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CS-Based CSIT Estimation for Downlink Pilot

Decontamination in Multi-Cell FDD Massive MIMO
Yikun Mei and Zhen Gao

Abstract—Efficient channel state information at transmitter
(CSIT) for frequency division duplex (FDD) massive MIMO can
facilitate its backward compatibility with existing FDD cellular
networks. To date, several CSIT estimation schemes have been
proposed for FDD single-cell massive MIMO systems, but they fail
to consider inter-cell-interference (ICI) and suffer from downlink
pilot contamination in multi-cell scenario. To solve this problem,
this paper proposes a compressive sensing (CS)-based CSIT esti-
mation scheme to combat ICI in FDD multi-cell massive MIMO
systems. Specifically, angle-domain massive MIMO channels ex-
hibit the common sparsity over different subcarriers, and such
sparsity is partially shared by adjacent users. By exploiting these
sparsity properties, we design the pilot signal and the associated
channel estimation algorithm under the framework of CS theory,
where the channels associated with multiple adjacent BSs can be
reliably estimated with low training overhead for downlink pilot
decontamination. Simulation results verify the good downlink pilot
decontamination performance of the proposed solution compared
to its conventional counterparts in multi-cell FDD massive MIMO.

Index Terms—Frequency division duplex (FDD), massive
MIMO, channel estimation, compressive sensing, pilot contami-
nation.

I. INTRODUCTION

Reliable channel state information at transmitter (CSIT) is

essential to fully exploit potential advantages of massive MIMO.

For time division duplex (TDD) massive MIMO, CSIT can be

acquired in the uplink by leveraging the channel reciprocity,

where the channels of dozens of users can be easily acquired at

base station (BS) with hundreds of antennas [1], [2]. However,

CSIT for frequency division duplex (FDD) massive MIMO can

be more challenging, since single-antenna users have to acquire

and feedback the high-dimensional channels to the BS [3]–[11].

To date, there have been several CSIT estimation schemes

proposed for FDD massive MIMO to facilitate its back-

ward compatibility with current cellular networks dominated

by FDD [4]–[11]. Specifically, [4] proposed an estimated

covariance-assisted minimum mean square error (MMSE) es-

timator for channel estimation of FDD massive MIMO, but it

may be inaccurate to obtain downlink covariance matrix from

uplink channel information. [5]–[7] proposed the compressive

sensing (CS)-based downlink channel estimation by assuming

the delay-domain sparsity of massive MIMO channels, but

such assumption may not hold in indoor scenarios due to rich

scatterers at the user side. [8]–[11] proposed the CS-based

CSIT estimation schemes by assuming the sparsity of angle-

domain massive MIMO channels. However, [8]–[10] are limited

to narrow-band systems without considering practical broad-

band systems, while [10], [11] only consider the signal-user
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CSIT estimation and fail to exploit the channel correlation of

multiple adjacent users. By exploiting the channel sparsity in

both angle and delay domains, an efficient CSIT estimation

scheme taking the spatial-wideband effect of massive MIMO

system into account is proposed in [12]. Furthermore, existing

schemes [4]–[12] only consider the single-cell scenario, and they

may suffer from downlink pilot contamination due to inter-cell-

interfere (ICI).

In this paper, we consider the practical multi-cell FDD

massive MIMO systems. In such scenario, users in target cell

will receive the downlink pilot from adjacent cells, which will

contaminate the downlink channel estimation of the target cell

and thus degrade the system performance. This phenomenon is

termed as the downlink pilot contamination of multi-cell FDD

massive MIMO, while conventional CSI acquisition schemes

either only consider ICI in TDD massive MIMO or fail to

consider ICI in FDD massive MIMO. To this end, we propose a

CS-based CSIT estimation scheme to alleviate the pilot contam-

ination in multi-cell FDD massive MIMO systems. Particularly,

we observe that angle-domain massive MIMO channels exhibit

the common sparsity over different subcarriers due to the limited

number of scatterers seen from the BS and the very similar

scatterers experienced by different subcarriers. Moreover, such

sparsity is partially shared by adjacent users due to some com-

mon scatterers. By jointly exploiting these sparsity properties

of massive MIMO channels in the angular domain, under the

framework of CS theory, we design the pilot signal and CS-

based channel estimator for multi-cell FDD massive MIMO. The

proposed scheme can reliably acquire the channels associated

with multiple adjacent BSs with low training overhead for

downlink pilot decontamination. Simulation results confirm that

the proposed solution outperforms existing schemes in multi-cell

FDD massive MIMO systems.

Notation: the boldface lower and upper-case symbols denote

column vectors and matrices, respectively. The Moore-Penrose

inversion, transpose, and conjugate transpose operators are given

by (·)†, (·)T and (·)∗, respectively. |Γ|c is the cardinality of the

set Γ. E{·} is the expectation operator. (a)Γ denotes the entries

of a whose indices are defined by Γ, while (A):,k denotes the

kth column of the matrix A. [a]i denotes the ith entry of the

vector a, and [A]i,j denotes the ith-row and jth-column element

of the matrix A. Finally, Ωc is the complementary set of Ω.

II. SYSTEM MODEL

We consider a multi-cell FDD massive MIMO system com-

posed of L hexagonal cells, and each cell consists of a central

M -antenna BS and N single-antenna users with N ≪ M [1].
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Fig. 1. Illustration of the angle-domain sparsity of massive MIMO channels.

For the kth user in the l̃th cell, the received downlink signal of

the pth subcarrier can be expressed as

y
k,l̃,p

=xT
l̃,p
h
k,l̃,p

+
∑L−1

l=0,l 6=l̃
x
T
l,phk,l,p+vk,l̃,p, 1 ≤ p ≤ P, (1)

where hk,l,p ∈ CM×1 denotes the downlink channel of the pth

subcarrier between the kth user and the lth BS, xl,p ∈ CM×1 is

the transmitted signal from the lth BS, vk,l̃,p is additive white

Gaussian noise (AWGN), and P is the size of one OFDM

symbol. From (1), it can be observed that the reliable estimation

of hk,l̃,p is challenging due to two following reasons. First, the

estimation of M -dimensional hk,l̃,p will lead to the prohibitively

high training overhead. Second, the kth user of the l̃th cell

suffers from ICI, i.e.,
∑L−1

l=0,l 6=l̃
x
T
l,phk,l,p.

For massive MIMO systems as shown in Fig. 1, the BS is

usually elevated high with few scatterers around, while users

are located at low elevation with relatively rich local scatterers,

which leads the multipath components of the channels associ-

ated with one user to concentrate on the limited angle seen from

the BS side [10], [11]. Based on this phenomenon, [10], [11]

assume that the angle-domain massive MIMO channel vectors

h̃k,l,p = F
∗
hk,l,p exhibit the sparsity, where F ∈ CM×M is

the unitary matrix representing the transformation matrix of the

angular domain at the BS side. Such sparsity indicates that only

a small part of elements of the angle-domain channel vector

h̃k,l,p contain almost all the multipath components between the

lth BS and the kth user, i.e., |Ωk,l,p|c ≪ M , where

Ωk,l,p= supp{h̃k,l,p}=
{

m :
∥

∥

∥
[h̃k,l,p]m

∥

∥

∥

2
>pth,1 ≤m≤M

}

, (2)

and pth is a threshold according to AWGN [5]. Moreover, since

channels of different subcarriers experience the very similar

scatterers, they share the same sparsity pattern [11], i.e.,

Ωk,l,1 = Ωk,l,2 = · · ·=Ωk,l,P = Ωk,l. (3)

Additionally, for a group of K users physically close to each

other as illustrated in Fig. 1, their angle-domain channels share

the partially common sparsity [8], which can be expressed as

K
∩

k=1
Ωk,l = Ωc 6= φ. (4)

It should be pointed out that N users served by the BS using

the same time-frequency resource usually come from different

user groups for the improved performance [1].

III. PROPOSED CS-BASED CSIT ESTIMATION SCHEME

The proposed scheme includes the CS-based design of down-

link multi-cell pilot and channel estimation algorithm, and both

of them are significant for downlink pilot decontamination.

By leveraging the angle-domain sparsity of massive MIMO

channels, the proposed scheme can jointly acquire the channels

of multiple adjacent BSs with low training overhead, which can

mitigate the downlink pilot contamination.

A. Pilot Training for CSIT Estimation in Multi-Cell Scenario

In the proposed scheme, each BS transmits the off-line

designed downlink pilot for CSIT estimation, and the received

downlink pilot signal at users can be fed back to their respective

BSs via the uplink feedback channels. Here the uplink feedback

channels are assumed to be AWGN channels after the uplink

channel estimation and equalization [8]. For the kth user of the

central target cell (l = 0) in the tth time slot, the received pilot

signal fed back to the BS can be expressed as

rtk,p =
L−1
∑

l=0

(stl,p)
Thk,l,p + wt

k,p =
L−1
∑

l=0

(stl,p)
Thk,l,pδ (ρk,l>ρth)

+
L−1
∑

l=0

(stl,p)
Thk,l,pδ (ρk,l≤ρth)+wt

k,p

=
L−1
∑

l=0

(stl,p)
Thk,l,pδ (ρk,l > ρth) + w̃t

k,p,

(5)

where δ (·) is Dirac delta function, stl,p is the downlink pilot

of the lth cell in the tth time slot, ρth is a predefined signal-

to-noise-ratio (SNR) threshold, ρk,l is the kth user’s SNR

associated with the lth BS, wt
k,p is the effective noise including

the downlink channel and uplink feedback channel [8], and

w̃t
k,p =

∑L−1
l=0 (stl,p)

T
hk,l,pδ (ρk,l ≤ ρth) + wt

k,p.

Due to the angle-domain sparsity of massive MIMO channel

vectors as discussed in Section II, (5) can be rewritten as

rtk,p =
∑

l∈Πk

(stl,p)
T
Fh̃k,l,p + w̃t

k,p =
∑

l∈Πk

φt
l,ph̃k,l,p + w̃t

k,p

= θt
k,p

¯̃
hk,p + w̃t

k,p,
(6)
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where


















Πk = {l : ρk,l > ρth, 0 ≤ l ≤ L− 1} ,
φt

l,p = (stl,p)
T
F ∈ C

1×M ,

θt
k,p = [φt

Πk(1),p
,φt

Πk(2),p
, · · · ,φt

Πk(|Πk|c),p
] ∈ C1×M|Πk|c ,

¯̃
hk,p = [h̃T

k,Πk(1),p
,h̃T

k,Πk(2),p
,· · ·,h̃T

k,Πk(|Πk|c),p
]T∈CM|Πk|c×1,

(7)

Πk (i) denotes the ith element of the set Πk , which can be

acquired by comparing the received SNRs associated with

different BSs and ρth at the kth user, and then fed them back

to BSs for the following CSIT estimation.

Moreover, due to the temporal channel correlation, the chan-

nel hk,l,p is considered to be unchanged in G successive OFDM

symbols within the channel coherence time [5]. By jointly

collecting the feedback pilots in G successive OFDM symbols,

we can obtain the aggregate feedback signal

r
[G]
k,p = Θ

[G]
k,p

¯̃
hk,p + w̃

[G]
k,p, (8)

where we have










r
[G]
k,p = [(r1k,p)

T, (r2k,p)
T, · · · , (rGk,p)

T]T ∈ CG×1,

Θ
[G]
k,p = [(θ1

k,p)
T, (θ2

k,p)
T, · · · , (θG

k,p)
T]T ∈ CG×M|Πk|c ,

w̃
[G]
k,p = [w̃1

k,p, w̃
2
k,p, · · · , w̃

G
k,p]

T ∈ C
G×1.

(9)

B. CS-Based CSIT Estimation Algorithm

To reliably acquire the channel vector
¯̃
hk,p from (8), the

training overhead G required by conventional algorithms, e.g.,

the least squares (LS) algorithm, is usually proportional to

M |Πk|c, the dimension of
¯̃
hk,p. Usually, G ≥ M |Πk|c is

required, which leads G to be much larger than the channel

coherence time, and otherwise results in the poor channel

estimation performance [4].

Fortunately, the angle-domain sparsity of massive MIMO

channel h̃k,l,p implies that the aggregate angle-domain channel
¯̃
hk,p also has the sparsity according to (7), which motivates us to

leverage the CS theory to estimate high-dimensional
¯̃
hk,p from

low-dimensional r
[G]
k,p in (8). Moreover, the common sparsity

shared by {
¯̃
hk,p}

P
p=1 for the kth user and the partially common

sparsity shared by {¯̃hk,p}
K
k=1 for K users in the same group can

be leveraged for the further improved performance. Specifically,

we consider the partially common support shared by the K users

physically close to each other, i.e.,

R
[G]
p = Θ

[G]
p

¯̃
Hp + W̃

[G]
p , 1 ≤ p ≤ P, (10)

where we have






































R
[G]
p =

[

r
[G]
1,p, r

[G]
2,p, · · · , r

[G]
K,p

]

∈ CG×K ,

Π1 = Π2 = · · · = ΠK = Π,

Θ
[G]
1,p = Θ

[G]
2,p = · · · = Θ

[G]
K,p = Θ

[G]
p ∈ CG×M|Π|

c ,
¯̃
Hp =

[

¯̃
h1,p,

¯̃
h2,p, · · · ,

¯̃
hK,p

]

∈ CM|Π|
c
×K ,

W̃
[G]
p =

[

w̃
[G]
1,p , w̃

[G]
2,p, · · · , w̃

[G]
K,p

]T

∈ CG×K .

(11)

Note that since K users in the same group are physically close

to each other and their received signals from the same BS ex-

perience very similar large-scale fading, we can approximately

obtain ρl,1 = ρl,2 = · · · = ρl,K , and thus the second and third

equations in (11) hold.

Given the measurements (10) and the sparse constraints (3)

and (4), the CSI matrix { ¯̃Hp}
P
p=1 can be acquired by solving

the following optimization problem

min
¯̃
Hp,1≤p≤P

∑P
p=1

∥

∥

∥

¯̃
Hp

∥

∥

∥

0,2
= min

¯̃
Hp,1≤p≤P

∑P
p=1

(

∑K
k=1

∥

∥

∥

¯̃
hk,p

∥

∥

∥

2

0

)1/2

s.t. R
[G]
p = Θ

[G]
p

¯̃
Hp,Ωk,l,p = Ωk,l,∀p,

K
∩

k=1
Ωk,l 6= φ.

(12)

To solve the optimization problem (12), developed from the

classical CS algorithm orthogonal matching pursuit (OMP), as

shown in Algorithm 1, we propose a joint multi-user multi-

carrier orthogonal matching pursuit (J-MUMC-OMP) algorithm.

Specifically, lines 1-3 initialize the variables; lines 6 identifies

the most possible angle-domain element by leveraging the

sparsity constraints (3) and (4); lines 7-8 estimate the elements

according to updated support set; lines 9-10 imply that if all K
users’ ρth angle-domain elements are dominated by AWGN, the

iteration stops since the channel sparsity level is over-estimated;

while in lines 11-12, for users whose ρth angle-domain elements

are dominated by AWGN, we delete the index ρ and re-estimate

the associated elements; lines 14-15 update the residue; line 16

indicates that if the residue of the current iteration is larger

than that of the last iteration, stopping the iteration can help

the algorithm to acquire the good mean square error (MSE)

performance.

The proposed J-MUMC-OMP algorithm has several distinc-

tive features as follows. First, the proposed J-MUMC-OMP

algorithm can jointly estimate the sparse signals {¯̃hk,p}
P,K
p=1,k=1,

∀k by exploiting their common sparsity over different sub-

carriers. Second, the partially common sparsity of K users’

sparse channels {¯̃hk,p}
K
k=1, ∀p is also considered for the further

improved performance. Third, we provide the stopping criteria

to adaptively acquire the sparsity level of channels. By contrast,

the classical orthogonal matching pursuit (OMP) algorithm

requires the sparsity level without considering these sparsity

properties, while the joint-OMP algorithm proposed in [8] fails

to leverage the common sparsity over different subcarriers.

C. CS-Based Downlink Pilot Design in Multi-Cell Scenario

The design of measurement matrices Θ
[G]
p for different p’s

in (12) are important to ensure the reliable channel estimation

in CS theory. Owing to Θ
[G]
p = [(θ1

p)
T, (θ2

p)
T, · · · , (θG

p )
T]T,

θt
p = [φt

Π(1),p,φ
t
Π(2),p, · · · ,φ

t
Π(|Π|

c
),p], and φt

l,p = (stl,p)
T
F,

we observe that Θ
[G]
p , ∀p are only determined by the pilot

signals {stl,p}
L−1,P,G
l=0,p=1,t=1.

According to [13], a measurement matrix whose elements

follow an independent identically distributed (i.i.d.) Gaussian

distribution can achieve the good performance for sparse signal

recovery. Furthermore, diversifying measurement matrices Θ
[G]
p ,

∀p can further improve the recovery performance of sparse sig-

nals when multiple sparse signals with the (partially) common

sparsity are jointly recovered [13]. Specifically, we consider

each element of pilot signals can be off-line designed as

[

s
t
l,p

]

m
=ejθm,l,p,t,1≤ m≤M,1≤ t≤G,1≤p≤P,0≤ l≤L−1, (13)
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Algorithm 1 Proposed J-MUMC-OMP Algorithm.

Input: Noisy measurement matrix R
[G]
p , sensing matrix Θ

[G]
p , ∀p, and

the termination threshold γth.

Output: The estimation of channel matrix
¯̃
Hp, ∀p.

1: i = 0; {Initialize the iteration index i}

2:
{

Ωi
k

}K

k=1
= φ; {Initialize the support sets of K users’ aggregate

channel vectors}

3: Zi
p = R

[G]
p ; {Initialize the residue}

4: repeat
5: i = i+ 1;

6: ρ = argmax
ρ̃

{

∑P
p=1

∑K
k=1

∥

∥

∥

∥

[(

Θ
[G]
p

)∗
[

Zi−1
p

]

:,k

]

ρ̃

∥

∥

∥

∥

2

2

}

;

7: Ωi
k = Ωi−1

k ∪ ρ,∀k;

8: (gk,p)Ωi
k
= (Θ

[G]
p )†

Ωi
k

[

R
[G]
p

]

:,k
, (gk,p)(Ωi

k
)c = 0, ∀k, p;

9: if
∑P

p=1

∥

∥

∥
[gk,p]ρ

∥

∥

∥

2

2
/P < γth, ∀k then

10: Quit iteration;

11: else if there exists k meeting
∑P

p=1

∥

∥

∥[gk,p]ρ

∥

∥

∥

2

2
/P < γth then

12: Ωi
k =Ωi−1

k , (gk,p)Ωi
k
=(Θ

[G]
p )†

Ωi
k

[

R
[G]
p

]

:,k
, (gk,p)(Ωi

k
)c=0,

∀p; for k satisfy the above condition;
13: end if
14: Gi

p = [g1,p, g2,p, · · · ,gK,p], ∀p;

15: Zi
p = R

[G]
p −Θ

[G]
p Gi

p, ∀p;

16: until
∑P

p=1

∥

∥Zi
p

∥

∥

F
≥

∑P
p=1

∥

∥Zi−1
p

∥

∥

F
;

17:
¯̃
Hp = Gi−1

p , ∀p;
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Fig. 2. Comparison of channel estimation MSE performance of different CSIT
estimation solutions versus G at different ρedge’s.

where θm,l,p,t follows the i.i.d. uniform distribution in [0, 2π).
It is straightforward to prove that the designed pilot signals (13)

can ensure elements of Θ
[G]
p , ∀p, to obey the i.i.d. complex

Gaussian distribution with zero mean and unit variance. Hence,

the proposed pilot signal design is optimal for the reliable

compression and recovery of sparse angle-domain channels

under the framework of CS theory.

D. Multi-Cell Joint Precoding

In Section III-A, B, and C, we can use the low training

overhead to estimate CSIT, which can be leveraged to per-

form multi-cell joint precoding to combat ICI. Specifically,

we consider: 1) each BS uses zero forcing (ZF) precoding

to serve multiple users; 2) multiple users served by the BS

using the same time-frequency resource should come from

different user groups to reduce the correlation of different users’

channel vectors and enhance the system capacity; 3) each user is

jointly served by multiple adjacent BSs according to the channel

quality. The multi-cell joint precoding can be integrated with the

emerging cloud radio access network (C-RAN), where BS can

be considered as the remote radio header (RRH) and a baseband

unit (BBU) can be used to perform multi-cell joint precoding

with centralized processing.

IV. SIMULATION RESULTS

In this section, we investigate the performance of the pro-

posed CS-based CSIT estimation scheme for downlink pilot

decontamination in multi-cell FDD massive MIMO. In sim-

ulations, we consider L = 7 hexagonal cells, each BS has

M = 128 antennas to simultaneously serve N users, the carrier

frequency is fc = 2 GHz, the system bandwidth is fs = 10
MHz, the maximum delay spread is τmax = 5 µs for typical

urban scenario [11], P = fsτmax = 50, the cell radius is 1 km,

and the distance-based path loss between the lth BS and the

kth user is βPL = 1/(dα), where d is the geographical distance

between the lth BS and the kth user, and the path loss exponent

α is 3.8 dB/km. Moreover, cell-edge users are considered in

simulations since they suffer from the most severe downlink

pilot contamination. Specifically, we consider K adjacent users

as a group, and they are randomly distributed at the cell-edge

of the central target BS with the geographical distance of 1

km. For the proposed J-MUMC-OMP algorithm, ρth is set

as 3, 5, 10, 10, and 10, γth is set as 0.006, 0.004, 0.002,

0.0004 and 0.0003 for ρedge = 10 dB, 15 dB, 20 dB, 25 dB,

and 30 dB, respectively, where ρedge is the cell-edge SNR

associated with the central target BS. The joint-OMP based

CSIT estimation scheme [8] only considering the single-cell

scenario is provided for comparison. Besides, we also provide

the so-called J-MU-OMP algorithm, which is a special case of

the proposed J-MUMC-OMP algorithm when only the partially

common sparsity among different users is considered.

Fig. 2 compares the channel estimation MSE performance of

different CSIT estimation schemes, where K = 10, |Ωk,l|c = 6,

{Ωk,l}
K/2
k=1 = Ω1

l , {Ωk,l}
K
k=K/2+1 = Ω2

l , and |Ω1
l ∩ Ω2

l |c = 4,

∀l were considered. The oracle LS estimator with the known

{Ωk,l}
K
k=1 for l ∈ Π was adopted as the performance bound.

From Fig. 2, it can be observed that the joint-OMP based

CSIT scheme [8] suffers from downlink pilot contamination

and works poorly. In contrast, J-MUMC-OMP and J-MU-OMP

algorithms can effectively solve this issue thanks to the CS-

based pilot design and CSIT estimation algorithm in multi-cell

scenario. Especially, compared with J-MU-OMP algorithm, the

proposed J-MUMC-OMP is capable of approaching the oracle

LS performance bound when G ≥ 55, since the common

sparsity of angle-domain massive MIMO channels over different

subcarriers is also leveraged for further improved performance.

Fig. 3 compares the downlink average throughput per user

(bit/user) with different CSIT estimation schemes, where ZF

precoding is used with N = 24, and each user is jointly

served by three best BSs according to their channel quality.
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Fig. 3. Comparison of downlink average throughput per user with multi-cell
joint ZF precoding when G = 55.

It can be observed that the proposed J-MUMC-OMP based

CSIT estimation scheme outperforms its counterparts, and its

average throughput per user is capable of approaching that of

the performance bound achieved by the oracle LS estimator.

V. CONCLUSIONS

In this paper, we have proposed the CS-based CSIT esti-

mation scheme for downlink pilot decontamination in multi-

cell FDD massive MIMO systems, while existing schemes only

consider the single-cell scenario and suffer from ICI. We have

exploited the common sparsity of angle-domain massive MIMO

channels over different subcarriers and the partially common

sparsity shared by adjacent users. By exploiting these sparsity

features, we design the pilot signal and channel estimation

algorithm under the CS framework. The proposed scheme can

reliably estimate multiple adjacent BSs’ channels for downlink

pilot decontamination. Simulation results confirm that the pro-

posed solution outperforms existing schemes in multi-cell FDD

massive MIMO with low training overhead.
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