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Non-Minimal Systems with Switching Topology:

Dynamics and Controls

Farhad Aghili

Abstract

This paper presents a non-minimal order dynamics model for many analysis, simula-
tion, and control problems of constrained mechanical systems with switching topology by
making use of linear projection operator. The distinct features of this model describing
dynamics of the dependent coordinates are: i) The mass matrix M̄ (q) is always positive

definite even at singular configurations; ii) matrix ˙̄M − 2C̄ is skew symmetric, where all
nonlinear terms are lumped into vector C̄(q, q̇)q̇ after elimination of constraint forces.
Eigenvalue analysis shows that the condition number of the constraint mass matrix can
be minimized upon adequate selection of a scalar parameter called “virtual mass” thereby
reducing the sensitivity to round-off errors in numerical computation. It follows by deriva-
tion of two oblique projection matrices for computation of constraint forces and actuation
forces. It is shown that projection-based model allows feedback control of dependent
coordinates which, unlike reduced-order dependent coordinates, uniquely define spatial
configuration of constrained systems.

1 Introduction

The system motion of many mechanical systems is often subject to constraints that may arise
from the mechanical interconnections between various bodies of the system, or from the ways
in which the system is actuated or its generalized coordinates are defined [1]. The unifying
modelling approach for simulation and control of such a system is to derive the equations of
motion in terms of a minimal set of independent coordinates which is equal in number to global
degrees-of-freedom exhibited by the constrained system. Although this modelling approach can
significantly reduce the number of equations, there are several shortcomings associated with
using minimal set of independent coordinates for simulation and control purposes. Firstly,
derivation of the minimal-order dynamics model is not always possible. For instance, the rota-
tion motion of a rigid object in three-dimensional space can not be uniquely represented by any
three independent variables but at least four dependent coordinates are required. Secondly,
mechanical systems might have a time-varying topology, in which forming new independent
constraints reduces their number of degrees-of-freedom and therefore a minimal set of indepen-
dent coordinates with a fixed dimension can not be determined first [2–4]. Consequently, one
may need to switch from one minimal order dynamics model to another in a simulation run
or to change the structure of a controller whenever the mechanical system changes its number
of degrees-of-freedom [2, 3, 5, 6]. Moreover, mechanical systems may occasionally pass through

1

http://arxiv.org/abs/2108.09903v1


singular configuration during their motion. Singularity occurs when the number of independent
constraint equations is reduced in the configuration space, which gives rise to the number of
degrees-of-freedom. Consequently, a fixed set of independent coordinates occasionally leads
to ill-conditioned matrices when the system changes its topology or the number of degrees-of-
freedom [2, 3]. Although it is still possible in principle to determine the Lagrangian equations
based on minimal coordinates, computation of acceleration becomes extremely sensitive to
roundoff errors [7–9]. The augmented Lagrangian formulation proposed in [10–12] can handle
redundant constraints and singular situations but only through an iterative process. Control of
constrained mechanical system based on reduced-order independent coordinates does not allow
to control all possible spatial configurations of the system because there is usually no unique
relationship between the independent coordinates and the spatial configuration [13, 14].

This paper is the extended version of our earlier work [15, 16] for non-minimal order dy-
namics model of mechanical systems based on the notion of linear projection operator. The
non-minimal order model describes dynamics of the dependent coordinates, which unlike in-
dependent coordinates, has essentially a fixed dimension even when the mechanical system
encounters singularity or changes its number of degrees-of-freedom. The inertia matrix associ-
ated with the dependent coordinates M̄(q, µ) is expressed in terms of an orthogonal projection
matrix, which defines accessibility of the configuration space, and an arbitrary selected param-
eter µ called the virtual mass. The unique aspects of the non-minimal order dynamics model
are: i) The constraint inertia matrix M̄(q, µ) is always positive definite (p.d.) even at singular

configurations; ii) matrix ˙̄M − 2C̄(q, q̇) is skew symmetric. These are analogous to the funda-
mental properties of dynamics model of unconstrained multibody systems that are widely used
in analysis and control. Furthermore, eigenvalue analysis shows that the condition number
of the constraint inertial mass can be minimized upon optimal selection of the virtual mass.
Subsequently, two oblique projection matrices are introduced for derivation of the constraint
forces and actuation forces. This allows control of the dependent generalized coordinates which
uniquely define the spatial configuration of a constrained mechanical system.

2 Non-minimum Model of Constrained Mechanical Sys-

tems

2.1 Generalized model in terms of virtual mass

Dynamics equations of constrained mechanical systems with generalized coordinates repre-
sented by vector q ∈ R

n subject to a set of m Pfaffian constraints can be described by

M(q)q̈ + C(q, q̇)q̇ = fg + fc + f (1a)

A(q)q̇ = 0 (1b)

where M(q) ∈ R
n×n is the inertia matrix, C(q, q̇) ∈ R

n×n contains Coriolis, centrifugal terms,
A(q) ∈ R

m×n is the constraint matrix, fg(q) ∈ R
n is the generalized conservative forces owing

to the gravitational field, fc is the generalized constraint forces, and f ∈ R
n is the vector of

input generalized forces owing to actuation forces u ∈ R
k acting on the mechanical system, i.e.,

f = B(q)u and v = BT (q)q̇ (1c)
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Because of the form of equations in (1c), the u and v pair generates the same mechanical work
as f and q̇ pair does

uTv = fTBTv = fT q̇

It should be noted that A(q) may or may not be a full-rank matrix depending on the
existence of redundant constraints. Therefore, matrix A(q) can be rank-deficient at some par-
ticular configurations, i.e., rank(A(q)) = r and r ≤ m, in which case r is indeed a function
of the generalized coordinates q. The Pfaffian constraints in (1b) specify that any admissible
generalized velocity must lie in the null-space of matrix A ∈ R

m×n, i.e., q̇ ∈ N (A). On the
other hand, the generalized constraint force does not generate work and therefore it should be
always orthogonal to the generalized velocity

q̇Tfc = 0 ∧ q̇ ∈ N (A) ⇒ fc ∈ N
⊥(A) (2)

Let P ∈ R
n×n represent the orthogonal projection onto the null space of A, i.e., R(P ) = N (A),

P 2 = P , and P T = P , where R(P ) is the range space of P . Then, the complimentary
projection Q = I − P projects vectors onto the N⊥(A), where I is the identity matrix with
adequate dimension. For the sake of notation simplicity, we assume N and N⊥ respectively
denote N (A) and N⊥(A) unless otherwise is specified. Now, the kinematic constraint (1b) can
be equivalently written as Qq̇ = 0 and the time-derivative of which becomes

Qq̈ − Ṗ q̇ = 0 (3)

Remark 1 The time-derivative of an orthogonal projection matrix takes the following form

Ṗ = ΛP + PΛT (4)

where Λ = −A+Ȧ.

Derivation of (4) is based on Tikhonov regularization as described in Appendix A. From the
fundamental property of pseudo-inverse A+AA+ = A+, one can infer that matrices Λ and P

satisfy
PΛ = ΛTP = 0 (5)

The projection-based kinematics model (3) together with (4) are at the heart of the following
dynamics modeling. Notice that since the projection matrix has a fixed dimension equal to
the number of dependent coordinates, it is intrinsically suitable for a non-minimal dynamics
formulation.

Since fc ∈ N⊥, the projection operator P acts as an annihilator for the constraint forces,
i.e., Pfc = 0. Therefore, the constraint force can be simply eliminated from equation (1a) if
both sides of the equation are pre-multiplied by P , i.e.

PMq̈ + PCP q̇ = P (f + fg), (6)

Substituting the expression of decomposed acceleration q̈ = P q̈ + Ṗ q̇ from (3) into the above
equation yields

PMP q̈ +
(
PCP + PMṖ

)
q̇ = P (f + fg), (7)
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which indicates that only the null-space component of the generalized forces affects the motion
of constrained system. However, the above equation cannot be used to compute the generalized
acceleration because PMP is a rank deficient matrix and hence not invertible. To be able
to uniquely compute the acceleration vector requires taking the kinematic equation (3) into
account. For combining equations (3) and (7) into one, we pre-multiply equation (3) by µ,
where µ is any positive scalar, and then add both sides of the resultant equation with (6).
Thus, we arrive at

M̄(q)q̈ + C̄(q, q̇)q̇ = P (f + fg), (8a)

where

M̄(q) = PM(q)P + µQ, (8b)

C̄(q, q̇) = PC(q, q̇)P + PM(ΛP + PΛT )− µΛP (8c)

Here (8c) is obtained by substituting Ṗ from (4) and using identity µPΛT q̇ = µPΛTP q̇ = 0,
which is inferred from (5). Equation (8a) constitutes the non-minimal order dynamics model of
mechanical systems in the standard form where M̄(q) can be treated as the constraint inertia
matrix.

Theorem 1 i. Constraint inertia matrix M̄ is always symmetric positive-definite (p.d.)
even if A(q) becomes singular.

ii. Matrix d
dt
M̄ − 2C̄ is skew-symmetric.

Proof: For any non-zero vector x ∈ R
n, we can say

xT M̄x = xT
‖Mx‖ + µ‖x⊥‖

2 > 0, (9)

where x‖ = Px and x⊥ = Qx are the orthogonal decomposition components, i.e., x = x‖ ⊕ x⊥.
Since M is a p.d. matrix, both terms in RHS of (9) are positive and hence they can not cancel
each other out. Therefore, the summation remains positive definite unless x‖ and x⊥ are both
zero that is not possible because x 6= 0. Therefore, M̄ must be a p.d. matrix.

Moreover, using the expression of the matrices involved from (8b) and (8c) gives

˙̄M − 2C̄ =ṖMP + PṀP + PMṖ − µṖ

− 2PCP − 2PMΛP − 2PMPΛT + 2µΛP

=PṀP − 2PCP + PΛTMP + ΛPMP

− PMΛP − PMPΛT + µΛP − µPΛT

=[P (Ṁ − 2C)P ] + [(PΛTMP )− (PΛTMP )T ]

+ [ΛPMP − (ΛPMP )T ] + µ[ΛP − (ΛP )T ] (10)

Knowing the fact that matrices P and Ṁ−2C are respectively symmetric and skew-symmetric,
one can readily verify that all four brackets in the RHS of (10) contain skew-symmetric matrices

and therefore their summation ˙̄M − 2C̄ must be a skew-symmetric matrix too. �
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2.2 Eigenvalue analysis of constraint mass matrix

The projection matrix is dimensionless and hence in view of (8b), we can say µ must have the
dimension of mass. From 8b, we get

T =
1

2
q̇TM̄(q, µ)q̇ =

1

2
q̇TM(q)q̇ ∀µ ∈ R+

Therefore, we call µ as the virtual mass of the constrained systems because it has no effect
on the kinetic energy. In other words, the virtual mass can take any positive value without
affecting the solution of the equations of motion (8a). Yet certain values of µ are preferable in
the sense of achieving minimum condition number of the constraint inertia matrix. Thus we
seek µ such that

min
µ

cond(M̄(q, µ)) (11)

Proposition 1 The optimal value of µ minimizing the condition number of the constraint
inertia matrix satisfies the following inequalities

λmin

6=0

(PMP ) ≤ µ ≤ λmax(PMP ) (12)

Proof: Consider the characteristic equation of the constraint mass matrix

(
PMP + µQ

)
x− λx = 0

Clearly λ = µ is the eigenvalue for all orthogonal eigenvectors which span N⊥ because λ = µ

means (PMP − P )x = 0 ∀x ∈ N⊥. The remaining set of orthogonal eigenvectors must lie in
N that are corresponding to the non-zero eigenvalues of PMP

PMPx− λx = 0 λ 6= 0 ∀x ∈ N

Therefore, the set of all eigenvalues of the p.d. matrix M̄ is the union of the above sets
corresponding to the eigenvectors in N and N⊥, i.e.,

λ(M̄) =:
{
µ, · · · , µ
︸ ︷︷ ︸

r

, λmin

6=0

(PMP ), · · · , λmax(PMP )
︸ ︷︷ ︸

n−r

}
(13)

where {λmin

6=0

(PMP ), · · · , λmax(PMP )} are all non-zero eigenvalues of PMP . According to (13)

the condition number of M̄ , which is simply the ratio of the largest to smallest eigenvalues, is

cond(M̄) =
max(µ, λmax(PMP ))

min(µ, λmin

6=0

(PMP ))
(14)

Clearly, the RHS of (14) is at its minimum if µ is selected according to (12). �
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3 Control

3.1 Admissible generalized input force and oblique projection

As far as control of the constrained systems is concern, only the null-space component of the
generalized force f‖ is relevant because the orthogonal complement component of the force f⊥
does not contribute to the motion of the system. However, (1c) stipulates that any admissible
vector of generalized forces must satisfy

f ∈ R(B), (15)

Hence the generalized forces may inevitably contain components of f⊥ in addition to f‖ to make
(15) happen. In this section, we show that f is indeed related to f‖ by an oblique projection
matrix. To this end, pre-multiplying both sides of (1c) by P gives

f‖ = PBu (16)

The above equation will have at least one solution for u if R(PB) ⊆ R(P ) = N . Therefore,
one can conclude that the condition for existence of solution for the actuator force vector is
that

R(PB) = N , or N ⊆ R(B) (17)

If the above condition is satisfied, then the reciprocal of the relationship (16) is given by

u = Γf‖ ← min ‖u‖

where Γ = (PB)+ = (BTPB)−1BTP . Consequently the entire vector of the generalized forces
can be computed from

f = Rf‖, (18)

where R is an oblique projection matrix, i.e., R2 = R and RT 6= R, given by

R := BΓ = B(BTPB)−1BTP. (19)

By virtue of (17), one can conclude that R projects a vector to the range-space of B along
the null-space of A. We will explore some useful properties of the oblique projection in the
following remark.

Remark 2 If (17) holds, then the oblique projection R satisfies:

PR = P and RP = R (20)

See Appendix B for proof. Identities (20) mean that the projection matrix R maps any vector
belonging to N onto itself. This is an important property that will be later used for the control
design purposes.

Remark 3 If the form of the B matrix is such that PB = B, then Γ = B+ and R = BB+

becomes an orthogonal projection matrix.
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3.2 Control of dependent coordinates

Suppose the control objective is to regulate the spatial configuration of system (1) according
to the desired q∗. Consider the following control law

f = −R(q)
(

fg(q) +Kp(e+ σ‖e‖η) +Kdq̇
)

(21)

where e = q − q∗ is the control error, Kp > 0 and Kd > 0 are the positive gains, σ > 1 is a
constant scalar, R(q) is the oblique projection matrix as defined in (19), and η is a unit vector
in the direction of the generalized velocity defined as follow

η =

{ q̇

‖q̇‖
if ‖q̇‖ 6= 0

ξ otherwise
(22)

Here, ξ is a constant unit vector in N (A) – hence Pη = η and ‖η‖ = 1. Notice that control law
(21) can be equivalently rewritten so as to produce the actuation forces u if R(q) is replaced
by Γ(q) in the control law. The closed-loop dynamics under control law (21) becomes

M̄ q̈ = −C̄q̇ − PR
(

Kp(e+ σ‖e‖η) +Kdq̇
)

. (23)

Now consider Lyapunov function

V =
1

2
q̇TM̄ q̇ +

1

2
eTKpe (24)

Then using the property that matrix ˙̄M − 2C̄ being skew-symmetric and identity PR = P in
the expression of the time-derivative of V along (23), we arrive at

V̇ = q̇T (
1

2
˙̄M − C̄)q̇ − q̇TPKdq̇ − σ‖e‖q̇TKpη + eTKp(I − P )q̇

≤ −q̇TKdq̇ − σKp‖e‖ ‖q̇‖ < 0

Clearly, we have V̇ = 0 only if q̇ = 0. Thus substituting q̈ = q̇ = 0 in (23), we can find the
largest invariant set with respect to system (23) as the following

q̇ = 0 ∧ Pe+ σ‖e‖η = 0. (25)

Therefore, according to LaSalle’s Global Invariant Set Theorem [17], the solution of system (23)
asymptotically converges to the invariant set. The magnitude of the first term in the above
satisfies ‖Pe‖ ≤ ‖e‖ whereas the magnitude of the second term is σ‖e‖. Therefore, if we select
σ > 1, then the only solution of (25) is e = 0. The above development is summarized in
following theorem

Theorem 2 Suppose control law (21) is applied to a constrained system (1), where Kd > 0,
Kp > 0, σ > 1, and condition (17) holds. Then, q → q∗ and q̇ → 0 as t→∞.
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4 Generalized acceleration and generalized constraint forces

4.1 Pseudo-inverse of the constraint inertia matrix

Since M̄ is invertible, the acceleration of the dependent generalized coordinates can be always
computed from (8a) regardless the ill-conditioning of the constraint. By inspection, one can
verify

C̄(q, q̇)q̇ = C̄ ′(q, q̇)q̇

where C̄ ′(q, q̇) = PC(q, q̇) + (PM − µI)Ω and matrix

Ω = Λ− ΛT

is skew-symmetric. It is worth noting that Ω can be treated as representation of angular rates
in the “n-dimensional space”. Moreover, from definition of the constraint inertia matrix we
have M̄Q = µQ or equivalently µM̄−1Q = Q meaning that matrix M̄−1Q must be symmetric
because Q = QT . It follows from M̄−1Q = QM̄−1 that

M̄−1P = PM̄−1 (26)

Using the fact that matrices P and M̄−1 commute and identity QΩ = Ω, one can compute the
vector of generalized acceleration from

q̈ = M̄−1P
(

f + fg + C(q, q̇)q̇ +MΩq̇
)

− µM̄−1Ωq̇

= M̄−1P
(

f + h(q, q̇)
)

− STΩq̇ (27)

where vector h(q, q̇) = fg(q)− C(q, q̇)q̇ contains all nonlinear terms associated with the gravi-
tational, Coriolis, centrifugal forces of the unconstrained system, and non-symmetric matrix

S := I −MM̄−1P, (28)

is indeed another oblique projection matrix as shown in the following. By virtue of (26), we
have M̄PM̄−1 = M̄M̄−1P = P leading to PMPM̄−1P = P , which in turn, is used in the
following derivation

S2 = I − 2MM̄−1P +MM̄−1PMPM̄−1P = S

It is worth noting that the matrix product PM̄−1 which appears in (27) and (28) can be
alternatively obtained from pseudo-inversion of the constraint inertia matrix when µ is set to
zero, i.e.,

M̄−1P = M̄+

o where M̄o = PMP

See Appendix C for the proof. Thus, S = I −MM̄+
o .

8



4.2 Constraint force and oblique projection

Upon substitution of the acceleration from (27) into (1a) and rearranging the latter equation,
we arrive at the equation the constraint forces in the following compact form

fc = −S
(
f + h(q, q̇)−MΩq̇

)
(29)

It can be verified that S satisfies

QS = S and SQ = Q (30)

The first identity in the above indicates that R(S) ≡ N⊥, which is the direct consequence of
(2). The second equality means that S maps any vector in N⊥ to itself, and hence by making
use of identity PSMQ ≡ 0 we can rewrite (29) in the form

f⊥ + fc = −S
(
f‖ + h(q, q̇)

)
+QMΩq̇ (31)

Equation (31) is useful for force control application, because (31) algebraically determines the
N⊥ component of the generalized input forces to generate desired constraint forces.

5 Conclusions

The non-minimal order modeling formulation presented in this paper opens up the way for many
analysis, simulation, and control problems of constrained mechanical systems in the presence of
singular configuration. The orthogonal projection matrix P representing the accessible space
of the spatial configuration is the cornerstone of this modeling formulation in the standard
form in pair with unconstraint multibody dynamics model. Although dependent generalized
coordinates is with a dimension higher than the number of degrees-of-freedom belonging to the
constrained system, the non-minimal order modeling formulation has distinct features useful
for simulation and control purposes particularly whenever the mechanical system encounters
singularity or changes its number of degrees-of-freedoms: i) The inertia mass matrix M̄ has
fixed dimension equal in number of dependent coordinates and remains always positive definite

even at singular configurations; ii) matrix ˙̄M − 2C̄(q, q̇) is skew-symmetric. It has been also
shown that M̄ could be parameterized as a function of any arbitrary selected virtual mass µ

and subsequently the ones minimizing the condition number of the mass matrix were found
through eigenvalue analysis. Two oblique projection matrices S and R have been introduced.
The former was used to compute directly the generalized constraint forces without a recourse to
derivation of the Lagrange multipliers, which are undeterminate at singularities. The latter was
used to compute the actuation force for direct control of the dependent generalized coordinates
which, unlike any independent variables, uniquely define the spatial configuration of constrained
mechanical systems.

Appendix A

The projection operator in terms of the pseudo-inverse of A is given by P = I − A+A and
therefore

Ṗ = −
d

dt
A+A− A+Ȧ. (32)
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According to the Tikhonov regularization, the pseudo-inverse is limit

A+ = ATL where L = lim
ǫ→0

(AAT + ǫI)−1 (33)

Notice that the limit exists even (AAT )−1 does not exist [18]. Using (33) in (32) yields

Ṗ = lim
ǫ→0
−ȦTLA+ ATLȦATLA + ATLAȦTLA− A+Ȧ

= A+ȦATA+T + A+AȦTA+T − ȦTA+T − A+Ȧ

= (A+Ȧ)(ATA+T − I) + (A+A− I)ȦTA+T

= ΛP + PΛT

(34)

Appendix B

By definition, we have
PR = PB(PB)+

Clearly matrix PR itself must be an orthogonal projection which maps a vector onto the
orthogonal complement of the null-space of (PB)T . Therefore, according to the fundamental
theory of linear algebra relating the null space and the range space of a linear operator, we
have

R(PR) ≡ N⊥((PB)T ) ≡ R((PB)) (35)

It can be inferred from (17) and (35) that

R(PR) ≡ N (36)

meaning that projection matrices PR and P are indeed identical.

Appendix C

Since rank(M̄) = rank(P ) = r and matrix M̄ is symmetric, the Singular Value Decomposition
[18] of M̄ takes the form

M̄ =
[
V1 V2

]
[
µIr 0
0 Σ

] [
V T
1

V T
2

]

(37)

where Σ = diag{λmin

6=0

(PMP ), · · · , λmax(PMP )} are the singular values according to (13), V =

[V1 V2] is a unitary matrix so that span(V1) ≡ N⊥ and span(V2) ≡ N . That is

P = V2V
T
2 , V T

2 V2 = I, and V T
1 V2 = 0 (38)

and therefore

M̄−1P =
[
V1 V2

]
[
µ−1I 0
0 Σ−1

] [
V T
1

V T
2

]

V2V
T
2

= V2Σ
−1V2 = M+

o
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