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Abstract: In this study, reinforcement learning was applied to learning two-dimensional path planning including obstacle
avoidance by unmanned aerial vehicle (UAV) in an indoor environment. The task assigned to the UAV was to reach the
goal position in the shortest amount of time without colliding with any obstacles. Reinforcement learning was performed
in a virtual environment created using Gazebo, a virtual environment simulator, to reduce the learning time and cost.
Curriculum learning, which consists of two stages was performed for more efficient learning. As a result of learning with
two reward models, the maximum goal rates achieved were 71.2% and 88.0%.
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1. INTRODUCTION

Unmanned aerial vehicles (UAVs) are being studied
and used in various fields [1–4]. In the case of a quad-
copter [5–8], which is one of the most common types
of UAV, its position can be maintained through hover-
ing, which is not possible with a fixed-wing UAV. Various
sensors can be mounted on the UAV and the location of
the UAV can be determined using global navigation satel-
lite systems (GNSS) [9–13], long-term evolution (LTE)
based positioning [14–22], enhanced long-range navi-
gation (eLoran) [23–31], and other techniques [32–34].
UAVs can be used for target searching, weather infor-
mation acquisition, aerial photography, delivery, com-
munication repeating, and for entertainment using light
sources [35–37].

Considering the possibilities of using such UAVs, re-
search is being conducted to optimize the movement of
UAVs using artificial intelligence (AI) [38–40]. Specifi-
cally, reinforcement learning, which has been widely in-
vestigated with the recent development in deep learning,
was used in [38]. Reinforcement learning involves learn-
ing the optimal behavior in a given situation through ac-
tions and rewards and is mainly used in robots and game
AI.

In this study, we performed reinforcement learning to
ensure that a UAV could reach the goal position in the
shortest amount of time while avoiding obstacles. In
consideration of learning time and cost, the learning was
conducted in a virtual indoor environment created using
Gazebo [41], a virtual environment simulator. In addi-
tion, for the two reward models that we proposed, cur-
riculum learning was performed to increase the efficiency
of learning. First, learning was conducted in an envi-
ronment without obstacles, then after learning had pro-
gressed to a certain level, obstacles were added, and the
learning was continued.

Curriculum learning is a machine learning technique
that involves learning simple tasks sufficiently and then

progressing to difficult and complex tasks. This tech-
nique offers the advantages of generalization and a fast
convergence speed [42]. In our study, learning was first
performed for a simple path planning to ensure that a
UAV could fly quickly to a goal point in an environment
without obstacles. After this simple task was learned, the
learning was performed in an environment with obsta-
cles to train the UAV to fly to a goal point within a short
time while avoiding obstacles. Such curriculum learning
is more efficient than learning a difficult task from the
beginning.

2. VIRTUAL ENVIRONMENT

To implement the UAV virtual environment and learn-
ing environment, Gazebo, Robot Operating System
(ROS) [43], and OpenAI Gym [44] were used. Using the
building editor in Gazebo, a virtual indoor environment
of 30m×30m with a few obstacles was created. Fig. 1(a)
shows the virtual indoor environment without obstacles
used at the beginning of learning, and Fig. 1(b) shows the
a virtual indoor environment with obstacles. Figs. 1(c)
and 1(d) present top view images of the environment in
Figs. 1(a) and 1(b), respectively. The red squares indi-
cate the coordinate set of the UAV. The UAV randomly
selects two coordinates from this set as the starting point
and goal point for training.

ROS is a meta-operating system for robots that in-
cludes hardware abstraction, low-level device control,
implementation of commonly used functionality, mes-
sage passing between processes, and package manage-
ment [43]. We used ROS because it can be easily inte-
grated into other robot software frameworks, and many
studies on robots or UAVs have utilized ROS. The action
of the UAV in the OpenAI Gym learning environment can
be transferred to the virtual environment implemented in
Gazebo; moreover, information from the sensor mounted
on the virtual UAV, such as whether the UAV has col-
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Fig. 1. Virtual indoor environment

lided, can be delivered to the Gazebo learning environ-
ment through message passing.

OpenAI Gym is a toolkit for reinforcement learning
research [44]. Various learning environments have al-
ready been implemented, and new learning environments
can be created as per the OpenAI Gym format. In addi-
tion, OpenAI Gym is convenient to link with TensorFlow
or RLlib [45]. In this study, a learning environment was
created based on the OpenAI Gym format, and learning
was performed by linking OpenAI Gym with RLlib.

3. LEARNING ENVIRONMENT

The time unit for selecting an action in the current
state and receiving a reward is called a step, and it is the
smallest unit of learning. An episode consisting of sev-
eral steps refers to the time from when the UAV starts
the task until it reaches the goal point or collides with
an obstacle. When the learning progresses beyond a cer-
tain number of episodes, it becomes one iteration, and the
model parameters of reinforcement learning are updated
every iteration.

A train batch size of RLlib, which determines the size
of one iteration, was set to 10,000 steps in this study, and
the learning was started in the environment without ob-
stacles for 200 iterations. The learning was continued in
the environment with obstacles for 100 iterations.

The reinforcement learning algorithm used in this
study is a proximal policy optimization (PPO) algorithm
[46], and is provided with PPOTrainer in RLlib. PPO
is a policy gradient-based reinforcement learning method
that is more suitable for problems with a continuous state
space than for Q-learning-based reinforcement learning
such as deep Q-network (DQN) [47–49]. Because the
state space in this study was continuous, PPO was se-
lected as the learning algorithm. In this study, learning

rate, named lr in RLlib, was set to 5× 10−5, trace-decay
parameter, named lambda in RLlib, was set to 1, and
initial coefficient for Kullback-Leibler (KL) divergence,
named kl coeff in RLlib, was set to 0.2.

Reinforcement learning is the process of studying the
action that maximizes the reward in the current state.
Thus, the performance of learning is determined by the
state space, action space, and reward model.

3.1 State space
The state space in our study is divided into three types:

heading, distance, and lidar data. Heading in this paper
refers to the difference in angle between the straight line
connecting the UAV and the goal and the heading direc-
tion of the current UAV (in radian). Distance refers to the
2D Euclidean distance between the UAV and the goal.
Lidar data represents information obtained from a lidar
mounted on a UAV.

3.2 Action space
The action space was divided into three forward lin-

ear velocities and five yaw rates, and a total of 15 actions
were set. The three forward linear velocities were 1 m/s,
0.5 m/s, 0 m/s, and the five yaw rates were −2/12 rad/s,
−1/12 rad/s, 0 rad/s, 1/12 rad/s, and 2/12 rad/s. A nega-
tive yaw rate indicates turning counterclockwise, while a
positive yaw rate indicates turning clockwise. Since the
UAV moved in a 2D space, its vertical velocity was set to
zero.

3.3 Reward model
Because the reward model is the factor that can have

the greatest impact on learning performance, two reward
models were designed, and the learning performance was
compared between these models. Our reward model is
divided into terminal reward, time penalty, progress dis-
tance, and progress heading. A difference exists between
the two reward models in terms of the progress heading.

Terminal reward is the reward given at the end of the
episode. If the task is successful, a reward of +2000 is
given, and if the task is failed, a reward of −500 is given.
The time penalty is for performing a task within the short-
est amount of time, and a reward of −1 is given to each
step. Progress distance is a value obtained by multiplying
40 by the difference in the Euclidean distance between
the UAV and the goal in the previous step and the current
step; it has a positive value when the UAV approaches the
goal and a negative value when it moves away from the
goal. Progress heading is a reward that varies depending
on the heading in the state space; when the absolute value
of the heading is less than 20 degrees, a value obtained by
multiplying the linear speed by 5 is given as a reward for
moving quickly to the goal. In addition, when the abso-
lute value of the heading is greater than 20 degrees, the
reward is given by multiplying 45

17 (
|heading|

π − 1
18 ), which

is a linear function of heading, by −(1 + linear speed)
for reward model 1 and −(1 + 3 × linear speed) for re-
ward model 2 to reduce the forward linear velocity and
ensure that the UAV heads toward the goal.



Fig. 2. Moving average of goal rate for reward model 1
in the environment without obstacles

Fig. 3. Moving average of goal rate for reward model 2
in the environment without obstacles

4. SIMULATION RESULTS

4.1 Environment without obstacles
Figs. 2 and 3 show the moving average of goal rate

for reward models 1 and 2, respectively, with learning
trained for 200 iterations in an environment without ob-
stacles. The moving average was calculated based on the
goal rates of the recent five iterations. Reward models 1
and 2 achieved a goal rate of 95.8% and 94.4%, respec-
tively, in the 200 iterations.

4.2 Environment with obstacles
Figs. 4 and 5 show the moving average of goal rate for

reward models 1 and 2, respectively, which additionally
learned for 100 iterations in an environment with obsta-
cles. Reward models 1 and 2 achieved a maximum goal
rate of 71.2% and 88.0%, respectively.

5. CONCLUSION

In this study, we investigated the path planning of a
UAV via reinforcement learning, including curriculum
learning for two reward models. After learning for 200
iterations in an environment without obstacles, both re-
ward models achieved a high goal rate of approximately

Fig. 4. Moving average of goal rate for reward model 1
in the environment with obstacles

Fig. 5. Moving average of goal rate for reward model 2
in the environment with obstacles

95%. To proceed with curriculum learning, obstacles
were added to the environment, and the learning was con-
tinued. In the environment with obstacles, the goal rate
dropped to approximately 30–40% and then gradually in-
creased again. For reward models 1 and 2, the maximum
goal rates were 71.2% and 88%, respectively; thus, re-
ward model 2 outperformed reward model 1. Accord-
ingly, the UAV that learned using reward model 2 reached
the goal relatively quickly, without being significantly af-
fected by its initial heading.
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