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Abstract

Starting with a first order in derivatives self-dual model which describes a massive

spin-4 mode in D = 2 + 1 dimensions, we have obtained a sequence of three more

new descriptions, which then give us an interconnected self-dual chain SD(i) with i =

1, 2, 3, 4 indicating the order in derivatives. We have demonstrated that a powerful

notation in terms of a self-adjoint operator Ω in the frame-like scenario truly simplifies the

investigation for new models and at the third order level can be converted to a geometrical

description in terms of the much more usual totally symmetric double traceless field.
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1 Introduction

The present paper is devoted to the study of massive higher spin gauge theories in D = 2+ 1

dimensions. We carry out our discussion analyzing the very first genuine example of a higher

spin field, the spin-4. Such choice is based mainly on two motivations: First, the study of

planar gauge field theories and their equivalences is partially well understood for lower spins,

and can give us several hints on further higher spin steps. Second, once the spin-4 field is

equipped with all the higher spin Fierz-Pauli constraints (i.e: Field totally symmetric, double

traceless and transverse) one could figure out if the results can be generalized for systems truly

arbitrary with spin s.

The reason for working with the specific planar world is related to the very interesting

existence of the so called self-dual models in such dimension. This kind of model describe

parity singlets of spins +s or −s. The important thing about such models is that they are not

unique, in the sense that there exists different descriptions, interconnected and equivalents

via dualization procedures. Under a very interesting perspective, the self-dual models can be

viewd as building blocks to the construction of partity preserving massive gauge theories in

D dimensions, this can be done through the so called soldering procedure, see [1, 2], through

our previous experience with the lower spin cases one would obtain the Fronsdal action by

soldering lower derivatives self-dual models 1. At the same time, but in opposite direction, the

self-dual descriptions can be obtained from massless theories in D = 3 + 1 via Kaluza-Klein

dimensional reduction [4, 5].

Despite the dualities involving the self-dual descriptions perhaps the most known example is

the equivalence between the Maxwell-Chern-Simons model and the Self-dual model describing

massive spin-1 modes in D = 2 + 1 [6, 7]. Generalizations of these discussion for other spins

s = 3/2, 2, 5/2, 3 and 4 are also interesting suggestions [8, 9, 10, 11, 12, 13], and the research

for their equivalences reveals remarkable features, specially regarding the spin-2 context [14],

because of its obvious relation with the study of massive gravity in D = 2 + 1 [15]. Besides,

another interesting topic is related to the constructive and natural emergence of “geometrical

objects” from theories originally formulated in the frame-like. This is precisely one of the

issues addressed here.

In this work we have used the first order self-dual model, suggested in [13], as the starting

point for obtaining new gauge invariant higher order in derivatives descriptions which can

be completely expressed in terms of geometrical objects like the Einstein tensor. The mod-

els obtained are complete in the sense that they contemplate the auxiliary fields needed to

eliminate spurious degrees of freedom. The tool we have used for obtaining such descriptions

consists of the quite well tested procedure called the Noether Gauge Embedment NGE, see

[16] for an introduction. Through this procedure we have performed three rounds of gauge

impositions in order to achieve a fourth order gauge invariant self-dual model. An important

byproduct of the study of these free theories under such techical procedure is the trade be-

1Here a very interesting issue can be maybe answered: Starting with the Fronsdal action resulting from the

soldering process can we apply the Noether procedure in order to fulfill the table-1 of [3] on the hieararchy of

higher derivative actions of higher spin fields? We think this is possible as we have demonstrated for example

in [14] for the lower spin case.
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tween the auxiliary fields in higher derivatives and gauge symmetries along the proccess. Once

one can demonstrate that the higher derivatives does not implies ghosts one can use the gauge

symmetries as a guiding principle for the introduction of interactions, see [17] for example,

where the authors study the construction of cubic vertex for massless and massive higher spin

particles in D dimensions in an electromagnetic background, there, in order to provide gauge

invariance they have used Stuecklberg fields. All along the work we have noticed that there

are several similarities with the previous lower spin cases [19] (and references therein), this, in

some sense, reinforces the robustness of the dualization method 2.

The basic spin-4 field in the first order self-dual model is a generalized dreibein field ωµ(αβγ)

with four index, where those which are between parenthesis are symmetric and traceless. Here

we have demonstrated that the suggestion of a second order, self-adjoint operator, we have

called Ωµ(αβγ) is very useful for obtaining new models. We have also demonstrated that,

by getting to third stage of gauge imposition, the frame like description can be completely

converted in terms of a geometrical one, where the fields are then totally symmetric and

the useful second order operator is automatically substituted by the relevant second order

self-adjoint Einstein tensor.

Despite the results we have obtained here, an issue still persists: Looking back to the lower

spin cases we have observed for spins 1, 3/2 and 2 that the number of self-dual descriptions

corresponds to 2s. Apparently when we address the transition spin-3 case and subsequently

the spin-4 case, this rule seems to be broken. Besides the four descriptions we connect and

provide in this paper, it has been suggested recently the highest order models in [20, 21],

those descriptions are also geometrical and written in terms of totally symmetric non double

traceless fields, surprisingly they do not depend on auxiliary fields and despite this are free of

ghosts. So far, we can not see how and if, it would be possible the connection between the

models obtained here and such highest order descriptions.

2 From SD(1) to SD(2)

In this section we are going to recover the first order self-dual model for massive spin-4 particles

in D = 2 + 1 dimensions which was suggested in [13]. In such model the massive mode is

described in terms of a partially symmetric tensor given by ωµ(βγλ) where the set of indices

between parenthesis are symmetric and traceless in such a way that ηβγωµ(βγλ) = ηβλωµ(βγλ) =

ηγλωµ(βγλ) = 0. On the other hand we are going to have non null trace if, for example,

ηµγωµ(βγλ) = ωβλ, in other words if the trace is taken with one indice inside and another

outside of the parenthesis. The first order self-dual spin-4 action can be written as:

SSD(1) =

∫

d3x

[

m

2
ǫρµνωρ(αβγ)∂µω

(αβγ)
ν −

m2

2
ǫρµνǫαβ γηραωµ(βςλ)ω

(γςλ)
ν +m2ωαβU

αβ

]

+ S1
aux

(1)

2Notice however that, in [14] we show that in some conditions, which are not witnessed here, we obtain

examples when the NGE fails to produce a physical gauge theory. Indeed the appearance of ghosts via NGE

has been noticed before in [18].
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in the action (1), the spin-4 field is coupled to the auxiliary rank-2 field Uαβ and at the end

of the expression we have an auxiliary action 3 , which can be written explicitly as:

S1
aux =

∫

d3x

[

−

3m

4
ǫρµνUρα∂µU

να
−

3m2

2
ǫρµνǫαβγηραUµβUνγ −

8m

9
ǫµνβHµ∂νHβ

−

9m

20
ǫµνβVµ∂νVβ +

32m2

9
HµH

µ
−

9m2

5
VµV

µ +m2HµVµ −
9m

5
U∂µV

µ +
22m2

5
U2

]

,

(3)

While the field Uαβ guarantees that no spin-2 ghosts are propagating, through the analysis

of the equations of motion of the pure spin-4 part of the action (1) the authors in [13] conclude

that we still have the propagation of spin-1 and 0 variables, that is precisely why we have to

consider the auxiliary vectors Hµ and Vµ and an additional auxiliary scalar U which is indeed

the trace of Uαβ 4. Only the determination of each numerical coefficient by itself in the auxiliary

action deserves a whole paper. Our point here is: Once we have the first order action, with

all the correct coefficients, can we obtain higher order lagrangians, gauge invariant, through

a rigorous and systematic way without making a complete and complicated analysis of the

equations of motion. Indeed this is possible through different dual procedures. Here, we

explore such idea making use of the Noether Gauge Embedment procedure.

It is very useful to define a collaborative notation to help us in the presence of too many

indices and fields. We suggest for example that ǫµνα∂α ≡ Eµν , while Eµνω
(βγλ)

ν ≡ ξµ(βγλ). In

order to check gauge invariance of the action we think that it is better to rewrite the mass

term by opening the product of Levi-Civita symbols. With all the rearrange the action from

now on, we be written as:

SSD(1) =

∫

d3x

[

−

m

2
ωµ(αβγ)ξ

µ(αβγ) +
m2

2
(ω(µβ)ω

(µβ)
−ωµ(αβγ)ω

α(µβγ))+m2ωαβU
αβ +L

1
aux

]

.

(4)

The Chern-Simons like term in the action (4) (the first one) is invariant under the gauge

transformation:

δξωµ(αβγ) = ∂µξ̃(αβγ), (5)

where the gauge parameter is totally symmetric and traceless. However, it is straightforward

to check that such transformation does not correspond to a symmetry of the action due to

the presence of the mass and linking terms, i.e.: ∼ m2ω2 + ωU . We would like to become the

3Notice that the scalar field U can be eliminated with the help of its equations of motion, in such a way

that U = 9∂µv
µ/44m, then:

−

9m

5
U∂µv

µ +
22m2

5
U2 = −

81

440
(∂µv

µ)2 (2)

4The the rank-2 field Uαβ , has the following algebraically irreducible representation: Uαβ = Ũ(αβ)+ηαβU/3+

ǫαβγH
γ . Then the vector Hµ actually comes from the antisymmetric part of this field. We will also see that,

when deriving the equations of motion to the spin-4 field, we end up only with the symmetric traceless part

of Uαβ.
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whole action invariant under the gauge transformation (5). In order to do that we proceed by

defining what we will call the Euler tensor, which can be calculated through:

Kµ(βγλ)
≡

δSSD(1)

δωµ(βγλ)

(6)

= −mξµ(βγλ) +
m2

3
(ηµβω(γλ) + ηµγω(βλ) + ηµλω(γβ)

− ωβ(µγλ)
− ωγ(µβλ)

− ωλ(µγβ))

+
m2

3
fµ(βγλ)(Ũ), (7)

where a partially symmetric-traceless combination of the auxiliary fields Ũ (βγ) is codified in

the function fµ(βγλ)(Ũ) which is explicitly given by:

fµ(βγλ)(Ũ) = ηµβŨ (γλ) + ηµγŨ (βλ) + ηµλŨ (γβ)
−

2

5
(ηβγŨ (µλ) + ηβλŨ (µγ) + ηγλŨ (µβ)). (8)

As part of the systematic procedure we define a first iterated action by considering an

auxiliary field aµ(βγλ)
5, which give us:

S ′ = SAD(1) −

∫

d3x
[

aρ(αβγ)K
ρ(αβγ)

]

, (9)

It is worth mentioning that the auxiliary field has the same symmetry characteristics of the

original field ωµ(βγλ), besides, there is a prerequisite with respect to its gauge transformation

which is set to satisfy:

δξωµ(αβγ) = δξaµ(αβγ). (10)

Then, taking the gauge transformation of the first iterated action S ′ we are going to have:

δξS
′ =

∫

d3x
[

− aρ(αβγ)δξK
ρ(αβγ)

]

=

∫

d3x δξ

[

m2

2

(

aβγaβγ − aβ(ραγ)aρ(αβγ)
)

]

. (11)

With these result in hand one can conclude that the action defined by:

S ′′ = S ′
−

m2

2

∫

d3x
(

aβγaβγ − aβ(ραγ)aρ(αβγ)
)

, (12)

is, by construction, automatically gauge invariant under the transformation (5), in other words

δξS
′′ = 0. The next step is to eliminate the auxiliary field by making use of its equations of

motion, which give us:

Kρ(αβγ)
−

m2

3
(ηραaβγ + ηρβaγα + ηργaαβ − aα(ρβγ) − aβ(ργα) − aγ(ραβ)) = 0. (13)

The inversion of the field aγ(ραβ) in terms of Kρ(αβγ) is quite tedious, and after some manipu-

lations one can obtain:

5The terminology here may be cause of confusion, but differently of the auxiliary fields of the action, aµ(βγλ)

have nothing to do with the elimination of spurious degrees of freedom, indeed it is added only as part of the

procedure of the embedding of the equations of motion and consequently of the gauge symmetry.
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aρ(αβγ) =
2

m2
Ωρ(αβγ)(K) ; aβγ =

2

m2
Ωβγ(K), (14)

where we have defined the very useful symbol or notation Ωρ(αβγ), which is applicable to

different objects and has also similarly been defined in the lower spin cases, for example for

s = 3/2 [22], s = 2 [23] and s = 3 [19]. Here, for the Euler tensor it is explicitly given by:

Ωρ(αβγ)(K) ≡ Kρ(αβγ) −
1

2

(

Kα(ρβγ) +Kβ(ραγ) +Kγ(ρβα)

)

−

1

8

(

ηραKβγ + ηρβKαγ + ηργKβα

)

+
1

4

(

ηβαKργ + ηγβKαρ + ηαγKβρ

)

. (15)

The reader can easily check its trace obtaining Ωβγ(K) = 3Kβγ/8. After some manipula-

tion, the substitution of the auxiliary field aρ(αβγ) as given by (14) in (12) one can demonstrate

that:

S ′′ = S ′
−

1

m2

∫

d3x Kµ(βγλ)Ω
µ(βγλ)(K). (16)

At this point we can finally perform the last complicated substitution, that of the Euler

tensor given by (7) in (16). Such manipulation, taking in account the useful “self-adjoint”

property of the Ω-symbol, i.e.: AΩ(B) = BΩ(A), for arbitrary A and B will leave us with the

so called second order self-dual model which we explicitly write below:

SSD(2) =

∫

d3x

[

− ξρ(αβγ)Ω
ρ(αβγ)(ξ)−

m

2
ωρ(αβγ)ξ

ρ(αβγ)

+
3m

4
ξβγŨ

(βγ)
−

11m2

40
Ũ(αβ)Ũ

(αβ) + L
1
aux

]

. (17)

On the result obtained in (17) some comments are in order. First thing we observe is the

emergence of a second order in derivative term, the first one in the expression, such term

consists of the sum of three pieces which thanks to the Ω-symbol can be arranged in a single

one. Next we give the explicit expression for it. One can also notice that the Chern-Simons

like term persists in the second order model, but now with a change in its sign. We have

also a new linking-term between the spin-4 field and the auxiliary field Ũ(αβ) which now is of

first order in derivative, see ∼ ξΩ(f). Lastly we mention that the auxiliary lagrangian has

received through the process of embedment a new contribution, the term ∼ Ũ2, and from now

on we will incorporate it by redefining the auxiliary lagrangian by L
1
aux → L

2
aux . Through

our previous experience dealing with a similar procedure in the much simpler case of spin-3,

such automatic corrections of the auxiliary lagrangian are indeed required to the maintenance

of the correct spectrum of the theory, here, we are not going to focusing in demonstrating

that. One can observe that all the terms which were breaking gauge invariance of the action

(4) have completely gotten rid off in (17), as a consequence, one can check that the remaining

terms are in fact gauge invariant. As far as we know the second order action obtained here is

an original result.
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3 From SD(2) to SD(3)

It turns out that, similarly to what happens in the lower spin cases, the second order term

can be written in terms of a totally symmetric field φµαβγ as we will see in the last section.

This is an indication that this term is invariant under the following gauge transformation:

δΛ̃ων(αβγ) = ǫ ρ
να Λ̃(ρβγ) + ǫ ρ

νβ Λ̃(ργα) + ǫ ρ
νγ Λ̃(ραβ), (18)

which indeed can be verified. We have also to say that the gauge parameter is symmetric

and traceless. However such transformation does not correspond to a symmetry of the action

(17) because of the remaining terms. Then we can perform another round of the Noether

procedure. which demands the calculation of the new Euler tensor:

Mµ(βγλ) = Eµ
ν

[

−2Ων(βγλ)(ξ) +mων(βγλ)
−

2m

3
Ων(βγλ)(f)

]

≡ Eµ
νM̃

ν(βγλ). (19)

As we have done before, we introduce an auxiliary field bν(βγλ) coupled to the Euler tensor

defining the first iterated action:

S ′ = SSD(2) −

∫

d3x [bν(αβγ)Mν(αβγ)], (20)

where bν(αβγ) has been choosen in order to have the same gauge transformation of the spin-4

field, δΛω
ν(βγλ) = δΛb

ν(βγλ). Then, taking the gauge transformation of S ′ we have:

δΛS
′ =

∫

d3x δΛ

[

−

m

2
bν(αβγ)E λ

ν bλ(αβγ)

]

. (21)

Again, by construction, we have an invariant action given by:

S ′′ = SSD(2) −

∫

d3x
[

bν(αβγ)E λ
ν M̃λ(αβγ) −

m

2
bν(αβγ)E λ

ν bλ(αβγ)

]

. (22)

In order to eliminate the auxiliary field bλ(αβγ) in terms of the Euler tensor we, differently

of the previous case, notice that the last expression can be rewritten as:

S ′′ = SSD(2) −

∫

d3x

[

−

m

2

(

bν(αβγ) −
M̃ν(αβγ)

m

)

E λ
ν

(

bλ(αβγ) −
M̃λ(αβγ)

m

)

+
1

2m
M̃λ(αβγ)E

λ
ν M̃ν(αβγ)

]

, (23)

which by shifting b→ b+ M̃/m completely decouple the auxiliary field from the Euler tensor.

The remaining decoupled term on b is a Chern-Simons like term which as we know has no

particle content by itself and can be neglected from now on, leaving us with the following

action:

S ′′ = SSD(2) −
1

2m

∫

d3x
[

M̃λ(αβγ)E
λ

ν M̃ν(αβγ)
]

. (24)

After the substitution of M̃ defined in (19), making use of the properties of Ω, and some

integration by parts we have finally a third order in derivatives self-dual action for the spin-4

mode:

7



SSD(3) =

∫

d3x

[

ξρ(αβγ)Ω
ρ(αβγ)(ξ)−

2

m
Ωρ(αβγ)(ξ)E

ρ
νΩ

ν(αβγ)(ξ)

−

1

2
fρ(αβγ)(Ũ)E

ρ
νΩ

ν(αβγ)(ξ) +
21m

80
Ũ(αβ)E

α
γŨ

(γα) + L
2
aux

]

(25)

In this third order self-dual model, which is an original result of this work, we can observe

that we still have the presence of the second-order term, but with a change of sign, which is

typical of this kind of self-dual models connected by the dualization procedure. What is new

now is the presence of a third order term, which is also typical, with structure given by ∼ ΩEΩ;

as we will see in the next section when we make the migration to a totally symmetric notation

such term becomes a symmetrized curl of the totally symmetric field. It is also interesting to

notice that the auxiliary lagrangian L 2
aux has gained a new contribution ∼ ŨEŨ , and from

now on we redefine it, i.e.: L 2
aux → L 3

aux. Last, we also mention that in order to become

gauge invariant, the linking term has also changed.

4 “Geometry” from the dreinbein dependent models

It is well known, see for example appendix A of [24], that the number of independent compo-

nents of a totally symmetric field of rank-s in D dimensions is given by the combination:

C(D + s− 1, s) =
(D + s− 1)!

s!(D − 1)!
(26)

where the tracelessness condition can be achieved by removing C(D+s−3, s−2) from it, while

double tracelessness condition by removing C(D+s−5, s−4). Then one can easily verify that

the number of independent components of ωµ(αβγ) is given by N = 3 [C(5, 3)− C(3, 1)] = 21.

Such 21 components may be organized in terms of a totally symmetric double traceless field,

through:

ωµ(βγλ) = φµβγλ +
1

3
ηµ(βφγλ) −

1

3
η(βγφλ)µ + c ǫµρ(β χ̃

ρ

γλ), (27)

where we have chosen the numerical coefficients in order to respect the tracelessness condition

of the ωµ(βγλ) field in the left hand side of the equation. Besides, such coefficients are adjusted

in order to reproduce the second order term used for example in [24]. Notice that the last

coefficient c is kept arbitrary, once our terms are invariant under (18). The parenthesis in

this expression means unnormalized symetrization of the indices. On the right hand side of

(27) one can check that the number of independent components are the sum of those given by

the symmetric double traceless field φµβγλ, given by C(6, 4)− C(2, 0) = 14, plus those of the

symmetric traceless field χ̃ργλ given by C(5, 3)− C(3, 1) = 7 6.

We would like to construct geometrical objects, like the Einstein tensor, for the double

traceless totally symmetric field. In order to do that one can mimic the nice procedure the

6Maybe one could try another decomposition to the dreibein field in such a way that the totally symmetric

field would be non double traceless, this would be an attempt of reproducing the structures found for example

in [20].
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authors have done in [25] for the rank three field. Here, we aim to find an action invariant

under the gauge transformation:

δξ̃φµβγλ = ∂(µξ̃βγλ) ; ξ̃β = 0. (28)

We look then for a “Christoffel” symbol transforming as a gradient of the gauge parameter

as closely as possible. After that, we could aim to find gauge invariants. This is respected by

the first order in derivative symbol:

Γ
(1)α
µνλβ ≡ ∂(µφ

α
νλβ) − ∂αφµνλβ ; δξΓ

(1)α
µνλβ = 2 ∂(µ∂νξ

α
λβ), (29)

and as in the rank three case, one can also define a second order symbol, which, under arbitrary

reparametrization transforms as a multigradient of the gauge parameter, i.e.:

Γ
(2)αγ
µνλβ ≡ ∂(µΓ

(1)α
νλβ)γ − 2 ∂γΓ

(1)α
µνλβ ; δξΓ

(2)αγ
µνλβ = 6 ∂(µ∂ν∂λξ

γα

β) . (30)

Once the second order in derivative symbol is αγ-traceless we can define the “Ricci” symbol

from it:

Rµνλβ ≡

1

2
Γ
(2)
µνλβ = �φµνλβ − ∂(µ∂

αφανλβ) + ∂(µ∂νφλβ) ; δξ̃Rµνλβ = 0. (31)

As in the lower spin cases it is also convenient to define along with the “Ricci” tensor its trace,

which is given by:

Rλβ = 2

[

�φλβ − ∂µ∂αφµαλβ +
1

2
∂(β∂

αφαλ)

]

(32)

With the Ricci and its trace we can finally define the second order in derivative Einstein tensor:

Gµνλβ ≡ Rµνλβ −
1

2
η(µνRλβ). (33)

We have to remember that all such deductions and definitions are merely illustrative, once

as we know, they are precisely those obtained by Fronsdal. Actually, the so called Einstein

tensor here, is the rank four Fronsdal tensor for many authors. The fact is that once we have

in hand all this definitions we can construct a second order term for the symmetric double

traceless field, which is given by:

1

2

∫

d3x φµνλβ G
µνλβ(φ) =

1

2

∫

d3x
[

φµνλβ�φ
µνλβ + 4(∂µφµνλβ)

2 + 12φµν∂λ∂βφ
µνλβ

− 6φµν�φ
µν

− 6φµν∂
µ∂αφ

να] . (34)

Which is precisely the second order term (see expression 4.2) of [24]. It is also useful to

notice that the operator Gµνλβ(φ) is self-adjoint in the sense that
∫

ψG(φ) =
∫

φG(ψ) . Such

property will be determinant for obtaining equations of motion as well as for the interpolation

with other self-dual models.

Once we are dealing with parity violating actions, it is useful to define from expression 5.1

of [25] a symmetrized curl:

Cµνγλ(φ) ≡ −E β

(µ φβνγλ), (35)
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which by its turn allow us to construct a third order gauge invariant term given by:

∫

d3x Cµνγλ(φ)G
µνγλ(φ) =

∫

d3x
[

−4φβνγλ�E
β
µφ

µνγλ + 12φβµγλE
β
ν∂

µ∂αφ
ανγλ

− 24φβµνλE
β
γ∂

µ∂νφγλ + 12φβλ�E
β
γφ

γλ + 6φβλE
β
γ∂

λ∂αφ
αγ
]

.

(36)

Similar to before, the operator Cµνγλ(φ) is also self-adjoint and we are going to need that

property in the next section, i.e.:
∫

ψC(φ) =
∫

φC(ψ). Besides, one can also check that the

operators C and G commute each other
∫

φC[G(φ)] =
∫

φG[C(φ)].

As a final comment of this section we are going to verify that our ω-dependent terms

obtained at (25) can be translated to the symmetric notation via the decomposition (27).

Below, we give the explicit expressions for our terms as well as their geometrical forms:

∫

d3x ξρ(αβγ)Ω
ρ(αβγ)(ξ) = −

7

8
ωµ(βγλ)�ω

µ(βγλ) +
7

8
ωµ(βγλ)∂

µ∂νω
ν(βγλ) +

3

2
ωµβ�ω

µβ

+
15

8
ωµ(βγλ)∂

β∂νωµ(νγλ) − 3ωµ(βγλ)∂
µ∂βωγλ +

3

8
ωµ(βγλ)�ω

β(µγλ)

−

3

4
ωµ(βγλ)∂

µ∂νω
β(νγλ)

=
1

2

∫

d3x φµνλβ G
µνλβ(φ), (37)

for the second order term,

−

2

m

∫

d3x Ωρ(αβγ)(ξ)E
ρ
νΩ

ν(αβγ)(ξ) = ωλ(αβγ)�E
λ
ρω

ρ(αβγ)
−

3

2
ωλ(αβγ)�E

α
ρω

ρ(λβγ)

+
3

2
ωλ(αβγ)E

α
ρ∂

λ∂νω
ρ(νβγ)

−

3

32
ωβγ�Eρσω

σ(ρβγ)

+
3

32
ωλ(αβγ)∂

λ∂αEρσω
σ(ρβγ) +

3

4
ωλ(µβγ)�E

µ
νω

λ(νβγ)

−

3

4
ωλ(µβγ)E

µ
ν∂

λ∂ρω
ρ(νβγ)

−

3

2
ωλ(µβγ)�E

β
ρ∂

µ∂αω
ρ(λαγ)

+
3

2
ωβγ�E

β
ρ∂α∂νω

ρ(ναγ) +
33

32
ωγ(λµβ)∂

λ∂µEρσω
σ(ργβ)

−

33

32
ωλβ∂

λ∂νEρσω
σ(ρνβ)

=
1

8m

∫

d3x Cµνγλ(φ)G
µνγλ(φ) (38)

for the third order term, and finally, the linking term, given by:

−

1

2

∫

d3x fρ(αβγ)(Ũ)E
ρ
νΩ

ν(αβγ)(ξ) = −

9

8

∫

d3x Ũ(βγ)�ω
βγ +

9

8
Ũβγ∂α∂λω

λ(αβγ)

+
9

8
Ũ(βγ)∂ν∂αω

β(ναγ)
−

9

8
Ũ(βγ)∂

β∂αω
αγ

=
3

40
η(µνŨλβ)G

µνλβ(φ). (39)

Once all the ω-dependent terms can be translated, to the geometrical description, which

means that they can be written in terms of G one can wonder about the possibility of finding
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a new self-dual model of fourth order in derivative as it was the case in the spin-3 context.

Finally, we have to point out a difference of notation here. Under the approach we have used

here, based on [25], the Einstein tensor is second order in derivatives, however in [26] the

authors have done a systematically study on the conformal geometry of higher spin bosonic

gauge fields in three spacetime dimensions where the Einstein tensor is proportional to the

Riemann tensor which for a rank-s field is of order s in derivatives.

5 From SD(3) to SD(4)

In order to get a new self-dual model of fourth order in derivatives from the third order one,

we have to investigate the symmetries encoded in the third order term which are absent in

the second and even in the linking term. One could use the spin-3 case as an example: When

passing from the SD(3) to SD(4) in that case, see [19] we suggested a generalization of the

traceless diffeomorphism where the gauge parameter became trace full. The analogue of this,

here, would be δξφµνλβ = ∂(µξνλβ), but the circumstances are a bit more subtle than this.

Once the field must be double traceless according to our prescription given by (27) we have

to suggest a transformation slightly different and unusual:

δξφµνλβ = ∂(µξνλβ) −
4

15
η(µνηλβ)∂

αξα. (40)

Using the explicit expression for the third order term given by (36), we can check that such

transformation (40) will become a symmetry of this term, if and only if we have the trace of

the gauge parameter as a longitudinal vector, in other words:

ξµ = ∂µψ ; ψ = ψ(x). (41)

Using the explicit expression for the second order term, it also easy to check that (40) with

the additional condition (41) does not configure a symmetry of that term, which then allow

us to try another round of Noether gauge embedment. Perhaps would be interesting to notice

that the double Weyl part of (40), the term given by ∼ ηη∂ · ξ is by itself a symmetry even of

the third as the second order term. We start by writing the SD(3) model in its geometrical

form:

SSD(3) =

∫

d3x

[

1

2
φµνλβ G

µνλβ(φ) +
1

8m
Cµνγλ(φ)G

µνγλ(φ) + UµνλβG
µνλβ(φ) + L

3
aux

]

(42)

where we have defined Uµνλβ ≡ 3η(µνŨ(λβ))/40. Then, taking advantage that all the terms in

the action are proportional to the operator G, it can be factored and the equations of motion

with respect to the totally symmetric field φµνλβ are quite simple:

Nµνλβ = G
µνλβ

[

φ+
1

4m
C(φ) + U

]

≡ Nµνλβ(b). (43)

Where we have defined b ≡ φ + 1
4m

C(φ) + U . Next, we proceed by suggesting an auxiliary

field aµνλβ transforming in the same way the original field does, i.e.: δξaµνλβ = δξφµνλβ which

allow us to conclude that:

S1 = SSD(3) −

∫

d3x aµνλβN
µνλβ , δξS1 = −

1

2

∫

d3x δ(aµνλβG
µνλβ(a)). (44)

11



By construction, we get then a ξ-gauge invariant action given by:

S2 = SSD(3) −

∫

d3x

[

aµνλβG
µνλβ(b)−

1

2
aµνλβG

µνλβ(a)

]

. (45)

The auxiliary field can be easily eliminated, if we notice that the term under the integral

(45) can be written as:

S2 = SSD(3) +
1

2

∫

d3x
[

(a− b)µνλβG
µνλβ(a− b)

]

−

1

2

∫

d3x
[

bµνλβG
µνλβ(b)

]

. (46)

Considering that the second term in (46) is free of particle content and completely decoupled

from the rest of the action by performing a→ a+ b, we end up with:

S2 = SSD(3) −
1

2

∫

d3x
[

bµνλβG
µνλβ(b)

]

. (47)

Substituting back b, defined in (43), we finally get the fourth order, gauge invariant action:

SSD(4) =

∫

d3x

[

−

1

8m
Cµνγλ(φ)G

µνγλ(φ)−
1

32m2
Cµνγλ(φ)G

µνγλ(C)−
1

4m
Cµνγλ(φ)G

µνγλ(U )

−

1

2
UµνγλG

µνγλ(U ) + L
3
aux

]

. (48)

The self-dual massive fourth order model we have obtained here is complete, in the sense

that, it contains all the auxiliary fields needed to describe the unique spin-4 mode. As an

automatic consequence of the procedure we have used, the auxiliary action has been corrected

once more, with:

−

1

2
UµνγλG

µνγλ(U ) =
81

320

(

2Ũ(µν)�Ũ
(µν)

− Ũ(µν)∂
µ∂αŨ

(αν)
)

. (49)

By incorporating this correction to the previous auxiliary action we have L 3
aux → L 4

aux.

Besides, the new gauge invariant third order linking term ∼ U G(C) is explicitly given by:

−

1

4m
Cµνγλ(φ)G

µνγλ(U ) = −

9

16m

[

2φµν�E
µ
αŨ

(αν)
− 2φµνγλE

µ
β∂

ν∂γŨ (βλ) + φµνE
µ
α∂

ν∂βŨ
(αβ)
]

.

(50)

Finally, we have generated the fourth order term:

−

1

32m2
Cµνγλ(φ)G

µνγλ(C) = −

1

2
φµνγλ�

2φµνγλ + 2φµνγλ�∂
µ∂αφ

ανγλ

−

9

4
φµνγλ�∂µ∂

νφγλ
−

15

8
φµνγλ∂

µ∂ν∂α∂βφ
αβγλ

+
9

8
φµν�

2φµν
−

15

16
φµν∂

µ∂ν∂α∂βφ
αβ

+
15

4
φµνγλ∂

µ∂ν∂γ∂αφ
αλ

−

27

16
φµν�∂

µ∂αφ
αν , (51)

which is invariant under all the previous gauge transformations. It is also interesting to notice

that all the results we have obtained here are quite similar to those we have found in the

spin-3 case. As in that case, we have also observed that, as far as we can investigate there

is no gauge transformation to implement into the fourth order model. In other words, the

fourth order term does not have an invariance under a new symmetry which would be broken

12



by the third order term. One can also notice that the fourth order term we have obtained here

does not correspond to the fourth order term suggested in the very interesting thesis [27, 21]

where the author has defined a generalized fourth order Einstein tensor, in such a way that

L (4) = φµνλβE
α

µ E γ
ν E σ

λ E ρ
β φαγσρ. In fact, that term is invariant under unconstrained gauge

transformation δφµνλβ = ∂(µξνλβ) which is broken by (51). It has been quite challenging to

overcome this barrier, in order access the highest order models, for example those obtained in

[20], perhaps this will remain impossible once even those highest order models are unconnected

ab initio.

6 Conclusion

In this work we have used a spin-4 self-dual model in D = 2+ 1 dimensions suggested for the

first time in [13], as a starting point to obtain a sequence of three more self-dual descriptions

which are of second, third and fourth order in derivatives. All of them are achieved through a

dualization procedure we have similarly used in lower spin cases for both, bosons and fermions,

the procedure is called the Noether Gauge Embedment.

It turns out that the descriptions of first, second and third order in derivatives are written

in terms of dreibein fields ωµ(αβγ) and the complicated terms of higher derivatives as well as

the procedure by itself, becomes manageable thanks to a powerful notation which introduces

the self-adjoint operator Ωµ(αβγ) (15). Similar structure has already been used in the lower

spin bosonic cases, spin-2 and 3. Once the spin-4 field is the very first representative of

genuine higher spin descriptions (due to the double traceless condition) we believe that further

generalizations of such operator for higher spins, i.e.: Ωµ1(µ2...µs) can be suggested having this

case as an example.

We have demonstrated that, once we get to the third order self-dual description, it is

possible a conversion of the frame-like notation in terms of a “geometrical” one, which is

entirely described in terms of a totally symmetric field φµνλβ . Such geometrical description

is reached out by extending the steps of [25] for the case of rank four fields, which allow

us to obtain the so called Einstein tensor Gµνλβ (33) and symmetrized-curl Cµνλβ (35), both

symmetric. Such operators enjoy of useful algebraically properties such as self-adjointness and

commutation and this is precisely why we have been able to obtain a fourth order self-dual

model. The last self-dual model is invariant under the complete set of gauge transformations

implemented along the procedure, i.e. (5), (18) and (40). As far as we can investigate, there

is no new gauge transformation to be imposed, and again, as we have verified in the much

simpler case of spin-3, we are stuck in the fourth stage.

Some directions must be better investigated after this work. We have observed that, once

we have the auxiliary fields established in the very first self-dual model SD(1), the subsequent

models receive step by step new corrections and new gauge invariant linking terms substituting

the non gauge invariant ones. A next and important step would be the consideration of a source

term coupled to the spin-4 field in SD(1). From this source-field coupling we can obtain the

corresponding dual maps among the descriptions, connecting for example the equations of

motion in the classical level. Besides and much more interesting and important, with such

13



dual maps, one can also verify the quantum equivalence between the suggested models via a

unique master action interpolating among the descriptions by comparing correlation function

calculated for N points. In this sense the Ω notation is a technical prerequisite in order to

construct such master action, besides, one has to demonstrate the absence of particle content

of the so called mixing terms and this seems to be tricky for example for the third order term.

Finally, we hope to be able to develop the Ω notation in order to find out higher derivative

versions from the arbitrary massive spin-s bosonic and fermionic actions introduced by [28].

Another interesting point would be the study of the dual map connecting the models given

by the expressions (4.5b and 7.1) by [29] which are higher spin analogues of the self-dual

descriptions we have studied through the systematic Noether Gauge Embedment approach.
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