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Abstract

We consider a class of sequential decision-making problems under uncertainty that can en-

compass various types of supervised learning concepts. These problems have a completely

observed state process and a partially observed modulation process, where the state process is

affected by the modulation process only through an observation process, the observation process

only observes the modulation process, and the modulation process is exogenous to control. We

model this broad class of problems as a partially observed Markov decision process (POMDP).

The belief function for the modulation process is control invariant, thus separating the esti-

mation of the modulation process from the control of the state process. We call this specially

structured POMDP the separable POMDP, or SEP-POMDP, and show it (i) can serve as a

model for a broad class of application areas, e.g., inventory control, finance, healthcare sys-

tems, (ii) inherits value function and optimal policy structure from a set of completely observed

MDPs, (iii) can serve as a bridge between classical models of sequential decision making under

uncertainty having fully specified model artifacts and such models that are not fully specified

and require the use of predictive methods from statistics and machine learning, and (iv) allows

for specialized approximate solution procedures.

1 Introduction & Literature Review

1.1 Introduction

The complex stochastic, sequential decision-making environments that characterize reinforcement

learning applications, in general, involve choosing between actions that greedily optimize over the

immediate objective and actions that enable the decision-maker to learn about the environment in

which they operate — the well-known exploitation-exploration trade off. For the Markov decision

process modeling (MDP) framework upon which these reinforcement learning applications are (typ-

ically) based, modelers often assume either (1) the uncertainty in the model is already captured

∗rebishop@coca-cola.com, Data Science, The Coca-Cola Company
†H. Milton Stewart School of Industrial & Systems Engineering, Georgia Institute of Technology

1

ar
X

iv
:2

10
8.

09
58

5v
1 

 [
m

at
h.

O
C

] 
 2

1 
A

ug
 2

02
1



by known and pre-specified transition probabilities (as in canonical operations research), or (2)

the uncertainty is not modeled, but rather must be explored by taking actions within the (real or

simulated) environments.

For many applications in practice, however, there are different types of uncertainty — endoge-

nous uncertainty that the decision-maker can control and exogenous uncertainty that they cannot.

For example, airlines must consider the weather when planning routes, investors must consider

macroeconomic conditions when making investment decisions, and urgent, personalized therapeu-

tics manufacturers must consider the patient’s health when making production decisions. These

types of decision-making environments, in which there is a separation between types of uncertainty,

are the focus of our investigation in this paper.

We introduce a sequential stochastic optimization model framework that is both an extension

of the canonical MDP, and a special case of the generalized partially-observable MDP (POMDP),

in which the uncertainty exhibits a separability property — some of the uncertainty in the system is

affected by the actions of the decision-maker, and some of the uncertainty is not. Reminiscent of the

Separation Principle in optimal stochastic control (Bismut (1978), Tryphon and Lindquist (2013)),

we call this class of models the separable POMDP, or SEP-POMDP. This modeling framework is

widely applicable to many operations research problems and domains, for example:

• Inventory management. Constructing optimal inventory control policies under non-stationary

demand (Treharne and Sox (2002)) and lost sales (Zipkin (2008)).

• Finance. Optimizing portfolio returns under stochastic volatility (Zhou et al. (2009)) and

mutual fund cash balancing (Nascimento and Powell (2010)).

• Healthcare. Constructing optimal policies for liver transplantation acceptance (Sandikci

et al. (2008), Sandikci et al. (2013)) and glycemic control for diabetes (Jiang and Powell

(2015)).

We summarize the main contributions of the paper, below:

(1) We show that the SEP-POMDP inherits structural properties of the value function and

optimal policy from analogous MDPs (e.g. monotonicity, convexity, L♮-convexity, myopic

optimal policies), under broad conditions.

(2) We show that the separability condition in the SEP-POMDP is flexible enough to incorporate

many of the most popular statistics and machine learning models used in practice. These
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powerful supervised learning methods can be used to explain the exogenous uncertainty in

the system. To our knowledge, this is a novel generalization that permits supervised learning

models to be directly incorporated into the sequential stochastic optimization model. Since

Markov decision processes form the foundation of much of reinforcement learning, this pro-

vides a bridge by which supervised learning and reinforcement learning might be connected

in powerful ways. Moreover, the inherited structural properties in (1) are preserved when

incorporating these supervised learning models in the SEP-POMDP.

(3) We discuss how structural properties of the value function and/or optimal policy that the

SEP-POMDP inherits and separable supervised learning models might be used to construct

specialized solution procedures that are tractable for large-scale applications.

1.2 Literature Review

The contributions, above, draw upon different fields of research. The research towards (1) is

primarily inspired by Porteus (1975) and Smith and McCardle (2002). Porteus (1975) considered

a notion of structure (which we adopt) as a restricted subspace of a function space in which every

function in the subspace possesses some property of interest, and presented sufficient conditions by

which a dynamic program has a value function and/or optimal policy function that are structured

in this sense. We observe that structure has been useful for improved implementation and, as

noted by Smith and McCardle (2002), in developing a qualitative understanding of the model

and characterizing how the results will vary with changes in model parameters. For example, the

optimality of a base-stock policy for a large class of inventory control models is easy to implement

and has significant impact computationally. Further, Smith and McCardle (2002) showed that for

a MDP, if the reward function satisfies a property P and the transition probabilities satisfy a

stochastic version of property P, then the value function satisfies property P, where structural

properties that satisfy property P include monotonicity, convexity, supermodularity, combinations

of these, and other properties of interest. We remark that, whereas Smith and McCardle (2002)

only considers value function structure, we consider optimal policy structure as well.

The most similar research to ours with respect to (2) is Bertsimas and McCord (2019), in which

the authors consider multi-period stochastic optimization with “side information”. We show in

Section 5 that this formulation is a special case of the SEP-POMDP, and the SEP-POMDP is flexible
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to incorporate many other supervised learning models in addition to that of Bertsimas and McCord

(2019). Additionally, themes of incorporating Bayesian methods into reinforcement learning using

POMDPs can be found in Ross et al. (2011), but whereas Ross et al. (2011) considers primarily an

approximate Bayesian reinforcement learning method for generalized partially observable decision-

making environments, we consider separable learning environments in which supervised learning

methods may be employed.

Finally, the research towards (3) is motivated by the well-known problem with POMDPs that

the belief space is uncountably infinite, leading to computational complications. Various solution

approaches from exact methods (Smallwood and Sondik (1973), Sondik (1978), Kaelbling et al.

(1998)), to fixed grid approximations (Lovejoy (1991), Hauskrecht (2000)), to simulation-based

approximations (Pineau et al. (2003), Spaan and Vlaasis (2005)) have been proposed. We apply a

solution procedure that utilizes base-stock optimal policy structure, support vector machines, and

belief trajectory simulation to solve an inventory control problem under delayed procurement in

Section 7. We also discuss other computational procedures that build upon the literature above,

as well as information relaxation (Brown et al. (2010)) and heuristics, in the appendix.

1.3 Research Outline

We now present an outline of the paper. The formulation of the specially structured POMDP

considered is presented in Section 2. Section 3 presents preliminary results. Key conditioning

assumptions are given in Section 3.1, where the separability condition and SEP-POMDP are de-

fined, and extensions of the Porteus results are given in Section 3.2. The main structural results

are presented in Section 4, where Sections 4.1 and 4.2 give value function and policy function

structural results, respectively. Thus far, the paper assumes that each of the model artifacts are

fully specified. In Section 5, we more realistically loosen this assumption, assuming some of these

artifacts are better known than others. We then show how the separability condition allows for

the direct incorporation of many statistics and machine learning models into the SEP-POMDP

formulation. Discriminative learning blended with forecasting is the focus of Section 5.1 while Sec-

tion 5.2 considers generative learning models. Applications are presented in Section 6, indicating

that the SEP-POMDP is a robust model that can describe many important real-world decision-

making problems. Computational solution approaches are discussed in Section 7 and an illustrative
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example is presented. Conclusions are given in Section 8.

2 Problem Formulation

Consider a POMDP that has an infinite horizon and discrete decision epochs t = 0,1, . . ., and

involves a completely observed state process {st ∶ t ≥ 0} existing in a space S ⊂ RdS , a partially

observed modulation process {µt ∶ t ≥ 0} in a spaceM⊂ RdM , an observation process {yt ∶ t ≥ 1} in

a space Y ⊂ RdY , and an action process {at ∶ t ≥ 0} in a space A = ⋃s∈S A(s), where at ∈ A(st),∀t.

Assume that these processes are linked by the conditional probability P [yt+1, st+1, µt+1∣st, µt, at].

It will be convenient for notational purposes to let P [yt+1, st+1, µt+1∣st, µt, at] = P [y′, s′, µ′∣s, µ, a].

We assume that c ∶ S×Y×A ↦ R is the bounded single period cost function, where c(st, yt+1, at) =

c(s, y′, a) is the cost accrued during period [t, t + 1). We further assume that the action at epoch

t can be selected on the basis of the information received up to t, It = {st, st−1, . . . , s0, yt, yt−1, . . . ,

y1, at−1, at−2, . . . , a0,b0}, where b0 = {b0(µ) ∶ µ ∈ M} is the prior distribution over M. A function

mapping the set of all It into the set of all actions for all t is a feasible policy. The problem criterion

is the expected total discounted cost over the infinite horizon, where we assume β, 0 ≤ β < 1 is the

discount factor. The problem is to determine a feasible policy that minimizes the criterion with

respect to all feasible policies. We note that though we present the results that follow for this

infinite horizon formulation, the results can be suitably modified to the finite horizon case (where

the horizon T < ∞), where the cost function is permitted to be dependent upon t, ct, and we have

a terminal cost function cT ∶ S ↦ R.

3 Preliminary Results

Results in Smallwood and Sondik (1973) and Sondik (1978) imply that {(st,bt), t ≥ 0} is a sufficient

statistic for this problem, where bt = {bt(µ) ∶ µ ∈M} is the posterior belief distribution given the

information up to time t, It, namely that ∫M bt(µ)dµ = P[µt ∈M ∣It], ∀M ⊂ M. We call bt the

Bayesian belief function at epoch t and {bt, t ≥ 0} the belief function process. Let

φ(y′, s′∣s,b, a) = ∫
µ′
∫
µ

b(µ)P [y′, s′, µ′∣s, µ, a]dµ′ dµ

λ(µ′∣y′, s′, s,b, a) =
∫µ b(µ)P [y′, s′, µ′∣s, µ, a]dµ

φ(y′, s′∣s,b, a)
, φ(y′, s′∣s,b, a) ≠ 0

λ(y′, s′, s,b, a) = {λ(µ′∣y′, s′, s,b, a), µ′ ∈M} .
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We can think of λ(y′, s′, s,b, a) as the posterior belief function bt+1, given bt = b, at = a, st = s, st+1 =

s′, and yt+1 = y′. Similarly, φ(y′, s′∣s,b, a) is the probability density of yt+1 and st+1, given that

st = s, bt = x, and at = a. Let V be the Banach space of bounded value functions which map S ×B

into R endowed with the sup-norm, and let H ∶ V ↦ V be defined as

Hv(s,b) = min
a∈A(s)

{E [c(s, y′, a)∣x] + β ∫
y′,s′

φ(y′, s′∣s, x, a)v(s′, λ(y′, s′, s,b, a))dy′ ds′} , (1)

where E [c(s, y′, a)∣x] = ∫y′,s′ φ(y
′, s′∣s,b, a)c(s, y′, a)dy′ ds′. The optimality equation is v = Hv.

Results from Puterman (2010) guarantee, by the contraction property of H, the existence of a

unique value function, v∗, such that v∗ = Hv∗, and that this fixed point is the expected total

discounted cost accrued by an optimal policy. Further, we can restrict search for an optimal policy to

t-invariant functions that select at on the basis of st and bt. Let Π to be the space of such t-invariant

functions from S × B to A. The function, π ∈ Π such that π(st,bt) = at causing the minimum in

equation (1) to be attained is an optimal policy. The expected total discounted cost accrued by

this optimal policy can be attained by recursive application of H, so that limn→∞ ∥v∗ − vn∥ = 0,

where vn+1 =Hvn for all n, given v0 is any function in V , and ∥⋅∥ is the sup-norm.

3.1 Key Conditioning Assumptions.

By the definition of conditional probability,

P [y′, s′, µ′∣s, µ, a] = P [s′∣y′, µ′, s, µ, a]P [y′, µ′∣s, µ, a].

We assume that

P [s′∣y′, µ′, s, µ, a] = P [s′∣y′, s, a]

P [y′, µ′∣s, µ, a] = P [y′, µ′∣µ].

(2)

We call the POMDP presented in Section 2 with these key conditioning assumptions the separable

POMDP, or the SEP-POMDP.

We remark that the standard POMDP definition in the literature (Smallwood and Sondik

(1973), Sondik (1978)) assumes three processes, the partially observed state process, the observation

process, and the action process, all of which are linked by the given probability P [y′, s′∣s, a].

This standard definition assumes P [y′, s′∣s, a] = P [y′∣s′, s, a]P [s′∣s, a], where P [y′∣s′, s, a] describes
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the relationship between the state, observation, and action processes and P [s′∣s, a] describes the

controlled dynamics of the state process. We note that the conditioning for the POMDP considered

in this paper, P [y′, s′, µ′∣s, µ, a] = P [s′∣y′, s, a]P [y′, µ′∣µ], assumes that s′ is dependent on y′, rather

than vice versa.

Thus, for the SEP-POMDP we assume that the state process is affected by the modulation

process only through the observation process, the observation process only observes the modulation

process, and the modulation process is exogenous to control. Under these assumptions, we can

rewrite φ,

φ(y′, s′∣s,b, a) = ∫
µ

b(µ)∫
µ′
p(s′∣y′, s, a)P [y′, µ′∣µ]dµdµ′

= p(s′∣y′, s, a)∫
µ,µ′

b(µ)P [y′, µ′∣µ]dµdµ′

= p(s′∣y′, s, a)σ(y′∣b),

where we let p(s′∣y′, s, a) = P [s′∣y′, s, a], and σ(y′∣x) = ∫µ,µ′ b(µ)P [y′, µ′∣µ]. We can then rewrite

λ, by plugging in for φ and assuming φ(y′, s′∣s,b, a) ≠ 0, as follows:

λ(µ′∣y′, s′, s,b, a) =
∫µ b(µ)P [y′, s′, µ′∣s, µ, a]dµ

φ(y′, s′∣s,b, a)

=
∫µ b(µ)P [y′, s′, µ′∣s, µ, a]dµ

p(s′∣s, y′, a)σ(y′∣b)

=
∫µ b(µ)P [y′, µ′∣µ]dµ

σ(y′∣b)
.

Thus, λ(µ′∣y′, s′, s,b, a) is independent of s′, s, a, and we denote λ(µ′∣y′, s′, s,b, a) = λ(µ′∣y′,b) for

all µ′ ∈ M and λ(y′,b) = {λ(µ′∣y′,b), µ′ ∈ M}.

Note E[c(s, y′, a)∣b] = ∫y′,µ′ ∫µ P [y′, µ′∣µ]b(µ)c(s, y′, a)dy′ dµ′ dµ = ∫y′ σ(y
′∣b)c(s, y′, a)dy′, and

let

hy′(s, a, v̄) = c(s, y
′, a) + β ∫

s′
p(s′∣y′, s, a)v̄(s′)ds′ .

We then reformulate the operator H as follows:

Hv(s,b) = min
a∈A(s)

{∫
y′
σ(y′∣b)hy′(s, a, v(⋅, λ(y

′,b)))dy′} .
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We can now define the completely observed MDP analog to the SEP-POMDP. Let MDPy′ have

single period cost function c(s, y′, a), transition structure {p(s′∣y′, s, a)}, and operator

H̄y′ v̄(s) = min
a∈A(s)

hy′(s, a, v̄). (3)

We call the collection {MDPy′ ∶ y
′ ∈ Y} the completely observed MDP analog of the SEP-

POMDP. We will seek to highlight the significance of this relationship to the MDP analogs later

when we discuss conditions under which the SEP-POMDP inherits structural properties from the

MDP analogs, but for now, we merely note that the observation realization in the MDP analog

is a known quantity and functions as a parameter for the MDP. We might consider that y′ is a

particular observable realization of the uncertainty in state dynamics for a traditional MDP. In the

SEP-POMDP, this observation is permitted to be stochastic and, as we will see in Section 5, can

be modeled using statistics and machine learning methods.

3.2 The Porteus Results Extended

Let Vb denote the halfspace of V induced by affixing b ∈ B (i.e. Vb = {f(⋅,b) ∶ f ∈ V }, ∀b ∈ B) and

Πb denote the halfspace of Π induced by affixing b ∈ B. Suppose Ṽ is a space of structured value

functions S ↦ R, and Π̃ is a space of structured Markovian deterministic policy functions S ↦ A.

We now present the three structural conditions found in Porteus (1975) extended to the SEP-

POMDP setting:

P(a) Structured space of functions contains its limit points

Ṽ is a closed subset of Vb,∀b ∈ B.

P(b) Structured Value Preservation

v(⋅,b) ∈ Ṽ ,∀b ∈ B ⇒Hv(⋅,b) ∈ Ṽ ,∀b ∈ B.

P(c) Structured Policy Attainment

v(⋅,b) ∈ Ṽ ,∀b ∈ B ⇒ ∃π(⋅,b) ∈ Π̃,∀b ∈ B s.t.

Hv(⋅,b) = ∫
y′
σ(y′∣b)hy′(⋅, π(⋅,b), v(⋅, λ(y′,b)))dy′ ,∀b ∈ B.
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We refer to P(a), P(b), and P(c) as the extended Porteus conditions. Condition P(a) ensures

that the limit point of a sequence of value functions obtained by the value iteration algorithm will

be in the space of structured value functions, condition P(b) ensures that the structure of the value

function is preserved when applying the dynamic programming operator H, and condition P(c)

insures that for all structured value functions on S, it suffices to search the space of structured

policies (smaller than the space of all policies) for a v-improving policy.

We present a proposition in which we establish that P(a), P(b), and P(c) are sufficient conditions

to guarantee that the value function and an optimal policy function are structured on S. Subsequent

results pertaining to structure on S demonstrate sufficient conditions for P(a), P(b), and P(c) to

hold, by investigating the SEP-POMDP model primitives and the relationship to the MDP analog.

Proposition 1. Assume the extended Porteus conditions hold. Then there exists a π∗(⋅, x) ∈ Π̃

and a v∗(⋅, x) ∈ Ṽ for all b ∈ B such that

v∗(s,b) =Hv∗(s,b) = ∫
y′
σ(y′∣b)hy′(s, π

∗
(s,b), v∗(⋅, λ(y′,b)))dy′

for all (s,b) ∈ S × B.

Proof of the above result is a straightforward extension of Theorem 6.11.1 in Puterman (2010).

We remark that the structured optimal value function and the structured optimal policy are both

modulated by the belief process {bt, t > 0}. The following corollary establishes that it is sufficient

for only P(a) and P(b) to hold to establish structure of the value function on S, absent structure

in the policy.

Corollary 1. If only P(a) and P(b) hold, then v∗(⋅,b) ∈ Ṽ for all b ∈ B.

4 Main Structural Results

We now present our primary structural results, which formalize the inheritance property of SEP-

POMDPs — that value function and optimal policy function structure of the MDP analog are

inherited by the SEP-POMDP. Oftentimes in modeling efforts we make stylized and unrealistic

simplifying assumptions for the sake of analytical tractability and gaining important qualitative

intuition about a system (e.g. demand is i.i.d. across decision epochs, a firm operates independent
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of competitors). The thrust of the results in this section is that, for an important class of properties

and models, we may analyze a simpler model and guarantee the structural properties hold for a

more robust model. As we will see in later sections, this simpler model might assume e.g. constant

observations, and the structure of the optimal value function, or of an optimal policy, can still

hold even under complex and sophisticated machine learning models for those observations. Thus,

analytical tractability need not be traded for modeling realism.

Preliminary definitions. Before we state our inheritance proposition, we need to introduce

two notions, as defined in Smith and McCardle (2002): C3 property and its joint extension.

Definition 1. (C3 property) P is a closed convex cone property (C3) if and only if the set of all

real-valued functions on S satisfying P forms a closed convex cone in the topology of pointwise

convergence.

Proposition 1 in Smith and McCardle (2002) gives us an equivalent definition of C3 property in

terms of an inequality “test of satisfaction”. A real-valued function f on S satisfies a C3 property if

and only if there exists a finite set of points {sj , j ∈ Jk}, {si, i ∈ Ik} and positive weights {γj , j ∈ Jk}

and {γi, i ∈ Ik} such that

∑
j∈Jk

γjf(sj) ≤ ∑
i∈Ik

γif(si), ∀k ∈K

where K is an index set.

Many structural properties, P, of value functions with which we are interested in (e.g. mono-

tonicity, convexity) are C3 properties. The notion of the joint extension of a C3 property allows

us to extend the concept to real-valued functions on S ×A.

Definition 2. (Joint Extension) Given a C3 property P on S, a function f ∶ S × A ↦ R satisfies

a joint extension of P on S × A, call it P∗, if and only if for any k ∈ K, actions {aj , j ∈ Jk},

∃{ai, i ∈ Ik} such that

∑
j∈Jk

γjf(sj , aj) ≤ ∑
i∈Ik

γif(si, ai)

where {γj , j ∈ Jk}, {γi, i ∈ Ik} are finite sets of positive weights associated with the test of satisfaction

for P.

The class of joint extensions of C3 properties includes subadditivity, L♮-convexity, joint submod-

ularity, combinations of these, and others. It will be useful for us to note (especially in discussing
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separability, below) that all joint extensions of C3 properties are convex cones, in the sense that if

f and g satisfy joint C3 property P∗, then αf + βg also has property P∗, for α,β ∈ R.

4.1 Structure on S

We begin by stating the Porteus conditions for MDPs, and recapitulating, for ease of reference, the

structural implications for the MDP analog.

Py′(b) Structured Value Preservation

ṽ ∈ Ṽ ⇒ H̄y′ ṽ ∈ Ṽ .

Py′(c) Structured Policy Attainment

ṽ ∈ Ṽ ⇒ ∃π̃ ∈ Π̃ s.t. H̄y′ ṽ = hy′(⋅, π̃, ṽ).

The following proposition is due to Porteus (1975); note Theorem 6.11.1 in Puterman (2010).

Proposition 2. Suppose P(a), Py′(b), and Py′(c) hold. Then there exists a π∗y′ ∈ Π̃ and a v∗y′ ∈ Ṽ

such that v∗y′(s) = H̄y′v
∗
y′(s) = hy′(s, π

∗
y′(s), v

∗
y′), for all s ∈ S.

Corollary 2. Suppose P(a) and Py′(b) hold. Then v∗y′ ∈ Ṽ .

Suppose F̃ is a space of functions from S ×A to R that is a convex cone. F̃ can be defined by

a joint extension of a C3 property, P∗, and thus encompasses the properties discussed in Smith

and McCardle (2002). Further, let ∆ be the space of feasible MDP analog policies from S to A

(note that Π̃ ⊆ ∆). We present conditions by which the SEP-POMDP inherits this MDP analog

structure:

B(a) ṽ ∈ Ṽ ⇒ hy′(⋅, ⋅, ṽ) ∈ F̃

B(b) f ∈ F̃ ⇒min
δ∈∆

f δ ∈ Ṽ

B(c) f ∈ F̃ ⇒ ∃π̃ ∈ Π̃ s.t. min
δ∈∆

f δ = f π̃,

where f δ(s) = f(s, δ(s)) for all s ∈ S, and the minimum with respect to δ ∈ ∆ is taken pointwise,

i.e. [minδ∈∆ f
δ] (s) = mina∈A(s) f(s, a) for all s ∈ S.

Condition B(a) guarantees that, for the MDP analog, the function hy′ is structured on S ×A.

We recognize that this structure must be preserved under expectation in order for the fixed point
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of the optimality equation for the SEP-POMDP to inherit this structure, which is guaranteed in

that F̃ is a space of functions that is a convex cone. Condition B(b) ensures that the minimization

operation over feasible policies maps functions from F̃ into Ṽ . Finally, condition B(c) supposes we

know, or can show, that minimizing functions of a certain structure on S × A yields a structured

optimal policy. In fact, these conditions are quite mild, and hold for every one of the applications

in Section 6. There are various results in the literature in this vein, e.g. results pertaining to

minimizing submodular functions on a lattice (Topkis (1978)) and minimizing L♮-convex functions

(Zipkin (2008)).

Note that B(a) and B(b) imply that Py′(b) holds for all y′ ∈ Y, and B(a) and B(c) imply

that Py′(c) holds for all y′ ∈ Y. Thus, these are sufficient conditions for guaranteeing that the

MDP analog is structured in its value function and an optimal policy by Proposition 2. Our

next proposition formalizes the inheritance property of SEP-POMDPs by demonstrating that these

sufficient conditions for guaranteeing structure for the MDP analog are, in fact, also sufficient

for guaranteeing the SEP-POMDP is structured on S in the same way. The proof follows by

demonstrating that B(a), B(b), and B(c) are sufficient for guaranteeing that P(b) and P(c) hold,

and then applying Proposition 1.

Proposition 3. Suppose P(a), B(a), B(b), and B(c) hold. Then there exists a π∗(⋅,b) ∈ Π̃ and a

v∗(⋅,b) ∈ Ṽ for all b ∈ B such that

v∗(s,b) =Hv∗(s,b) = ∫
y′
σ(y′∣b)hy′(s, π

∗
(s,b), v∗(⋅, λ(y′,b)))dy′

for all (s,b) ∈ S × B.

The following is a straightforward corollary that shows that P(a), B(a), and B(b) are sufficient

for guaranteeing value function structure, absent policy structure.

Corollary 3. Suppose P(a), B(a), and B(b) hold. Then v∗(⋅, x) ∈ Ṽ for all b ∈ B.

Of course, if the model primitives p = {p(s∣y′, s, a)} and c = {c(s′, y′, a)} are in spaces of

structured transition probability functions, P̃ , and cost functions, C̃, that guarantee that B(a) and

B(b) hold, then the SEP-POMDP is structured in its value function by the Corollary 3.
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Corollary 4. Suppose P(a) holds, and that p ∈ P̃ for all y′ ∈ Y and c ∈ C̃ for all y′ ∈ Y imply that

B(a) and B(b) hold. Then v∗(⋅,b) ∈ Ṽ for all b ∈ B.

4.2 Structure on B

In this subsection, we discuss some known structural properties related to POMDPs, as they pertain

to the SEP-POMDP when the spaces S, Y, M, and A are discrete. The following proposition is

due to Smallwood and Sondik (1973) and Sondik (1978), in which successive value approximations

achieved by applying the Bellman operator, H, preserve piecewise linearity and concavity of v with

respect to b. Concavity is preserved in the limit. The proof of Proposition 4 can be found in Bishop

(2019).

Proposition 4. The value function v∗(s, ⋅) is concave in b on B, for all s ∈ S.

If v∗ can be shown to be piecewise linear in b on B as well (such as if the optimal policy is

finitely transient, as in Sondik (1978)), then we have a corollary result. For the standard POMDP

model, the belief space B partitions into a finite number of convex, polyhedral regions that specify

an optimal control or action to take. We note that for the SEP-POMDP, the belief space partitions

into a finite number of convex, polyhedral regions that specify an optimal control or action for each

s ∈ S. Thus, these non-overlapping regions in B specify a partial policy, i.e. functions from the

state space S into the action space A. If Proposition 1 holds, then these regions specify structured

partial policies.

Corollary 5. Suppose v∗ is piecewise linear in b on B. Then, there exists a partition of B into a

finite number of convex, polyhedral regions {Bj , j = 1, . . . , n} such that there exists a set of functions

from S into A, {δ∗j , j = 1, . . . , n}, such that π∗(⋅,b) = δ∗j for all b ∈ Bj, j = 1, . . . , n.

These results can be utilized to motivate computational solution procedures. In the appendix,

we discuss one way in which the belief space partition into a finite number of polyhedral regions

specifying a structured MDP analog policy (when the inheritance property of Propostion 3 holds),

δ∗, can lead to computational efficiencies when utilizing the facet-generating algorithm in Small-

wood and Sondik (1973).

Comment on additional structural properties of SEP-POMDPs. For a more thorough

compendium of structural properties of SEP-POMDPs — including extensions of propositions in
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Smith and McCardle (2002), the value of information, sufficient conditions for monotone optimal

policies with respect to the belief space, and inheritance under a functional description of dynamics

— we refer the reader to Bishop (2019).

5 Relationship to Supervised Learning

Thus far, we have assumed that each of the model artifacts — the cost structure, definitions of

the relevant processes, and transition probabilities of (2) — are fully specified. In reality, some of

these might be more confidently known than others. For example, suppose we are making inventory

replenishment decisions for a single product, where st is the inventory level, yt+1 is the demand

that arrives between t and t+1, and at is the replenishment amount. Suppose that replenishment is

immediate and backlogging is permitted. In this system, we may be confident that st+1 = st+at−yt+1

accurately describes the dynamics of the inventory level, i.e. that we can specify P [st+1∣st, yt+1, at]

from Equation (2), and that the relevant costs (e.g. procurement, holding) are known. We may

know that demand for our product is impacted in some way by the state of the market, µt, but less

certain how to specify the conditional demand and market distribution, P [yt+1, µt+1∣µt]. This is

the situation that we consider in this section, in which the decision-maker seeks to model demand

using the predictive methods from statistics and machine learning, sometimes in combination with

“domain expert” forecasts, based on historical observations of data pertaining to demand (yt) and

the state of the market (µt). We show in this section how the formulation of the SEP-POMDP can

encompass various types of learning models.

In each of these cases, assume that we have historical observations comprising a training dataset,

D = {(yi, xi) ∶ i = 1, . . . ,N}. Here, yi indicates the i-th “label”, or realization of a target random

variable (with support Y, which we assume to be in R without loss of generality), that our machine

learning models are principally interested in predicting, based on the realization of some observed

auxiliary data vector xi (with support X ⊆ RdX , dimension dX ), and N is the number of data points

in our training data. We can choose to build these machine learning models to make predictions,

at each time t, of yt, using a combination of the (observed) auxiliary data xt, latent (partially

observed) variables ut (with support U ⊆ RdU , dimension dU ) that can represent either introduced

model artifacts useful for describing the data or real characteristics of the data generating process

for (yt, xt), and additional modeling parameters θt (with support Θ ⊆ RdΘ , dimension dΘ) that can
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be latent or known, time-varying or fixed.

For the SEP-POMDP, and in order to more fully describe its versatility and to better relate it

to results in the machine learning literature, we consider the modulation process to be specified by

these three types of machine learning model variables or parameters, that is µt = (xt, ut, θt). Note

that the SEP-POMDP assumption that µt is partially observed is an encompassing generalization

for (xt, ut, θt) since the associated belief distribution bt can simply assign probability 1 to the

realization of whichever components are observed by the decision-maker (the completely observable

case is a special case of the partially observable case). In the context of the above single product

inventory replenishment problem, xt might represent related market data (e.g. housing starts,

consumer price index, Google searches for the product), ut might represent the “underlying state

of the market”, and θt might represent model parameter values that are not completely known.

Recall, above, that a properly instantiated SEP-POMDP requires that we fully specify the

following probability distribution:

P [y′, µ′∣µ] = P [y′, x′, u′, θ′∣x,u, θ]. (4)

In the context we consider here, this conditional joint distribution will be estimated using a statis-

tical or machine learning model (or combination of models) in order to generate an approximate

distribution that is “close” to the true distribution, based on the training data D , which we will

denote PD[y′, x′, u′, θ′∣x,u, θ]. There are many different ways in which one might approach model-

ing this joint distribution, but in the context of the SEP-POMDP each of these fall under the two

broad categories of generative and discriminative (plus, an associated Markov forecasting model

for auxiliary data) learning models, as in Jebara (2012).

Discriminative models, plus forecasting. In many cases, specifying a (generative, see

below) model for the joint distribution over (yt+1, xt+1) can be difficult. In practice, many machine

learning tasks are primarily concerned with making predictions about y, given some values of the

auxiliary data x. These models are called discriminative learning models. Since the SEP-POMDP

is concerned with sequential decision-making environments, we require a full specification of the

conditional joint distribution of (yt+1, xt+1). However, the modeler might choose to employ one of

the many popular discriminative machine learning models in conjunction with a forecasting model
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for the auxiliary data process {xt ∶ t ≥ 0}. There are many ways in which Equation (4) might

decompose. One such decomposition is as follows, in which the forecasting model for the auxiliary

data process is independent of observations of the y-process:

PD[y′, x′, u′, θ′∣x,u, θ] = PD[y′∣x′, u′, θ′, x, u, θ] ⋅ PD[x′, u′, θ′∣x,u, θ].

Generative models. For generative models, the modeler specifies a model of the conditional

joint distribution of (yt+1, xt+1), given values of the (possibly) latent (u, θ)-process. In this setting,

the joint distribution in Equation (4) decomposes, as follows:

PD[y′, x′, u′, θ′∣x,u, θ] = PD[y′, x′∣u′, θ′, x, u, θ] ⋅ PD[u′, θ′∣x,u, θ].

In the subsequent subsections, we will discuss various learning models in the machine learning

and optimization literature that fit within the SEP-POMDP framework. Though not a compre-

hensive list, the purpose of the discussion is to demonstrate substantial flexibility in incorporating

learning models within the SEP-POMDP optimization models.

5.1 Discriminative Learning, Plus Forecasting

Many of the most popular supervised learning models, in practice, are aimed at some approximation

of the conditional expectation, E[yt∣xt = x], based on the historical training data, D . At time t,

predictions for future realizations of the target variable, {yt′ ∶ t
′ > t}, will thus depend on forecasting

future values of the auxiliary data, {xt′ ∶ t
′ > t}. This is the setting we consider in this subsection,

as we discuss how machine learning and forecasting models might be adapted and combined within

the SEP-POMDP framework. Unless otherwise specified, in this subsection we will be principally

concerned with learning models for specifying the following SEP-POMDP conditional probabilities:

PD[y′, x′, u′, θ′∣x,u, θ] = PD[y′∣x′, u′, θ′, x, u, θ]
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

discriminative learning model

⋅PD[x′, u′, θ′∣x,u, θ]
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

forecasting

. (5)

Non-parametric machine learning, plus Markov forecasts. We begin by discussing the

related work of Bertsimas and Kallus (2020) and Bertsimas and McCord (2019), who consider the

case of stochastic optimization “with side information” (Bertsimas and Kallus (2020) consider the
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single period case; Bertsimas and McCord (2019), the multi-period case). That is, they consider

optimization problems in which decisions are made, given (possibly large-scale) auxiliary data

that is useful for making predictions about uncertainties in the optimization problem. Bertsimas

and Kallus (2020) show how to use local, non-parametric learning methods, such as k-nearest

neighbor (k-NN) regression, kernel regression, locally-estimated scatterplot smoothing (LOESS),

classification and regression trees (CART), and random forests, trained on D , to generate weight

functions {wN,i(x) ∶ i = 1, . . . ,N} that approximate the following conditional probability for a fixed

realization of the auxiliary data, x0:

P [y = yi∣x′, u′, θ′, x = x0, u, θ] = P [y′ = yi∣x = x0
] ≈ wN,i(x

0
),

where wN,i(x) ∈ [0,1] and ∑
N
i=1wN,i(x) = 1, for all x ∈ X . In Bertsimas and McCord (2019),

they assume a Markov process for the auxiliary data (“side information”), and thus Equation 5 is

approximated as follows:

PD[y′ = yi, x′ = xi, u′, θ′∣x,u, θ] ≈ wN,i(x) ⋅ PD[x′∣x]. (6)

Since the model is non-parametric, and the discriminative learning models considered do not contain

latent variables, when applying to the SEP-POMDP, the belief function b (defined as a probability

distribution over X ) assigns probability 1 to the realization of xt at each decision epoch, t. The

optimality equation in this case becomes:

Hv(s, x) = min
a∈A(s)

{
N

∑
i=1

wN,i(x) [c(s, y
i, a) + β ∫

x′
∫
s′
P[x′∣x]p(s′∣yi, s, a)v(s′, x′)ds′ dx′]} .

Note that since this is a special case of the SEP-POMDP — that is, it satisfies the SEP-POMDP

conditioning assumptions (2) — the structural properties of the SEP-POMDP hold, including the

inheritance property. Further, the discriminative learning models considered in Bertsimas and

Kallus (2020) and Bertsimas and McCord (2019) (k-NN regression, kernel regression, LOESS,

CART, random forests) are applicable to the SEP-POMDP, so long as they are accompanied by

Markov forecasting model(s) for the auxiliary data process.

Markov forecasting models. Given the importance of distributional forecasting for specifying
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the conditional probability (5), it is worth considering the flexibility of the Markovian modeling

assumption on the auxiliary data forecasting model PD[x′, u′, θ′∣x,u, θ]. Notably, two important and

broad classes of models that are popular in practice satisfy the Markovian assumption: Brownian

motion-related stochastic processes (standard/geometric Brownian motion, Brownian motion with

drift, Ornstein-Uhlenbeck processes, Lévy processes, and multivariate extensions of these) and

autoregressive time series models (auto-regression moving average, vector auto-regression). We

include details pertaining to these in Appendix B.

Of course, other more direct Markov forecasting models for the auxiliary data also satisfy the

forecasting conditioning assumption of (5) — for example, discrete-time Markov chains (DTMCs)

as a model for {xt ∶ t ≥ 0} and, as is popular in practice, deterministic expert forecasts, such as

forecasts for macroeconomic data published regularly by macroeconomists.

Finally, we note that, in the absence of auxiliary data, {xt}, each of these forecasting models is

directly applicable to the observation process, as well, by assuming another constructed “auxiliary

data” process, {x̃t ∶ t ≥ 0}, such that x̃t is a finite history of the observation process, i.e. ∃τ such

that x̃t = [yt, . . . , yt−τ ], with respect to which (yt+1, ut+1, θt+1) satisfies the Markov property. Under

this assumption:

PD[yt+1, x̃t+1, ut+1, θt+1∣x̃t, ut, θt] = PD[yt+1, yt, . . . , yt−τ+1, ut+1, θt+1∣yt, . . . , yt−τ , ut, θt]

= PD[yt+1, ut+1, θt+1∣yt, yt−1, . . . , yt−τ , ut, θt]

= PD[x̃t+1, ut+1, θt+1∣x̃t, ut, θt].

Other discriminative learning models. In addition to the discriminative learning models,

above, other statistical learning methods fit within our framework. We will present the switching

regression model of Christiansen et al. (2020), as an encompassing generalization of the Bayesian

linear regression. For this time-dependent switching regression, there are assumed to be various

“regimes” (which we model with latent variable, ut) under which the relationship of the observation

yt to the auxiliary data xt is assumed to be captured by a different linear regression under each

“regime”. These linear regressions are defined by the fixed parameters θ = {(β0
u, βu, σu) ∶ ∀u ∈ U},

where β0
u is the scalar intercept, βu is the dX -dimensional vector of regression coefficients, and σu

specifies the standard deviation of the i.i.d. normally-distributed errors {εut}, that are assumed to
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be independent of the auxiliary data process. The time-dependence is assumed to captured by the

latent variables, {ut ∶ t ≥ 0}, which are assumed to followed a DTMC with transition probability

distributions {PU [⋅∣u] ∶ u ∈ U}. The auxiliary data are assumed to arise from i.i.d. draws from

an unspecified probability distribution over X , PX , and is independent of the y- and u-processes.

Fully specified, the switching regression model is as follows:

yt = ∑
u∈U

(β0
u + βu ⋅ xt + εut) ⋅ 1{ut = u}

εut
i.i.d.
∼ N(0, σ2

u), ut ∼ PU [⋅∣ut−1], xt
i.i.d.
∼ PX .

We can relate this to the discriminative learning model conditional probability condition of (5):

PD[y′∣x′, u′, θ′, x, u, θ]
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

discriminative learning model

= PD[y′∣x′, u′, θ]

=
1

σu
√

2π
exp

⎧⎪⎪
⎨
⎪⎪⎩

−
1

2
(
y′ − β0

u′ − βu′ ⋅ x
′

σu′
)

2⎫⎪⎪
⎬
⎪⎪⎭

PD[x′, u′, θ′∣x,u, θ]
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

forecasting

= PU [u
′
∣u]PX [x

′
∣x]

Note that if there is assumed to be only one, static latent state, then the above model reduces

to the standard Bayesian linear regression (when suitably equipped with prior distributions on the

model parameters), the theory and analysis of which is well-documented in the literature (Gelman

et al. (2004), West and Harrison (2006)).

Discriminative learning models for specifying parametric distributions. We will now

turn to another approach involving discriminative learning (for the y-process), plus forecasting (for

the x-process), with different underlying conditioning assumptions to Equation (5), but neverthe-

less satisfying the SEP-POMDP conditioning assumptions in Equation (2). In this approach, the

conditional probability for the y-process is specified by applying discriminative learning methods

to estimating the parameters of a parametric probability distribution. Specifically, let us consider

the probabilistic forecasting model and context of Salinas et al. (2020), called “DeepAR”.

Suppose {yt ∶ t ≥ 0} is a vector-valued stochastic process of (possibly) high dimension, with

components yi,t. The auxiliary data process is “assumed to be known for all time periods” (Salinas

et al. (2020)) — that is, at time t, we are assumed to have access to deterministic forecasts {x̃t′ ∶ t
′ >
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t} that can be global or associated with components of the y-process. For each t and component i,

yi,t is assumed to be drawn from a parametric distribution with likelihood function Py[⋅∣θ̃i,t], where

the parameters specifying this distribution, θ̃i,t (component i of parameter vector θ̃t), are assumed

to be functions of the outputs of a recurrent neural network (RNN) pertaining to component i at

time t. For instance, for real-valued yi,t, this might be a Gaussian distribution, where the mean

and standard deviation parameters are determined by the RNN output. We denote these RNN

outputs, for each time t and component i as ui,t, and the function specifying this relationship as fθ,

which may include global parameters associated with the RNN, θh (and, thus, the overall parameter

vector, θt = (θ̃t, θh), consists of fixed and time-varying components): θ̃i,t = fθ(ui,t, θh).

The outputs, ui,t, are modeled to be based on a RNN, a nonlinear function that we denote by

h and parametrized by θh, taking as input the prior output, ui,t−1, as well as the latest realization

of the i-th component of the target variable, yi,t, and the associated auxiliary data, xi,t:

ui,t = h (ui,t−1, yi,t, xi,t, θh) .

In this model, the SEP-POMDP conditioning assumption in Equation (2) decomposes as follows:

PD[yt+1, xt+1, ut+1, θt+1∣xt, ut, θt]

=

dY

∏
i=1

Py[yi,t+1∣θ̃i,t] ⋅ 1{θ̃i,t+1 = fθ(ui,t+1, θh)} ⋅ 1{ui,t+1 = h (ui,t, yi,t+1, xi,t, θh) } ⋅ 1{xt+1 = x̃t+1}.

Note that, since we are assuming that the auxiliary data and forecasts are known, the auxiliary

data forecasts are a special case of the Markov forecasting assumption described, above.

5.2 Generative Learning

Recall that the SEP-POMDP requires a full specification of the joint conditional probability in

(2). Rather than specifying this distribution by decomposing it into parts and building various

discriminative and forecasting learning models for these parts (as in the prior subsection), we

might instead choose to model the joint distribution directly. We discuss two broad classes of these

generative learning models in this subsection.

Hidden Markov Models. Hidden Markov models (HMMs) are a widely used and flexible

generative learning model that has found applications in domains ranging from computational
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biology (Eddy (2004)) to speech pattern recognition (Rabiner (1989)) to demand modeling in

inventory systems (Malladi et al. (2020)).

In the simplest formulation, HMMs are characterized by two discrete conditional probability

distributions — the Markov transition probabilities of the “hidden” (latent) state process {ut ∶ t ≥

0}, {PU [u
′∣u] ∶ u′, u ∈ U}, and the probability distribution for the emissions (yt, xt), {P(y,x)[y, x∣u] ∶

y ∈ Y, x ∈ X , u ∈ U}. Thus, the SEP-POMDP conditioning assumptions are straightforwardly

satisfied:

PD[y′, x′, u′, θ′∣x,u, θ] = P [y′, x′∣u′]P [u′∣u].

This HMM formulation is extensible, for example to permit multivariate Gaussian emission distri-

butions with parameters, θG, specifying the mean and covariance structure:

PD[y′, x′, u′, θ′∣x,u, θ] = P [y′, x′∣u′, θG]P [u′∣u].

Bayesian networks. Another popular generative learning model is the Bayesian network,

which is a representation of joint probability distributions (often high-dimensional) using directed

acyclic graphs in which edges represent local conditional dependencies (Bishop (2006)). This gen-

erality of Bayesian networks as models of joint probability distributions, when applied to the joint

distribution of (yt, xt) in the SEP-POMDP, make them an encompassing generalization of the

various modeling combinations that we have discussed in this section, above.

On training the machine learning models and Bayesian updating. It might be clari-

fying, at this point, to discuss options regarding implementation of these machine learning models

within our SEP-POMDP optimization model. In all cases, before we seek to solve our optimization

problem, we first train out machine learning model(s) on the training dataset, D , which gives us

our joint distribution, PD . Once we proceed to solving our optimization problem, we may choose

a variety of implementation methods.

1. Scoring the machine learning model. In this option, we train the model before optimizing,

affix the model parameters, θ̂D , and “score the model” (as data science practitioners would

say) — that is, we do not re-estimate model parameters based on new observations once we

have begun optimizing. The Bayesian inference mechanism, λ, is applied only for inferring
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latent variables, ut, and not model parameters.

2. Bayesian model updating. For certain types of statistical learning models, we may permit

model re-training based on observed realizations of (yt, xt) by including θt as a latent variable

in the model and allowing Bayesian updating of the parameter(s) via λ. For example, in the

case of a “discriminative, plus forecasting” mode with Bayesian linear regression, we might

permit posterior updates of the regression coefficients via λ.

3. Online model updating. Some machine learning models are not naturally suited to Bayesian

model updating. For these types of models re-training based on observed realizations of

(yt, xt) — updating, at time t, PD based on D ∪ {(yτ , xτ) ∶ τ < t} — must occur in the form

of an iterative process of training the machine learning model and solving the SEP-POMDP.

6 Applications

In this section, we give some real-world examples of decision-making problems that fit within

our SEP-POMDP framework — following the examples of Treharne and Sox (2002) for inventory

control, Sandikci et al. (2013) for liver transplantation decisions, and Zhou et al. (2009) for financial

portfolio optimization. Additionally, we will discuss Jiang and Powell (2015), as an example of how

the inheritance property might usefully facilitate extensions of computational solution procedures

and applications for MDPs to SEP-POMDPs.

Inventory. Consider the inventory management context of Treharne and Sox (2002), in which

the decision-maker is a plant manager in charge of making regular inventory procurement decisions,

at, in the face of economic uncertainty. At each procurement epoch, t, we know that our current

inventory level is st. Suppose that we model that there is a state of the economy, µt, for which we

receive signals at each epoch through demand, yt+1, that evolves independently of our procurement

decisions — in other words, inventory dynamics can be described by the conditional probability

P [st+1∣yt+1, st, at], and the demand and economic dynamics can be described as P [µt+1, yt+1∣µt].

Under this scenario, and suitable cost structures (e.g. the standard Newsvendor costs), Treharne

and Sox (2002) prove that a non-stationary base stock policy, for which the base stock level at each

epoch depends on a belief distribution over possible economic states, is optimal — an inheritance

result we could expect from Proposition 3.
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Liver Transplants. Now, consider the context of Sandikci et al. (2013), in which the decision-

maker is an end-stage liver disease patient trying to optimize his or her decision to accept or reject

offered potential liver transplants. The quality of the liver depends on the patient’s unobserved

ranking, µt, on the United Network for Organ Sharing (UNOS) liver transplant list. At each decision

epoch, t, the patient makes their decision, at, to accept or reject the offered liver on the basis of

their known current health status, ht, and the history of observed liver qualities, {lt}, and published

transplant list ranges on the UNOS website, {ωt}. The completely observed state component in

this problem is st = (ht, lt), the known current health status and liver quality. Observations of

the true ranking on the UNOS transplant list are through the offered liver quality and published

transplant list ranges, and thus can be described by the conditional probability P [yt+1, µt+1∣µt],

where yt = {lt, ωt}. In Sandikci et al. (2013), structural properties of an optimal policy are proven,

such as the optimality of a control limit policy, which we could expect from Proposition 3.

Financial Portfolio Optimization. Now consider, as in Zhou et al. (2009), that the decision-

maker is seeking to optimize the value of his or her investment portfolio over a finite time period

[0, T ] and under stochastic volatility conditions. For simplicity, assume that the decision-maker is

managing a portfolio containing a single riskless asset with rate of return, r, and buy/sell decisions,

{at ∶ t ≥ 0}, are made at regular “clock time” intervals of length ε (that is, the clock time between

each decision epoch t and t+1 is ε). The model in Zhou et al. (2009) considers that the asset price,

yt, evolves in continuous time according to geometric Brownian motion, the dynamics of which are

governed by the following stochastic difference equation:

yt+1 = xtexp{(r −
u2
t+1

2
) ε + ut

√
εW y

t } ,

where ut is the latent volatility at time t, {W y
t ∶ t ≥ 0} are i.i.d. Gaussian random variables, and

xt = yt. The latent volatility process is assumed to be a mean-reverting process (with mean version

parameter θmean, mean reversion value θ0 and noise parameter θnoise), the dynamics of which can

be approximated by:

ut+1 = ut + θmean(θ0 − ut)ε + θnoise

√
εW u

t ,

{W u
t ∶ t ≥ 0} are i.i.d. Gaussian random variables independent of {W y

t ∶ t ≥ 0}. Finally, the state,
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st, of the SEP-POMDP is the value of the portfolio at time t:

s̃t+1 = (s̃t − atxt)e
rε
+ at(yt+1 − xt),

with the objective being to maximize the expected value of s̃T . For our purposes here, we consider

xt to be represented as a completely observed component of the modulation process (as in Section

5), and also as a component of the state space, st = (s̃t, xt). Note that the dynamics of this model

satisfy the SEP-POMDP conditioning assumption in Equation (2).

Monotone Approximate Dynamic Programming. Finally, we consider the MDP setting of

Jiang and Powell (2015), in which the authors demonstrate convergence of an approximate dynamic

programming algorithm for solving MDPs in which the value functions are provably monotone on

the state space S. Incorporating knowledge of the monotone value function structure is demon-

strated to substantially improve the computational tractability of the MDP models of selected

applications in regenerative optimal stopping, energy storage and allocation, and glycemic control

for diabetes. Each of these applications are shown to have monotone optimal value functions under

conditions presented in Proposition 1 of Jiang and Powell (2015). In Appendix B, we show that

these conditions are sufficient for the SEP-POMDP inheritance of this monotone value function

structure under Corollary 3.

What is the significance of this inheritance? Each of the applications considered in Jiang and

Powell (2015) satisfy these conditions, and thus, there exist SEP-POMDP extensions of these mod-

els that preserve monotone optimal value functions. An important extension, in light of Section 5

and discussed in Appendix B, is in building statistical learning models for explaining the stochastic-

ity in state dynamics present in each of these applications, based on auxiliary data. For example, in

their energy storage and application example, the decision-maker is seeking to maximize revenues

while producing and transferring energy across the energy storage network, as well as purchas-

ing energy from the spot market. These decisions are inextricably linked to the uncertain energy

demand on the system. A SEP-POMDP formulation of the problem might include a statistical

learning model for predicting demand based on seasonal patterns, weather data, Google search

data, energy prices in the market, etc. We are guaranteed by the inheritance property, that in-

cluding such a predictive demand model would preserve monotonicity, and thus the methods of
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Jiang and Powell (2015), and their attendant computational benefits, for determining an optimal

policy are still applicable. More broadly, this is but one example of a set of conditions guaranteeing

monotone optimal value functions for applications of MDPs. For other conditions, and resulting

applications, a similar connection to the monotone approximate dynamic programming method of

Jiang and Powell (2015) might possibly be established.

7 Computational Example

There are many different approaches we might take to solving the SEP-POMDP, including spe-

cialized approaches that utilize the structural properties we have discussed: notably inheritance

and separable learning. We discuss one approach based on simulating belief trajectories, that we

then combine with inheritance in solving an inventory problem with time-delayed replenishment.

We discuss other computational methods, including exact methods in which we discuss the com-

putational benefits that might be gained by exploiting the relative tractability of the MDP analogs

compared to the generalized POMDP, approximate methods based on information relaxation, and

heuristics in Appendix E.

We now give an example of how a modeler might combine various structural properties of

the SEP-POMDP to generate “good” policies. There are many ways (and it present an interesting

direction for future research) in which specialized solution procedures for the SEP-POMDP could be

developed, so this is example is but one of many and its inclusion is meant for illustrative purposes,

as a concrete example of how inheritance and separability can be used in a computational solution

procedure. This example pertains to inventory management, and it constructs “good” policies in a

solution procedure that: (1) utilizes a belief trajectory simulation method, as in Appendix E, (2)

constructs partitions of the belief space, B, using support vector machines, and (3) incorporates a

generative learning model for demand, as in Section 5.2. The discussion in this section is based on

Bishop (2019) chapter 3. We keep the discussion necessarily brief, and refer the reader there for a

more detailed presentation, including additional results and a more extensive computational study.

Formulation. Consider that the decision-maker is making inventory replenishment decisions

for a single product over time, in which replenishment decisions made at decision epoch t are

realized at decision epoch t + τ (modeling, e.g., procurement procurement delays). We model this

as a SEP-POMDP with the following constituent processes:
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• {st ∶ t = 0,1, . . .} is defined to be the inventory level process, where st is the inventory level at

the decision epoch t prior to satisfying demand and being replenished.

• {yt ∶ t = 1,2, . . .} is defined to be the demand process, where dt is the demand that becomes

known just before decision epoch t. The support for the demand process is assumed to be

finite, ∣Y∣ < ∞.

• {at ∶ t = 0,1, . . .} is the replenishment process, where at is the replenishment decision made at

decision epoch t.

• {xt ∶ t = 1,2, . . .} is the additional observation data (AOD) process, where xt represents data

that becomes known just before epoch t from sources in addition to demand that might be

useful in more accurately forecasting demand. The set of all possible observations is X and

is assumed to be finite. We assume that {xt ∶ t ≥ 1} is completely observed, as in Section 5.

In this SEP-POMDP, we will train a (generative) hidden Markov model for the joint demand and

AOD processes, {(yt, xt) ∶ t ≥ 0}, with latent state process {ut ∶ t ≥ 0}, as a model for the following

SEP-POMDP conditional probability:

P [yt+1, µt+1∣µt] = P [yt+1, xt+1∣ut+1]P [ut+1∣ut].

The costs at time t will be accrued upon realization of the inventory order, according to the

familiar Newsvendor cost function: cat + h(st + at−τ − yt+1)
+ + p(yt+1 − st − at−τ)

+, where (b)+ =

max(0, b). The per-unit holding cost is h, the per-unit purchase cost is c, and p is the per-unit

underage cost. Further, we assume that the inventory, demand, and replenishment processes are

related through the stochastic difference equation st+1 = st +at−τ − yt+1, which assumes backlogging

is allowed, where τ is the replenishment delay. This equation can be described as a conditional

probability P [st+1∣st, yt+1, at−τ ].

In this formulation, the decision-maker at epoch t chooses the total amount of inventory pos-

sessed through the interval [t, t + τ], ãt ≜ st +∑
τ
j=1 at−j + at (note that st+τ = ãt − at −∑

τ
j=1 yt+j). If

we let s̃t = ãt − at be the inventory position through interval [t, t+ τ] before ordering, then we have

that s̃t+1 = s̃t + at − yt+1, which is familiar as the inventory difference equation under backlogging.

Additionally, we can project out purchase costs in the resulting optimality equation is v = H̃v,
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where H̃ is defined to be:

H̃v(s̃,b) = min
ã≥s̃

⎧⎪⎪
⎨
⎪⎪⎩

E
⎡
⎢
⎢
⎢
⎢
⎣

h̃
⎛

⎝
ã −

τ

∑
j=1

yj
⎞

⎠

+

+ p̃
⎛

⎝

τ

∑
j=1

yj − ã
⎞

⎠

+

∣b

⎤
⎥
⎥
⎥
⎥
⎦

+ β ∑
y′,x′

σ(y′, x′∣b)v(ã − y′, λ(y′, x′,b))

⎫⎪⎪
⎬
⎪⎪⎭

,

(7)

and where h̃ = βτh+ c and p̃ = βτp− c. With a little abuse of notation, we use ∑τj=1 yj to denote the

(random variable) sum over the next τ realizations of the demand process, i.e. at decision epoch

t, the sum over yt+1, yt+2, . . . , yt+τ . The distributions σ, λ are defined as in Section 3. For further

details regarding this formulation, we refer the reader to Bishop (2019).

For canonical single-product inventory problems modeled as MDPs, base stock policies are well-

known to be optimal. Proposition 5 uses the inheritance property of SEP-POMDPs to prove that a

base stock policy is optimal for this problem setting under a HMM learning model for demand, with

base stock levels, {a∗(b) ∶ b ∈ B}, defined as the smallest (and hence unique) myopic minimizer

such that:

a∗(b) ∈ arg min
ã

⎧⎪⎪
⎨
⎪⎪⎩

E
⎡
⎢
⎢
⎢
⎢
⎣

h̃
⎛

⎝
ã −

τ

∑
j=1

yj
⎞

⎠

+

+ p̃
⎛

⎝

τ

∑
j=1

yj − ã
⎞

⎠

+

∣b

⎤
⎥
⎥
⎥
⎥
⎦

⎫⎪⎪
⎬
⎪⎪⎭

. (8)

Proposition 5. Suppose a∗(b) − y′ ≤ a∗(λ(y′, x′,b)) for all y′, x′,b. Then the τ -lookahead policy,

π(s̃,b) = max{a∗(b) − s̃,0} for all s̃,b is optimal.

The proof of Proposition 5, based on inheritance of myopic optimal policy structure from the

MDPs of Sobel (1981), is in Appendix D.

Solution Procedure. Let ∆ ≜ {∑
τ
j=1 yj ∶ y1, . . . , yτ ∈ Y} = {δ1, . . . , δ∣∆∣}, the set of possible total

demands over τ epochs, and suppose the δi are in ascending order (δ1 < δ2 < . . . < δ∣∆∣). Bishop

(2019) show that the optimal base stock levels induce a linear partition of the belief space, B into

sets {Bδ ∶ δ ∈ ∆} such that for all b ∈ Bδ, a
∗(b) = δ. These sets are defined by the Newsvendor

critical fractile, p̃

p̃+h̃
:

Bδm ≜

⎧⎪⎪
⎨
⎪⎪⎩

b ∈ B ∶ P

⎡
⎢
⎢
⎢
⎢
⎣

τ

∑
j=1

yj ≤ δm−1∣b

⎤
⎥
⎥
⎥
⎥
⎦

<
p̃

p̃ + h̃
≤ P

⎡
⎢
⎢
⎢
⎢
⎣

τ

∑
j=1

yj ≤ δm∣b

⎤
⎥
⎥
⎥
⎥
⎦

⎫⎪⎪
⎬
⎪⎪⎭

. (9)

Rather than solving for these partitioning hyperplanes analytically, which can be difficult depending

on the demand model, we construct them using Monte Carlo simulation and soft-margin support
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vector machines (SVM). The procedure is detailed in Figure 2. In Step 1, we generate a finite grid

of belief vectors through belief trajectory simulation. Then, in Step 2 and 3, we use Monte Carlo

simulation of the demand process to calculate the estimated optimal base stock levels. These then

serve as labels upon which we can train SVM classifiers in step 4. We note that the multi-class

SVM of Step 4 can be solved by solving ∣∆∣ one-versus-rest SVMs. Figure 3 illustrates this method

for approximating the partition {Bδ ∶ δ ∈ ∆} for a small example.

Computational Experiments. Now we give an numerical example that is meant to be

illustrative of the process a practitioner might go through to train a statistical learning model

for demand, given historical observations of the demand and AOD processes, and then utilize this

learning model to construct “good” policies using the SVM-based method, above. For this example,

we assume that the true demand and AOD processes are generated from a HMM. The dynamics

of the latent states under the “true” HMM (Htrue) are defined by the following transition matrix:

U =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0.7 0.2 0.1

0.3 0.5 0.2

0.3 0.3 0.4

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, P [ut+1 = j∣ut = i] = U(i, j).

For each of these three latent states, the demand and AOD processes are drawn from discrete

multi-variate Normal distributions, so that the conditional probabilities P [yt, xt∣ut] are defined by

the following mean (ζu) vectors and covariance matrices (Σu):

ζ1 =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

10

8

⎤
⎥
⎥
⎥
⎥
⎥
⎦

,Σ1 =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

5 1

1 5

⎤
⎥
⎥
⎥
⎥
⎥
⎦

, ζ2 =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

20

10

⎤
⎥
⎥
⎥
⎥
⎥
⎦

,Σ2 =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

10 1

1 10

⎤
⎥
⎥
⎥
⎥
⎥
⎦

, ζ3 =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

25

12

⎤
⎥
⎥
⎥
⎥
⎥
⎦

,Σ3 =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

15 1

1 15

⎤
⎥
⎥
⎥
⎥
⎥
⎦

.

The other parameters specifying the SEP-POMDP inventory model are β = 0.93, τ = 2, p̃ = 3, h̃ = 1.

We simulate the policies across a horizon T = 65. The numerical experiment proceeds as follows:

1. Initialize Htrue. Compute the SVM-generated base stock policy according to the procedure in

Figure 2, SVMtrue. Evaluate Htrue according to the Monte Carlo policy evaluation procedure

in Figure 4 (with Heval = Htrue).

2. Generate a synthetic training dataset, D , by simulating multiple trajectories of length T = 65.

3. Train a HMM on D using the expectation maximization algorithm of Baum and Petrie (1966),
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Htrain. Compute the SVM-generated base stock policy according to the procedure in Figure

2, SVMtrain. Evaluate Htrain according to the Monte Carlo policy evaluation procedure in

Figure 4 (with Heval = Htrain).

As in Section 5, for our example here we have (synthetically-generated) training D upon which

we can train a learning model prior to implementing (or “scoring” the learning model) in the

SEP-POMDP optimization problem. The solution procedure makes use of the policy structure

(inheritance) and also separability (in belief simulation and HMM training) in order to construct

good policy solutions.

For our computational experiment, policies are evaluated using 10,000 Monte Carlo simulations.

In Figure 5 we compare the evaluation of the base stock policy based on SVMtrue to SVMtrain

for different sizes of the dataset D . Since the expectation maximization algorithm used to train

Htrain does not have convergence guarantees, for each dataset size we give the HMM training 5

different random initializations and report both the policy evaluation under the best performing

initialization and also the average across the initializations. Since we do not have convergence

guarantees in training these HMMs, we see that the gap between the policy evaluations narrows as

the training dataset size increases, but then plateaus.

8 Conclusion

We have introduced a specially structured POMDP, the SEP-POMDP, for modeling sequential

decision-making environments in the presence of exogenous observations that affect the dynamics

and objective of the system. We showed that this class of models inherits optimal value and policy

function structural properties from related MDPs, thus extending the deep operations research

literature proving such structures for the general MDP and also myriad real-world applications.

In a particularly important discussion, we then showed that our formulation encompasses a wide

array of supervised learning models for modeling the exogenous uncertainty introduced to the

system through the observation process. The range of supervised learning methods is vast and

includes: discriminative learning models such as random forests, LOESS, kernel regression, switch-

ing regressions, and autoregressive recurrent neural networks; Markovian forecasting models such

as Brownian motion, Ornstein-Uhlenbeck processes, and ARMA processes; as well as generative

models such as HMMs and Bayesian networks. We gave a sense for the range of applications for
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which the SEP-POMDP framework can include by discussing its relationship to models from var-

ious fields. Finally, we discussed a particular inventory problem under procurement delays, as an

illustrative example as to how one might integrate various properties of the SEP-POMDP in a

solution procedure. We give additional attention to computational considerations in the appendix.

Much of the reinforcement learning literature is concerned with learning (near) optimal policies

through repeated interaction with the decision-making environment, and in many applications in

a model-free environment. Developing these methods for learning in the midst of uncertainty is a

natural evolution from the foundational MDP that arose out of the operations research community,

in which assumptions that the transition probabilities in the system are well-specified are common.

What happens, however, when interactions in the environment are expensive, or reinforcement

learning requires a number of interactions that pushes the limits of our computing capabilities, as

we seek to apply these methods to more and more complex real-world systems? Our reinforcement

learning models could benefit substantially by leveraging supervised learning methods for modeling

exogenous uncertainty in the system. We see the SEP-POMDP as a potentially foundational

modeling framework for building next generation reinforcement learning methods and applications

that leverage supervised learning for explaining the uncertainty in the system based on (possibly

very large) data.

Appendix A Proof of Inheritance Property

Proof of Proposition 3. We proceed by demonstrating that P(b) and P(c) hold and then applying

Proposition 1. Suppose v(⋅, x) ∈ Ṽ for all b ∈ B. Recall, we have

Hv(s,b) = min
a∈A(s)

∫
y′
σ(y′∣b)hy′(s, a, v(⋅, λ(y

′,b)))dy′ .

By B(a), we have that hy′(⋅, ⋅, v(⋅, λ(y
′,b))) ∈ F̃ for all (y′,b) ∈ Y × B. Further,

∫
y′
σ(y′∣b)hy′(⋅, ⋅, v(⋅, λ(y

′,b)))dy′ ∈ F̃

as well, since F̃ is a space of functions that is a convex cone.

By the same logic, since ∫y′ σ(y
′∣b)hy′(⋅, ⋅, v(⋅, λ(y

′,b)))dy′ ∈ F̃ , B(c) guarantees that P(c) holds

as well. The conclusion follows by Proposition 1.
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Figure 1: A graphical depiction of Corollary 5, with a 3-dimensional belief simplex B, and where
π∗(⋅,b) = δ∗j for all b in partition region Bj .
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1. Generate a finite set of belief points, B′ ⊂ B, via belief trajectory simulation (as in Appendix

E). Let B′ = {b1, . . . ,bK}.

2. For each b ∈ B′, generate N demand trajectories (yn1 , . . . , y
n
τ ). This gives us an estimate of

the probabilities we need to compute the base stock level a∗(b):

P̂

⎡
⎢
⎢
⎢
⎢
⎣

τ

∑
j=1

yj = δ∣b

⎤
⎥
⎥
⎥
⎥
⎦

=
1

N

N

∑
n=1

1

⎧⎪⎪
⎨
⎪⎪⎩

τ

∑
j=1

ynj = δ

⎫⎪⎪
⎬
⎪⎪⎭

.

3. Calculate the estimated base stock level, â(b), for each b ∈ B′:

â(b) ∈ arg min
ã

⎧⎪⎪
⎨
⎪⎪⎩

∑
δ∈∆

P̂

⎡
⎢
⎢
⎢
⎢
⎣

τ

∑
j=1

yj = δ∣b

⎤
⎥
⎥
⎥
⎥
⎦

⎡
⎢
⎢
⎢
⎢
⎣

h̃
⎛

⎝
ã −

τ

∑
j=1

yj
⎞

⎠

+

+ p̃
⎛

⎝

τ

∑
j=1

yj − ã
⎞

⎠

+⎤
⎥
⎥
⎥
⎥
⎦

⎫⎪⎪
⎬
⎪⎪⎭

. (10)

4. Generate the separating hyperplanes by training a multi-class linear, soft-margin SVM on the

set of tuples {(bi, â(bi)) ∶ i = 1, . . . ,K}.

Figure 2: Partitioning the belief space, B.
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(a) Points randomly generated on the belief simplex,
B, and labeled.
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(b) The SVM-generated partition of B with C = 10.
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(c) The SVM-generated partition of B with C = 50.
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(d) The true partition of B.

Figure 3: Depicting example SVM partitions of B under different values of the SVM regularization
parameter, C. The regions correspond to different values of the optimal base stock levels. In this
example, the HMM latent state space has three elements U = {u(1), u(2), u(3)}, the AOD space has
three elements X = {x(1), x(2), x(3)}, and the demand space has five elements Y = {1,2,3,4,5}. The
dynamics P [y′, x′, u′∣u] are governed by three matrices U , Q, and Y :

U =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

0.75 0.125 0.125
0.125 0.75 0.125
0.125 0.125 0.75

⎤
⎥
⎥
⎥
⎥
⎥
⎦

, Q =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

0.9 0.05 0.05
0.05 0.9 0.05
0.05 0.05 0.9

⎤
⎥
⎥
⎥
⎥
⎥
⎦

, Y =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

0.75 0.1 0.05 0.05 0.05
0.05 0.075 0.75 0.075 0.05
0.05 0.05 0.05 0.1 0.75

⎤
⎥
⎥
⎥
⎥
⎥
⎦

,

where U(i, j) = P [u′ = u(j)∣u = u(i)], Q(i, k) = P [x′ = x(k)∣u = u(i)], Y (i, l) = P [y′ = l∣u = u(i)], and
P [y′ = l, x′ = x(k), u

′ = u(j)∣u = u(i)] = U(i, j)Q(i, k)Y (i, l). The lead time is τ = 2, the discount

factor β = 0.9, p̃ = 70, h̃ = 10.
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Evaluate(Htrue, Heval, SVMeval, β, τ , p̃, h̃, T , N sim): For each Monte Carlo simulation n =

1, . . . ,N sim, generate vn as follows.

1. Initialize sn0 = 0, xn0 = [1
3 ,

1
3 ,

1
3
], dn0 = 0, an−1 = . . . = an−τ = 0, and vnθ = 0. Sample u0 from the

belief distribution x0.

2. For t = 0, . . . , T :

• Determine ordering decision and cost.

ãnt ← SVMeval
(bnt )

s̃nt ← snt −
τ

∑
j=1

ant−j − d
n
t

ant ← (ãnt − s̃
n
t )

+

vn ← vn + βt[h̃ (snt + a
n
t−τ − y

n
t )

+
+ p̃ (ynt − s

n
t − a

n
t−τ)

+
]

• Transition, costs, and belief update.

snt+1 ← snt + a
n
t−τ − y

n
t

(ynt+1, x
n
t+1, u

n
t+1) ∼ H

true

bnt+1 ← λHeval(ynt+1, x
n
t+1,b

n
t )

Return: ∑N
sim

n=1
vn

Nsim

Figure 4: The SVM-Monte Carlo policy evaluation method.
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Figure 5: The optimality gap between the SVM-generated base stock policy under the true HMM
demand model and under HMMs trained on synthetic data.
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Appendix B Relationship to Statistics and Machine Learning

B.1 Markov Forecasting Models

Brownian motion. We might consider modeling the auxiliary process (which we briefly assume

to be univariate), {xt ∶ t ≥ 0}, as standard Brownian motion, which satisfies the following two

properties (Resnick (1992), chapter 6): (1) {xt ∶ t ≥ 0} has independent increments and (2) xt+1−xt ∼

N(0,1). In our notation, the conditional probability distribution is:

PD[x′, u′, θ′∣x,u, θ] = PD[x′∣x]

=
1

√
2π
e−

1
2
(x−x′)2

.

Standard Brownian motion satisfies the Markov assumption, by virtue of its independent incre-

ments, as do other examples of Lévy processes. In fact, the Markov assumption holds for other

generalizations built upon standard Brownian motion that are popular particularly in mathematical

finance (we will discuss one such application from Zhou et al. (2009), later), for example, Brownian

motion with drift, geometric Brownian motion (popularized by its use as a model of the under-

lying stock price process in the Black-Scholes model), and Ornstein-Uhlenbeck processes (Resnick

(1992), Zhou et al. (2009)). For standard Brownian motion and these generalizations, there exist

Markovian extensions in the case of a vector-valued auxiliary process, enabling modeling flexibility

with correlated auxiliary data.

Autoregressive time series models. Autoregressive time series models are some of the

more popular forecasting models used in practice for time series with regular and discrete time

intervals (Hyndman and Khandakar (2008)). For example, the modeler might assume that the

auxiliary process is an “autoregressive moving average” process, with parameters p and q (call

this ARMA(p, q)) determining that for all t, xt is dependent upon the past p realizations of the

auxiliary data process, xt−1, . . . , xt−p, and the average of the previous q realizations of the noise

process {ut ∶ t ≥ 0}:

xt = θ
intercept

+ ut +
p

∑
j=1

θAR
j xt−j +

q

∑
j=1

θMA
j ut−j , ut

i.i.d.
∼ N(0, σ2

u).

Note that xt is Markovian with respect to the vector (xt−1, . . . , xt−p, ut−1, . . . , ut−q). Let x̃t =
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(xt, . . . , xt−p+1) be the previous p observations of the auxiliary process before time t and let

ũt = (ut, . . . , ut−q+1) be the previous q observations of the u-process. Since the u-process is assumed

to be i.i.d., (x̃t, ũt) satisfies the forecasting conditional probability of (5) with fixed parameters

θ = (θintercept, θAR1 , . . . , θARp , θMA
1 , . . . , θMA

q , σu):

PD[x̃t+1, ũt+1, θt+1∣x̃t, ũt, θt]

= PD[xt+1, . . . , xt−p+2, ut+1, . . . , ut−q+2∣xt, . . . , xt−p+1, ut, . . . , ut−q+1, θ]

= PD[xt+1 = x
′
∣ut+1, xt, . . . , xt−p+1, ut, . . . , ut−q+1, θ]PD[ut+1∣θ],

and the following marginal conditional distribution over xt+1 is normally-distributed:

PD[xt+1 = x
′
∣xt, . . . , xt−p+1, ut, . . . , ut−q+1, θ]

=
1

σu
√

2π
exp

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

−
1

2

⎛

⎝

x′ − θintercept −∑
p
j=1 θ

AR
j xt−j −∑

q
j=1 θ

MA
j ut−j

σu

⎞

⎠

2⎫⎪⎪⎪
⎬
⎪⎪⎪⎭

.

This kind of autoregressive model can be extended to the case of a vector-valued auxiliary

process in the vector autoregressive (VAR) model (Watson (1994)).

Appendix C Monotone Approximate Dynamic Programming

Consider the finite horizon MDP model considered in Jiang and Powell (2015), which we suc-

cinctly describe by the following Bellman equation (and without loss of generality, we assume a

minimization formulation, to more easily facilitate comparison to our SEP-POMDP framework):

v∗t (s) = min
a∈A

{ct(s, a) +E [v∗t+1(st+1)∣st = s, at = a] }, t = 0,1,2, . . . , T − 1

vT (s) = cT (s),

where the state transition dynamics are described by the stochastic function, st+1 = f(st, at,wt+1)

and {wt ∶ t ≥ 0} is a stochastic process (which Jiang and Powell (2015) call the “information

process”), in a space W , meant to capture the totality of the stochasticity in state dynamics. Now,

we note that this MDP formulation corresponds to the MDP analogs of (3) (albeit with a description

of state dynamics via a stochastic function, rather than the equivalent conditional probability

specification). The only difference is the introduction of an affixed value of the observation process,
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y′:

v∗t (s) = min
a∈A

{ct(y
′, s, a) +E [v∗t+1(st+1)∣y

′, st = s, at = a] }, t = 0,1,2, . . . , T − 1

vT (s) = cT (s),

(11)

where st+1 = f(st, at, y
′,wt+1). We might consider y′ as introducing an observed component of the

information process, which in the MDP analog formulation is affixed, but for the SEP-POMDP

we permit to be a random variable that is useful for explaining (at least part) of the uncertainty

captured by the information process, and for which we want to build a statistical learning model

for describing, as in Section 5.

Jiang and Powell (2015) are principally focused on MDPs for which the optimal value functions

exhibit the following monotonicity property, for all t:

s ⪯ s̃⇒ v∗t (s) ≥ v
∗
t (s̃), ∀t = 0,1,2, . . . , T and s, s̃ ∈ S, (12)

where ⪯ is a component-wise partial order, such that when the state can be decomposed into

s = (m,j) (where m is in a space M and j in a space J ):

s ⪯ s̃⇔m ≤ m̃, j = j̃.

They present a proposition with sufficient conditions under which the optimal value functions

exhibit the monotonicity property (12), that we include verbatim, below, with only trivial modifi-

cations to facilitate comparison to our MDP analog formulation (11). We then demonstrate that

the assumptions of this proposition guaranteeing monotone value functions for the MDPs in Jiang

and Powell (2015) satisfies the conditions of Corollary 3, and thus the SEP-POMDPs that include

statistical learning models for explaining the y-process (an observed component of the information

process of Jiang and Powell (2015)) inherit this monotone value function structure.

Proposition 6 (Jiang and Powell (2015), Proposition 1). Suppose that every s ∈ S can be written

as s = (m, i) for some m ∈ M and j ∈ J , and let st = (mt, jt), be the state at time t, with mt ∈ M

and jt ∈ J . Assume:

JP1. For every s, s̃ ∈ S with s ⪯ s̃, a ∈ A, and w ∈ W , the state transition function satisfies
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f(s, a, y′,w) ⪯ f(s̃, a, y′,w),

JP2. For each t < T , s, s̃ ∈ S, with s ⪯ s̃, and a ∈ A, ct(s, a) ≥ c(s̃, a) and cT (s) ≥ cT (s̃).

JP3. For each t < T , mt and wt+1 are independent.

Then the value functions v∗t satisfy the monotonicity property (12).

We will prove the following inheritance proposition, proving SEP-POMDP inheritance of mono-

tone optimal value function structure under conditions JP1-JP3.

Proposition 7 (SEP-POMDP inheritance under Jiang and Powell (2015) monotonicity condi-

tions.). Suppose JP1, JP2, and JP3 hold. Then, for the SEP-POMDP v∗t , for t = 0,1,2 . . . , T ,

satisfies the monotonicity property for all b ∈ B. That is, for s, s̃ ∈ S:

s ⪯ s̃⇒ v∗t (s,b) ≥ v∗t (s̃,b), ∀t = 0,1,2, . . . , T,∀b ∈ B.

Proof of Proposition 7. It suffices to show that JP1-JP3 imply P(a), B(a), and B(b). We begin by

explicitly defining the structured functional spaces (implicit in Jiang and Powell (2015)):

Ṽ ≜ {v ∶ S ↦ R ∶ v satisfies the monotonicity property (12)}

F̃ ≜ {f ∶ S × A ↦ R ∶ f(⋅, a) satisfies the monotonicity property (12) for all a ∈ A}.

The space of real-valued monotone functions is closed, so P(a) is satisfied. To show that B(b)

holds, we utilize the results of Smith and McCardle (2002) and note that the functions in F̃ satisfy a

special kind of joint extension of a C3 property, P∗, called single-point properties (for minimization

problems, e.g. monotonicity, concavity in S). Since the monotonicity property defining F̃ is a

single-point property, it follows from Smith and McCardle (2002) Proposition 4 that it is preserved

under minimization. Finally, B(a) is satisfied by the following inductive argument (from Jiang and
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Powell (2015)) following from JP1 and JP3. Suppose v∗t+1 ∈ Ṽ and s, s̃ ∈ S such that s ⪯ s̃:

E [v∗t+1f(s, a, y
′
)∣st = s, at = a, y

′] = E [f(s, a, y′)∣jt = j, at = a, y
′]

≥ E [f(s̃, a, y′)∣jt = j̃, at = a, y
′]

≥ E [f(s̃, a, y′)∣st = s̃, at = a, y
′] .

Hence, E [v∗t+1(st+1)∣⋅, ⋅, y
′] ∈ F̃ . By JP2, ct(⋅, ⋅, y

′) ∈ F̃ . B(a) follows because F̃ is a convex cone.

Appendix D Computational Example

D.1 Proof of base stock optimality.

We will prove Proposition 5 — the optimality of a base stock policy for the single product inven-

tory replenishment problem under procurement delays — by showing how, since the problem can

be formulated as a SEP-POMDP, it inherits this structure from an MDP analog. Rather than

showing this directly, considering the context of an MDP analog inventory problem, we instead

show conditions for SEP-POMDPs inheriting a more general myopic optimal policy structure from

the MDPs considered in Theorem 1 of Sobel (1981), and then demonstrate that our computational

example satisfies the conditions for this myopic optimal policy structure.

We will make use of the notion of separable functions.

Definition 3. (separable function) A function f ∶ S ×A ↦ R is separable if there exists a function

K ∶ A ↦ R and a function L ∶ S ↦ R such that f(s, a) = L(s) +K(a).

Note that the space of separable functions is a convex cone. That is, suppose we have two

separable functions, f and g, which map S ×A to R, and conic weights α,β ≥ 0. Clearly,

αf(s, a) + βg(s, a) = αKf(a) + βKg(a) + αLf(s) + βLg(s).

Now, we prove conditions for the optimality of myopic policies for the SEP-POMDP, that are

inherited from the MDPs of Sobel (1981), and we assume the spaces S, Y, M, and A are discrete.

Proposition 8 (Myopic optimal polices.). Suppose the following:
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(i) ∃K ∶ A × Y ↦ R, L ∶ S × Y ↦ R such that c(s, y′, a) = K(y′, a) + L(s, y′), for all y′ ∈ Y, s ∈ S,

a ∈ A

(ii) p(⋅∣y′, s, a) is independent of s (and so we express as p(⋅∣y′, a)), for all y′ ∈ Y, a ∈ A

(iii) a∗(b) ∈ arg min
a∈A

{G(b, a)}, where

G(b, a) = ∑
y′
σ(y′∣b)

⎡
⎢
⎢
⎢
⎢
⎣

K(y′, a) + β∑
y′′
σ(y′′∣λ(y′,b))∑

s′
p(s′∣y′, a)L(s′, y′′)

⎤
⎥
⎥
⎥
⎥
⎦

(iv) a∗(bt) is feasible for all t

Then, the stationary deterministic policy π∗(s,b) = a∗(b) for all s ∈ S,b ∈ B is optimal.

Proof of Proposition 8. Suppose v(⋅,b) ∈ Ṽ for all b ∈ B. We begin by defining the following

structured function spaces:

Π̃ ≜ {π̃ ∶ ∃a ∈ A ∶ π̃(s) = a,∀s ∈ S}

Ṽ ≜ V

C̃ ≜ {c̃ ∶ ∃K ∶ A ↦ R, L ∶ S ↦ R ∶ c̃(s, a) =K(a) +L(s)}

P̃ ≜ {p̃ ∶ p̃(⋅∣s, a) = p̃(⋅∣a)}

F̃ ≜ {f ∶ ∃K ∶ A ↦ R, L ∶ S ↦ R ∶ f(s, a) =K(a) +L(s)}.

We want to show that there exists a set {a(b) ∶ b ∈ B} such that π∗(s,b) = a(b) for all (s,b) ∈ S×B

is stationary optimal by showing that P(a), B(a), B(b), and B(c) hold.

P(a) holds trivially. We aim to show B(a) holds. Suppose ṽ ∈ Ṽ . Observe that (i) and (ii) are

equivalent to p(⋅∣y′, ⋅, ⋅) ∈ P̃ for all y′ ∈ Y and c(⋅, y′, ⋅) ∈ C̃ for all y′ ∈ Y, which imply that

hy′(s, a, ṽ) = c(s, y
′, a) + β ∑

s′∈S

p(s′∣y′, s, a)ṽ(s′)

=K(y′, a) +L(s, y′) + β ∑
s′∈S

p(s′∣y′, a)L(s′) ∈ F̃ , for all y′ ∈ Y.

B(b) trivially holds. Further, separable functions when minimized yield state-invariant optimal

policies (maximizing L(s)+K(a) over a is equivalent to minimizing K(a) over a for all s). So B(c)
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holds. By Proposition 3 we conclude that there exists a set {a(b) ∶ b ∈ B} such that π∗(s,b) = a(b)

for all (s,b) ∈ S × B is stationary optimal.

It remains to show that π∗(s,b) = a∗(b) for all s ∈ S, the myopic minimizer of the function

G(b, a). An inductive argument, which follows along the lines of the proof given in Sobel (1981)

proves this result.

Let L(s,b) = E[L(s, y′)∣b] and K(b, a) = E[K(y′, a)∣b]. The value function of the SEP-

POMDP, under any policy π is defined as follows, where bt+1 = λ(zt+1,bt) and at = π(st,bt):

vπ(s0,b0) = E[
∞

∑
t=0

βtc(st, yt+1, at)∣s0,b0] (13)

= E[
∞

∑
t=0

βt [K(bt, at) +L(st,bt)] ∣s0,b0], (14)

and where (3) follows from application of assumption (a). From assumption (b), st+1 ∼ γ(at, yt+1),

where γ is a random variable depending only on at and yt+1. Then,

vπ(s0,b0) = E[
∞

∑
t=0

βt [K(bt, at) +L(st,bt)] ∣s0,b0]

=K(b0, a0) +L(s0,b0) +E[
∞

∑
t=1

βt[K(bt, at) +L(γ(at−1, yt),bt)]∣s0,b0]

= L(s0,b0) +E[
∞

∑
t=0

βt[K(bt, at) + βL(γ(at, yt+1),bt+1)]∣s0,b0]

= L(s0,b0) +E[
∞

∑
t=0

βt[K(bt, at) + βL(γ(at, yt+1), λ(yt+1,bt))]∣s0,b0]

= L(s0,b0) +E[
∞

∑
t=0

βt[K(bt, at) + β∑
y′′
σ(y′′∣λ(yt+1,bt))∑

s′
p(s′∣yt+1, at)L(s

′, y′′)]∣s0,b0]

= L(s0,b0) +E[
∞

∑
t=0

βtG(bt, at)∣s0,b0]

≥ L(s0,b0) +E[
∞

∑
t=0

βtG(bt, a
∗
(bt))∣s0,b0].

We conclude that the policy π∗(s,b) = a∗(b) for all s ∈ S, b ∈ B is stationary and optimal.

Now, we can prove the optimality of the base stock policy in Proposition 5 by showing that it

satisfies the conditions of Proposition 8 as a myopic optimal policy.

Proof of Proposition 5. We go case-by-case through the assumptions of Proposition 8.
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(i) The cost function, c, for our inventory example comes from the following:

E[h̃
⎛

⎝
ã −

τ

∑
j=1

yj
⎞

⎠

+

+ p̃
⎛

⎝

τ

∑
j=1

yj − ã
⎞

⎠

+

∣b]

= ∑
y1,x′

σ(y1, x
′
∣b)E

⎡
⎢
⎢
⎢
⎢
⎣

h̃
⎛

⎝
ã −

τ

∑
j=1

yj
⎞

⎠

+

+ p̃
⎛

⎝

τ

∑
j=1

yj − ã
⎞

⎠

+

∣b, y1

⎤
⎥
⎥
⎥
⎥
⎦

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
SEP-POMDP cost function, c

.

From this, we can see that c is a function only of ã (a in Proposition 8) and the subsequent

demand y1 (y′ in Proposition 8), and thus (i) is satisfied with c =K.

(ii) In the inventory position formulation, the dynamics of the inventory position are defined by

the stochastic difference equation, s̃t+1 = ãt − yt+1, and do not depend on s̃t.

(iii) This is the definition of the base stock levels in Equation 10, where c =K from (i), above.

(iv) This condition is guaranteed by the attainability condition of Proposition 5, namely: a∗(b)−

y′ ≤ a∗(λ(y′, x′,b)) for all y′, x′,b.

Since (i) − (iv) of Proposition 8 are satisfied, the base stock (myopic) policy defined by Equation

10 is optimal.

Appendix E Computational Tractability

POMDPs are notoriously difficult to solve for other than small instances due to the fact that the

belief space B contains an uncountably infinite number of possible belief vectors. There have been

various approaches in the literature that seek to overcome the tractability issue of the POMDP. In

this appendix we discuss additional types of solution procedures for POMDPs — belief trajectory

simulation, exact, information relaxation, and online heuristics — and give examples of how the

specialized structural properties of the SEP-POMDP can be utilized within these frameworks to

solve (or approximately solve) SEP-POMDPs.

E.1 Belief Trajectory Simulation Methods

Belief trajectory simulation methods are based upon the intuition that, for many problems, there

are only a small subset of beliefs that are reachable under an optimal policy. Various approaches

in the literature successively build a grid on B by alternating at each epoch between sampling new
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beliefs and performing value iteration operations on the new belief states (Pineau et al. (2003),

Spaan and Vlaasis (2005)).

Here we present an a priori belief trajectory simulation method for constructing a discrete

grid approximation, B′ ⊂ B, which utilizes the actual dynamics of the modulation and observation

processes, while alleviating the computational burden associated with past approaches for the

generalized POMDP due to the fact that learning in SEP-POMDPs is passive and independent

of control. This method turns solving the SEP-POMDP into solving a completely-observed MDP

with state space S × B′.

Suppose we have a metric space (B, ∥⋅∥), where ∥⋅∥ is the sup-norm and B is the belief space.

Let Bd ≜ {b ∈ B ∶ ∃b′ ∈ B ∶ b =
⌊b′⋅10d⌋

10d
}, the grid of points in B rounded to the d-th digit. Note that

Bd ⊂ B. We detail the so-called B′ solution procedure for SEP-POMDPs.

0. Initialization. Initialize belief distribution, modulation state, number of simulation runs,
mesh parameter, and cardinality parameter — b0, µ0, N , d, and K respectively.

1. Belief simulation. Generate, according to P [y′, µ∣µ] the sequences {yt, t = 1, . . . ,N} and
{µt, t = 0, . . . ,N}. Then compute recursively {bt, t = 1, . . . ,N} such that bt+1 = λ(yt+1,bt) for
t = 0, . . . ,N − 1.

2. B′ definition. Let b̃t be bt rounded to the d-th digit and let B′ ≜ ⋃Ki=1 b̃(i), the K-th most

frequently visited balls of radius 10−d in B.

3. Solving the MDP with state space S ×B′. Solve the modified completely observed MDP with
optimality equation

v̂(s,b) = min
a∈A(s)

∑
y′
σ(y′∣b)[c(s, y′, a) + β∑

s′
p(s′∣y′, s, a)v̂(s′,b′(y′,b))],

where b′(y′,b) ≈ λ(y′,b) and b′(y′,b) ∈ B′.

Figure 6: The B′ method.

In step 0, we initialize the solution procedure. We note that d should be a positive integer and

controls the fineness of the grid. The cardinality parameter, K, determines how many points will

be included in the approximate grid.

In step 1, we simulate a trajectory of the beliefs by simulating the evolution of observations

and modulation states according to the underlying Markov chain governing the dynamics, and
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recursively performing the belief update operations according to these observations and modulation

states. So long as the Markov chain for the modulation states is ergodic, simulating one long

trajectory should be sufficient for approximating a steady state distribution of modulation states.

We note that this step is simulating a passive learning environment since the belief updates are

independent of control under the SEP-POMDP conditioning assumptions, guaranteeing that the

learning operation for SEP-POMDPs is computationally tractable.

In step 2, we determine {b̃t, t = 0, . . . ,N}, the set of simulated belief states rounded to the d-th

digit, so that b̃t is the unique point in Bd such that bt is within a ball of radius 10−d of b̃t. Let

B̃ = ⋃
N
t=1 b̃t. (Note that B̃ ⊂ Bd.) There is a complete order on B̃ induced by the binary operator,

⪯, defined so that

b̃(i) ⪯ b̃(j) ⇔ i < j and
N

∑
t=1

1{∥xt − b̃(i)∥ ≤ 10−d} ≤
N

∑
t=1

1{∥bt − b̃(j)∥ ≤ 10−d} .

This order counts the number of simulated beliefs that are rounded to a particular b̃ and ranks them.

We then define B′ to be theK-th most frequently visited rounded beliefs (Note that B′ ⊂ B̃ ⊂ Bd ⊂ B).

Of course, B′ has cardinality K, so it is finite in dimension.

Finally, in step 3 we are left with the SEP-POMDP optimality equation, below

v(s,b) = min
a∈A(s)

∑
y′
σ(y′∣b)[c(s, y′, a) + β∑

s′
p(s′∣y′, s, a)v(s′, λ(y′,b))], ∀(s,b) ∈ S × B

′.

Our remaining challenge is that λ(y′, x) may not be in B′ for a given (y′, x). Suppose x ∈ B′. The

hope is that ∃b′(y′,b) ∈ B′ such that λ(y′,b) ≈ b′(y′,b), and that v(⋅, λ(y′,b)) ≈ v(⋅,b′(y′,b)).

These assumptions may not hold if either λ(y′,b) is not near any point in B′ (although intuitively,

in most cases, it should be since we chose B′ on the basis of frequently visited belief vectors in

our simulation), or if λ(y′,b) is near a facet of the Sondik regions of B, so that v(⋅, x′(y′, x)) is

not a good approximation to v(⋅, λ(y′,b)). There are many ways we could define b′(y′,b), such as

b′(y′,b) ≜ arg minb′∈B′{∥b
′ − λ(y′,b)∥}.

This creates a well-defined MDP, with state space S × B′, which serves as our approximate

model for the SEP-POMDP. The benefits of this method is that we reduce drastically the number

of possible belief states that we need to consider in the SEP-POMDP by using the actual dynamics
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of the system, which makes it better-suited than uniform or random grid methods for each particular

problem instance (Lovejoy (1991), Hauskrecht (2000)).

E.2 Exact Methods

Exact methods are based upon value iteration and seek to solve the POMDP exactly by utilizing

the piecewise linear and concave structure of the value function with respect to b to construct

the defining facets of the value function. Sondik (1978) and Smallwood and Sondik (1973) were

the first to take this approach in their seminal papers. Kaelbling et al. (1998) improved upon the

complexity of this approach by using linear programming to construct the facet vectors. For the

SEP-POMDP this structural result implies that if there is a finite set of vectors Γ(s) for all s such

that v(s,b) = min{bγ ∶ γ ∈ Γ(s)}, then there is a finite set Γ′(s) for all s such that Hv(s,b) =

min{bγ ∶ γ ∈ Γ′(s)} and that in the limit, the fixed point of H, v∗, is concave in x for all s. In anal-

ogy to computational procedures that make use of this structural characteristic for the POMDP,

the process of constructing {Γ′(s)} for the SEP-POMDP involves an intermediate step, the deter-

mination of the sets {Γ′(s, a)} such that min{bγ ∶ γ ∈ Γ′(s, a)} = ∑y′ σ(y
′∣b)hy′(s, a, v(⋅, λ(y

′,b))).

The computational implications of the inheritance property vary as a function of the structure un-

der consideration and mirror the computational implications of this structure for the MDP analogs.

For example, assume the MDP analogs are such that for each y′, there exists an optimal policy that

is monotone in s. Then, for each x, there exists an optimal policy δ∗(s,b) such that if s ≤ s′, then

δ∗(s,b) ≤ δ∗(s′,b). It is therefore unnecessary to construct Γ′(s′, a) for all a < min{δ∗(s,b) ∶ b ∈ B}.

E.3 Information Relaxation and Upper and Lower Bounds

Another common method for approximately solving stochastic dynamic programs is via information

relaxation, as in Brown et al. (2010). We give a natural information relaxation-based heuristic

here that is based on a relaxation of the partial-observability of the modulation process and can

generate both upper and lower bounds on v∗. Suppose we want to minimize the expected total

discounted cost, where at each decision epoch the DM has available the information as in the

SEP-POMDP, It, but also knowledge of the modulation states {µt, . . . , µ1}. Feasible policies map

It ∪ {µt, . . . , µ1} into feasible actions at all epochs t. The DM is faced with a MDP defined by the
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operator HM ∶ VM ↦ VM , where VM is the space of bounded real-valued functions on S ×M,

HMv(s, µ) = min
a∈A(s)

∑
y′,µ′

P [y′, µ′∣µ] [c(s, y′, a) + β∑
s′
p(s′∣y′, s, a)v(s′, µ′)] .

In the following proposition, we show that the fixed point of HM can be used to determine a

lower bound on v∗.

Proposition 9. ∑µ x(µ)vM(s, µ) ≤ v∗(s,b) for all (s,b) ∈ S×B, where vM =HMvM and v∗ =Hv∗.

Proof of the proposition follows by straightforward observation that all SEP-POMDP policies in

Π are feasible for this MDP, but not all policies for this MDP are feasible for the SEP-POMDP. We

remark that this bound may be improved by applying a proper penalty term, akin to a Lagrangian

relaxation, an idea developed in Brown et al. (2010) and Rogers (2007).

The fixed point of vπ of any policy π can serve as an upper bound on v∗, where vπ is determined

exactly or approximated by simulation. If vπh−vM is small, then π is a good sub-optimal policy. As

an example, let πM ∶ S×M↦ A be an optimal policy for the MDP having operator HM . We remark

that πM is determined when the lower bound presented in Proposition 9 is computed. Let π be the

randomized policy π(s,b) = πM(s, µ) with probability b(µ). We would expect this policy to be

an excellent sub-optimal policy if observations of the modulation process were highly accurate. As

another example, if πB′ is the optimal policy generated for the MDP in Step 3 of Figure 2 (a function

from S × B′ to A), then one might consider πh(s,b) = πB′(s, b̄), where b̄ = arg minb′∈B′ ∥b − b′∥.

E.4 Heuristic Solution Procedure

We now present an alternative, heuristic solution procedure that must be implemented in an online

manner. The fundamental idea is to map the SEP-POMDP into a related completely observed

MDP with a state space on S × Y rather than on S × B. We may assume that Y is finite in its

cardinality, and thus this mapping is a state space dimensionality reduction technique (as is the B′

procedure, above). The tradeoff is that we must solve such an MDP at each time epoch in order

to capture the belief dynamics.
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0. Initialization. Assume (s0,b0) is given. Set t = 0.

1. Solve the completely observed MDP for all (s, y′):

v′y′(s,bt) = min
a∈A(s)

⎧⎪⎪
⎨
⎪⎪⎩

c(s, y′, a) + β∑
s′
p(s′∣y′, s, a)∑

y′′
σ(y′′∣λ(y′,bt))v

′
y′′(s

′,bt)

⎫⎪⎪
⎬
⎪⎪⎭

.

Let δ∗y′(s,bt) be an optimal policy, mapping S × Y into A.

2. Choose action at to equal δ∗y′(st,bt) with probability σ(y′∣bt).

3. Observe the observation yt+1 (which will equal y′ with probability σ(y′∣bt)). Set bt+1 =

λ(yt+1,bt).

4. Observe the state st+1 (which will equal s′ with probability p(s′∣yt+1, st, at)).

5. Increment t← t + 1; go to 1.

Figure 7: Real-time heuristic method.

The intuition behind the procedure begins with the observation of the following inequality

min
a∈A(s)

∑
y′
σ(y′∣x)h(s, a, v(⋅, λ(y′,b))) ≥ ∑

y′
σ(y′∣b) min

a∈A(s)
h(s, a, v(⋅, λ(y′, x))).

By pulling the minimization inside the summation, the idea is to establish a lower bound on v∗ by

solving a related problem. We formalize this intuition in the subsequent proposition. Let

H̃y′ ṽ(s,b) = min
a∈A(s)

⎧⎪⎪
⎨
⎪⎪⎩

c(s, y′, a) + β∑
s′
p(s′∣y′, s, a)∑

y′′
σ(y′′∣λ(y′,b))ṽy′′(s

′, λ(y′,b))

⎫⎪⎪
⎬
⎪⎪⎭

,

and let ṽy′ be the unique fixed point of H̃y′ .

Proposition 10. v∗(s,b) ≥ ∑y′ σ(y
′∣b)ṽy′(s,b), for all (s,b) ∈ S × B.

Solving for {ṽy′ ∶ z ∈ Y} is no more computationally tractable than solving for v∗ due to the

cardinality of B and the dependence of ṽy′ on λ(y′,b). In developing our heuristic procedure, we

seek an approximation to {ṽy′ ∶ z ∈ Y} for a fixed x. If we assume maxy′ ∥x − λ(y
′, x)∥ is small,

then it is reasonable to assume that ṽy′′(s
′, λ(y′, x)) is close to ṽy′′(s

′,b) in many cases. This is

effectively a learning rate assumption (that learning is incremental and gradual), and is one that

has been made in the literature, e.g. Malladi et al. (2018). We then define a completely observed
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MDP with state space S × Y:

v′y′(s,b) = min
a∈A(s)

⎧⎪⎪
⎨
⎪⎪⎩

c(s, y′, a) + β∑
s′
p(s′∣y′, s, a)∑

y′′
σ(y′′∣λ(y′,b))v′y′′(s

′,b)

⎫⎪⎪
⎬
⎪⎪⎭

(15)

This is the intuition behind step 2 in Figure 7. Since this approximation is for a fixed x, it is

amenable to an online implementation, where this completely observed MDP is solved for each xt.

We remark that the following is likely to be a valid inequality (although not necessarily)

v∗(s,b) ≥ ∑
y′
σ(y′∣b)v′y′(s,b),

where v′y′ is the fixed point of Equation 15. We use Equation 15 to develop a heuristic that, for a

given (s,b), chooses action δ∗y′(s,b) (an optimal policy mapping S ×Y into A, for this approximate

MDP) with probability σ(y′∣b). This randomized policy is a probability matching heuristic.

52


	1 Introduction & Literature Review
	1.1 Introduction
	1.2 Literature Review
	1.3 Research Outline

	2 Problem Formulation
	3 Preliminary Results
	3.1 Key Conditioning Assumptions.
	3.2 The Porteus Results Extended

	4 Main Structural Results
	4.1 Structure on S
	4.2 Structure on B

	5 Relationship to Supervised Learning
	5.1 Discriminative Learning, Plus Forecasting
	5.2 Generative Learning

	6 Applications
	7 Computational Example
	8 Conclusion
	A Proof of Inheritance Property
	B Relationship to Statistics and Machine Learning
	B.1 Markov Forecasting Models

	C Monotone Approximate Dynamic Programming
	D Computational Example
	D.1 Proof of base stock optimality.

	E Computational Tractability
	E.1 Belief Trajectory Simulation Methods
	E.2 Exact Methods
	E.3 Information Relaxation and Upper and Lower Bounds
	E.4 Heuristic Solution Procedure


