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Covariance Steering for Nonlinear Control-affine Systems
Hongzhe Yu, Zhenyang Chen, and Yongxin Chen

Abstract—We consider the covariance steering problem for nonlin-

ear control-affine systems. Our objective is to find an optimal control

strategy to steer the state of a system from an initial distribution to a

target one whose mean and covariance are given. Due to the nonlinearity,
the existing techniques for linear covariance steering problems are not

directly applicable. By leveraging the Girsanov theorem, we formulate

the problem into an optimization over the space of path distributions.

We then adopt a generalized proximal gradient algorithm to solve this
optimization, where each update requires solving a linear covariance

steering problem. Our algorithm is guaranteed to converge to a local

solution with a sublinear rate. In addition, each iteration of the algorithm
can be achieved in closed form, and thus the computational complexity of

it is insensitive to the resolution of time-discretization. In the examples,

our method achieves 1000 times speedup over an existing algorithm.

I. INTRODUCTION

Uncertainties are ubiquitous in engineering systems and an

important task of feedback control is to mitigate their effects on the

behavior of the systems. Very often the goal of control is to ensure

the system does not deviate too much from the desired behavior

in the presence of uncertainties. A standard approach for this task

is optimal control where a cost function is used to promote the

desired system behavior. The cost function is a design parameter

and is often chosen by trial and error until the desired performance

is achieved. The covariance control/assignment paradigm was born

[1], [2], [3], [4] in the quest of providing a more direct approach to

mitigate uncertainties. In its original formulation, the goal was to find

a control strategy for a linear time-invariant stochastic system so that

its state has a specified covariance in steady state. The covariance

control theory was recently extended to the finite horizon control

setting [5], [6], [7], [8], [9], [10], [11] where one seeks to steer the

state covariance of a linear dynamic system from an initial value to a

target value. The covariance control framework has been successfully

used in a range of applications [12], [13], [14], [15].

Most existing works on covariance control/steering are for linear

dynamics. The methods developed in them are not directly applicable

to nonlinear problems. The purpose of this work is to develop a

covariance steering method for nonlinear stochastic dynamics. Even

though for nonlinear stochastic systems the state distribution is no

longer Gaussian, the covariance still provides valuable information

about the uncertainties of the state variables. Indeed, under the mild

assumption that the state follows a sub-Gaussian distribution, the

covariance can properly capture the high probability region and thus

the uncertainty of the state [16]. The same idea of approximating the

full distribution with first order and second order moments has been

widely used in filtering algorithms such as the extended Kalman filter

algorithm.

In this paper, we develop an efficient algorithm of nonlinear

covariance steering for control-affine nonlinear systems. Our method

is based on the celebrated Girsanov theorem [17] for stochastic

processes, which connects the control energy with the Kullback-

Leibler divergence [18] between the measures induced by the con-

This work was supported by the NSF under grant 1942523 and 2008513.
H. Yu, Z. Chen, and Y. Chen are with the Georgia Insti-

tute of Technology, Atlanta, GA, USA. {hyu419, zchen927,

yongchen}@gatech.edu

trolled and uncontrolled dynamics. As a result, the covariance steering

problem we consider can be reformulated as an infinite dimensional

optimization problem over the space of measures of trajectories.

The optimization can then be solved using the generalized proxi-

mal gradient descent algorithm [19], [20], a popular algorithm for

nonlinear programming. For our covariance steering problem, the

proximal gradient descent algorithm converts the problem into a

sequence of linear covariance steering problems, and each of these

linear covariance steering problems has a closed-form solution. Our

algorithm is guaranteed to converge to a local optimal solution with

sublinear rate O(1/k). Moreover, each iteration of the algorithm is

associated with a feasible solution to the problem. Thus, whenever

we stop the algorithm, we can still obtain a controller that steer the

state to desired target mean and covariance.

The nonlinear covariance control problem was recently consid-

ered in [21], [22], [23], [24]. In [21] the cost function is assumed

to be quadratic and an iterative linearization method resembling

sequential quadratic programing is used. The algorithm is not guar-

anteed to converge. In [22] a method based on dynamic differential

programming was developed. To enforce the covariance constraint

on the terminal state, the algorithm first relaxes the constraint using

Lagrangian method and then uses primal-dual updates to search

for the solution. In [23], nonlinear covariance steering for discrete

dynamics was studied. The method is similar to that in [21] but an

unscented transform is used to better capture the nonlinearity of the

dynamics. The method was extended to the data-driven setting in [24]

where a Gaussian process is used to identify the unknown dynamics.

Compared with all these works, our method is tailored for continuous-

time control-affine dynamics with general state cost. A distinguishing

feature of the proposed algorithm is that its complexity is insensitive

to the resolution of time-discretization in implementation while all

the other algorithms do not scale well with this resolution. In our

experiments, our method shows at least 1000 times acceleration

compared with [21].

The rest of the paper is structured as follows. In Section II we

provide the background on covariance control for linear dynamics

and the proximal gradient algorithm. The problem is formulated in

Section III and the algorithm is developed in Section IV. An extension

of the method to a slightly more general systems is presented in

Section V, which is followed by a numerical example in Section VI

and a concluding remark in Section VII.

II. BACKGROUND

In this section, we provide a brief introduction to the covariance

steering problem for continuous-time linear systems [5], [6], [7]. We

also present key steps of the proximal gradient algorithm, on which

our method is based.

A. Covariance steering for linear systems

In the covariance steering/control problems for linear systems

[5], the objective is to drive the state of a linear stochastic system

from an initial Gaussian random vector X0 ∼ N (m0,Σ0) at t = 0

http://arxiv.org/abs/2108.09530v2
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to a terminal one X1 ∼ N (m1,Σ1) at t = 1 over a time interval

[0, 1] 1. In [5], [7], the linear dynamics under consideration is

dXt = A(t)Xtdt+B(t)(utdt+
√
ǫdWt),

which describes the behavior of linear stochastic control system

whose actuation is corrupted by white noise. Here the pair A(t) ∈
R

n×n, B(t) ∈ R
n×p is assumed to be controllable, Wt ∈ R

p

represents a standard Wiener process [25], and ǫ > 0 parameterizes

the intensity of the disturbance. When one seeks also to minimize

a certain cost function, the covariance steering problem for linear

dynamics in the continuous-time setting is [7]

min
u

E

{∫ 1

0

[
1

2
‖ut‖2 + 1

2
XT

t Q(t)Xt]dt

}

(1a)

dXt = A(t)Xtdt+B(t)(utdt+
√
ǫdWt) (1b)

X0 ∼ N (m0,Σ0), X1 ∼ N (m1,Σ1), (1c)

where the optimization is over all the state feedback control strategies.

The state cost matrix Q(t) ∈ R
n×n is often assumed to be positive

semi-definite. This problem differs from standard linear quadratic

optimal control problems in that there is no explicit terminal cost.

Instead, a constraint X1 ∼ N (m1,Σ1) on the statistics of the

terminal state is imposed.

Thanks to linearity, the mean and covariance of the system can

be controlled separately [5], [6], [7]. The control of the mean is the

solution to the standard optimal control problem

min
v

∫ 1

0

[
1

2
‖vt‖2 + 1

2
xT
t Q(t)xt]dt (2a)

ẋt = A(t)xt +B(t)vt (2b)

x0 = m0, x1 = m1. (2c)

The control for the covariance is of the form −B(t)TΠ(t)Xt with

Π(·),H(·) satisfying a coupled Riccati equations [9]

−Π̇(t) = ATΠ(t)+Π(t)A(t)−Π(t)B(t)B(t)TΠ(t)+Q(t)(3a)

−Ḣ(t) = ATH(t)+H(t)A(t)+H(t)B(t)B(t)TH(t)−Q(t)(3b)

ǫΣ−1
0 = Π(0) + H(0) (3c)

ǫΣ−1
1 = Π(1) + H(1). (3d)

It turns out (3) has a unique solution as in the following result [7].

Theorem 1. The coupled system of Riccati equations (3a-3d) has

a unique solution, which is determined by the initial value problem

consisting of (3a-3b) and

Π(0) =
ǫΣ−1

0

2
−Φ−1

12 Φ11 (4a)

−Σ
−1/2
0

(

ǫ2I

4
+ Σ

1/2
0 Φ−1

12 Σ1(Φ
T
12)

−1Σ
1/2
0

)1/2

Σ
−1/2
0 ,

H(0) = ǫΣ−1
0 − Π(0), (4b)

where

Φ(t, s) =

[

Φ11(t, s) Φ12(t, s)
Φ21(t, s) Φ22(t, s)

]

is the state transition matrix corresponding to ∂Φ(t, s)/∂t =
M(t)Φ(t, s) with Φ(s, s) = I and

M(t) =

[

A(t) −B(t)B(t)T

−Q(t) −A(t)T

]

,

1Any finite time interval [0, T ] can be converted to [0, 1] by rescaling.
Thus, without loss of generality, we use the time interval [0, 1] throughout.

and
[

Φ11 Φ12

Φ21 Φ22

]

:=

[

Φ11(1, 0) Φ12(1, 0)
Φ21(1, 0) Φ22(1, 0)

]

.

Denote the optimal control for mean to be v⋆t and corresponding

state trajectory to be x⋆
t . Combining it with the covariance control

yields the optimal feedback policy

u⋆
t = −B(t)TΠ(t)(Xt − x⋆

t ) + v⋆t .

B. Proximal gradient algorithm

The proximal gradient algorithm [20] is designed for the com-

posite optimization

min
y∈Y

F (y) +G(y), (5)

where Y denotes a feasible set. The function F is assumed to be

smooth. The function G is usually a regularizer that is often not

smooth. The algorithm follows the update

yk+1 = argminy∈Y G(y) +
1

2η
‖y − (yk − η∇F (yk))‖2 (6a)

= argminy∈Y G(y)+
1

2η
‖y−yk‖2+〈∇F (yk), y−yk〉(6b)

with η > 0 being the stepsize. One advantage of the proximal

gradient algorithm is that it only evaluates the gradient of F and

doesn’t require even the differentiability of G. In many applications,

G is a regularizer of simple form, e.g., 1-norm, nuclear norm, and

the minimization (6) can be carried out efficiently.

The proximal gradient algorithm has been generalized to the

non-Euclidean setting. It is built upon the mirror descent method

[19], [20]. Let D(·, ·) be a Bregman divergence, then the generalized

non-Euclidean proximal gradient algorithm reads

yk+1 = argminy∈Y G(y) +
1

η
D(y, yk) + 〈∇F (yk), y − yk〉. (7)

A popular choice of D(·, ·) is the Kullback-Leibler divergence

KL(·‖·), which is suitable for optimization over probability vec-

tors/distributions.

The proximal gradient algorithm enjoys nice convergence prop-

erties. When both F and G are convex, the algorithm is guaranteed

to converge to the global minimum with rate O(1/k) [19], [20].

When F is nonconvex, one can only expect for convergence to

local solutions. It turns out that objective function F (y) + G(y) is

monotonically decreasing along the updates, and the updates converge

to some stationary points with sublinear rate O(1/k) with respect to

some suitable criteria [26].

III. PROBLEM FORMULATION

Consider a nonlinear control-affine system

dXt = f(t,Xt)dt+B(t)(utdt+
√
ǫdWt) (8)

where Xt ∈ R
n represents the state, and Wt denotes a standard

Wiener process. The drift function f(t, x) is assumed to be locally

Lipschitz continuous with respect to x and continuous with respect

to t. The input matrix B(t) ∈ R
n×p is assumed to be continuous

and full rank. Many nonlinear dynamics in engineering applications

can be modeled by (8) where
√
ǫdWt captures the uncertainties in

the actuation. Note that the noise is assumed to enter the dynamics

in the same channel as the input. This is a widely used assumption in

stochastic control in both theory and practice [27], [28], [29], [30].
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We are interested in the covariance control problems of steering

the state statistics of the system from an initial value to a target one.

In particular, we seek a state feedback control strategy that achieves

this goal and meanwhile minimizes a cost function. The covariance

steering problem we consider is

min
u

E

{∫ 1

0

[
1

2
‖ut‖2 + V (Xt)]dt

}

(9a)

dXt = f(t,Xt)dt+B(t)(utdt+
√
ǫdWt) (9b)

X0 ∼ ρ0, X1 ∼ ρ1, (9c)

where ρ0 (ρ1) is a probability distribution with mean m0 (m1) and

covariance Σ0 (Σ1). The cost function has two decoupled terms:
1
2
‖ut‖2 that only depends on the control and V (Xt) that only

depends on the state. The problem (9) has been investigated in

the study of distribution control [27], [31], [32], [30] for general

distributions ρ0, ρ1, which links control theory and optimal transport

theory [27], [33].

The special structure of the cost and dynamics in (9) leads to an

elegant reformulation as an optimization over probability measures.

Denote by Pu the distribution over the path space Ω := C([0, 1],Rn)
induced by the stochastic process (8), and as a convention, by P0

the distribution induced by the same process with zero control, then

the Girsanov theorem [17], [34] states that

dPu

dP0
= exp

(∫ 1

0

1

2ǫ
‖ut‖2dt+ 1√

ǫ
uT
t dWt

)

. (10a)

When B is full (column) rank, this can be equivalently written as

dPu

dP0
= exp

(∫ 1

0

1

2ǫ
‖But‖2(BBT )†dt+

1√
ǫ
uT
t dWt

)

. (10b)

It follows from the Girsanov theorem that [35], [36], [27]

E

{
∫ 1

0

1

2ǫ
‖ut‖2dt

}

= KL(Pu‖P0) :=

∫

log
dPu

dP0
dPu. (11)

Intuitively, it says that the difference between the controlled and

uncontrolled processes can be quantified by the control energy.

This relation is heavily utilized recently in the distributional control

problem [27]. Thus, the problem (9) can be reformulated as

min
Pu

∫

dPu

[

log
dPu

dP0
+

1

ǫ
V

]

(12a)

(X0)♯Pu = ρ0, (X1)♯Pu = ρ1. (12b)

Here (X0)♯Pu ((X1)♯Pu) stands for the distribution of X0 (X1)

when the process Xt is associated with the distribution Pu.

Denote by Π(ρ0, ρ1) the set of all distributions over the path

space Ω such that the constraints (12b) hold. Let

F (Pu) =

∫

[
1

ǫ
V − log dP0]dPu

and

G(Pu) =

∫

dPu log dPu. (13)

Then, (12) becomes a composite optimization

min
Pu∈Π(ρ0,ρ1)

F (Pu) +G(Pu). (14)

This is an infinite dimensional optimization. For general marginals

ρ0, ρ1 and nonlinear dynamics (8), the problem can be addressed

using the distribution control framework [27], [30]. However, this

method requires solving a coupled partial differential equation system

and does not scale to cases with large state dimension n [27], [30].

Our goal is to develop an efficient algorithm to approximately

solve (14). In the covariance steering formulation, instead of solv-

ing (14) exactly, we look for an approximate solution Pu that is

induced by a Gaussian Markov process. Thus, we restrict our search

space to Π̂(ρ0, ρ1), the space of measures over the path space Ω
that are induced by Gaussian Markov processes and have marginal

distributions N (m0,Σ0),N (m1,Σ1). When P has relatively small

variance, F (P) can be approximated by
∫

[
1

ǫ
V̂ − log dP̂0]dP

where V̂ is the second order approximation of V and P̂0 is a

Gaussian Markov approximation of P0, both along the mean of P .

More precisely, let the mean of P be the trajectory zt, then

V̂ (t, x) = V (zt)+(xT−zTt )∇V (zt)+
1

2
(xT−zTt )∇2V (zt)(x−zt),

(15)

and P̂0 is associated with the Gaussian Markov process

dXt = ∇f(t, zt)
TXtdt+[f(t, zt)−∇f(t, zt)

T zt]dt+
√
ǫB(t)dWt.

(16)

We have thus arrived at the following nonlinear covariance

steering problem

min
Pu∈Π̂(ρ0,ρ1)

∫

[
1

ǫ
V̂ − log dP̂0]dPu +

∫

dPu log dPu. (17)

This nonlinear covariance steering problem turns out to be con-

siderably easier than the distribution control problem (14) from a

computational point of view. Indeed, in the following section, we

develop an efficient algorithm for it that is scalable to problems with

large state dimension.

IV. PROXIMAL GRADIENT ALGORITHM FOR COVARIANCE

STEERING

The nonlinear covariance steering problem (17) is clearly a

composite optimization

min
Pu∈Π̂(ρ0,ρ1)

F (Pu) +G(Pu) (18)

where G is as in (13), and by abuse of notation,

F (Pu) =

∫

[
1

ǫ
V̂ − log dP̂0]dPu = 〈1

ǫ
V̂ − log dP̂0,Pu〉. (19)

In this section, we develop an efficient algorithm to solve (18) based

on the generalized proximal gradient algorithm (7).

A. Main algorithm

Since (18) is an optimization over the space of probability

measures, we use Kullback-Leibler divergence in (7). This leads to

the following iteration

Pk+1 = argminP∈Π̂(ρ0,ρ1)
G(P) +

1

η
KL(P‖Pk) + 〈δF

δP (Pk),P〉.
(20)

Here we use variation δF
δP

instead of gradient since P is an infinite

dimensional object. As we will see below, each iteration can be

realized by solving a linear covariance steering problem.

First, we derive an explicit expression for δF
δP

. Note that both

V̂ and P̂0 depend on the mean of P , thus F (P) is not a linear

function of P . The variation δF
δP

thus has some extra terms other

than 1
ǫ
V̂ − log dP̂0.
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Lemma 2. Let P be the path distribution induced by a Gaussian

Markov process

dXt = A(t)Xtdt+ a(t)dt+
√
ǫB(t)dWt,

then the variation of F (P) with respect to P is

δF

δP (P)(t, x) =
1

ǫ
V̂ − log dP̂0 +

1

2ǫ
xT∇Tr(∇2V (zt)Σt) (21)

+
1

2ǫ
xT∇Tr((BBT )†(∇f(zt)

T − A)Σt(∇f(zt)−AT )),

where (·)† represents pseudo-inverse, zt and Σt are the mean and

covariance of P , respectively, and V̂ , P̂0 are as in (15) and (16).

We remark that the extra terms involve the second order deriva-

tive of the drift f and the third order derivative of V . Thus, if the

dynamics is linear and the cost is quadratic as in the linear covariance

steering problems, δF
δP

(P) = 1
ǫ
V̂ − log dP̂0 and is independent of

P . We also remark that δF
δP

in (21) is a quadratic function.

We next establish that each iteration of (20) is a covariance

control problem for linear dynamics. To this end, we represent Pu
k

by a Gaussian Markov process

dXt = Ak(t)Xtdt+ ak(t)dt+
√
ǫB(t)dWt. (22)

Denote its mean and covariance by zk and Σk respectively, then

żkt = Ak(t)z
k
t + ak(t) (23a)

Σ̇k
t = Ak(t)Σ

k
t + Σk

tAk(t)
T + ǫB(t)B(t)T . (23b)

Plugging (21) into (20), in view of representation (22) of Pu
k , we

obtain

Pu
k+1 = argminP∈Π̂(ρ0,ρ1)

∫

[
1

ǫ
V̂ +

1

2ǫ
xT∇Tr(∇2V (zkt )Σ

k
t )

+
1

2ǫ
xT∇Tr((BBT )†(∇f(zkt )

T − Ak)Σ
k
t (∇f(zkt )− AT

k ))

− log dP̂0− 1

η
log dPu

k ]dP+(1+
1

η
)

∫

dP log dP . (24)

Linearizing the uncontrolled system

dXt = f(t,Xt)dt+
√
ǫB(t)dWt (25)

along zk yields the linear approximation

dXt = Âk(t)Xtdt+ âk(t)dt+
√
ǫB(t)dWt (26)

with

Âk(t) = ∇f(t, zkt )
T

(27a)

âk(t) = f(t, zkt )−∇f(t, zkt )
T zkt . (27b)

This linear approximation corresponds to P̂0 at the k-th iteration.

This is the same as (16) with some additional notations being

introduced to emphasize the dependency on the iteration number k.

With these Gaussian Markov representations of P0,Pu
k we establish

the following.

Theorem 3. Each proximal gradient iteration (24) amounts to

solving the following linear covariance steering problem

min
u

E

{∫ 1

0

[
1

2
‖ut‖2 + 1

2
XT

t Qk(t)Xt +XT
t rk(t)]dt

}

(28a)

dXt =
1

1 + η
[Ak(t) + ηÂk(t)]Xtdt+

1

1 + η
[ak(t)(28b)

+ηâk(t)]dt+B(t)(utdt+
√
ǫdWt)

X0 ∼ ρ0, X1 ∼ ρ1, (28c)

where

Qk(t) =
η

(1 + η)
∇2V (zkt ) +

η

(1 + η)2
(Ak(t)− Âk(t))

T (B(t)B(t)T )†(Ak(t)− Âk(t))

and

rk(t) =
η

1 + η
∇V +

η

2(1 + η)
[∇Tr(∇2V Σk

t )− 2∇2V (zkt )z
k
t

+∇Tr((B(t)B(t)T )†(∇fT − Ak)Σ
k
t (∇f − AT

k ))]

+
η

(1 + η)2
(Ak(t)− Âk(t))

T (B(t)B(t)T )†(ak(t)− âk(t)).

Proof. The optimization in (24) is equivalent to

min
P∈Π̂(ρ0,ρ1)

∫

[
1

ǫ
V̂ +

1

2ǫ
xT∇Tr(∇2V (zkt )Σ

k
t )+

1

2ǫ
xT∇Tr((BBT )†(∇f(zkt )

T − Ak)Σ
k
t (∇f(zkt )− AT

k ))]dP

+KL(P‖P̂0) +
1

η
KL(P‖Pu

k ). (29)

Let P = Pu be parametrized by (28b), then, by Girsanov theorem

(10), KL(Pu‖P̂0) equals

1

2ǫ
E

{∫ 1

0

‖ 1

1 + η
(AkXt −ÂkXt + ak − âk) +But‖2(BBT )†dt

}

(30)

and KL(Pu‖Pu
k ) equals

1

2ǫ
E

{
∫ 1

0

‖ η

1 + η
(ÂkXt −AkXt +âk − ak) +But‖2(BBT )†dt

}

(31)

Combining (30) and (31) points to

KL(Pu‖P̂0) +
1

η
KL(Pu‖Pu

k )

=
1

2ǫ
E

{∫ 1

0

[(1 +
1

η
)‖ut‖2+

1

1 + η
‖(AkXt − ÂkXt + ak − âk)‖2(B(t)B(t)T )† ]dt

}

.

In view of (15), plugging the above into (29) yields the objective

function (28a), after removing some constant terms and rescaling

with ratio (1 + η)/(ǫη).

The linear covariance steering problem (28) has a closed-form

solution (see Section IV-B for more details). Denote the optimal

control policy to (28) by

u⋆
t = Kk(t)Xt + dk(t), (32)

then Pu
k+1 is induced by the closed-loop process

dXt =
1

1 + η
[Ak(t) + ηÂk(t)]Xtdt+

1

1 + η
[ak(t) + ηâk(t)]dt

+B(t)(u⋆
tdt+

√
ǫdWt).

It follows that

Ak+1(t) =
1

1 + η
[Ak(t) + ηÂk(t)] +B(t)Kk(t) (33a)

ak+1(t) =
1

1 + η
[ak(t) + ηâk(t)] +B(t)dk(t). (33b)

The above equations (33) provide an extremely simple rule to update

Pu
k , based on which we present the proximal gradient algorithm

(Algorithm 1) for nonlinear covariance steering.
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There are many choices for initialization. For instance, one

can set Pu
0 to be the process dXt =

√
ǫB(t)dWt, which means

A0(t) ≡ 0 and a0(t) ≡ 0. An alternative option is a linearization

of the prior process (25). More precisely, set z0t to be the solution

to ż0t = f(t, z0t ) and A0(t) = ∇f(t, z0t )
T . The initial a0(t) can be

calculated by

a0(t) = f(t, z0t )− A0(t)z
0
t .

Algorithm 1 Proximal gradient nonlinear covariance steering algo-

rithm

Initialize A0, a0

for k = 1, 2, . . . do

Update Ak using (33a)

Update ak using (33b)

end for

Remark 4. Algorithm 1 inherits the convergence properties of the

proximal gradient algorithm and thus converges to a local solution

to (17) with sublinear rate O(1/k).

Remark 5. The computational cost of Algorithm 1 can be divided

into two parts: i) linearization to get Âk, âk and ii) obtaining optimal

strategy (32) for the linear covariance steering problem. Both have

closed-form and can be computed efficiently, even for high resolution

of time-discretization. This is a major advantage over existing works

on nonlinear covariance steering.

B. Covariance steering for linear systems with drift

The linear covariance control problem in Theorem 3 is slightly

more general than (1) due to some extra terms in the dynamics and

cost. To provide a closed-form solution to (28), we next extend the

results in Section II-A to the following variation of linear covariance

steering problems with a drift term in the dynamics and an extra

linear term in the cost

min
u

E

{
∫ 1

0

[
1

2
‖ut‖2 + 1

2
XT

t Q(t)Xt +XT
t r(t)]dt

}

(34a)

dXt = A(t)Xtdt+ a(t)dt+B(t)(utdt+
√
ǫdWt)(34b)

X0 ∼ N (m0,Σ0), X1 ∼ N (m1,Σ1). (34c)

By linearity, the mean and the covariance can be controlled separately.

Apparently, the covariance control part is the same as Problem

(1) since both the dynamics of covariance and the cost related to

covariance in (34) are exactly the same as (1).

The deterministic control for the mean is slightly different from

(1). Let vt be the mean of the control, then it is associated with the

deterministic optimal control problem

min
v

∫ 1

0

[
1

2
‖vt‖2 +

1

2
xT
t Q(t)xt + xT

t r(t)]dt (35a)

ẋt = A(t)xt + a(t) +B(t)vt (35b)

x0 = m0, x1 = m1. (35c)

The above problem can be solved using the Pontryagin’s principle.

More specifically, it amounts to solving the differential equations
[

ẋt

λ̇t

]

=

[

A(t) −B(t)B(t)T

−Q(t) −A(t)T

] [

xt

λt

]

+

[

a(t)
−r(t)

]

(36)

with boundary condition x0 = m0, x1 = m1. Using the notation in

Section II we obtain
[

x1

λ1

]

=

[

Φ11 Φ12

Φ21 Φ22

][

x0

λ0

]

+

∫ 1

0

[

Φ11(1, τ ) Φ12(1, τ )
Φ21(1, τ ) Φ22(1, τ )

] [

a(τ )
−r(τ )

]

dτ.

It follows

λ0 = Φ−1
12

(

m1−Φ11m0−
∫ 1

0

(Φ11(1, τ )a(τ )−Φ12(1, τ )r(τ ))dτ

)

.

Plugging it back to (36) gives the expression for λt. The solution

to the deterministic control problem (35) is v⋆t = −B(t)Tλt. The

optimal control strategy for the covariance steering problem (34) is

u⋆
t = −B(t)TΠ(t)(Xt − x⋆

t ) + v⋆t .

C. Construct optimal control

Upon convergence, the total feedback control policy can be

recovered as follows. Denote A⋆, a⋆ the limit point of {Ak, ak}.

Let z⋆t ,Σ
⋆
t be the solutions to

ż⋆t = A⋆(t)z⋆t + a⋆(t),

Σ̇⋆
t = A⋆(t)Σ⋆

t +Σ⋆
tA

⋆(t)T + ǫB(t)B(t)T ,

then they satisfy that z⋆0 = m0, z
⋆
1 = m1 and Σ⋆

0 = Σ0,Σ
⋆
1 = Σ1.

Denote the linearization of the prior dynamics (25) along z⋆t as

dXt = Â⋆(t)Xtdt+ â⋆(t)dt+
√
ǫB(t)dWt, (37)

then

Â⋆(t) = ∇f(t, z⋆t )
T

(38a)

â⋆(t) = f(t, z⋆t )−∇f(t, z⋆t )
T z⋆t . (38b)

The distribution P⋆ over the path space Ω associated with

dXt = A⋆(t)Xtdt+ a⋆(t)dt+
√
ǫB(t)dWt (39)

is the solution to our covariance steering problem (17). To retrieve

the optimal control strategy, consider the optimization

min
P∈Π̂(ρ0,ρ1)

G(P) + 〈δF
δP (P⋆),P〉. (40)

It shares the same minimizer, which is P⋆, as

min
P∈Π̂(ρ0,ρ1)

G(P) + 〈δF
δP (P⋆),P〉+ 1

η
KL(P‖P⋆). (41)

Indeed, since P⋆ is the minimizer of (41) and KL(P‖P⋆) vanishes

when P = P⋆, P⋆ must be a minimizer of (40) as well. To retrieve

the final optimal control from (40), we reformulate it as a linear

covariance control problem as follows. The proof is similar to that

of Theorem 3 and is thus omitted.

Proposition 1. The optimization (40) amounts to the linear covari-

ance steering problem

min
u

E

{
∫ 1

0

[
1

2
‖ut‖2 + 1

2
XT

t Q⋆(t)Xt +XT
t r⋆(t)]dt

}

(42a)

dXt = Â⋆(t)Xtdt+ â⋆(t)dt+B(t)(utdt+
√
ǫdWt)(42b)

X0 ∼ ρ0, X1 ∼ ρ1, (42c)

where Q⋆(t) = ∇2V (z⋆t ) and

r⋆(t) =∇V (z⋆t ) +
1

2
[∇Tr(∇2V (z⋆t )Σ

⋆
t )− 2∇2V (z⋆t )z

⋆
t

+∇Tr((B(t)B(t)T )†(∇fT − A⋆)Σ⋆
t (∇f − A⋆T ))].

Denote by

u⋆
t = K⋆(t)Xt + d⋆(t) (43)

the optimal control for the linear covariance control problem in

Proposition 1, then it is also the optimal control strategy to the

nonlinear covariance steering problem (17).
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V. GENERALIZATIONS

The nonlinear covariance steering algorithm can be extended to

the general control-affine system

dXt = f(t,Xt)dt+ g(t, x)(utdt+
√
ǫdWt). (44)

The goal is again to approximately solve the density control problem

min
ut

E

{
∫ 1

0

[
1

2
‖ut‖2 + V (Xt)]dt

}

(45a)

dXt = f(t,Xt)dt+ g(t,Xt)(utdt+
√
ǫdWt) (45b)

X0 ∼ N (m0,Σ0), X1 ∼ N (m1,Σ1). (45c)

As before, the above can be reformulated as an optimization

(17) over Pu and can be solved using the proximal gradient algorithm

with iteration (24). Again, each iteration of (24) is a covariance

control problem for linear dynamics. However, the explicit realization

of each iteration is slightly different.

The probability measure Pu
k is a Gaussian Markov process

dXt = Ak(t)Xtdt+ ak(t)dt+
√
ǫg(t, zkt )dWt. (46)

where the mean zk and the covariance Σk satisfy

żkt = Ak(t)z
k
t + ak(t) (47a)

Σ̇k
t = Ak(t)Σ

k
t + Σk

tAk(t)
T + ǫg(t, zkt )g(t, z

k
t )

T
(47b)

The above equations (46)-(47) should be compared with (37)-(38).

The difference between them are due to the fact g(t, x) depends on

the value of state. In (46)-(47), we use the value of g at the mean zkt
as an approximation.

Following the same analysis as in the Section IV, we obtain the

explicit updates

Ak+1(t) =
1

1 + η
[Ak(t) + ηÂk(t)] + g(t, zkt )Kk(t) (48a)

ak+1(t) =
1

1 + η
[ak(t) + ηâk(t)] + g(t, zkt )dk(t). (48b)

Once {Ak, ak} converges to (A⋆, a⋆), we can follow exactly

the same steps as in Section IV-C (after replacing B(t) by g(t, z⋆t ))
to retrieve the final optimal affine controller.

VI. NUMERICAL EXAMPLES

In this section we present several examples to illustrate our

algorithm. All the experiments are carried out using a PC with 64GB

RAM and an Intel Core i9 CPU.

A. Double integrator with drag

We consider the same nonlinear dynamical system used in [21]

dx1 = x2dt, (49a)

dx2 = (u− cd‖x2‖)dt+
√
ǫdWt, (49b)

where cd represents drag coefficient. To compare the proposed

algorithm with the iterative Covariance Steering (iCS) algorithm

[21], we conduct experiments for the two algorithms under the

same settings but removing the chance constraints and trust region

constraints in iCS. We choose cd = 0.005 and ǫ = 0.1, and

also apply a time scaling to map time interval [0, 1] to [0, T ].
We choose the initial mean and covariance conditions as m0 =

iCS ours

Time discretization 25 50 25 1000

Solving time 126.1212 1528.1 0.1184 0.2741

Cost 31.3198 30.7929 2.9945 2.9283

TABLE I: Convergence time and cost comparison between the

proposed method and the iCS algorithm proposed in [21] for the

dynamics (49). The costs are computed using optimal controlled

dynamics obtained from the two algorithms using Monte Carlo.

(a) position (b) velocity

Fig. 1: Covariance and sampled position and velocity trajectories plot

of the double integrator with drag dynamics (49), with a time scaling

to T = 5 and time discretization N = 1000. We plot the covariances

obtained from iCS for N = 25 in Fig. 1a in black ellipsoids. In

contrast to iCS [21], our result satisfies the final time constraints.

[

1, 8, 2, 0
]T

, Σ0 = 0.01I and the target mean and covariance

is chosen to be mT =
[

1, 2,−1, 0
]T

,ΣT = 0.1I . In addition to

control energy, in this experiment we add also a quadratic state cost

V (xt) = (xt − zkt )
TQt(xt − zkt ), Qt = 0.1I in (9) as in [21].

The stopping criteria for the experiments is when the average over

all time steps of relative Frobenius norm error of two consecutive

Ak and ak is less than a predefined threshold. Fig. 1 shows the

resulting position and velocity distributions and sampled trajectories.

We display the convergence time for different time discretizations in

Tab. I. In the same settings, our proposed algorithm converges much

faster (more than 1000 times speedup). We note that both algorithms

converge to a locally minimum solution, and the reason for the

convergence rate difference lies in that the baseline algorithm relies

on optimization over discrete dynamics which leads to a constrained

semi-definite program at each iteration while our proposed method

optimizes directly over continuous dynamics at each iteration which

has a closed-form solution. Our algorithm also has the advantage that

its complexity increases linearly with time discretization. In terms of

stability, our algorithm is guaranteed to have a solution that strictly

satisfies the boundary conditions at each iteration if the linearized

system is controllable.

B. 3-link manipulator

We next consider a 3-link manipulator example. By this exam-

ple, we show that the proposed algorithm is effective in controlling

a system governed by a manipulator equation in the form

M(q)q̈ + C(q, q̇) + g(q) = τ +
√
ǫdWt, (50)

where q = [θ1, θ2, θ3]
T is the joint angles, M(q) is the mass matrix,

C(q, q̇) is the Coriolis matrix, g(q) is the gravity term and τ is

the torque input applied on joints. Denote the state of the system

as X = [q, q̇]T and the input as u = τ , then we have the nonlinear
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(a) position
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(b) velocity

Fig. 2: Joint angle and velocity trajectory plot of the 3-DOF robot

arm. The trajectories are simulated with full dynamics and noise

injected from torque inputs. Mean trajectories of joint angles and

velocities are highlighted.

Fig. 3: 3σ covariance ellipsoid trajectory in joint space. Each joint

angle ellipsoid is retrieved from covariance matrix Σk
t which satisfies

(51b). The position of the ellipsoid is the mean zkt at time t.

control-affine system representation for the manipulator following (8)

dXt =

[

q̇
M−1(q)(−C(q, q̇)−g(q))

]

dt+

[

0
M−1(q)(utdt+

√
ǫdWt)

]

(51)

We choose the number of discretizations to 1000 with a time

span T = 1 and noise intensity ǫ = 0.1. We steer the system from

initial mean m0 = [0, 0, 0, 0, 0, 0]T and covariance Σ0 = 0.05I ,

to mT = [−π
2
, π
2
, π
2
, 0, 0, 0]T and covariance ΣT = 0.01I . With

convergence error set to 10−5, it takes around 41 iterations and 6.2s
on average to converge. Considering the underlying complexity of

dynamics and the number of discretizations, the experiment shows

the proposed algorithm is effective in solving the covariance steering

problem for manipulator systems. The mean and sampled trajectories

of the nonlinear stochastic system (51) under optimal feedback

control policy are shown in Fig. 2. To illustrate the evolution of

covariance and simulated trajectory, we show the covariance ellipsoid

of joint angles in Fig. 3. The initial covariance shrinks as time goes on

and reaches the target covariance. The simulated trajectories started

in randomly sampled states from the initial distribution are bounded

inside the 3σ-confident ellipsoid at each time stamp t. The trajectory

simulation for 3-DOF manipulator is shown in Fig. 4.

VII. CONCLUSION

In this paper we presented a new approach to covariance

steering problems for control-affine systems. We showed that this

nonlinear covariance control problem can be reformulated as an

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2 2.5 3
-3.5

-3

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

Fig. 4: Simulated trajectory of 3-DOF manipulator. The starting

position is X0 = [0, 0, 0, 0, 0, 0]T (hanging vertically, shown in blue),

and the generated control policy steers the system to the vicinity

of target state XT = [−π
2
, π
2
, π
2
, 0, 0, 0]T (shown in red). The final

position is not perfectly aligned with the target due to the stochasticity

of the system.

optimization over the space of probability distributions of the tra-

jectories. We then developed an efficient algorithm based on the

proximal gradient algorithm. Each proximal iteration in the algorithm

requires solving a linear covariance control problems, whose solutions

exist in closed form. One distinguishing feature of this distributional

formulation of nonlinear covariance steering and the resulting algo-

rithm is that the optimal control is obtained for the continuous-time

problems directly and the complexity of the algorithm is insensitive

to the resolution of time-discretization. One potential future research

direction is to extend the framework to account for hybrid dynamics.

APPENDIX

A. Proof of Lemma 2

By definition (19), the first order expansion of F (P + δP) −
F (P) is

〈1
ǫ
V̂ (P + δP)− log dP̂0(P + δP),P + δP〉 (52)

−〈1
ǫ
V̂ (P)− log dP̂0(P),P〉

≈ 〈1
ǫ
V̂ (P)− log dP̂0(P), δP〉

+〈1
ǫ
V̂ (P + δP)− 1

ǫ
V̂ (P)− log

dP̂0(P + δP)

dP̂0(P)
,P〉.

Here we use the notations V̂ (P), P̂0(P) to emphasize the de-

pendence of V̂ , P̂0 on P . By (15), 〈V̂ (P + δP) − V̂ (P),P〉 is

approximately

〈V (zt + δzt)− V (zt)− δzTt ∇V (zt),P〉
+ 〈1

2
(xT − zTt − δzTt )∇2V (zt + δzt)(x− zt − δzt)

− 1

2
(xT − zTt )∇2V (zt)(x− zt),P〉.

We only keep first order approximations and have used the fact that

zt is the mean of P . The first term is clearly 0 after ignoring high
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order information. The second term is approximately

〈1
2
(xT − zTt )∇2V (zt + δzt)(x− zt)

−1

2
(xT − zTt )∇2V (zt)(x− zt),P〉

=
1

2

∫ 1

0

[Tr(∇2V (zt + δzt)Σt)− Tr(∇2V (zt)Σt)]dt

≈ 1

2

∫ 1

0

[δzTt ∇Tr(∇2V (zt)Σt)]dt.

It follows that

〈V̂ (P + δP)− V̂ (P),P〉 ≈ 1

2
〈xT∇Tr(∇2V (zt)Σt), δP〉. (53)

By Girsanov theorem (10),

dP
dP̂0(P)

= exp

[∫ 1

0

1

2ǫ
‖U‖2(BBT )†dt+

1√
ǫ
〈U,BdWt〉(BBT )†

]

where

U = AXt + a−∇f(zt)
TXt − f(zt) +∇f(zt)

T zt.

A similar expression can be obtained for dP/dP̂0(P + δP). Com-

bining them and using first order approximation yields

〈log dP̂0(P)

dP̂0(P + δP)
,P〉 (54)

≈ 〈 1
2ǫ

xT∇Tr((BBT )†(∇f(zt)
T − A)Σt(∇f(zt)− AT )), δP〉.

Plugging (53) and (54) into (52) yields (21).
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