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Abstract

In this paper we are interested in the problem of state observation of state-affine nonlinear systems. Our main contribution
is to propose a globally exponentially convergent observer that requires only the necessary assumption of observability of the
system. To the best of the authors’ knowledge this is the first time such a result is reported in the literature.
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1 Introduction

In this paper we are interested in the problem of state ob-
servation of single-input single-output, state-affine non-
linear systems with dynamics of the form

ẋ(t) = A(u, y, t)x(t) + b(u, y, t), x(t0) = x0 ∈ R
n

y(t) = C⊤(u, t)x(t), (1)

with x(t) ∈ R
n, y(t) ∈ R, u(t) ∈ R, which has been

extensively studied in the control literature [3,11].
The standard solution to this problem is given by the
Kalman-Bucy filter for linear time-varying (LTV) sys-
tems. Indeed, we can write the system (1) as an LTV
system

ẋ = A(t)x + b(t), x(t0) = x0

y = C⊤(t)x (2)
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where, with some abuse of notation, we defined

A(t) := A(u(t), y(t), t),

b(t) := b(u(t), y(t), t),

C(t) := C(u(t), t).

It is well-known that, under some reasonable bounded-
ness assumptions, the Kalman-Bucy filter generates an
exponentially convergent estimate of the system state
provided the pair (C⊤(t), A(t)) is uniformly completely
observable (UCO). That is, if the observability Gram-
mian of the system

W (t0, t1) :=

∫ t1

t0

Φ⊤(τ, t0)C(τ)C
⊤(τ)Φ(τ, t0)dτ (3)

where t1 > t0 ≥ 0 and Φ(t, t0) is the state transition
matrix of the homogeneous system ẋ(t) = A(t)x(t), sat-
isfies

W (t0, t0 + T ) ≥ δIn, ∀t0 ≥ 0, (4)

for some positive constants T and δ. See [3, Theorem 3.3]
for a precise formulation of this result, given in terms of
the (backward) observability Grammian of the system.
It is widely recognized that the UCO assumption is a
very restrictive condition in many practical applications,
hence the interest in designing state observers for the
system (2) under weaker assumptions—see [2,4,9,10] for
some recent contributions.
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The main contribution of the paper is the proof that
the necessary assumption of observability of the system
(C⊤(t), A(t)) is sufficient to design a globally exponen-
tially convergent observer. That is, we replace the condi-
tion (4) of positivity of the observability Grammian over
all intervals of length T by the strictly weaker assump-
tion of being full rank over a finite interval from the ini-
tial time t0. We recall that observability of the system is
equivalent to the fact that the set of unobservable initial
conditions

{x0 ∈ R
n | C⊤(t)Φ(t, t0)x0 = 0, ∀t ≥ t0}

is the empty set.

The developments of the paper rely on two recent con-
tributions of the authors.

• The use of the generalized parameter estimation-
based observer (GPEBO) design technique reported
in [7,9]. The main novelty of GPEBO is that the state
observation problem is reformulated as a problem of
parameter estimation of a linear regressor equation
(LRE).

• The combination of GPEBO with the dynamic
regressor extension and mixing (DREM) param-
eter estimator [1,8] reported in [13]—called the
[GPEBO+DREM] (G+D) estimator. In this paper
it is shown that the parameters of a LRE can be—
globally and exponentially—estimated under the
weak assumption of interval excitation of the regres-
sor, which is shown to be equivalent to identifiability
of the LRE.

The interested readers are referred to the aforemen-
tioned papers for further details on GPEBO, DREM
and the G+D design. Since the construction of the ob-
server involves the application of GPEBO twice and
then the use of DREM, we refer in the sequel to it as
2G+D observer.

The remainder of the paper is organized as follows. In
Section 2 we present our main result, whose proof is split
into three sections. In Section 3 we derive the LRE. Sec-
tion 4 recalls the main result of [13], that is, the G+D
parameter estimator for identifiable LRE. In Section 5
we establish the key result that observability implies
identifiability of the LRE. We wrap up the paper with
concluding remarks and some possible extensions of the
main result.

Notation. In is the n× n identity matrix. For x ∈ R
n,

we denote the Euclidean norm |x|2 := x⊤x. All map-
pings are assumed smooth and all dynamical systems
are assumed to be forward complete. Given a number
n ∈ Z>0 we define the set n̄ := {1, 2, . . . , n}.

2 Main Result

Our main result is given in the proposition below. For
ease of presentation, and without loss of generality, in
the sequel we will assume that the starting time for the
system (2) is t0 = 0. Following standard practice in ob-
server theory [3] we assume that the state trajectories
of (2) are bounded. Moreover, we assume that the state
transition matrix of the homogeneous part of the system
(2) verifies

‖Φ(t, τ)‖ ≤ c1, ∀t ≥ τ. (5)

It is well-known [11, Theorem 6.4] that this assumption
is equivalent to uniform stability of the homogeneous
part of the system (2). This assumption may be relaxed
incorporating an output injection to achieve the latter
objective—but we skip this step for brevity.

Proposition 1 Consider the system (2) with A(t), b(t)
and C(t) continuous and known. Assume the pair
(C⊤(t), A(t)) is observable. That is, there exists a T > 0
such that the observability Grammian (3) verifies

rank {W (0, T )} = n.

There exists a 2G+D observer whose dynamics is of the
form

χ̇ = F (χ, y, t)

x̂ = H(χ, y, t)
(6)

with χ ∈ R
nχ , such that for all initial conditions x(0) ∈

R
n, χ(0) ∈ R

nχ we have

lim
t→∞

|x̂(t)− x(t)| = 0, (exp), (7)

with all state trajectories bounded.

The proof of this result proceeds along the following
steps, which are elaborated in the subsequent sections.

S1 Application of the GPEBO observer design tech-
nique of [9] to derive a LRE for the system (2).
Namely, we construct the bounded signals ξ(t) ∈
R

n and ΦA(t) ∈ R
n×n such that the state of the

system (2) verifies the relation

x = ξ +ΦAθ, (8)

where the unknown constant vector θ ∈ R
n satisfies

the LRE

Y = ψ⊤θ, (9)

and we defined themeasurable signals Y(t) ∈ R and
ψ(t) ∈ R

n

Y := y − C⊤(t)ξ (10a)

ψ := Φ⊤
AC(t). (10b)
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S2 Application of the G+D parameter estimator of [13]

that generates functions θ̂(t) ∈ R
n such that

lim
t→∞

|θ̂(t)− θ| = 0, (exp), (11)

with all estimator state trajectories bounded un-
der the assumption of identifiablity of the LRE
(9), that is, the existence of a set of time instants
{ti}i∈n̄, ti ∈ R>0 such that

rank
{[

ψ(t1)|ψ(t2)| · · · |ψ(tn)
]}

= n.

S3 Proof that observability of the system (2) is equiv-
alent to identifiabilty of the LRE (9),

S4 Definition of the observed state as

x̂ = ξ +ΦAθ̂, (12)

that, in view of (8) and (11)—and the boundedness
of ξ and ΦA—clearly verifies (7).

3 Derivation of a Linear Regression Equation
for the System (2)

In this section, following the GPEBO approach, we re-
formulate the problem of state observation as one of pa-
rameter estimation. Towards this end, we derive a LRE
that is going to be used for the parameter estimation.
Although the result is a particular case of [9, Proposition
1], which is applicable to a broader class of nonlinear
systems and includes a coordinate change, for the sake
of completeness we give the result in detail and include
its proof.

Lemma 1 Consider the system (2) and the GPEBO
dynamics

ξ̇ = A(t)ξ + b(t) (13a)

Φ̇A = A(t)ΦA, ΦA(0) = In. (13b)

The state of the system (2) verifies the relation (8) where
the constant vector θ ∈ R

n satisfies the LRE (9) with
the measurable signals (10).

Proof. The error signal e := x − ξ satisfies the LTV
dynamics ė = A(t)e. Now, from (13b) we see that ΦA is
the fundamental matrix 1 of the e system, which satisfies
[11, Property 4.4]

ΦA(t) = Φ(t, 0). (14)

Consequently, there exists a constant vector θ ∈ R
n such

that
e = ΦAθ,

1 Also called principal matrix.

namely θ = e(0). We now have the following chain of
implications

e = ΦAθ ⇔ x = ξ +ΦAθ (⇐ e = x− ξ)

⇒ C⊤(t)x = C⊤(t)ξ + C⊤(t)ΦAθ (⇐ C⊤(t)×)

⇔ y − C⊤(t)ξ = ψ⊤θ (⇐ (2), (10b))

⇔ Y = ψ⊤θ (⇐ (10a)).

The claim of boundedness of all signal follows from the
assumption (5) and boundedness of x.

4 Estimation of the Parameters of (9) via G+D

In this section we recall the main result of [13], namely
that identifiability of the LRE (9) is sufficient to design a
globally exponentially convergent parameter estimator
for the LRE (9). Instrumental to establish this result is
the proof, given in [13], that identifiability of the LRE
(9) is equivalent to the regressor ψ been interval exciting
(IE) [6]. That is,

∫ td

0

ψ(s)ψ⊤(s)ds ≥ CdIn, (15)

for some Cd > 0 and td > 0

Lemma 2 Consider the LRE (9). Define the G+D in-
terlaced estimator

˙̂
θg = γgψ(Y − ψ⊤θ̂g), θ̂g(0) = θg0 ∈ R

n (16a)

Ω̇ = A(t)Ω, Ω(0) = In (16b)

˙̂
θ = γ∆(Y −∆θ̂), θ̂(0) = θ0 ∈ R

n, (16c)

where γg > 0, γ > 0, and we defined

A(t) := −γgψψ
⊤ (17a)

D := In − Ω (17b)

∆ := det{D} (17c)

Y := adj{D}[θ̂g − Ωθg0] (17d)

with adj{·} denoting the adjugate matrix. If the LRE (9)
is identifiable, equivalently if ψ is IE, then (11) holds.

Proof. Replacing (9) in (16a) yields the error dynamics
for the gradient estimator

˙̃
θg = A(t)θ̃g ,

where θ̃g := θ̂g − θ, and we used the definition (17a).
Consequently, from the properties of the fundamental
matrix Ω defined in (16b), we get

θ̃g = Ωθ̃g(0),

3



which may be rewritten as

D(t)θ = θ̂g − Ωθg0 , (18)

where we used (17b). Multiplying (18) by adj{D(t)} we
get the following new LRE

Y = ∆θ, (19)

where we used (17c) and (17d). We underscore the fact
that the regressor ∆ is a scalar.

Replacing (19) in (16c) yields the error dynamics for

each of the elements θ̃i, i ∈ n̄, of the vector θ̃ of the least
mean squares estimator (16c)

˙̃
θi = −γ∆2θ̃i.

Now, in [13, Lemma 3] it is shown that the IE assumption
implies that

|∆(t)| = | det{In − Ω}| > 0,

for all t ≥ td, hence ∆ is PE. The proof of exponen-
tial convergence follows from the well-known result [12,
Theorem 2.5.1].

5 Observability of (2) is Equivalent to Identifia-
bility of (9)

In this section we prove that observability of the LTV
system (2) is equivalent to identifiability of the LRE (9).
The interest of this condition is, obviously, that this com-
pletes the proof of our main claim, namely, that observ-
ability of the system is sufficient to design a globally ex-
ponentially convergent state observer.

Proposition 2 The following statements are equiva-
lent.

(i). The LTV system (2) is observable.
(ii). The LRE (9) is identifiable.

Proof. (i) ⇒ (ii). We prove (i) ⇒ (ii) by contradiction.
We suppose that there exists a positive integer n0 < n
such that

rank
[

ψ(t1)| . . . |ψ(tn)
]

≤ n0 (20)

holds for all time sequence {ti}i∈n̄, with {t̄i}i∈n̄ being
such that

rank
[

ψ(t̄1)| . . . |ψ(t̄n)
]

= n0 .

Let v ∈ R
n be such that |v| = 1 and

ψ⊤(t̄i)v = 0, ∀i ∈ n̄.

Next, we show that ψ⊤(t)v = 0 for all t ∈ R≥0 by con-
tradiction. We suppose that there exists a t♯ ∈ R≥0 such
that

ψ⊤(t♯)v 6= 0 .

This indicates that

n0 = rank
[

ψ(t̄1)| . . . |ψ(t̄n)
]

< rank
[

ψ(t̄1)| . . . |ψ(t̄n)|ψ(t
♯)
]

which contradicts with the assumption that (20) holds
for all time sequence {ti}i∈n̄. Hence, we have ψ

⊤(t)v = 0
for all t ∈ R≥0.

With this in mind, we note that ż(t) = A(t)z(t) by defin-
ing z(t) := ΦA(t)v, which yields

v⊤W (0, tf )v =
∫ tf
0

|C⊤(t)ΦA(t)v|
2dt

=
∫ tf
0

|ψ⊤(t)v|2dt = 0

for all tf ≥ 0. This clearly contradicts with the observ-
ability of the LTV system (2). Therefore, there exists a
time sequence {ti}i∈n̄ such that rank

[

ψ(t1)| . . . |ψ(tn)
]

=
n, proving the statement (ii).

(ii) ⇒ (i). To prove the statement (i) we let T > tn, and
proceed to show that

W (0, T ) :=

∫ T

0

Φ⊤
A(t)C(t)C

⊤(t)ΦA(t)dt > 0 .

As the matrix
[

ψ(t1)| . . . |ψ(tn)
]

is full rank with iden-
tifiability, it can be seen that for any v ∈ R

n satisfying
|v| = 1, there always exists a ī ∈ n̄ such that

|ψ(t̄i)v| > 0 .

By continuity, it follows that for any v ∈ R
n satisfying

|v| = 1, there exists an ǫ > 0 such that

∑

i∈n̄

|ψ(t̂i)v| ≥ |ψ(t̂̄i)v| > 0 , ∀t̂i ∈ [ti, ti + ǫ]

yielding

v⊤W (0, T )v =
∫ T

0
|C⊤(t)ΦA(t)v|

2dt

≥
∫ tī+ǫ

tī
|ψ⊤(t)v|2dt > 0 .

Therefore, by recalling that such v is arbitrary, it can
be concluded that W (0, T ) is nonsingular for T > tn,
proving the observability of the LTV system (2).
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6 Concluding Remarks and Some Extensions

We have presented in the paper a 2G+D state observer
for the system (2) that ensures global, exponential con-
vergence for observable systems. The observer is of the
form (6) of order nχ = (3+2n)n and the dynamic equa-
tions given in (13) and (16) with the auxiliary signals
(10) and (17). The observed state is computed via (12).
To the best of the authors’ knowledge this is the first
time a result of this level of generality—concerning state-
affine nonlinear systems—is reported in the literature.

The proposed 2G+D observer enjoys some robustness
properties, inherited from the robustness of the G+D
parameter estimator of Section 4. Indeed, it is shown
in [13, Proposition 4] that the G+D estimator defines a
bounded-input-bounded-state operator with respect to
additive disturbances to the LRE (9). That is, it is shown
that if

Y = ψ⊤θ + d

with bounded d, the state of the system remains
bounded. In the present observer context such distur-
bances may come from noise in the state or output
equations, or from uncertainty in the system matrices
of (2).

There are several immediate extensions of our result,
in particular the case of uncertainty in the system ma-
trices, treated in [4]. Also, the 2G+D observer can be
easily adapted when delay measurements are present as
done in [5]. In those papers the parameter estimation
is carried out with a standard DREM estimator, which
imposes some stronger excitation constraints. Using the
G+D estimator of [13] these requirements will clearly be
relaxed.
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