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Abstract

This paper deals with control of partially observable discrete-time stochastic systems. It introduces
and studies Markov Decision Processes with Incomplete Information and with semi-uniform Feller tran-
sition probabilities. The important feature of these models is that their classic reduction to Completely
Observable Markov Decision Processes with belief states preserves semi-uniform Feller continuity of
transition probabilities. Under mild assumptions on cost functions, optimal policies exist, optimality
equations hold, and value iterations converge to optimal values for these models. In particular, for Par-
tially Observable Markov Decision Processes the results of this paper imply new and generalize several
known sufficient conditions on transition and observation probabilities for weak continuity of transition
probabilities for Markov Decision Processes with belief states, the existence of optimal policies, validity
of optimality equations defining optimal policies, and convergence of value iterations to optimal values.
Keywords Markov Decision Process, incomplete information, semi-uniform Feller transition probabili-
ties, value iterations, optimality equation

1 Introduction

In many control problems the state of a controlled system is not known, and decision makers know only some
information about the state. This takes place in many applications including signal processing, robotics, arti-
ficial intelligence, and medicine. Except lucky exceptions, and Kalman’s filtering is among them, problems
with incomplete information are known to be difficult [30]. The general approach to solving such problems
was identified long ago in [1, 2, 9, 41], and it is based on constructing a controlled system whose states
are posterior state distributions for the original system. These posterior distributions are often called belief
probabilities or belief states. Finding an optimal policy for a problem with incomplete state observation con-
sists of two steps: (i) finding an optimal policy for the problem with belief states, and (ii) deriving from this
policy an optimal policy for the original problem. This approach was introduced in [1, 2, 9, 41] for problems
with finite state, observation, and action sets, and it holds for problems with Borel state, observation, and
action sets [34, 46]. If there is no optimal policy for the problem with belief states, then there is no optimal
policy for the original problem.
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This paper deals with optimization of expected total discounted costs for discrete-time models. We de-
scribe a large class of problems, for which optimal policies exist, satisfy optimality equations, which define
optimal policies, and can be found by value iterations. In particular, this paper provides sufficient conditions
for weak continuity of transition probabilities for models with belief states. For a particular model of Par-
tially Observable Markov Decision Process (POMDP), called POMDP2 in this paper, the related studies
are [19, 24, 28, 37]. As known for long time, weak continuity of transition and observation probabilities for
problems with incomplete information does not imply weak continuity of transition probabilities after the
reduction to belief states. Examples are provided in [19].

Weak continuity of transition probabilities for models with belief states is an important property because
these models are Markov Decision Processes (MDPs) with infinite state spaces. Optimal policies minimizing
expected total discounted and undiscounted costs may not exist for such MDPs. According to [15, Theorem
2], for MDPs with nonnegative costs and, if the discount factor is less than 1, with bounded below costs,
weak continuity of transition probabilities and K-inf-compactness of cost functions imply the existence
of Markov optimal policies for finite-horizon problems and the existence of stationary optimal policies
for infinite-horizon problems. Under the mentioned two conditions, optimal policies satisfy optimality
equations, and they can be found by value iteration starting from a zero value. For MDPs with belief
states, K-inf-compactness of cost functions follows from K-inf-compactness of original cost functions [19,
Theorem 3.3], and verifying weak continuity of transition probabilities is a nontrivial matter.

There are several models of controlled systems with incomplete state observations in the literature. Here
we mostly consider a contemporary version of the original model introduced in [1, 2, 9, 41] and called a
Markov Decision Process with Incomplete Information (MDPII). In this model the transitions are defined
by transition probabilities P (dwt+1, dyt+1|wt, yt, at), where vectors (wt, yt) represent states of the system
at times t = 0, 1, . . . , wt and yt are unobservable and observable components of the state (wt, yt), and at
are actions. In more contemporary studies the research focus switched to POMDPs. As was observed in
[33], there are two different POMDP models in the literature, which we call POMDP1 and POMDP2. For
problems with finite state, observation, and control states, Platzman [33] introduced a “plant” model, which
we adapt to problems with general state, observation, and control spaces and call Platzman’s model. This
model is more general than POMDP1 and POMDP2; see Figure 1.

Platzman’s model is a particular case of an MDPII when the transition probability does not depend
on observations. In other words, the transition probability in Platzman’s model is P (dwt+1, dyt+1|wt, at).
POMDPi, i = 1, 2, are Platzman’s models whose transition probabilities have special structural proper-
ties. These properties are P (dwt+1, dyt+1|wt, at) = Q1(dyt+1|wt, at) P1(dwt+1|wt, at) for POMDP1 and
P (dwt+1, dyt+1|wt, at) = Q2(dyt+1|at, wt+1)P2(dwt+1|wt, at) for POMDP2, where Pi and Qi, i = 1, 2,
are transition and observation kernels respectively. Figure 1 illustrates the relations between definitions
of these four models based on the generality of the transition probabilities P (dwt+1, dyt+1|wt, yt, at). In
particular, references [29, 43, 44] considered POMDP1, and references [19, 24, 28] considered POMDP2.

Figure 1: Relations between models of partially observable controlled Markov processes. Platzman’s model
is defined as a particular case of an MDPII. POMDP1 and POMDP2 are defined as particular cases of
Platzman’s model.
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Belief-MDPs for MDPIIs are called Markov Decision Processes with Complete Information (MDPCIs)
in this paper. As mentioned above, the reduction of an MDPII with Borel state, action, and observation sets
to an MDPCI was introduced in [34, 46]. The reduction of a POMDP2 to a completely observable belief-
MDP is described in [24, Chapter 4]. The reduction of an MDPII to a POMDP2 described in [19, Section
8.3] and the reduction of a POMDP2 to a completely observable belief-MDP described in [24, Chapter 4]
also imply the reduction of an MDPII to an MDPCI.

This paper introduces the class of MDPIIs with semi-uniform Feller transition probabilities. Theo-
rem 6.2 states that an MDPII has a transition probability from this class if and only if the transition prob-
ability of the corresponding MDPCI also belongs to this class. Theorem 6.1 states similar results under
more general conditions, which imply weaker continuity properties of value functions than the properties
described in Theorem 6.2. In view of Lemma 4.2, semi-uniform Feller transition probabilities are weakly
continuous. In addition, under mild conditions on cost functions described in Section 5, there are optimal
policies for MDPs with semi-uniform Feller transition probabilities. This paper provides several sufficient
conditions for the existence of optimal policies, validity of optimality equations, and convergence of value
iterations. In particular, the general theory implies the following sufficient conditions for weak continuity of
transition probabilities for completely observable belief-MDPs corresponding to POMDPs: (i) Pi is weakly
continuous and Qi, is continuous in total variation for an POMDPi, i = 1, 2 (for i = 2 this result was
established in [19]); (ii) P2 is continuous in total variation and Q2 is continuous in total variation in the
control parameter; sufficiency of continuity of P2 in total variation was established in [28] for uncontrolled
observation kernels, that is, Q2(yt+1|at, wt+1) = Q2(yt+1|wt+1).

Section 2 describes MDPIIs with expected total costs, and Section 3 describes their classic reduction
to an MDPCI. Section 4 introduces semi-uniform Feller stochastic kernels and it provides the properties of
semi-uniform Feller stochastic kernels. In particular, Lemma 4.2 states that semi-uniform Feller stochas-
tic kernels are weakly continuous. Semi-uniform Feller stochastic kernels were introduced and studied in
[21], and some of the statements of Section 4 are taken from there. The basic known facts regarding the
reduction of MDPIIs to MDPCIs are that this reduction preserves Borel measurability of transition proba-
bilities [34, 46], but it does not preserve weak continuity of transition probabilities [19, Examples 4.1 and
4.3]. Section 5 describes the theory of MDPs with the expected total costs and semi-uniform Feller tran-
sition probabilities. Theorem 5.3 establishes the validity of optimality equations, convergence of value
iterations to optimal values, existence of Markov optimal policies for finite horizon problems, and existence
of stationary optimal policies for infinite-horizon problems. Related facts for MDPs with weakly and set-
wise continuous transition probabilities are [15, Theorem 2] and [13, Theorem 3.1] respectively. MDPs
with weakly and setwise continuous transition probabilities and with compact action sets were introduced
and studied by Schäl [38, 39, 40]. Balder [3] described a common approach to these models. MDPs with
weakly and setwise continuous transition probabilities and possibly noncompact action sets were studied in
[15] and [13, 25] respectively. Weak continuity of transition probabilities is broadly used for problems with
incomplete information, as described in this paper, and for inventory control [12]. Section 6 describes the
results on the validity of optimality equations, convergence of value iterations to optimal values, and the
existence of optimal policies for belief-MDPs corresponding to MDPIIs, Platzman’s model, and POMDPs.
Proofs of several statements are presented in Appendix A.

Platzman’s model in [33], references [19, 24, 43, 44] on POMDPs, and some papers on MDPIIs in-
cluding [34] considered one-step costs depending only on the unobservable states and actions. References
[10, 19, 46] studied MDPIIs with one-step costs depending on unobservable states, observations, and ac-
tions. In this paper we consider one-step costs depending on unobservable states, observations, and actions.
Because of this, we consider in this paper more general POMDP models than are usually considered in the
literature. However, as shown in Section 6, if one-step costs do not depend on observations, our results
imply the known and new results for the classic Platzman’s model [33] and POMDPs [19, 24, 43, 44] with
belief-MDPs having smaller state spaces P(W) than state spaces P(W) × Y for MDPCIs corresponding to
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Platzman’s models, to POMDPs with one-step costs depending on observations, and to MDPIIs. In general,
costs may depend on observations in applications. For example, for healthcare decisions during pandemics,
costs depend not only on the health conditions of all the members of the population, which may be unknown,
but also on the numbers of people with detected infections and on their conditions.

2 Model Description

For a metric space S = (S, ρS), where ρS is a metric, let τ(S) be the topology of S (the family of all open
subsets of S), and let B(S) be its Borel σ-field, that is, the σ-field generated by all open subsets of the metric
space S. For a subset S of S let S̄ denote the closure of S and So the interior of S. Then So ⊂ S ⊂ S̄, So is
open, and S̄ is closed. Let ∂S := S̄ \So denote the boundary of S. We denote by P(S) the set of probability
measures on (S,B(S)). A sequence of probability measures {µ(n)}n=1,2,... from P(S) converges weakly to
µ ∈ P(S) if for every bounded continuous function f on S∫

S
f(s)µ(n)(ds)→

∫
S
f(s)µ(ds) as n→∞.

A sequence of probability measures {µ(n)}n=1,2,... from P(S) converges in total variation to µ ∈ P(S) if

sup
C∈B(S)

|µ(n)(C)− µ(C)| → 0 as n→∞; (2.1)

see [18, 20] for properties of these types of convergence of probability measures. Note that P(S) is a
separable metric space with respect to the topology of weak convergence for probability measures, when S
is a separable metric space; [32, Chapter II]. Moreover, according to Bogachev [7, Theorem 8.3.2], if the
metric space S is separable, then the topology of weak convergence of probability measures on (S,B(S))
coincides with the topology generated by the Kantorovich-Rubinshtein metric

ρP(S)(µ, ν) := sup

{∫
S
f(s)µ(ds)−

∫
S
f(s)ν(ds)

∣∣∣ f ∈ Lip1(S), sup
s∈S
|f(s)| ≤ 1

}
, (2.2)

µ, ν ∈ P(S), where

Lip1(S) := {f : S→R, |f(s1)− f(s2)| ≤ ρS(s1, s2), ∀s1, s2 ∈ S}.

For a Borel subset S of a metric space (S, ρS), we always consider the metric space (S, ρS), where
ρS := ρS

∣∣
S×S . A subset B of S is called open (closed) in S if B is open (closed respectively) in (S, ρS).

Of course, if S = S, we omit “in S”. Observe that, in general, an open (closed) set in S may not be
open (closed respectively). For S ∈ B(S) we denote by B(S) the Borel σ-field on (S, ρS). Observe that
B(S) = {S ∩B : B ∈ B(S)}.

For metric spaces S1 and S2, a (Borel measurable) stochastic kernel Ψ(ds1|s2) on S1 given S2 is a
mapping Ψ( · | · ) : B(S1) × S2→[0, 1], such that Ψ( · |s2) is a probability measure on S1 for any s2 ∈ S2,
and Ψ(B| · ) is a Borel measurable function on S2 for any Borel set B ∈ B(S1). Another name for a
stochastic kernel is a transition probability. A stochastic kernel Ψ(ds1|s2) on S1 given S2 defines a Borel
measurable mapping s2 7→ Ψ( · |s2) of S2 to the metric space P(S1) endowed with the topology of weak
convergence. A stochastic kernel Ψ(ds1|s2) on S1 given S2 is called weakly continuous (continuous in total
variation), if Ψ( · |s(n)) converges weakly (in total variation) to Ψ( · |s) whenever s(n) converges to s in S2.
For one-point sets {s1} ⊂ S1, we sometimes write Ψ(s1|s2) instead of Ψ({s1}|s2). Sometimes a weakly
continuous stochastic kernel is called Feller, and a stochastic kernel continuous in total variation is called
uniformly Feller [31].
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Let S1,S2, and S3 be Borel subsets of Polish spaces (a Polish space is a complete separable metric
space), and let Ψ on S1×S2 given S3 be a stochastic kernel. For each A ∈ B(S1), B ∈ B(S2), and s3 ∈ S3,
let

Ψ(A,B|s3) := Ψ(A×B|s3). (2.3)

In particular, we consider marginal stochastic kernels Ψ(S1, · | · ) on S2 given S3 and Ψ( · ,S2| · ) on S1

given S3.
A Markov decision process with incomplete information (MDPII) (Dynkin and Yushkevich [10, Chap-

ter 8], Rhenius [34], Yushkevich [46]; see also Rieder [35] and Bäuerle and Rieder [4] for a version of this
model with transition probabilities having densities) is specified by a tuple (W× Y,A, P, c), where

(i) W×Y is the state space, where W and Y are Borel subsets of Polish spaces, and for (w, y) ∈W×Y
the unobservable component of the state (w, y) is w, and the observable component is y;

(ii) A is the action space, which is assumed to be a Borel subset of a Polish space;

(iii) P is a stochastic kernel on W×Y given W×Y×A, which determines the distribution P ( · |w, y, a)
on W × Y of the new state, if (w, y) ∈ W × Y is the current state, and if a ∈ A(y) is the current
action, and it is assumed that the stochastic kernel P on W×Y given W×Y×A is weakly continuous
in (w, y, a) ∈W× Y× A;

(iv) P0( · |w) is a stochastic kernel on Y given W, which determines the distribution of the observable part
y0 of the initial state, which may depend on the value of unobservable component w0 = w of the
initial state;

(v) c : W× Y× A→R+ = [0,+∞] is a Borel measurable one-step cost function.

The Markov decision process with incomplete information evolves as follows. At time t = 0, the
unobservable component w0 of the initial state has a given prior distribution p ∈ P(W). Let y0 be the
observable part of the initial state. At each time epoch t = 0, 1, . . . , if the state of the system is (wt, yt) ∈
W × Y and the decision-maker chooses an action at ∈ A, then the cost c(wt, yt, at) is incurred and the
system moves to state (wt+1, yt+1) according to the transition law P ( · |wt, yt, at).

Define the observable histories: h0 := y0 ∈ H0 and ht := (y0, a0, y1, a1, . . . , yt−1, at−1, yt) ∈ Ht for
all t = 1, 2, . . . , where H0 := Y and Ht := Ht−1 × A × Y if t = 1, 2, . . . . Then a policy for the MDPII
is defined as a sequence π = {πt} such that, for each t = 0, 1, . . . , πt is a transition kernel on A given
Ht. Moreover, π is called nonrandomized if each probability measure πt( · |ht) is concentrated at one point.
The set of all policies is denoted by Π. The Ionescu Tulcea theorem (Bertsekas and Shreve [5, pp. 140-141]
or Hernández-Lerma and Lasserre [26, p.178]) implies that a policy π ∈ Π, initial distribution p ∈ P(W),
initial state y0 together with the transition kernel P determine a unique probability measure P πp on the set
of all trajectories H∞ = (W× Y× A)∞ endowed with the product σ-field defined by Borel σ-fields of W,
Y, and A respectively. The expectation with respect to this probability measure is denoted by Eπp .

Let us specify the performance criterion. For a finite horizon T = 0, 1, . . . , and for a policy π ∈ Π, let
the expected total discounted costs be

vπT,α(p) := Eπp
T−1∑
t=0

αtc(wt, yt, at), p ∈ P(W), (2.4)

where α ≥ 0 is the discount factor, vπ0,α(p) = 0.
When T = ∞, (2.4) defines an infinite horizon expected total discounted cost, and we denote it by

vπα(p). For any function gπ(p), including gπ(p) = vπT,α(p) and gπ(p) = vπα(p), define the optimal value
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g(p) := inf
π∈Π

gπ(p), p ∈ P(W). For a given initial distribution p ∈ P(W) of the initial unobservable

component w0, a policy π is called optimal for the respective criterion, if gπ(p) = g(p) for all p ∈ P(W). A
policy is called T -horizon discount-optimal if gπ = vπT,α, and it is called discount-optimal if gπ = vπα.

We remark that the standard assumptions on the discount factor are either α ∈ [0, 1) or α ∈ [0, 1].
However, since we assume that transition probabilities are weakly continuous and one-step costs are K-inf-
compact or satisfy a relaxed version of K-inf-compactness stated in Definition 5.2, the same monotonicity
and continuity arguments apply to α > 0; see the proof of Theorem 3 in [15]. In addition, if α ∈ [0, 1), then
it is possible to assume that c is bounded from below rather than nonnegative. This remark also applies for
MDPs with setwise continuous transition probabilities P and lower semi-continuous cost functions c(x, a),
which are inf-compact in variable a; see [13]. Of course, if α > 1, then for many infinite-horizon problems
the objective function is equal to +∞. The literature on MDPs with discount factors greater than 1 ex-
ists [27]. In particular, discount factors are relevant to opportunity costs and interest rates. Discount factors
greater than 1 are relevant to negative interest rates, which are offered by some banks at some countries.

We recall that an MDP is defined by its state space, action space, transition probabilities, and one-step
costs. An MDP is a particular case of an MDPII. Formally speaking, an MDP (X,A, P, c) is an MDPII
(W × Y,A, P, c) with W being a singelton and Y = X, where we follow the convention that W × X = X
in this case. In addition, for an MDP an initial state is observable. For an MDP we consider an initial state
x instead of the initial pair (P0, p), where p is the probability concentrated on a single point of which W
consists. For an MDP, a nonrandomized policy is called Markov if all decisions depend only on the current
state and time. A Markov policy is called stationary if all decisions depend only on current states.

3 Reduction of MDPIIs to MDPCIs

In this section we formulate the well-known reduction of an MDPII (W × Y,A, P, c) to a belief-MDP ([5,
10, 26, 34, 46]), which is called an MDPCI. For epoch t = 0, 1, . . . consider the joint conditional probability
R(dwt+1dyt+1|zt, yt, at) on next state (wt+1, yt+1) given the current state (zt, yt) and the current control
action at defined by

R(B × C|z, y, a) :=

∫
W
P (B × C|w, y, a)z(dw), (3.1)

B ∈ B(W), C ∈ B(Y), (z, y, a) ∈ P(W)×Y×A.According to Bertsekas and Shreve [5, Proposition 7.27],
there exists a stochastic kernel H(z, y, a, y′)[ · ] = H( · |z, y, a, y′) on W given P(W) × Y × A × Y such
that

R(B × C|z, y, a) =

∫
C
H(B|z, y, a, y′)R(W, dy′|z, y, a), (3.2)

B ∈ B(W), C ∈ B(Y), (z, y, a) ∈ P(W)×Y×A. The stochastic kernelH( · |z, y, a, y′) introduced in (3.2)
defines a measurable mappingH : P(W)×Y×A×Y→P(W).Moreover, the mapping y′ 7→ H(z, y, a, y′)
is defined R(W, · |z, y, a)-a.s. uniquely for each triple (z, y, a) ∈ P(W)× Y× A.

Let IB denotes the indicator of an event B. The MDPCI is defined as an MDP with parameters (P(W)×
Y,A, q, c̄), where

(i) P(W)× Y is the state space;

(ii) A is the action set available at all states (z, y) ∈ P(W)× Y;

(iii) the one-step cost function c̄ : P(W)× Y× A→R, defined as

c̄(z, y, a) :=

∫
W
c(w, y, a)z(dw), z ∈ P(W), y ∈ Y, a ∈ A; (3.3)
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(iv) q on P(W) × Y given P(W) × Y × A is a stochastic kernel which determines the distribution of the
new state as follows: for (z, y, a) ∈ P(W)× Y× A and for D ∈ B(P(W)) and C ∈ B(Y),

q(D × C|z, y, a) :=

∫
C
I{H(z, y, a, y′) ∈ D}R(W, dy′|z, y, a), (3.4)

see Yushkevich [46], Bertsekas and Shreve [5, Corollary 7.27.1, p. 139], or Dynkin and Yushkevich [10,
p. 215] for details. Note that a particular measurable choice of a stochastic kernel H from (3.2) does not
effect the definition of q in (3.4).

There is a correspondence between the policies for an MDPII (W×Y,A, P, c) and for the corresponding
MDPCI (P(W) × Y,A, q, c̄) in the sense that for a policy in one of these models there exists a policy in
another model with the same expected total costs; see [34, 46] or [24, Section 4.3]. In Section 6 we provide
sufficient conditions for the existence of an optimal policy in the MDPCI (P(W)×Y,A, q, c̄) in terms of the
assumptions on the initial MDPII (W×Y,A, P, c) and apply the results to Platzman’s model and POMDPs.
In particular, under natural conditions the existence of optimal policies and validity of optimality equations
and value iterations for MDPCIs follow from Theorem 5.3. For problems with finite and infinite horizons,
if φ is a Markov optimal policy for the MDPCI, then an optimal policy π for the MDPII can be defined as
at = πt(ht) = φt(zt, yt), where zt is the posterior distribution of the unobservable component wt of the
state xt given the observations ht = (y0, a0, . . . , yt−1, at−1, yt), the initial distribution p of w0, and t > 0.
As discussed in Section 6, for Paltzman’s models and, in particular, for POMDPs, the values of φt(zt, yt) can
be selected independent of yt if one-step costs do not depend on observations. For infinite-horizon MDPs
usually there exist stationary optimal policies, and the described scheme applies to them since stationary
policies are Markov.

4 Semi-Uniform Feller Stochastic Kernels and their Properties

In this section we formulate the semi-uniform Feller property for stochastic kernels and describe its ba-
sic properties. In particular, Theorem 4.6 provides its equivalent definitions. Theorem 4.8 establishes a
necessary and sufficient condition for a stochastic kernel to be semi-uniform Feller. This condition is As-
sumption 4.7, whose stronger version was introduced in [18, Theorem 4.4]. Theorem 4.9 describes the
preservation of semi-uniform Fellerness under the integration operation.

Let S1, S2, and S3 be Borel subsets of Polish spaces, and Ψ on S1 × S2 given S3 be a stochastic kernel.

Definition 4.1. (Feinberg et al. [21]) A stochastic kernel Ψ on S1 × S2 given S3 is semi-uniform Feller if,
for each sequence {s(n)

3 }n=1,2,... ⊂ S3 that converges to s3 in S3 and for each bounded continuous function
f on S1,

lim
n→∞

sup
B∈B(S2)

∣∣∣∣∫
S1
f(s1)Ψ(ds1, B|s(n)

3 )−
∫
S1
f(s1)Ψ(ds1, B|s3)

∣∣∣∣ = 0. (4.1)

We recall that the marginal measure Ψ(ds1, B|s3), s3 ∈ S3, is defined in (2.3). The term “semi-uniform”
is used in Definition 4.1 because the uniform property holds in (4.1) only with respect to the second coordi-
nate. If the uniform property holds with respect to both coordinates, then the stochastic kernel Ψ on S1×S2

given S3 is continuous in total variation, and it is sometimes called uniformly Feller [31].

Lemma 4.2. A semi-uniform Feller stochastic kernel Ψ on S1 × S2 given S3 is weakly continuous.

Proof. Definition 4.1 implies that for each sequence {s(n)
3 }n=1,2,... ⊂ S3 that converges to s3 in S3, for each

bounded continuous function f on S1, and for each B ∈ B(S2)

lim
n→∞

∫
S1
f(s1)Ψ(ds1, B|s(n)

3 ) =

∫
S1
f(s1)Ψ(ds1, B|s3),
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and, in view of Schäl [38, Theorem 3.7(iii,viii)], this property implies weak continuity of Ψ on S1 × S2

given S3.

Let us consider some basic definitions.

Definition 4.3. Let S be a metric space. A function f : S→R is called

(i) lower semi-continuous (l.s.c.) at a point s ∈ S if lim inf
s′→s

f(s′) ≥ f(s);

(ii) upper semi-continuous at s ∈ S if −f is lower semi-continuous at s;

(iii) continuous at s ∈ S if f is both lower and upper semi-continuous at s;

(iv) lower / upper semi-continuous (continuous respectively) (on S) if f is lower / upper semi-continuous
(continuous respectively) at each s ∈ S.

For a metric space S, let F(S), L(S), and C(S) be the spaces of all real-valued functions, all real-valued
lower semi-continuous functions, and all real-valued continuous functions respectively defined on the metric
space S. The following definitions are taken from [14].

Definition 4.4. A family F ⊂ F(S) of real-valued functions on a metric space S is called

(i) lower semi-equicontinuous at a point s ∈ S if lim inf s′→s inff∈F(f(s′)− f(s)) ≥ 0;

(ii) upper semi-equicontinuous at a point s ∈ S if the family {−f : f ∈ F} is lower semi-equicontinuous
at s ∈ S;

(iii) equicontinuous at a point s ∈ S, if F is both lower and upper semi-equicontinuous at s ∈ S, that is,
lim
s′→s

sup
f∈F
|f(s′)− f(s)| = 0;

(iv) lower / upper semi-equicontinuous (equicontinuous respectively) (on S) if it is lower / upper semi-
equicontinuous (equicontinuous respectively) at all s ∈ S;

(v) uniformly bounded (on S), if there exists a constant M < +∞ such that |f(s)| ≤ M for all s ∈ S
and for all f ∈ F.

Obviously, if a family F ⊂ F(S) is lower semi-equicontinuous, then F ⊂ L(S). Moreover, if a family
F ⊂ F(S) is equicontinuous, then F ⊂ C(S).

4.1 Basic Properties of Semi-Uniform Feller Stochastic Kernels

Let S1, S2, and S3 be Borel subsets of Polish spaces, and let Ψ on S1 × S2 given S3 be a stochastic kernel.
For each set A ∈ B(S1) consider the family of functions

FΨ
A = {s3 7→ Ψ(A×B|s3) : B ∈ B(S2)} (4.2)

mapping S3 into [0, 1]. Consider the following type of continuity for stochastic kernels on S1×S2 given S3.

Definition 4.5. A stochastic kernel Ψ on S1× S2 given S3 is called WTV-continuous, if for each O ∈ τ(S1)
the family of functions FΨ

O is lower semi-equicontinuous on S3.
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Definition 4.4 directly implies that the stochastic kernel Ψ on S1 × S2 given S3 is WTV-continuous if
and only if for each O ∈ τ(S1)

lim inf
n→∞

inf
B∈B(S2)\{∅}

(
Ψ(O ×B|s(n)

3 )−Ψ(O ×B|s3)
)
≥ 0, (4.3)

whenever s(n)
3 converges to s3 in S3.

Since ∅ ∈ B(S2), (4.3) holds if and only if

lim
n→∞

inf
B∈B(S2)

(
Ψ(O ×B|s(n)

3 )−Ψ(O ×B|s3)
)

= 0. (4.4)

WTV-continuity of the stochastic kernel Ψ on S1 × S2 given S3 implies continuity in total variation of its
marginal kernel Ψ(S1, · | · ) on S2 given S3 because

lim
n→∞

sup
B∈B(S2)

∣∣∣Ψ(S1 ×B|s(n)
3 )−Ψ(S1 ×B|s3)

∣∣∣ = lim
n→∞

sup
B∈B(S2)

(
Ψ(S1 ×B|s(n)

3 )−Ψ(S1 ×B|s3)
)

= 0,

where the second equality follows from equality (4.4) with O := S1 and from Ψ(S1 × S2| · ) = 1.
Similarly to Parthasarathy [32, Theorem II.6.1], where the necessary and sufficient conditions for weakly

convergent probability measures were considered, the following theorem provides several useful equivalent
definitions of the semi-uniform Feller stochastic kernels.

Theorem 4.6. (Feinberg et al [21, Theorem 3]) For a stochastic kernel Ψ on S1× S2 given S3 the following
conditions are equivalent:

(a) the stochastic kernel Ψ on S1 × S2 given S3 is semi-uniform Feller;

(b) the stochastic kernel Ψ on S1 × S2 given S3 is WTV-continuous;

(c) if s(n)
3 converges to s3 in S3, then for each closed set C in S1

lim
n→∞

sup
B∈B(S2)

(
Ψ(C ×B|s(n)

3 )−Ψ(C ×B|s3)
)

= 0; (4.5)

(d) if s(n)
3 converges to s3 in S3, then, for each A ∈ B(S1) such that Ψ(∂A,S2|s3) = 0,

lim
n→∞

sup
B∈B(S2)

|Ψ(A×B|s(n)
3 )−Ψ(A×B|s3)| = 0; (4.6)

(e) if s(n)
3 converges to s3 in S3, then, for each nonnegative bounded lower semi-continuous function f

on S1,

lim inf
n→∞

inf
B∈B(S2)

(∫
S1
f(s1)Ψ(ds1, B|s(n)

3 )−
∫
S1
f(s1)Ψ(ds1, B|s3)

)
= 0; (4.7)

and each of these conditions implies continuity in total variation of the marginal kernel Ψ(S1, · | · ) on S2

given S3.

Note that, since ∅ ∈ B(S2), (4.5) holds if and only if

lim sup
n→∞

sup
B∈B(S2)\{∅}

(
Ψ(C ×B|s(n)

3 )−Ψ(C ×B|s3)
)
≤ 0, (4.8)

and similar remarks are applicable to (4.6) and (4.7) with the inequality “≥” taking place in (4.7).
Let us consider the following assumption. According to Feinberg et al [21, Example 1], Assumption 4.7

is weaker than combined assumptions (i) and (ii) in [18, Theorem 4.4], where the base τ s3b (S1) is the same
for all s3 ∈ S3.
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Assumption 4.7. Let Ψ be a stochastic kernel on S1 × S2 given S3, and let for each s3 ∈ S3 the topology
on S1 have a countable base τ s3b (S1) such that:

(i) S1 ∈ τ s3b (S1);

(ii) for each finite intersection O = ∩ki=1Oi, k = 1, 2, . . . , of sets Oi ∈ τ s3b (S1), i = 1, 2, . . . , k, the
family of functions FΨ

O, defined in (4.2), is equicontinuous at s3.

Note that Assumption 4.7(ii) holds if and only if for each finite intersection O = ∩ki=1Oi of sets Oi ∈
τ s3b (S1), i = 1, 2, . . . , k,

lim
n→∞

sup
B∈B(S2)

∣∣∣Ψ(O ×B|s(n)
3 )−Ψ(O ×B|s3)

∣∣∣ = 0 (4.9)

if s(n)
3 converges to s3 in S3.
Theorem 4.8 shows that Assumptions 4.7 is a necessary and sufficient condition for semi-uniform Feller

continuity.

Theorem 4.8. (Feinberg et al [21, Theorem 4]) The stochastic kernel Ψ on S1×S2 given S3 is semi-uniform
Feller if and only if it satisfies Assumption 4.7.

Now let S4 be a Borel subset of a Polish space, and let Ξ be a stochastic kernel on S1×S2 given S3×S4.
Consider the stochastic kernel Ξ∫ on S1 × S2 given P(S3)× S4 defined by

Ξ∫ (A×B|µ, s4) :=

∫
S3

Ξ(A×B|s3, s4)µ(ds3), A ∈ B(S1), B ∈ B(S2), µ ∈ P(S3), s4 ∈ S4. (4.10)

We observe that (4.10) becomes (3.1) with Ξ∫ := R, Ξ := P, S1 := W, S2 := Y, S3 := W, and
S4 := Y× A. This is our main motivation for writing (4.10).

The following theorem establishes the preservation of semi-uniform Fellerness of the integration opera-
tion in (4.10).

Theorem 4.9. (Feinberg et al [21, Theorem 5]) The stochastic kernel Ξ∫ on S1 × S2 given P(S3) × S4 is
semi-uniform Feller if and only if Ξ on S1 × S2 given S3 × S4 is semi-uniform Feller.

4.2 Continuity Properties of Posterior Distributions

In this subsection we describe sufficient conditions for semi-uniform Feller continuity of posterior distribu-
tions. The main result of this section is Theorem 4.11.

Let S1, S2, and S3 be Borel subsets of Polish spaces, and Ψ on S1 × S2 given S3 be a stochastic kernel.
By Bertsekas and Shreve [5, Proposition 7.27], there exists a stochastic kernel Φ on S1 given S2 × S3 such
that

Ψ(A×B|s3) =

∫
B

Φ(A|s2, s3)Ψ(S1, ds2|s3), A ∈ B(S1), B ∈ B(S2), s3 ∈ S3. (4.11)

The stochastic kernel Φ( · |s2, s3) on S1 given S2 × S3 defines a measurable mapping Φ : S2 × S3 →
P(S1), where Φ(s2, s3)( · ) = Φ( · |s2, s3). According to Bertsekas and Shreve [5, Corollary 7.27.1], for
each s3 ∈ S3 the mapping Φ( · , s3) : S2 → P(S1) is defined Ψ(S1, · |s3)-almost surely uniquely in s2 ∈ S2.
Let us consider the stochastic kernel φ defined by

φ(D ×B|s3) :=

∫
B
I{Φ(s2, s3) ∈ D}Ψ(S1, ds2|s3), D ∈ B(P(S1)), B ∈ B(S2), s3 ∈ S3, (4.12)
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where a particular choice of a stochastic kernel Φ satisfying (4.11) does not effect the definition of φ in
(4.12).

In models for decision making with incomplete information, φ is the transition probability between belief
states, which are posterior distributions of states; (3.4). Continuity properties of φ play the fundamental role
in the studies of models with incomplete information. Theorem 4.11 characterizes such properties, and this
is the reason for the title of this section. Let us consider the following assumption.

Assumption 4.10. For a stochastic kernel Ψ on S1 × S2 given S3, there exists a stochastic kernel Φ on S1

given S2×S3 satisfying (4.11) such that, if a sequence {s(n)
3 }n=1,2,... ⊂ S3 converges to s3 ∈ S3 as n→∞,

then there exists a subsequence {s(nk)
3 }k=1,2,... ⊂ {s

(n)
3 }n=1,2,... and a measurable subset B of S2 such that

Ψ(S1 ×B|s3) = 1 and Φ(s2, s
(nk)
3 ) converges weakly to Φ(s2, s3) for all s2 ∈ B. (4.13)

In other words, the convergence in (4.13) holds Ψ(S1, · |s3)-almost surely.

According to Theorem 9.2.1 from [8] stating the relation between convergence in probability and al-
most sure convergence, Assumption 4.10 holds if and only if the following statement holds: if a sequence
{s(n)

3 }n=1,2,... ⊂ S3 converges to s3 ∈ S3 as n→∞, then

ρP(S1)(Φ(s2, s
(n)
3 ),Φ(s2, s3))→ 0 in probability Ψ(S1, ds2|s3), (4.14)

where ρP(S1) is an arbitrary metric that induces the topology of weak convergence of probability measures
on S1, and, in particular, ρP(S1) can be the Kantorovich-Rubinshtein metric defined in (2.2).

The following theorem, which is the main result of this section, provides necessary and sufficient con-
ditions for semi-uniform Fellerness of a stochastic kernel φ in terms of the properties of a given stochastic
kernel Ψ. This theorem and the results of Subsection 4.1 provide the necessary and sufficient conditions for
the semi-uniform Feller property of the MDPCIs in terms of the conditions on the transition kernel in the
initial model for decision making with incomplete information.

Theorem 4.11. For a stochastic kernel Ψ on S1 × S2 given S3 the following conditions are equivalent:

(a) the stochastic kernel Ψ on S1 × S2 given S3 is semi-uniform Feller;

(b) the marginal kernel Ψ(S1, · | · ) on S2 given S3 is continuous in total variation and Assumption 4.10
holds;

(c) the stochastic kernel φ on P(S1)× S2 given S3 is semi-uniform Feller.

Proof. See Appendix A.

5 Markov Decision Processes with Semi-Uniform Feller Kernels

Let XW and XY be Borel subsets of Polish spaces. In this section we consider the special class of MDPs
with semi-uniform Feller transition kernels, when the state space is X := XW × XY . These results are
important for MDPIIs with semi-uniform Feller transition kernels from Section 6, where XW := P(W) and
XY = Y.

For an R-valued function f, defined on a nonempty subset U of a metric space U, consider the level sets

Df (λ;U) = {y ∈ U : f(y) ≤ λ}, λ ∈ R. (5.1)

We recall that a function f is inf-compact on U if all the level sets Df (λ;U) are compact.
For a metric space U, we denote by K(U) the family of all nonempty compact subsets of U.
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Definition 5.1. (Feinberg et al. [16, Definition 1.1]) A function u : S1 × S2→R is called K-inf-compact if
this function is inf-compact on K × S2 for each K ∈ K(S1).

The fundamental importance of K-inf-compactness is that Berge’s theorem stating lower semicontinuity
of the value function holds for possibly noncompact action sets; Feinberg et al [16, Theorem 1.2]. In
particular, this fact allows us to consider the MDPII (W × Y,A, P, c) with a possibly noncompact action
space A and unbounded one-step cost c and examine convergence of value iterations for this model in
Theorem 6.1, for Platzman’s model in Corollaries 6.6, 6.12, and for POMDPs in Corollaries 6.10, 6.11.

Definition 5.2. A Borel measurable function u : S1 × S2 × S3→R is called measurable K-inf-compact on
(S1 × S3,S2) or MK(S1 × S3, S2)-inf-compact if for each s2 ∈ S2 the function (s1, s3) 7→ u(s1, s2,s3) is
K-inf-compact on S1 × S3.

Consider a discrete-time MDP (X,A, q, c) with a state space X = XW×XY , an action space A, one-step
costs c, and transition probabilities q. Assume that XW ,XY , and A are Borel subsets of Polish spaces. Let
LW (X) be the class of all nonnegative Borel measurable functions ϕ : X → R such that w 7→ ϕ(w, y) is
lower semi-continuous on XW for each y ∈ XY . For any α ≥ 0 and u ∈ LW (X), we consider

ηαu (x, a) = c(x, a) + α

∫
X
u(x̃)q(dx̃|x, a), (x, a) ∈ X× A. (5.2)

The following theorem is the main result of this section. It states the validity of optimality equations,
convergence of value iterations, and existence of optimal policies for MDPs with semi-uniform Feller tran-
sition probabilities and MK(W× A,Y)-inf-compact one-step cost functions, when the goal is to minimize
expected total costs. For MDPs with weakly continuous transition probabilities the similar result is [15,
Theorem 2], and for MDPs with setwise continuous transition probabilities the similar result is [13, The-
orem 3.1]. Theorem 5.3 does not follow from these two results. In particular, the cost function is lower
semi-continuous in [15, Theorem 2]. The corresponding assumption for Theorem 5.3 would be lower semi-
continuity of the cost function c, but the function c(w, y, a) may not be lower semi-continuous in y. [13,
Theorem 3.1] assumes setwise continuity of the transition probability q in the control parameter, which may
not hold in this paper. Theorem 5.3 is applied in Theorem 6.1 to MDPCIs (P(W)× Y,A, q, c̄).

Theorem 5.3. (Expected Total Discounted Costs) Let us consider an MDP (X,A, q, c) with X = XW ×XY ,
for each y ∈ XY the stochastic kernel q( · | · , y, · ) on X given XW × A being semi-uniform Feller, and the
nonnegative function c : X× A→R being MK(XW × A,XY )-inf-compact. Then

(i) the functions vt,α, t = 0, 1, . . . , and vα belong to LW (X), and vt,α(x) ↑ vα(x) as t → +∞ for all
x ∈ X;

(ii) vt+1,α(x) = min
a∈A

ηαvt,α(x, a), x ∈ X, t = 0, 1, ..., where v0,α(x) = 0 for all x ∈ X, and the nonempty

sets At,α(x) := {a ∈ A : vt+1,α(x) = ηαvt,α(x, a)}, x ∈ X, t = 0, 1, . . . , satisfy the following
properties: (a) the graph Gr(At,α) = {(x, a) : x ∈ X, a ∈ At,α(x)}, t = 0, 1, . . . , is a Borel subset
of X × A, and (b) if vt+1,α(x) = +∞, then At,α(x) = A and, if vt+1,α(x) < +∞, then At,α(x) is
compact;

(iii) for any T = 1, 2, . . . , there exists a Markov optimal T -horizon policy (φ0, . . . , φT−1), and, if for
an T -horizon Markov policy (φ0, . . . , φT−1) the inclusions φT−1−t(x) ∈ At,α(x), x ∈ X, t =
0, . . . , T − 1, hold, then this policy is T -horizon optimal;

(iv) vα(x) = min
a∈A

ηαvα(x, a), x ∈ X, and the nonempty sets Aα(x) := {a ∈ A : vα(x) = ηαvα(x, a)},
x ∈ X, satisfy the following properties: (a) the graph Gr(Aα) = {(x, a) : x ∈ X, a ∈ Aα(x)} is a
Borel subset of X × A, and (b) if vα(x) = +∞, then Aα(x) = A and, if vα(x) < +∞, then Aα(x)
is compact.
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(v) for an infinite-horizon T = ∞ there exists a stationary discount-optimal policy φα, and a stationary
policy is optimal if and only if φα(x) ∈ Aα(x) for all x ∈ X.

Proof. See Appendix A.

Remark 5.4. Let us consider an MDP (X,A, q, c) with X = XW × XY , the stochastic kernel q on X given
X× A being semi-uniform Feller, and the nonnegative function c : X× A→R being K-inf-compact. Then,
Lemma 4.2 implies that the stochastic kernel q on X given X × A is weakly continuous. Therefore, [15,
Theorem 2] implies all assumptions and conclusions of Theorem 5.3 and, in addition, the functions vt,α(·)
and vα(·) are lower semi-continuous for all t = 0, 1, . . . and α ≥ 0.

We also remark that, if the cost function c is nonnegative, then optimality equations hold and stationary
(Markov) optimal policies satisfy them for problems with an infinite (finite) horizons without any continuity
assumptions on the transition probabilities q and cost function c; see, e.g., [5, Propositions 9.8, 9.12 and
Corollary 9.12.1] for α = 1. This is also true, in the following two cases: (a) c, α ≥ 0, and (b) c ≥ K >
−∞ and α ∈ [0, 1). However, if transition probabilities and costs do not satisfy appropriate continuity
assumptions, then min should be replaced with inf in the optimality equations stated in statements (ii) and
(iv) of Theorem 5.3, the sets At,α(x) and Aα(x) can be empty, optimal policies may not exist, and, though a
limit of value iterations with zero terminal costs exists, it may not be equal to the value function; see Yu [45]
and references therein on value iterations for infinite-state MDPs.

6 Total-Cost Optimal Policies for MDPII and Corollaries for Platzman’s
Model and for POMDPs

In this section we formulate Theorems 6.1 and 6.2 stating the equivalences of semi-uniform Feller continu-
ities of the transition probability P for an MDPII, stochastic kernel R defined in (3.1), and transition prob-
ability q for the MDPCI defined in (3.4). These two theorems also provide other necessary and sufficient
conditions for semi-uniform Feller continuity of the stochastic kernels P, R, and q. The proofs of Theo-
rems 6.1 and 6.2 use Theorems 4.9, 4.11, the reduction of MDPIIs to MDPCIs established in [34, 46] and
described in Section 3, and [19, Theorem 3.3] stating that integration of cost functions with respect to proba-
bility measures in the argument corresponding to unobservable state variables preserves K-inf-compactness
of cost functions. Then we consider Platzman’s model and POMDPs and describe sufficient conditions for
weak continuity of transition kernels in the reduced models, whose states are belief probabilities, and the
validity of optimality equations, convergence of value iterations, and existence of optimal policies for these
models.

Theorem 6.1. Let (W×Y,A, P, c) be an MDPII, (P(W)×Y,A, q, c̄) be its MDPCI, and y ∈ Y. Then the
following conditions are equivalent:

(a) Assumption 4.7 holds with S1 := W, S2 := Y, S3 := W× A, and Ψ := P ( · | · , y, · );

(b) the stochastic kernel P ( · | · , y, · ) on W× Y given W× A is semi-uniform Feller;

(c) the stochastic kernel R( · | · , y, · ) on W× Y given P(W)× A is semi-uniform Feller;

(d) the marginal kernel R(W, · | · , y, · ) on Y given P(W)× A is continuous in total variation, and the
stochastic kernelH( · | · , y, · , · ) on W given P(W)×A×Y defined in (3.2) satisfies Assumption 4.10;

(e) the stochastic kernel q( · | · , y, · ) on P(W)× Y given P(W)× A is semi-uniform Feller.

13



Moreover, if nonnegative function c is MK(W×A,Y)-inf-compact, and for each y ∈ Y anyone of the above
conditions (a)–(e) holds, then all the assumptions and conclusions of Theorem 5.3 hold for the MDPCI
(P(W)× Y,A, q, c̄).

Theorem 6.2. Let (W×Y,A, P, c) be an MDPII, and (P(W)×Y,A, q, c̄) be its MDPCI. Then the following
conditions are equivalent:

(a) Assumption 4.7 holds with S1 := W, S2 := Y, S3 := W× Y× A, and Ψ := P ;

(b) the stochastic kernel P on W× Y given W× Y× A is semi-uniform Feller;

(c) the stochastic kernel R on W× Y given P(W)× Y× A is semi-uniform Feller;

(d) the marginal kernel R(W, · | · ) on Y given P(W) × Y × A is continuous in total variation, and the
stochastic kernel H on W given P(W)× Y× A× Y defined in (3.2) satisfies Assumption 4.10;

(e) the stochastic kernel q on P(W)× Y given P(W)× Y× A is semi-uniform Feller.

Moreover, if the nonnegative function c is K-inf-compact, and anyone of the above conditions (a)–(e) holds,
then all the assumptions and conclusions of Theorem 5.3 hold for the MDPCI (P(W)× Y,A, q, c̄), and the
functions vt,α, t = 0, 1, . . . , and vα are lower semi-continuous on X.

The proofs of Theorems 6.1 and 6.2 are provided in Appendix A. We recall that c, α ≥ 0 in Theorems 5.3
and 6.1. If 0 ≤ α < 1 and the function c is bounded below, then all conclusions of Theorems 5.3 and 6.1
hold with the following minor modifications (i) the functions vt,α and vα are bounded below rather than
nonnegative, and (ii) vt,α(x) → vα(x) rather than vt,α(x) ↑ vα(x) as t → ∞. This is true for function c
bounded below by −K > −∞ because such MDPII can be converted into a model with nonnegative costs
by replacing costs c with c+K; [19]. The suggestion to fix y in assumptions of Theorems 5.3 and 6.1 was
proposed by a referee.

According to [34, 46], for each optimal policy for the MDPCI (P(W)× Y,A, q, c̄) there constructively
exists an optimal policy in the original MDPII (W×Y,A, P, c). [18, Theorem 4.4] establishes weak conti-
nuity of the transition kernel in the MDPCI under the more restrictive assumption than statement (a) of The-
orem 6.1 when the countable base in Assumption 4.7 does not depend on the argument s3 = (w, y, a); see
also [21, Example 1]. Moreover, for any T = 1, 2, . . . and α ≥ 0, the value functions ṼT,α(z, y), Ṽα(z, y) in
the MDPCI (P(W)×Y,A, q, c̄) are concave in z ∈ P(W). This is true because infimums of affine functions
are concave functions.

The proof of Theorem 6.1 uses the following preservation property for MK(W×A,Y)-inf-compactness.

Theorem 6.3. If c : W × Y × A→R+ is an MK(W × A,Y)-inf-compact function, then the function
c̄ : P(W)× Y× A→R+ defined in (3.3) is MK(P(W)× A,Y)-inf-compact.

Proof. This theorem follows from [5, Proposition 7.29] on preservation of Borel measurability and from
[19, Theorem 3.3] on preservation of K-inf-compactness.

The particular case of an MDPII is a probabilistic dynamical system considered in Platzman [33].

Definition 6.4. Platzman’s model is specified by an MDPII (W×Y,A, P, c), where P is a stochastic kernel
on W× Y given W× A.

Remark 6.5. Formally speaking, Platzman’s model is an MDPII with the transition kernel P ( · |w, y, a)
that does not depend on y. Therefore, Theorem 6.1 implies certain corollaries for Platzman’s model.
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Corollary 6.6. Let (W × Y,A, P, c) be Platzman’s model. Then the stochastic kernel P on W × Y given
W×A is semi-uniform Feller if and only if one of the equivalent conditions (a), (c), (d), or (e) of Theorem 6.1
holds. Moreover, if the nonnegative function c is MK(W × A,Y)-inf-compact and the stochastic kernel P
on W × Y given W × A is semi-uniform Feller, then all the assumptions and conclusions of Theorem 6.1
hold.

Proof. According to Remark 6.5, Corollary 6.6 follows directly from Theorem 6.1.

For Platzman’s models we shall write P (B×C|w, a), R(B×C|z, a), H(D|z, a, y′), and q(D×C|z, a)
instead of P (B×C|w, y, a), R(B×C|z, y, a), H(D|z, y,a, y′), and q(D×C|z, y, a) since these stochastic
kernels do not depend on the variable y. For Platzman’s models we shall also consider the marginal kernel
q̂(D|z, a) := q(D,Y|z, a) on P(W) given P(W) × A. In view of (3.4), for (z, a) ∈ P(W) × A and for
D ∈ B(P(W)),

q̂(D|z, a) :=

∫
Y
I{H(z, a, y′) ∈ D}R(W, dy′|z, a). (6.1)

Corollary 6.7. Let (W×Y,A, P, c) be Platzman’s model, and let the stochastic kernel P on W×Y given
W×A be semi-uniform Feller. Then the stochastic kernel q̂ on P(W) given P(W)×A is weakly continuous.

Proof. According to Corollary 6.6 and Lemma 4.2, the stochastic kernel q on P(W)×Y given P(W)×A is
weakly continuous. Therefore, its marginal kernel q̂ on P(W) given P(W) × A is also weakly continuous.

As mentioned in [33], the special cases of Platzman’s model include two partially observable MDPs
which we denote as POMDP1 and POMDP2; see Definitions 6.8, 6.9 and Figure 1.

Let i = 1, 2, let W, Y, and A be Borel subsets of Polish spaces, Pi(dw′|w, a) be a stochastic kernel on
W given W×A, Q1(dy|w, a) be a stochastic kernel on Y given W×A, Q2(dy|a,w) be a stochastic kernel
on A given A×W, Q0,i(dy|w) be a stochastic kernel on Y given W, p be a probability distribution on W.

Definition 6.8. A POMDP1 (W,Y,A, P1, Q1, c) is specified by Platzman’s model (W× Y,A, P, c) with

P (B × C|w, a) := P1(B|w, a)Q1(C|w, a), (6.2)

B ∈ B(W), C ∈ B(Y), w ∈W, y ∈ Y, a ∈ A.

Let (W,Y,A, P1, Q1, c) be a POMDP1. Then, the stochastic kernel R on W × Y given P(W) × A,
which is defined for MDPIIs in (3.1), takes the following form,

R(B × C|z, a) :=

∫
W
Q1(C|w, a)P1(B|w, a)z(dw), (6.3)

B ∈ B(W), C ∈ B(Y), z ∈ P(W), a ∈ A.

Definition 6.9. A POMDP2 (W,Y,A, P2, Q2, c) is specified by Platzman’s model (W× Y,A, P, c) with

P (B × C|w, a) :=

∫
B
Q2(C|a,w′)P2(dw′|w, a), (6.4)

B ∈ B(W), C ∈ B(Y), w ∈W, y ∈ Y, a ∈ A.
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We recall that Figure 1 describes the relations between an MDPII, Platzman’s model, POMDP1, and
POMDP2 based on the generality of transition probabilities P. In addition, POMDP1 and POMDP2 are
two different models. For example, for a POMDP1 the random variables wt+1 and yt+1 are conditionally
independent given the values wt and at. This is not true for POMDP2.

Other relations between these models also take place. In particular, a reduction of an MDPII to a
POMDP2 is described in [18, Section 6] and in [19, Section 8.3]. Therefore, in some sense an MDPII,
Platzman’s model, and a POMDP2 can be viewed as equivalent models. This reduction was used in [19] to
prove Theorem 8.1 there stating sufficient conditions for weak continuity of transition probabilities for MD-
PCIs. This reduction transforms an MDPII with a weakly continuous transition probability into a POMDP2

with weakly continuous transition and observation probabilities. Since weak continuity of transition and
observation probabilities for POMDP2 are not sufficient for continuity of transition probabilities for the
corresponding belief-MDP (see [19, Example 4.1]), [19, Theorem 8.1] contains an additional assumption
on the transition probability P of the MDPII. This assumption is relaxed in [18, Theorem 6.2]. As shown
in [21, Example 1], semi-uniform Feller continuity of the transition probability P assumed in this paper is a
more general property than the assumption on P in [18, Theorem 6.2].

For a POMDP2 (W,Y,A, P2, Q2, c) the stochastic kernel R on W × Y given P(W) × A, which is
defined for MDPIIs in (3.1), takes the following form,

R(B × C|z, a) :=

∫
W

∫
B
Q2(C|a,w′)P2(dw′|w, a)z(dw), (6.5)

B ∈ B(W), C ∈ B(Y), z ∈ P(W), a ∈ A. A POMDP1 is Platzman’s model with observations yt+1

being “random functions” of wt and at, and a POMDP2 is Platzman’s model with observations yt+1 being
“random functions” of at and wt+1. Let us apply Theorem 6.1 to a POMDP1 and POMDP2.

Corollary 6.6 establishes necessary and sufficient conditions for semi-uniform Feller continuity of the
transition probabilities P for Platzman’s model (W × Y,A, P, c) in terms of the same property for the
transition probabilities q of the respective belief-MDP (P(W)×Y,A, q, c̄). Since a POMDPi, i = 1, 2, is a
particular case of Platzman’s model, Corollary 6.6 implies the necessary and sufficient conditions for semi-
uniform Feller continuity of the stochastic kernel q on Y×P(W) given W×A in terms of the same property
for the transition probability P defined in (6.2) for a POMDP1 and in (6.4) for a POMDP2 respectively.

Corollary 6.10. For a POMDP1 (W,Y,A, P1, Q1, c), the following two conditions holding together:

(a) the stochastic kernel P1 on W given W× A is weakly continuous;

(b) the stochastic kernel Q1 on Y given W× A is continuous in total variation;

are equivalent to semi-uniform Feller continuity of the stochastic kernel P on W×Y given W×A.Moreover,
if these two conditions hold, then:

(i) statements (a), (c)–(e) of Theorem 6.1 hold;

(ii) if the nonnegative function c : W×Y×A→R is MK(W×A,Y)-inf-compact, then all the conclusions
of Theorem 6.1 hold;

(iii) the stochastic kernel q̂ on P(W) given P(W)× A defined in (6.1) is weakly continuous.

Proof. See Appendix A.

Corollary 6.11. For a POMDP2 (W,Y,A, P2, Q2, c) each of the following conditions:

(a) the stochastic kernel P2 on W given W× A is weakly continuous, and the stochastic kernel Q2 on Y
given A×W is continuous in total variation;
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(b) the stochastic kernel P2 on W given W × A is continuous in total variation, and the observation
kernel Q2 on Y given A×W is continuous in a in total variation;

implies semi-uniform Feller continuity of the stochastic kernel P on W × Y given W × A. Moreover, each
of conditions (a) or (b) implies the validity of conclusions (i)–(iii) of Corollary 6.10 for the POMDP2.

Proof. See Appendix A.

Regarding Corollary 6.11, weak continuity of the stochastic kernel q̂ on P(W) × A for a POMDP2

under condition (a) from Corollary 6.11 is stated in [19, Theorem 3.6], and another proof of this statement
is provided in [28, Theorem 1]. Weak continuity of the stochastic kernel q̂ on P(W) × A for a POMDP2

under condition (b) from Corollary 6.11 is an extension of [28, Theorem 2], where this weak continuity is
proved under the assumption that the stochastic kernel P2 on W given W×A is continuous in total variation
and the observation kernel Q2 does not depend on actions.

Different sufficient conditions for weak continuity of the kernel q̂ for a POMDP2 are formulated in
monographs [24] and [37]. In both cases these conditions are stronger than condition (a) from Corol-
lary 6.11. In terms of the current paper, weak continuity of the stochastic kernel q̂ on P(W) given P(W)×A
is stated in [24, p. 92] under condition (a) from Corollary 6.11 and under the assumption that the observation
space Y is denumerable. The proof on [24, p. 93] is based on the existence of a transition kernelH(z, a, y′),
which is weakly continuous in (z, a, y′) and satisfies (6.1). However, [19, Example 4] shows that such
kernel may not exist even for a POMDP2 with finite sets X, Y and continuous in a functions P2(x′|x, a)
and Q2(y|a, x). A POMDP2 is considered in [37, Chapter 2] under additional assumptions that the state
space X is locally compact, observations yt belong to an Euclidean space, and the observation kernel does
not depend on actions and has a density, that is, Q(dy|x) = r(x, y)dy. Weak continuity of the kernel q̂ is
stated in [37, Corollary 1.5] under four assumptions, which taken together are stronger than condition (a) in
Corollary 6.11.

Let us consider Platzman’s model (W × Y,A, P, c) with the cost function c that does not depend on
observations y, that is, c(w, y, a) = c(w, a). In this case the MDPCI (P(W)× Y,A, q, c̄) can be reduced to
a smaller MDP (P(W),A, q̂, ĉ) with the state space P(W), action space A, transition probability q̂ defined
in (6.1), and one-step cost function ĉ : P(W)× A→R, defined for z ∈ P(W) and a ∈ A as

ĉ(z, a) :=

∫
W
c(w, a)z(dw). (6.6)

The reduction of an MDPCI (P(W) × Y,A, q, c̄) to the belief-MDP (P(W),A, q̂, ĉ) holds in view of [11,
Theorem 2] because in the MDPCI transition probabilities from states (zt, yt) ∈ P(W)×Y to states zt+1 ∈
P(W) and costs c(zt, at) do not depend on yt. If a Markov or stationary optimal policy is found for the belief-
MDP (P(W),A, q̂, ĉ), it is possible, as described at the end of Section 3, to construct an optimal policy for
Platzman’s models following the same procedures as constructing an optimal policy for and MDPII given a
Markov or stationary optimal policy for the corresponding MDPCI.

Corollary 6.12. Let us consider Platzman’s model (W × Y,A, P, c) with the one-step cost function c :
W× A→ R+. If the stochastic kernel P on W× Y given W× A is semi-uniform Feller, and the one-step
cost function c is K-inf-compact on W×A, then the transition kernel q̂ on P(W) given P(W)×A is weakly
continuous, the one-step cost function ĉ is K-inf-compact on P(W) × A, and all the conclusions of [19,
Theorem 2.1] hold for the belief-MDP (P(W),A, q̂, ĉ), that is:

(i) optimality equations hold, and they define optimal policies;

(ii) value iterations converge to optimal values if zero terminal costs are chosen;
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(iii) Markov optimal policies exist for finite-horizon problems;

(iv) stationary optimal policies exist for infinite-horizon problems.

Moreover, all these conclusions hold for a POMDP1 (W,Y,A, P1, Q1, c) with the transition and ob-
servation kernels P1 and Q1 satisfying conditions (a) and (b) from Corollary 6.10 and for a POMDP2

(W,Y,A, P2, Q2, c) with the transition and observation kernels P2 and Q2 satisfying either condition (a)
or condition (b) from Corollary 6.11.

Proof. Weak continuity of the stochastic kernel q̂ on P(W) given P(W)×A is stated in Corollary 6.7. K-inf-
compactness of the function ĉ on P(W)×A follows from [19, Theorem 3.3]. The remaining statements of the
corollary follow from [19, Theorem 2.1]. The transition probability P for POMDP1 (W,Y,A, P1, Q1, c)
defined in (6.2) is semi-uniform Feller according to Corollary 6.10, and the transition probability P for
POMDP2 (W,Y,A, P2, Q2, c) defined in (6.4) is semi-uniform Feller due to Corollary 6.11.

A Proofs of Theorems 4.11, 5.3, 6.1, and Corollaries 6.10, 6.11

We use the following fact in the proofs of equalities (A.1) and (A.2) below: if {G(n), G}n=1,2,... is a sequence
of finite measures on a metric space S and {g(n), g}n=1,2,... is a uniformly bounded sequence of Borel
measurable functions on S such that

lim
n→∞

sup
B∈B(S)

∣∣∣∣∫
B
g(n)(s)G(n)(ds)−

∫
B
g(n)(s)G(ds)

∣∣∣∣ = 0,

then

lim
n→∞

sup
B∈B(S)

∣∣∣∣∫
B
g(n)(s)G(n)(ds)−

∫
B
g(s)G(ds)

∣∣∣∣ = 0

holds if and only if

lim
n→∞

sup
B∈B(S)

∣∣∣∣∫
B
g(n)(s)G(ds)−

∫
B
g(s)G(ds)

∣∣∣∣ = 0.

Proof of Theorem 4.11. (a)⇒ (b). Since the stochastic kernel Ψ on S1×S2 given S3 is semi-uniform Feller,
the marginal kernel Ψ(S1, · | · ) is continuous in total variation. Moreover, for each bounded continuous
function f on S1, we have from (4.1) and (4.11) that

lim
n→∞

sup
B∈B(S2)

∣∣∣∣∫
B

∫
S1
f(s1)Φ(ds1|s2, s

(n)
3 )Ψ(S1, ds2|s3)−

∫
B

∫
S1
f(s1)Φ(ds1|s2, s3)Ψ(S1, ds2|s3)

∣∣∣∣ = 0

(A.1)
because the family of Borel measurable functions {s2 7→

∫
S1 f(s1)Φ(ds1|s2, s

(n)
3 ) : n = 1, 2, . . .} is

uniformly bounded on S2 by the same constant as f on S1. This is equivalent to
∫
S1 f(s1)Φ(ds1| · , s(n)

3 )→∫
S1 f(s1)Φ(ds1| · , s3) in L1(S2,B(S2), ν) with ν( · ) := Ψ(S1, · |s3). Therefore,∫

S1
f(s1)Φ(ds1| · , s(nk)

3 )→
∫
S1
f(s1)Φ(ds1| · , s3) ν-almost surely, as k →∞,

for some sequence {nk}k=1,2,... (nk ↑ ∞ as k →∞). We apply the diagonalization procedure to extract a
subsequence {ñk}k=1,2,... (ñk ↑ ∞ as k →∞) such that∫

S1
g(s1)Φ(ds1| · , s(ñk)

3 )→
∫
S1
g(s1)Φ(ds1| · , s3) ν-almost surely, as k →∞,
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for each g ∈ G, where G is a countable uniformly bounded family of continuous functions on S2 that
determines weak convergence of probability measures on S2 according to Parthasarathy [32, Theorem 6.6,
p. 47]. Thus, Φ( · , s(ñk)

3 ) converges weakly to Φ( · , s3) ν-almost surely, and Assumption 4.10 holds.
(b) ⇒ (c). Let f be a bounded continuous function on P(S1). Since Ψ(S1, · | · ) is continuous in total

variation, to prove that (4.1) holds for the stochastic kernel φ, it is sufficient to show that

lim
n→∞

sup
B∈B(S2)

∣∣∣∣∫
B
f(Φ(s2, s

(n)
3 ))Ψ(S1, ds2|s3)−

∫
B
f(Φ(s2, s3))Ψ(S1, ds2|s3)

∣∣∣∣ = 0. (A.2)

For the probability space Σ := (S2,B(S2), µ) with µ( · ) := Ψ(S1, · |s3), the P(S1)-valued random variables
Φ( · , s(n)

3 )
µ→Φ( · , s3) as n → ∞, according to Assumption 4.10 and (4.14), where ν(n) µ→ ν denotes the

convergence in probability µ, that is, ρP(S1)(ν
(n), ν)→ 0 in probability µ. Then f(Φ( · , s(n)

3 ))
µ→ f(Φ( · , s3))

because f is continuous on P(S1). In turn, since f is bounded on P(S1), this implies that f(Φ( · , s(n)
3 )) →

f(Φ( · , s3)) in L1(Σ), from which the desired relation (A.2) follows.
(c)⇒ (a). Let a sequence {s(n)

3 }n=1,2,... ⊂ S3 converge to s3 ∈ S3 as n→∞. Since the stochastic ker-
nel φ on P(S1)× S2 given S3 is semi-uniform Feller, for every nonnegative bounded lower semi-continuous
function f on P(S1), according to Theorem 4.6(a,e),

lim inf
n→∞

inf
B∈B(S2)

(∫
P(S1)

f(µ)φ(dµ,B|s(n)
3 )−

∫
P(S1)

f(µ)φ(dµ,B|s3)

)
= 0. (A.3)

For each B ∈ B(S2), formula (4.12) establishes the equality of two measures on (P(S1),B(P(S1))).
Therefore, for every Borel measurable nonnegative functions f on P(S1),∫

B
f(Φ(s2, s̃3))Ψ(S1, ds2|s̃3) =

∫
P(S1)

f(µ)φ(dµ,B|s̃3), s̃3 ∈ S3. (A.4)

Let us fix an arbitrary open set O ⊂ S1 and consider nonnegative bounded lower semi-continuous
function f(µ) := µ(O), µ ∈ P(S1). Then

lim inf
n→∞

inf
B∈B(S2)

(∫
B

Φ(O|s2, s
(n)
3 )Ψ(S1, ds2|s(n)

3 )−
∫
B

Φ(O|s2, s3)Ψ(S1, ds2|s3)

)
= lim inf

n→∞
inf

B∈B(S2)

(∫
B
f(Φ(s2, s

(n)
3 ))Ψ(S1, ds2|s(n)

3 )−
∫
B
f(Φ(s2, s3))Ψ(S1, ds2|s3)

)
= 0,

where the first equality follows from the definition of f , and the second equality follows from (A.4) and
from (A.3). Thus, the stochastic kernel Ψ on S1 × S2 given S3 is WTV-continuous, and therefore it is
semi-uniform Feller.

Remark A.1. Theorem 4.11 can be proved in multiple ways using equivalent characterizations of semi-
uniform Feller kernels. The original proofs [22, Proof of Theorem 5.10, pp. 16–20] were based on some of
these characterizations, while the current proofs of (a)⇒ (b)⇒ (c) were suggested by a referee.

The following Lemma A.2 is useful for establishing continuity properties of the value functions vn,α(x)
and vα(x) in x ∈ X stated in Theorem 5.3.

Lemma A.2. Let the MDP (X,A, q, c) satisfy the assumptions of Theorem 5.3, and let α ≥ 0. Then the
function u∗(x) := inf

a∈A
ηαu (x, a), x ∈ X, where the function ηαu is defined in (5.2), belongs to LW (X),

and there exists a stationary policy f : X→A such that u∗(x) := ηαu (x, f(x)), x ∈ X. Moreover, the sets
A∗(x) = {a ∈ A : u∗(x) = ηαu (x, a)} , x ∈ X, which are nonempty, satisfy the following properties: (a)
the graph Gr(A∗) = {(x, a) : x ∈ X, a ∈ A∗(x)} is a Borel subset of X × A; (b) if u∗(x) = +∞, then
A∗(x) = A, and, if u∗(x) < +∞, then A∗(x) is compact.
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Proof. The function (x, a) 7→ ηαu (x, a) is nonnegative because c, u, and α are nonnegative. Therefore,
since u is a Borel measurable function, and q is a stochastic kernel, [5, Proposition 7.29] implies that
the function (x, a) 7→

∫
X u(x̃)q(dx̃|x, a) is Borel measurable on X × A, which implies that the function

(x, a) 7→ ηαu (x, a) is Borel measurable on X× A because c is Borel measurable.
Let us prove that the function (w, a) 7→

∫
X u(x̃)q(dx̃|w, y, a) is l.s.c. on XW × A for each y ∈ XY .

On the contrary, if this function is not l.s.c., then there exist a sequence {(w(n), a(n))}n=1,2,... ⊂ XW × A
converging to some (w, a) ∈ XW × A and a constant λ such that for each n = 1, 2, . . .∫

XW×XY
u(w̃, ỹ)q(dw̃ × dỹ|w(n), y, a(n)) ≤ λ <

∫
X
u(x̃)q(dx̃|w, y, a). (A.5)

According to Theorem 4.11(a,b) applied to Ψ := q, S1 := XW , S2 := XY , S3 := XW × {y} × A, there
exists a stochastic kernel Φ on XW given XY ×XW × {y} ×A such that (4.11) and Assumption 4.10 hold.
In particular, (A.5) implies that for each n = 1, 2, . . .∫

XY

[∫
XW

u(w̃, ỹ)Φ(dw̃|ỹ, w(n), y, a(n))

]
q(XW , dỹ|w(n), y, a(n)) ≤ λ,

and there exist a subsequence {(w(nk), a(nk))}k=1,2,... ⊂ {(w(n), a(n))}n=1,2,... and a Borel set Y ∈ B(XY )
such that q(XW × Y |w, y, a) = 1 and Φ(ỹ, w(n), y, a(n)) converges weakly to Φ(ỹ, w, y, a) in P(XW ) as
k →∞, for all ỹ ∈ Y. Therefore, since the function w̃ 7→ u(w̃, ỹ) is nonnegative and l.s.c. for each ỹ ∈ Y,
Fatou’s lemma for weakly converging probabilities [17, Theorem 1.1] implies that for each ỹ ∈ Y∫

XW
u(w̃, ỹ)Φ(dw̃|ỹ, w, y, a) ≤ lim inf

k→∞

∫
XW

u(w̃, ỹ)Φ(dw̃|ỹ, w(nk), y, a(nk)). (A.6)

For a fixed N = 1, 2, . . . , we set ϕNk (ỹ) := min{
∫
XW u(w̃, ỹ)Φ(dw̃|ỹ, w(nk), y, a(nk)), N} and ϕN (ỹ) :=

min{
∫
XW u(w̃, ỹ)Φ(dw̃|ỹ, w, y, a), N},where ỹ ∈ Y, k = 1, 2, . . . .Note thatϕN (ỹ) ≤ lim inf k→∞ ϕ

N
k (ỹ),

ỹ ∈ Y, in view of (A.6). Therefore, uniform Fatou’s lemma [20, Corollary 2.3] implies that for each
N = 1, 2, . . .∫

XY
ϕN (ỹ)q(XW , dỹ|w, y, a) ≤ lim inf

k→∞

∫
XY

ϕNk (ỹ)q(XW , dỹ|w(nk), y, a(nk))

≤ lim inf
k→∞

∫
XY

[∫
XW

u(w̃, ỹ)Φ(dw̃|ỹ, w(nk), y, a(nk))

]
q(XW , dỹ|w(nk), y, a(nk)) ≤ λ.

Thus, the monotone convergence theorem implies∫
X
u(x̃)q(dx̃|w, y, a) = lim

N→∞

∫
XY

ϕN (ỹ)q(XW , dỹ|w, y, a) ≤ λ.

This is a contradiction with (A.5). Therefore, the function (w, a) 7→
∫
X u(x̃)q(dx̃|w, y, a) is l.s.c. on XW×A

for each y ∈ XY .
For an arbitrary fixed y ∈ XY the function (w, a) 7→ ηαu (w, y, a) is K-inf-compact on XW × A

as a sum of a K-inf-compact function (w, a) 7→ c(w, y, a) and a nonnegative l.s.c. function (w, a) 7→
α
∫
X u(x̃)q(dx̃|w, y, a) on XW × A. Moreover, Berge’s theorem for noncompact image sets [16, Theo-

rem 1.2] implies that for each (y, a) ∈ XY × A the function w 7→ u∗(w, y) := inf
a∈A

ηαu (w, y; a) is l.s.c. on

XW . The Borel measurability of the function u∗ on X and the existence of a stationary policy f : X→A such
that u∗(x) := ηαu (x, f(x)), x ∈ X, follow from [13, Theorem 2.2 and Corollary 2.3(i)] because the function
(x, a) 7→ ηαu (x, a) is Borel measurable on X×A and it is inf-compact in a on A. Property (a) for nonempty
sets {A∗(x)}x∈X follows from Borel measurability of (x, a) 7→ ηαu (x, a) on X × A and x 7→ u∗(x) on X.
Property (b) for {A∗(x)}x∈X follows from inf-compactness of a 7→ ηαu (x, a) on A for each x ∈ X.
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Proof of Theorem 5.3. According to [5, Proposition 8.2], the functions vt,α(x), t = 0, 1, . . . , recursively
satisfy the optimality equations with v0,α(x) = 0 and vt+1,α(x) = inf

a∈A(x)
ηαvt,α(x, a), for all x ∈ X. So,

Lemma A.2 sequentially applied to the functions v0,α(x), v1,α(x), . . . , implies statement (i) for them.
According to [5, Proposition 9.17], vt,α(x) ↑ vα(x) as t → +∞ for each x ∈ X. Therefore, vα ∈
LW (X). Thus, statement (i) is proved. In addition, [5, Lemma 8.7] implies that a Markov policy de-
fined at the first T steps by the mappings φα0 , ...φ

α
T−1, that satisfy for all t = 1, . . . , T the equations

vt,α(x) = ηαvt−1,α
(x, φαT−t(x)), for each x ∈ X, is optimal for the horizon T. According to [5, Proposi-

tions 9.8 and 9.12], vα satisfies the discounted cost optimality equation vα(x) = inf
a∈A(x)

ηαvα(x, a) for each

x ∈ X; and a stationary policy φα is discount-optimal if and only if vα(x) = ηαvα(x, φα(x)) for each x ∈ X.
Statements (ii-v) follow from these facts and Lemma A.2.

Proof of Theorem 6.1. The equivalence of statements (a) and (b) follows directly from Theorem 4.8 applied
to S1 := W, S2 := Y, S3 := W × A, and Ψ := P ( · | · , y, · ). According to (3.1), Theorem 4.9 applied
to S1 := W, S2 := Y, S3 = W, S4 := A, and Ξ := P ( · | · , y, · ) implies that the stochastic kernel
P ( · | · , y, · ) on W×Y given W×A is semi-uniform Feller if and only if the stochastic kernel R( · | · , y, · )
on W×Y given P(W)×A is semi-uniform Feller. Therefore, statement (b) holds if and only if the stochastic
kernel R( · | · , y, · ) on W × Y given P(W) × A is semi-uniform Feller, that is, statement (c) holds. Thus,
the equivalence of statements (c)–(e) follows directly from Theorem 4.11 applied to S1 := W, S2 := Y,
S3 := P(W)× A, Ψ := R( · | · , y, · ), Φ := H( · | · , y, · , · ), and φ := q( · | · , y, · ).

Moreover, let the nonnegative function c be MK(W × A,Y)-inf-compact, and let for each y ∈ Y
one of the equivalent conditions (a)–(d) hold. Then, in view of (3.3) and Theorem 6.3, c̄ is nonnegative
and MK(P(W) × A,Y)-inf-compact. Thus, the assumptions and conclusions of Theorem 5.3 hold for the
MDPCI (P(W)× Y,A, q, c̄).

Proof of Theorem 6.2. The equivalence of statements (a) and (b) follows directly from Theorem 4.8 applied
to S1 := W, S2 := Y, S3 := W×Y×A, and Ψ := P. According to (3.1), Theorem 4.9 applied to S1 := W,
S2 := Y, S3 = W, S4 := Y×A, and Ξ := P implies that the stochastic kernel P on W×Y given W×Y×A
is semi-uniform Feller if and only if the stochastic kernel R on W×Y given P(W)×Y×A is semi-uniform
Feller. Therefore, statement (b) holds if and only if the stochastic kernelR on W×Y given P(W)×Y×A is
semi-uniform Feller, that is, statement (c) holds. Thus, the equivalence of statements (c)–(e) follows directly
from Theorem 4.11 applied to S1 := W, S2 := Y, S3 := P(W)× Y× A, Ψ := R, Φ := H, and φ := q.

Moreover, let the nonnegative function c be K-inf-compact, and let one of the equivalent conditions
(a)–(d) hold. Then, in view of (3.3) and [19, Theorem 3.3] on preservation of K-inf-compactness, c̄ is
nonnegative and K-inf-compact. Thus, according to Remark 5.4, the assumptions and conclusions of The-
orem 5.3 hold for the MDPCI (P(W) × Y,A, q, c̄), and the functions vt,α, t = 0, 1, . . . , and vα are lower
semi-continuous.

Proof of Corollary 6.10. Let us prove that semi-uniform Feller continuity of the stochastic kernel P on
W × Y given W × A implies conditions (a) and (b). Indeed, Definition 4.1 implies weak continuity of the
stochastic kernel P1 on W given W×A and continuity in the total variation of the stochastic kernelQ1 on Y
given W×A because P1( · | · ) = P ( · ,Y| · ) is weakly continuous andQ1( · | · ) = P (W, · | · ) is continuous
in total variation. Vice versa, let us prove that conditions (a) and (b) imply semi-uniform Feller continuity
of the stochastic kernel P on W×Y given W×A. Indeed, P on W×Y given W×A is WTV-continuous
since

lim inf
(w′a′)→(w,a)

inf
C∈B(Y)

(Q1(C|w′, a′)P1(O|w′, a′)−Q1(C|w, a)P1(O|w, a))

≥ lim inf
(w′a′)→(w,a)

(P1(O|w′, a′)− P1(O|w, a))− − lim
(w′a′)→(w,a)

sup
C∈B(Y)

|Q1(C|w′, a′)−Q1(C|w, a)| = 0
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for each O ∈ τ(W), where a− := min{a, 0} for each a ∈ R, the equality follows from weak continuity of
P1 on W given W×A and continuity in the total variation ofQ1 on Y given A×W. Therefore, according to
Theorem 4.6(a,b), conditions (a) and (b) from Corollary 6.10 taken together are equivalent to semi-uniform
Feller continuity of the stochastic kernel P on W×Y given W×A. Thus, Theorem 6.1 implies all statements
of Corollary 6.10.

Proof of Corollary 6.11. For each B ∈ B(W) consider the family of functions

G(B) :=
{

(w, a) 7→
∫
B
Q2(C|a,w′)P2(dw′|w, a) : C ∈ B(Y)

}
.

Let condition (a) hold. Fix an arbitrary open set O ∈ τ(W). Feinberg et al. [21, Theorem 1], ap-
plied to the lower semi-equicontinuous and uniformly bounded family of functions {(w′, a) 7→ I{w′ ∈
O}Q2(C|a,w′) : C ∈ B(Y)} and weakly continuous stochastic kernel P2(dw′|w, a) on W given W× A,
implies that the family of functions G(O) is lower semi-equicontinuous at all the points (w, a) ∈ W × A,
that is, the stochastic kernel P on W×Y given W×Y×A defined in (6.4) is WTV-continuous. Therefore,
Theorem 4.6(a,b) applied to the stochastic kernel P on W × Y given W × Y × A implies that this kernel
is semi-uniform Feller. Thus, assumption (a) of Theorem 6.1 holds, and this conclusion and Theorem 6.1
imply all statements of Corollary 6.11 under condition (a).

Now let condition (b) hold. Let us prove that for each B ∈ B(W) the family of functions G(B) is
equicontinuous at all (w, a) ∈W×A,which implies condition (a) of Theorem 6.1. Indeed, for n = 1, 2, . . . ,

sup
C∈B(Y)

∣∣∣ ∫
B
Q2(C|a(n), w′)P2(dw′|w(n), a(n))−

∫
B
Q2(C|a,w′)P2(dw′|w, a)

∣∣∣ ≤ I(n)
1 + I

(n)
2 , (A.7)

where (w(n), a(n))→ (w, a) as n→∞,

I
(n)
1 := sup

C∈B(Y)

∣∣∣∣∫
B
Q2(C|a(n), w′)P2(dw′|w(n), a(n))−

∫
B
Q2(C|a(n), w′)P2(dw′|w, a)

∣∣∣∣ ,
I

(n)
2 := sup

C∈B(Y)

∫
B
|Q2(C|a(n), w′)−Q2(C|a,w′)|P2(dw′|w, a).

Let C(n) ∈ B(Y) be chosen to satisfy the inequality

I
(n)
2 ≤

∫
B
|Q2(C(n)|a(n), w′)−Q2(C(n)|a,w′)|P2(dw′|w, a) +

1

n
, n = 1, 2, . . . . (A.8)

Note that I(n)
1 → 0 as n → ∞ because the family of measurable functions {w′ 7→ Q2(C| a(n), w′) : n =

1, 2, . . .} is uniformly bounded by 1, and the stochastic kernel P2 on W given W× A is continuous in total
variation. Moreover, the convergence I(n)

2 → 0 as n → ∞ follows from (A.8) and Lebesgue’s dominated
convergence theorem because the family of functions {w′ 7→ |Q2(C(n)|a(n), w′)−Q2(C(n)|a,w′)| : n =
1, 2, . . .} is uniformly bounded by 1 and pointwise convergent to 0, according to (2.1). Therefore, the
family of functions G(B) is equicontinuous on W×A. Thus, assumption (a) of Theorem 6.1 holds, and this
conclusion and Theorem 6.1 imply all statements of Corollary 6.11 under condition (b).
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