(t)‖CStx‖+

(
C1(t)‖C‖L(X,Y ) + 1

)
C2(t)‖x‖X . (9)

Since (St)t≥0 is a semigroup we get

‖STx‖ = ‖ST−tStx‖≤Meω+T ‖Stx‖,

where ω+ = max{ω, 0}. Since t 7→ ‖CStx‖Y is measurable by assumption, integrating (9)
with respect to t ∈ [δT, T ] we obtain

(1− δ)T
Meω+T

‖STx‖ ≤
T∫

δT

C1(t)‖CStx‖dt+

T∫
δT

(
C1(t)‖C‖L(X,Y ) + 1

)
C2(t)dt ‖x‖X

≤ max
t∈[δT,T ]

C1(t)

T∫
δT

‖CStx‖dt+

T∫
δT

(
C1(t)‖C‖L(X,Y ) + 1

)
C2(t)dt ‖x‖X .

The claim now follows by estimating
∫ T
δT ‖CStx‖dt ≤

∫ T
0 ‖CStx‖dt and multiplying both

sides by Meω+T /(1− δ)T .

The advantage of Proposition 3.1 is the explicit dependence of Cobs and α on the functions
C1, C2 which allows to give conditions to ensure α ∈ [0, 1). By Theorem 2.8 and Proposition
2.5, the case where α ∈ [0, 1) is important to prove open-loop stabilizability for the predual
system.

Remark 3.2. In Proposition 3.1 we can replace the uncertainty principle in (6) by

∀x ∈ X : ‖PST0x‖ ≤


C1

(∫ T0
0 ‖CPStx‖

r
Y dt

)1/r
if r ∈ [1,∞),

C1 sup
t∈[0,T ]

‖CPStx‖Y if r =∞

for some C1 > 0 and 0 < T0 ≤ T . Similar as in the proof of Proposition 3.1, for r ∈ [1,∞)
we then estimate

‖ST0x‖X ≤ ‖PST0x‖X + ‖(Id−P )ST0x‖X ≤ C1

( T0∫
0

‖CPStx‖rY dt
)1/r

+ C2(T0) ‖x‖X

≤ C1

( T0∫
0

2r−1(‖CStx‖rY + ‖C‖rL(X,Y )C2(t)
r ‖x‖rX)dt

)1/r
+ C2(T0) ‖x‖X

≤ 21−1/rC1

( T0∫
0

‖CStx‖rY dt
)1/r

+
(

21−1/rC1 ‖C‖L(X,Y ) ‖C2‖Lr(0,T0) + C2(T0)
)
‖x‖X .
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Since ‖STx‖X = ‖ST−T0ST0x‖X ≤Mew+T ‖ST0x‖X , we obtain (8) with

Cobs ≤Meω+T 21−1/rC1 and α ≤Meω+T
(

21−1/rC1 ‖C‖L(X,Y ) ‖C2‖Lr(0,T0) + C2(T0)
)
.

The case r =∞ is similar and the term 21−1/r can be set to 1.

Remark 3.3. Let us relate Proposition 3.1 to the results obtained in [HWW21] and [GST20,
BGST21]. By choosing the functions C1, C2 : (0, T ]→ [0,∞) appropriately we can mimic the
assumptions of [HWW21, Lemma 2.2] and [GST20, Theorem 2.1], respectively. For given
T, λ > 0 suppose we have for all x ∈ X and t ∈ (0, T ] the inequalities (6) and (7) with

C1(t) = d0e
d1λγ1 and C2(t) = d2e

−d3λγ2 tγ3 , (10)

where d0, d1, d2, d3, γ1, γ2, γ3 > 0. Then Proposition 3.1 implies for all δ ∈ (0, 1) the weak
observability inequality (8) with

Cobs ≤
Md0

δT 1/r
d0e

d1λγ1+ω+T and α ≤Md2 (d0‖C‖+ 1) e−d3λ
γ2 (δT )γ3+d1λγ1+ω+T .

Imposing conditions on T and λ we can achieve α ∈ [0, 1). We list here only some interesting
cases:

(a) Assume γ1 > γ2. Let γ3 > 1 − γ2/γ1, i.e. γ1γ3/(γ1 − γ2) > 1, and T > 0 large enough
such that

ln (Md2(d0‖C‖+ 1)) <

(
d3
2d1

) γ2
γ1−γ2 d3

2
(δT )

γ1γ3
γ1−γ2 − ω+T.

Then for λ =
(
d3(δT )γ3

2d1

) 1
γ1−γ2 we have α ∈ (0, 1). Indeed, one easily computes

α ≤Md2 (d0‖C‖+ 1) exp
(
−d3

(d3(δT )γ3
2d1

) γ2
γ1−γ2 (δT )γ3 + d1

(d3(δT )γ3
2d1

) γ1
γ1−γ2 + ω+T

)
= Md2 (d0‖C‖+ 1) exp

(
−
(
d3
2d1

) γ2
γ1−γ2 d3

2 (δT )
γ1γ3
γ1−γ2 + ω+T

)
< 1.

(b) Assume γ1 = γ2. Let T > δ(d1/d3)
1/γ3 and

λ >

(
ln (Md2(d0‖C‖+ 1)) + ω+T

d3(δT )γ3 − d1

) 1
γ1

> 0.

Then again α ∈ (0, 1).

(c) Assume γ1 < γ2. For given T > 0 let λ > 0 large enough such that

ln (Md2(d0‖C‖+ 1)) + ω+T < d3λ
γ2(δT )γ3 − d1λγ1 .

Then α ∈ (0, 1).

(d) Assume γ1 < γ2. Let λ∗ > 0 and suppose there exists P ∈ L(X) such that Pλ = P for
all λ > λ∗, and such that the inequalities (6) and (7) hold with C1, C2 as in (10). Then
by [GST20, Theorem 2.1], the weak observability inequality (8) holds with α = 0.
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(e) Assume ω+ = 0. Then for arbitrary λ, γ1, γ2, γ3 > 0 we can achieve α ∈ (0, 1) by
choosing T > 0 large enough.

Note that, in contrast to the cases (a) and (b), in (c) we can ensure α ∈ (0, 1) for every T > 0
by choosing λ > 0 appropriately. The cases (a)-(c) are very similar to what was shown in
[HWW21, Lemma 2.2], where the inequalities (6) and (7) with (10) where assumed to hold
for all λ > 1. Note that here the assumptions are only needed for some particular λ > 0.

By restricting to γ3 = 1, Proposition 3.1 and the duality in Theorem 2.8 yield the following
plain sufficient condition for cost-uniform open-loop stabilizability similar to the Hilbert
space result in [LWXY20, Theorem 4.1].

Corollary 3.4. Let X and U be Banach spaces, B ∈ L(U,X) and P ∈ L(X) such that

Ran(P ) ⊂ Ran(PB). (11)

Further let (St)t≥0 a C0-semigroup on X, and M ≥ 1, ω ∈ R such that ‖St‖ ≤Meωt for all
t ≥ 0. Assume there exist MP ≥ 1 and ωP > ω+ := max{ω, 0} such that

∀x ∈ X ∀t > 0 : ‖St(Id−P )x‖X ≤MP e−ωP t‖x‖X . (12)

Then the system (2) is cost-uniformly open-loop stabilizable.

Proof. We apply Proposition 3.1 to the dual semigroup (S′t)t≥0 on X ′, Y := U ′, C := B′,
and P replaced by its dual operator P ′. Note that (S′t)t≥0 is exponentially bounded since
(St)t≥0 is exponentially bounded. The measurability of the functions t 7→ ‖B′S′tx′‖U ′ for
all x′ ∈ X ′ follows from duality and the description of dual norms via the Hahn–Banach
theorem. It is well-known, see [Câr89], that (11) implies the existence of C > 0 such that

∀x′ ∈ X ′ : ‖P ′x′‖X′ ≤ C‖B′P ′x′‖U ′ .

Further (12) implies

∀x′ ∈ X ′ ∀t > 0 : ‖(Id−P ′)S′tx′‖X′ ≤MP e−ωP t‖x′‖X′ .

Thus, by Proposition 3.1 with C1(t) = C, C2(t) = MP e−ωP t and δ = (ωP + ω+)/2ωP we
obtain for all T > 0 and r ∈ [1,∞] that

∀x′ ∈ X ′ :
∥∥S′Tx′∥∥X′ ≤

Cobs

(∫ T
0 ‖B

′S′tx
′‖r
′

U ′ dt
)1/r′

+ α‖x′‖X′ if r′ ∈ [1,∞),

Cobs supt∈[0,T ] ‖C ′S′tx′‖U ′ + α‖x′‖X′ if r′ =∞,

with

Cobs ≤
2Meω+T

(1− ω+

ωP
)T 1/r

C and α ≤MMP

(
C‖B‖L(U,X) + 1

)
e−

1
2
(ωP−ω+)T .

For

T >
2 ln

(
(MMP

(
C‖B‖L(U,X) + 1

))
ωP − ω+

we have α ∈ [0, 1) and the assertion follows from Theorem 2.8 and Proposition 2.5.

10



Remark 3.5. The condition Ran(P ) ⊂ Ran(PB) for the control operator B does not require
any constants. In applications this means that for the corresponding uncertainty principle
for the dual system we do not need any assumption on the growth order of the constants
in terms of the spectral parameter. An instance of this is when one considers the system
(2) with H being the harmonic oscillator in L2(Rd), i.e. H = −∆ + |x|2, and B the
characteristic function of a measurable subset of Rd with positive measure. Indeed, it was
shown in [BJP21, Theorem 2.1] and in [HWW21, Lemma 3.2] that a spectral inequality with
P being any element of the spectral family associated to H is valid under different geometric
assumptions on the measurable subset with different growth orders of the constant with
respect to the spectral parameter, while the dissipation estimate satisfies an estimate like
the one in the corollary above (see, e.g., [HWW21, Eq. (4.17)]).

Remark 3.6. System (2) is called complete (or rapidly) open-loop stabilizable if for all ν > 0
the system

ẋ(t) = −(A+ ν)x(t) +Bu(t), t > 0, x(0) = x0 (13)

is open-loop stabilizable. Analogously to [LWXY20, Theorem 4.1], by Corollary 3.4 we
obtain the following sufficient conditions for complete open-loop stabilizability: Let (Pk)k∈N
in L(X) satisfying (11) for all k ∈ N and (Mk)k∈N in [1,∞), (ωk)k∈N in R with ωk →∞ as
k →∞ such that

∀x ∈ X ∀t > 0 : ‖St(Id−Pk)x‖X ≤Mke
−ωkt‖x‖X .

Then (2) is complete open-loop stabilizable. Indeed, for all ν > 0 there exists k ∈ N such
that ωk > ω+ + ν and by Corollary 3.4 the system (13) is open-loop stabilizable.

4 Application: Fourier Multipliers and Fractional Powers

We denote by S(Rd) the Schwartz space of rapidly decreasing functions, which is dense in
Lp(Rd) for all p ∈ [1,∞). The space of tempered distributions, i.e. the topological dual space
of S(Rd), is denoted by S ′(Rd). We define the Fourier transformation F : S(Rd) → S(Rd)
by

Ff(ξ) :=

∫
Rd

f(x)e−iξ·xdx (ξ ∈ Rd).

Then F is bijective, continuous, and has a continuous inverse given by

F−1f(x) =
1

(2π)d

∫
Rd

f(ξ)eix·ξdξ (x ∈ Rd)

for all f ∈ S(Rd). By duality, we can extend the Fourier transformation as a bijection on
S ′(Rd) as well.
Let m ∈ N and a : Rd → C,

a(ξ) :=
∑
|α|≤m

aαξ
α (ξ ∈ Rd),

11



be a polynomial of degree m with coefficients aα ∈ C and assume that a is strongly elliptic,
i.e. there exists c > 0 and ω ∈ R such that

Re a(ξ) ≥ c |ξ|m − ω (ξ ∈ Rd).

Let s ∈ (0, 1]. Then

Re((a(ξ) + ω)s) ≥ (Re a(ξ) + ω)s ≥ cs |ξ|sm (ξ ∈ Rd).

Let m̃ ∈ N0 be the largest integer less than sm, and b : Rd → C,

b(ξ) :=
∑
|α|≤m̃

bαξ
α (ξ ∈ Rd).

We consider as,b := (a+ ω)s + b. Then there exists ν ∈ R such that

Re as,b(ξ) = Re(a(ξ) + ω)s + Re b(ξ) ≥ cs |ξ|sm − ν (ξ ∈ Rd). (14)

Note that as,b may not be differentiable at 0. However, it can be shown that for t > 0
we have e−tas,b ∈ L1(Rd) and F−1e−tas,b ∈ L1(Rd). Indeed, e−tas,b decays faster than any
polynomial. Thus, e−tas,b ∈ L1(Rd) and F−1e−tas,b ∈ C∞(Rd). Moreover, the Riemann–
Lebesgue lemma yields F−1e−tas,b ∈ C0(Rd). Then by subordination techniques (see e.g.
[KMS21]), one can show that f 7→ F−1e−tas,0 ∗f yields a bounded operator on L1(Rd). By a
perturbation argument, also f 7→ F−1e−tas,b ∗f is bounded on L1(Rd). Since this operator is
also translation invariant, F−1e−tas,b is given by a finite Borel measure (cf. [Gra08, Theorem
2.58]) and therefore F−1e−tas,b ∈ L1(Rd).
Taking into account Young’s inequality, for p ∈ [1,∞] and t ≥ 0 we define S(s),p

t : Lp(Rd)→
Lp(Rd) by

S
(s),p
0 f := f, S

(s),p
t f := F−1e−tas,b ∗ f (t > 0).

It is easy to see that S(s),p is a C0-semigroup for p ∈ [1,∞) and S(s),∞ is a weak∗ continuous
exponentially bounded semigroup.

Definition 4.1. A set E ⊂ Rd is called thick if E is measurable and there exist ρ ∈ (0, 1]
and L ∈ (0,∞)d such that∣∣∣∣∣E ∩ ( d

×
i=1

(0, Li) + x
)∣∣∣∣∣ ≥ ρ

d∏
i=1

Li (x ∈ Rd).

Proposition 4.2 (Logvinenko–Sereda theorem, see e.g. [Kov01]). Let E ⊂ Rd be thick.
Then there exist d0, d1 > 0 such that for all p ∈ [1,∞], all λ > 0 and all f ∈ Lp(Rd) with
suppFf ⊂ [−λ, λ]d we have

‖f‖Lp(Rd) ≤ d0e
d1λ ‖f‖Lp(E) (f ∈ Lp(Rd)).

Let η ∈ C∞c ([0,∞)) with 0 ≤ η ≤ 1 such that η(r) = 1 for r ∈ [0, 1/2] and η(r) = 0 for
r ≥ 1. For λ > 0 we define χλ : Rd → R by χλ(ξ) = η(|ξ|/λ). Since χλ ∈ S(Rd), we have
F−1χλ ∈ S(Rd) and for all p ∈ [1,∞] we define Pλ : Lp(Rd)→ Lp(Rd) by Pλf = (F−1χλ)∗f .
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Proposition 4.3. There exists K ≥ 0 such that for all s ∈ (0, 1], p ∈ [1,∞] and all
λ > (2sm+4ν+/c

s)1/(sm), t ≥ 0 and f ∈ Lp(Rd) we have∥∥∥(I − Pλ)S
(s),p
t f

∥∥∥
p
≤ Ke−2

−sm−4cstλsm ‖f‖p .

Proof. (i) We first show the corresponding estimate for as,b(ξ) = |ξ|sm.
The proof is an adaptation of the proof of [BGST21, Proposition 3.2], so we only sketch

the details. Let f ∈ Lp(Rd). Then

(I − Pλ)S
(s),p
t f = F−1

(
(1− χλ)e−tas,b

)
∗ f.

With kµ := F−1
(
(1− χµ)e−as,b

)
we observe∥∥F−1((1− χλ)e−tas,b

)∥∥
L1(Rd)

= ‖kt1/(sm)λ‖L1(Rd) ,

so by Young’s inequality it suffices to estimate ‖kµ‖L1(Rd). Using that the inverse Fourier
transform maps differentiation to multiplication, for α ∈ Nd0 we observe

|xαkµ(x)| ≤ 1

(2π)d

∫
Rd

∣∣∣∂αξ ((1− χµ(ξ))e−|ξ|
sm)∣∣∣ dξ (x ∈ Rd).

Estimating the derivatives in the integrand for |α| ≤ d+ 1, we find K1 ≥ 0 such that

|xαkµ(x)| ≤ K1e
−µsm/(2sm+2) (x ∈ Rd).

Thus, there exists K ≥ 0 such that

‖kµ‖L1(Rd) ≤ Ke−µ
sm/(2sm+2)

and therefore ∥∥∥(I − Pλ)S
(s),p
t f

∥∥∥
p
≤ Ke−2

−sm−2tλsm ‖f‖p .

(ii) For the general case, we follow the perturbation argument in [BGST21, Proposition
3.3]. Let ã(ξ) := cs

2 |ξ|
sm and denote the corresponding semigroup by S̃. Then by (i) we

have ∥∥∥(I − Pλ)S̃tf
∥∥∥
p
≤ Ke−2

−sm−3tcsλsm ‖f‖p .

Moreover, as,b = (as,b − ã) + ã and as,b − ã satisfies an estimate similar to (14), so the
corresponding semigroup (Tt)t≥0 obeys an exponential bound of the form

‖Tt‖ ≤Meνt (t ≥ 0).

Thus, since S(s),p
t = TtS̃t and Fourier multipliers commute, we arrive at∥∥∥(I − Pλ)S

(s),p
t f

∥∥∥
p

=
∥∥∥S(s),p

t (I − Pλ)f
∥∥∥
p
≤ ‖Tt‖

∥∥∥S̃t(I − Pλ)f
∥∥∥
p

≤MKe−t(2
−sm−3csλsm−ν) ‖f‖p .

Now, for λ > (2sm+4ν+/c
s)1/(sm) we have 2−sm−3csλsm − ν > 2−sm−4csλsm.
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In view of Proposition 4.2 and Proposition 4.3, we can apply Proposition 3.1 and obtain
various weak observability estimates by the cases in Remark 3.3 with γ1 = 1, γ2 = sm and
γ3 = 1. We state this as a corollary.

Corollary 4.4. Let p ∈ [1,∞], s ∈ (0, 1].

(a) Let s ≤ 1/m. Then there exists T > 0 such that the semigroup (S
(s),p
t )t≥0 satisfies a

weak observability inequality with some α ∈ (0, 1).

(b) Let s > 1/m. Then for all T > 0 the semigroup (S
(s),p
t )t≥0 satisfies a weak observability

inequality with α = 0.

In view of Theorem 2.8, by duality we thus obtain statements on cost-uniform α-control-
lability and approximate null-controllability, and in view of Proposition 2.5 also for cost-
uniform open-loop stabilizability. Note that for the fractional Laplacian −A = −(−∆)s in
L2(Rd), the system is not approximately null-controllable for s < 1/2, cf. [HWW21, Koe20].
For Corollary 4.4(a) even more is true. By invoking that we prove the uncertainty principle
and the dissipation estimate for all λ > λ0 with some λ0 ≥ 0, we get, by using Remark 3.3a
for T > 0 large enough, that for all α ∈ (0, 1) there is T > 0 such that (S

(s),p
t )t≥0 satisfies a

weak observability inequality.
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