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Abstract— This paper presents a control design method that
achieves safety for systems with unmodeled dynamics at the
plant input. The proposed method combines control barrier
functions (CBFs) and integral quadratic constraints (IQCs).
Simplified, low-order models are often used in the design of
the controller. Parasitic, unmodeled dynamics (e.g. actuator
dynamics, time delays, etc) can lead to safety violations. The
proposed method bounds the input-output behavior of these
unmodeled dynamics in the time-domain using an α-IQC. The
α-IQC is then incorporated into the CBF constraint to ensure
safety. The approach is demonstrated with a simple example.

I. INTRODUCTION

This paper focuses on the design of control barrier func-
tions (CBFs) for systems with unmodeled dynamics at the
plant input. CBFs are used to design controllers that ensure
the system remains within a safe set [1], [2]. Simplified, low-
order models are often used for design. However, unmodeled
dynamics (e.g. actuator lags, time delays, etc) can lead to
safety violations as shown in Section II-B.

This paper presents a method to design CBFs while
accounting for unmodeled dynamics. The approach uses the
integral quadratic constraint (IQC) framework for analysis of
uncertain systems [3]. The main IQC result in [3] provides
frequency-domain conditions for stability of uncertain linear
time-invariant (LTI) systems. Related results have been for-
mulated using time-domain dissipation inequalities [4], [5].
The specific IQC formulation used in this paper involves a
time-domain integral with an exponential weighting (see Sec-
tion IV-A). This is called an α-IQC1 and was introduced in
[6], [8] for analysis of discrete-time optimization algorithms.
A continuous-time formulation was given in [7]. Finally, α-
IQCs were used in [9] to bound the effect of unmodeled
dynamics in the design of model predictive controllers.

There is a large literature on CBFs with a good overview
in [2]. The most closely related work on robust CBFs is
briefly summarized. Robust control barrier functions have
been developed for guaranteeing safety in the presence of
L∞ bounded disturbances [10], [11], [12], [13] or stochastic
disturbances [14]. The work in [15] and [16] considers robust
CBFs to account for variations in the model (changes to the
vector fields) and input (sector-bounded) nonlinearities, re-
spectively. A distinguishing feature of our paper is the ability
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to handle the effect unmodeled dynamics using α-IQCs. The
implication is that the true state of the plant dynamics is only
partially observed, i.e. the state of the unmodeled dynamics is
not measured. Finally, we note that [17] provides a method
to design CBFs for systems with known time delays. Our
proposed method can handle unknown (but bounded) delays
although with more conservatism than the approach in [17].

II. PRELIMINARIES

A. Control Barrier Functions

This section briefly summarizes the formulation to achieve
safety using control barrier functions [1], [2]. Consider the
feedback system with plant P , a baseline state feedback
controller k, and a safety filter. The plant P is assumed to
be given by the following (known) input-affine dynamics:

ẋ(t) = f(x(t)) + g(x(t))u(t), x(0) = x0 (1)

where x(t) ∈ Rnx is the state, u(t) ∈ U ⊂ Rnu is the
control input, and U defines a set of feasible control inputs.
The functions f : Rnx → Rnx , g : Rnx → Rnx×nu , and
baseline state-feedback controller k : Rnx → Rnu are all
assumed to be locally Lipschitz continuous.

- k(x)
u0- Safety

Filter
u-

ksafe(x)

P -x

Fig. 1. State-feedback with safety filter

The state-feedback k(x) achieves performance objectives
but is not necessarily safe. Specifically, safety is defined by
a safe set C ⊂ Rnx and the system is in a safe state at
time t if x(t) ∈ C. We consider a safe set C defined with a
continuously differentiable function h : Rnx → R:

C := {x ∈ Rnx : h(x) ≥ 0} (2)

The boundary and interior of the safe set are denoted ∂C
and Int(C), respectively. The closed-loop dynamics with the
baseline state-feedback controller are:

ẋ(t) = f(x(t)) + g(x(t)) k(x(t)), x(0) = x0 (3)

For simplicity, assume this ordinary differential equation is
forward complete, i.e. for every initial condition there exists
a unique solution for all t ≥ 0. The closed-loop is said to
be safe if x(0) ∈ C implies x(t) ∈ C for all t ≥ 0. As noted
above, the closed-loop is not necessarily safe when using the
baseline state-feedback. Control barrier functions (CBFs) are
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one method to design a controller ensuring the closed loop
remains in the safe set C. In particular, the function h is a
control barrier function if there exists α > 0 such that:

sup
u∈U

[Lfh(x) + Lgh(x)u] ≥ −αh(x) ∀x ∈ Rnx (4)

where Lfh := ∂h
∂xf and Lgh := ∂h

∂xg are the Lie derivatives
of h with respect to f and g. If h is a CBF and x(t) ∈ ∂C
then there exists u(t) ∈ U such that ḣ(x(t)) ≥ 0. Thus if the
state reaches the boundary of C then the control can prevent
the state from crossing out of the safe set. This is formalized
in Theorem 1 below. The CBF constraint (4) ensures that the
following set of control inputs is non-empty for all x ∈ Rnx :

Ucbf (x) := {u ∈ U : [Lfh(x) + Lgh(x)u] ≥ −αh(x)}

The existence of a control barrier function can be used to
design a controller that yields safety for the closed-loop.

Theorem 1. [1], [2] Consider the nominal plant dynamics
in (1). Let C ⊂ Rnx be the superlevel set of a continuously
differentiable function h : Rnx → R as defined in (2).
Assume h satisfies (4) for some α > 0. Then any controller
ksafe : Rnx → Rnu with ksafe(x) ∈ Ucbf (x) ∀x ∈ Rnx
renders the set C forward invariant.

Proof. This is a special case of Proposition 1 and Corollary
2 in [1]. The trajectories x(t) of the closed-loop with plant
(1) and controller ksafe(x) satisfy ḣ(x(t)) ≥ −αh(x(t)). It
follows from the Grönwall-Bellman lemma [18] that h(t) ≥
h(0)e−αt for as long as the solutions exist. Thus h(0) ≥ 0
implies h(t) ≥ 0 and the set C is forward invariant.

This summary has simplified some technical details. For
example, the CBF condition (4) has the term −αh(x) where
α ∈ R is a constant. The more general formulation in [1],
[2] uses −α(h(x)) where α is an extended class-K function.
The simplifying assumptions here allow for a proof using the
Grönwall-Bellman lemma. This proof will be adapted later
for the case with unmodeled dynamics. The more general
results in [1], [2] follow from Nagumo’s theorem [19].

Theorem 1 provides flexibility in the choice of the “safe”
controller ksafe. It is useful to design a safe controller that:
(i) ensures the closed loop remains in C, and (ii) minimally
alters the control command from the baseline state-feedback.
This is achieved by solving an optimization in real-time:

ksafe(x) := arg min
u∈U

1

2
‖u− k(x)‖2

s.t. Lfh(x) + Lgh(x)u ≥ −αh(x)
(5)

If U = Rnu then (5) has a quadratic cost with one linear
constraint. There is an explicit solution for this special case.
If U is a polytope then (5) is a quadratic program and can be
efficiently solved. Finally, note that ksafe is not necessarily
Lipschitz continuous (and the proof of Theorem 1 using
Grönwall-Bellman does not require Lipschitz continuity.)

B. Impact of Unmodeled Dynamics

This section presents a simple example to illustrate the
impact of unmodeled dynamics. Consider a two-dimensional

point mass with position p ∈ R2 and velocity ṗ ∈ R2. A
double-integrator model for the planar motion is given by:

ẋ(t) =

[
0 I
0 0

]
x(t) +

[
0
I

]
u(t) (6)

where x(t) =
[
p(t)
ṗ(t)

]
∈ R4 is the state and u(t) ∈ R2

contains the forces. A baseline state-feedback controller is
designed using linear quadratic regulator with cost matrices
Q := diag(1, 1, 1.75, 1.75) and R := I2. This was imple-
mented to track a position reference command r(t) ∈ R2:

u0 = K ·
([
r
0

]
−
[
p
ṗ

])
where K :=

[
1 0 1.94 0
0 1 0 1.94

]
This baseline corresponds to independent proportional-
derivative controllers along each dimension. This differs
slightly from the feedback diagram in Figure 1 due to
the inclusion of the reference command, i.e. the baseline
controller is of the form u0 = k(x, r).

A stationary obstacle of radius r̄ = 1.5 is assumed to be
at the position c̄ =

[
2
−0.2

]
. The safe set C is defined by

Equation 2 with h(x) := (p− c̄)T (p− c̄)− r̄2 ≥ 0. The time
derivatives of h along a state trajectory x are given by:

ḣ(x(t)) = 2(p(t)− c̄)T ṗ(t) (7)

ḧ(x(t), u(t)) = 2(p(t)− c̄)Tu(t) + 2ṗ(t)T ṗ(t) (8)

The function h is not a CBF as defined in the previous section
as the control input appears in the second time derivative, i.e.
it has relative degree 2.

Exponential CBFs [20], [2] can be used to design safe
controllers for barrier functions with relative degree greater
than 1. The basic idea can be summarized as follows. Safety
is ensured if we can design a controller that achieves ḣ(t) ≥
−αh(t). Specifically, ḣ(t) ≥ −αh(t) and h(0) ≥ 0 implies,
under appropriate technical conditions, that h(t) ≥ 0 for
as long as the solution exists. However, the control input u
does not appear in ḣ(t) in (7). Instead, define a new function
h̃ := ḣ+αh and note that the desired condition is equivalent
to h̃(t) ≥ 0. Moreover, ˙̃

h = ḧ+αḣ. Hence the control input
appears in ˙̃

h due to (8), i.e. h̃ is relative degree 1. Thus safety
is ensured, under appropriate technical conditions, if:

(i) h(0) ≥ 0
(ii) h̃(0) ≥ 0 ⇔ ḣ(0) ≥ −αh(0)

(iii) u is chosen so that ˙̃
h(t) ≥ −αh̃(t) ⇔ u is chosen so

that ḧ(t) ≥ −α2h(t)− 2αḣ(t)

Roughly, conditions (ii) and (iii) ensure that h̃(t) ≥ 0 which,
combined with condition (i), ensures h(t) ≥ 0. The safe
controller from the exponential CBF is obtained by solving
the following optimization in real-time:

ksafe(x, r) := arg min
u∈U

1

2
‖u− k(x, r)‖2

s.t. ḧ(x, u) ≥ −α2h(x)− 2αḣ(x)
(9)

Here ḣ(x) and ḧ(x, u) denote the expressions in (7) and (8).
Additional details on exponential CBFs, including a more
rigorous derivation, can be found in [20], [2].



Figure 2 shows a simulation of the two-dimensional point
mass with the exponential CBF controller for α = 5.
The unsafe region due to the obstacle is shaded cyan. The
initial conditions are p(0) = [−10, 0]T and ṗ(0) = [0, 0]T .
The reference transitions linearly in time from this initial
condition to a final desired position of [+10, 0]T at time
t = 45sec. The simulation with the nominal plant model
(black line) follows the reference and avoids the obstacle as
expected. The figure also shows a simulation (red dashed)
with the same controller but on a plant with an input delay
τ = 0.13sec. The zoomed plot on the right of Figure 2 shows
that the simulation with delay has small safety violations.
Larger delays cause even greater safety violations.
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Fig. 2. Position for exponential CBF controller on nominal point mass
(black) and with additional delay (red dashed) of τ = 0.13sec. The left
plot shows full trajectory from (−10, 0) to (10, 0). The right plot zooms
in on trajectories near boundary of the unsafe region.

Figure 3 shows the the control inputs for the two simu-
lations. The unmodeled delays cause the inputs to oscillate
when the exponential CBF is activated (i.e. ksafe(x, r) 6=
k(x, r)) between t = 25sec to t = 32sec. Similar issues
arise due to unmodeled, first-order actuator dynamics.
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Fig. 3. Control inputs for exponential CBF controller on nominal point
mass (black) and with delay (red dashed) of τ = 0.13sec.

III. PROBLEM FORMULATION: ROBUST CBFS

The safety controllers designed using CBFs or exponen-
tial CBFs are often designed using low-order, approximate
models. This can cause issues as indicated by the example

in the previous subsection. A method to design CBFs for
systems with a known delay is given in [17]. The rest of this
paper provides a method to deal with unmodeled (unknown)
delays and/or unmodeled dynamics. In particular, we focus
on the effect of unmodeled dynamics at the plant input. The
plant with uncertainty at the input is:

ẋ(t) = f(x(t)) + g(x(t)) (u(t) + w(t)), x(0) = x0

w(t) = ∆(u)(t)
(10)

The uncertainty enters due to the additional input w = ∆(u).
If ∆ = 0 then this corresponds to the nominal (known) model
in Equation 1. However, ∆ can have dynamics and account
for deviations from the nominal dynamics due to unmodeled
effects. This is demonstrated through two examples.

Example 1 (Delay). Assume that the actual plant input is
v = Dτ (u) where Dτ denotes a delay of τ seconds. Thus
v = Dτ (u) corresponds to v(t) = u(t − τ) for t ≥ τ and
v(t) = 0 otherwise. The effect of a delay at the plant input is
modeled in Equation 10 by setting w(t) := u(t− τ)− u(t).
In this case the perturbation is ∆ := Dτ − 1.

Example 2 (Actuator Dynamics). Assume that the actual
plant input is V (s) = A(s)U(s) where A(s) denotes the
transfer function for neglected actuator dynamics. The effect
of the neglected actuator dynamics at the plant input is
modeled in (10) by setting W (s) := V (s)−U(s) = (A(s)−
1)U(s). In this case the perturbation is ∆(s) := A(s) − 1.
For example, A(s) = p

s+p corresponds to a simple first-order
model for the actuator dynamics yielding ∆(s) = −s

s+p .

In both examples, the signal w represents the deviation
from the nominal behavior. Note that w is not simply an
exogenous disturbance as it depends on the control signal
through the dynamics of ∆. The objective is to design a
safe controller that is robust to these unmodeled dynamics.
To make this precise, assume the unmodeled dynamics are
restricted to be within a known set ∆. This set is described
more formally in the next section. For now it is sufficient to
state that ∆ provides some bounds on the uncertainty.

The objective is to find a condition on the control input u
that ensures that the system remains safe for any uncertainty
in the uncertainty set ∆. Formally, the goal is to design
u = ksafe(x) so that the x(0) ∈ C implies x(t) ∈ C for
all t ≥ 0 and for all ∆ ∈ ∆. We will use a generalization
of CBFs to ensure safety. First note that the nominal CBF
constraint in Equation 4 depends only on the state x and the
functions (f, g, h). This is an algebraic condition that can be
enforced at each time instant as part of the optimization (5).
It is important to emphasize that the uncertainty w = ∆(u)
has dynamics so that w(t0) depends, in general, on u(t) for
t ≤ t0. Our notion of robust CBF, defined in Section IV,
will account for these dynamic couplings.

IV. ROBUST CBFS WITH UNMODELED DYNAMICS

A. Integral Quadratic Constraints (IQCs)

Our approach relies on IQCs to bound the effect of the
unmodeled dynamics. We use a time-domain formulation



with an exponential weighting factor. This is based on a
discrete-time formulation introduced in [6] for the analysis
of optimization algorithms. A similar formulation has also
been used in [8], [7] to analyze convergence rates and in [9]
to design robust model-predictive controllers. A special case
of a continuous-time α-IQC is defined below.2

Definition 1. Let F (s) be an nu × nu stable, LTI system.
A causal operator ∆ : Lnu2e [0,∞) → Lnw2e [0,∞) satisfies
the time-domain α-IQC defined by F (s) if the following
inequality holds for all u ∈ Lnu2e [0,∞), w = ∆(u) and T ≥ 0∫ T

0

eαt
(
z(t)T z(t)− w(t)Tw(t)

)
dt ≥ 0 (11)

where z is the output of F (s) started from zero initial
conditions and driven by input u.

Definition 1 is a special case of a more general class of
α-IQCs. This special case is used for exposition and more
general α-IQCs can be incorporated with CBFs using the
method in Section IV-B. The notation ∆ ∈ IQC(F, α)
indicates that ∆ satisfies the α-IQC defined by F (s). The
α-IQC is a constraint on the input/output pairs of ∆ and
IQC(F, α) is the set of uncertainties bounded by the α-IQC.
As a special case, if ∆ is SISO, α = 0, and F (s) = 1 then
(11) simplifies to

∫ T
0
w2(t)dt ≤

∫ T
0
u2(t)dt. This represents

a constraint that the output of ∆ has less energy (in the L2

norm) than the input. The dynamics in F (s) can be used to
bound the effect of the uncertainty as a function of frequency.
This is demonstrated in the next example.

Example 3. The uncertainty due to a delay τ is given by
w = ∆(u) with ∆ := Dτ−1 as shown in Example 1. The α-
IQC is derived using frequency-domain relations. Let U(s),
W (s), and Z(s) denote the Laplace Transforms of u(t),
w(t), and z(t), respectively. Thus W (s) = ∆(s)U(s) and
Z(s) = F (s)U(s) where ∆(s) = (e−sτ − 1). If α = 0, we
can rewrite the time-domain constraint (11) in the frequency
domain using Parseval’s theorem [21]:∫ ∞

−∞
(|F (jω)|2 − |∆(jω)|2) · |U(jω)|2 dω ≥ 0 (12)

This condition must hold for all inputs and hence we must
select F (s) to satisfy |F (jω)| ≥ |∆(jω)| ∀ω. This is done
by: (i) generating the frequency response of ∆(jω) for the
given τ , and (ii) computing a stable, minimum-phase F (s)
with |F (jω)| ≥ |∆(jω)| ∀ω. Step (ii) can be performed via
convex optimization, e.g. as done in fitmagfrd in Matlab.
A similar process can be used if the delay is unknown but
restricted to [0, τ̄ ] for some given τ̄ . In this case, F (s)
is constructed to bound the frequency responses of ∆(jω)
generated for many delay values τ ∈ [0, τ̄ ]. This can again
be solved by convex optimization.

The more general case α > 0 is handled as follows. Define

2Definition 1 uses an exponential factor eαt. Continuous-time α-IQCs
have been previously defined using the factor e2αt [7]. Either form can
be converted to the other by accounting for the additional factor of 2. The
version used here with eαt aligns closely with their use later for CBFs.

w̃(t) := e
α
2 tw(t) and similarly for ũ and z̃. Multiplication

by e
α
2 t in the time domain causes a shift in the frequency

domain: W̃ (s) = W (s − α
2 ). In addition, define ∆̃(s) =

∆(s − α
2 ) and F̃ (s) = F (s − α

2 ). Thus the shifted signals
satisfy W̃ (s) = ∆̃(s)Ũ(s) and Z̃(s) = F̃ (s)Ũ(s). The
shifted filter F̃ (s) can be constructed to bound the frequency
response of ∆̃(s) as described above. The filter for the α-
IQC is obtained by shifting back: F (s) = F̃ (s+ α

2 ). These
steps ensure that F (s) defines a valid α-IQC for the delay.

B. CBFs with IQCs

The effect of the uncertainty ∆ can be incorporated
into the CBF condition using the α-IQC and a Lagrange
multiplier. To elaborate on this point, assume the filter F (s)
has the following state-space representation:

ẋF (t) = AF xF (t) +BF u(t), xF (0) = 0

z(t) = CF xF (t) +DF u(t)
(13)

where xF (t) ∈ RnF is the state of F (s). The integrand in
(11) is eαtI(xF (t), u(t), w(t)) where:

I(xF , u, w) := (CFxF +DFu)T (CFxF +DFu)− wTw

The function h is a robust CBF for ∆ ∈ IQC(F, α) if there
exists a Lagrange multiplier λ > 0 such that:

sup
u∈U

[Lfh(x) + Lgh(x)(u+ w)− λ I(xF , u, w)] ≥ −αh(x)

∀x ∈ Rnx , ∀xF ∈ RnF , ∀w ∈ Rnw (14)

If h is a robust CBF then there exists u(t) ∈ U such that
ḣ− λI ≥ −αh. The following technical lemma verifies that
this is sufficient to ensure safety, i.e. h(0) ≥ 0 implies h(t) ≥
0 for all time. The lemma is stated for functions of time and
is a variation of the Grönwall-Bellman lemma [18].

Lemma 1. Assume h : R≥0 → R is continuously differen-
tiable and I : R≥0 → R is Lebesgue integrable. In addition,
assume the following two conditions hold for some α, λ > 0:
(a) ḣ(t)− λI(t) ≥ −αh(t) for all t ≥ 0

(b)
∫ T
0
eαtI(t)dt ≥ 0 for all T ≥ 0

Then h(t) ≥ h(0)e−αt for all t ≥ 0.

Proof. First, use assumption (a) to show the following:

d

dt

(
h(t)eαt

)
=
(
ḣ(t) + αh(t)

)
eαt

(a)

≥ λeαtI(t) (15)

Integrate this inequality from t = 0 to t = T and apply (b):

h(T )eαT − h(0) ≥ λ
∫ T

0

eαtI(t) dt
(b)

≥ 0 (16)

This yields h(T ) ≥ h(0)e−αT for all T ≥ 0.

The robust CBF constraint (14) ensures that the following
set is non-empty for all x ∈ Rnx and xF ∈ RnF :

Urcbf (x, xF ) :={u ∈ U : Lfh(x) + Lgh(x)(u+ w)

− λI(xF , u, w) ≥ −αh(x) ∀w ∈ Rnw}

It is emphasized that there is no a-priori bound on w(t) at
any point in time. Instead, the α-IQC provides a bound on



the energy (L2-norm) of w. Thus the robust CBF condition
in the definition of Urcbf holds for all possible values of w.
The next theorem states that the existence of a robust control
barrier function can be used to design a controller that yields
safety for all possible uncertainties in IQC(F, α).

Theorem 2. Consider the uncertain plant dynamics in (10)
with ∆ ∈ IQC(F, α) for some stable, LTI system F . Let
C ⊂ Rnx be the superlevel set of a continuously differentiable
function h : Rnx → R as defined in (2). Assume h satisfies
(14) for some α, λ > 0. Then any Lipschitz continuous
controller ksafe : Rnx × RnF → Rnu with ksafe(x, xF ) ∈
Urcbf (x, xF ) ∀(x, xF ) ∈ Rnx × RnF renders the set C
forward invariant for all ∆ ∈ IQC(F, α).

Proof. The closed-loop with plant (10), controller
ksafe(x, xF ), and any ∆ ∈ IQC(F, α) has trajectories that
satisfy the conditions (a) and (b) of Lemma 1. It follows
from this Lemma that h(0) ≥ 0 implies h(t) ≥ 0 for as
long as the solutions exist.

The next optimization attempts to match a baseline con-
troller k(x) while satisfying the condition in Theorem 2:

ksafe(x, xF ) := argmin
u∈U

1

2
‖u− k(x)‖2 subject to:

Lfh(x) + Lgh(x)(u+ w)− λI(xF , u, w) ≥ −αh(x) ∀w ∈ Rnw

The constraint is quadratic in w. The worst-case value of w
is obtained by minimizing the left side to obtain:

w∗ := − 1

2λ
(Lgh(x))T (17)

The optimization can be equivalently re-written using w∗:

ksafe(x, xF ) := arg min
u∈U

1

2
‖u− k(x)‖2 subject to: (18)

Lfh(x) + Lgh(x)(u+ w∗)− λI(xF , u, w
∗) ≥ −αh(x)

The real-time implementation requires a measurement of the
state x. This can be used to form w∗. In addition, the filter
F (s) must be simulated with input u from initial condition
xF (0) = 0 to obtain xF (t). Given (x, xF ), the optimization
(18) has a convex quadratic constraint on u and a quadratic
cost. This is a convex optimization (assuming u ∈ U is a
convex constraint) and can be efficiently solved in real-time.

Consider the special case with the following assumptions:
(i) the filter is constant with no states, i.e. F (s) = DF ,
(ii) λ → ∞, and (iii) λDT

FDF → 0. It follows from (17)
and (ii) that w∗ and −λ(w∗)Tw∗ tend to zero. Moreover,
(iii) implies that −λ(DFu)T (DFu) tends to zero. Thus
the robust CBF condition in (18) converges, under these
assumptions, to the nominal CBF condition in (5). In other
words, we approximately recover the nominal CBF condition
by choosing a small (constant) uncertainty level for F and a
large value for the Lagrange multiplier λ > 0. This provides
one pragmatic approach to handle unmodeled dynamics with
CBFs: Simply use a large Lagrange multiplier and a small
constant F to (heuristically) provide some robustness to
unmodeled dynamics. A more formal approach is to bound
the unmodeled dynamics using F (s) as done in Example 3.

Note that the optimization (18) is not necessarily feasible
even if U = Rnu due to the quadratic term −λ(CFxF +
DFu)T (CFxF +DFu). This is difficult to analyze precisely
as past values of u impact the state xF of the filter F .
Smaller values of λ tend to improve feasibility but lead to
more conservative paths around the unsafe set. Conversely,
larger values of λ tend to degrade feasibility but more closely
approximate the performance of the nominal CBF controller.

V. EXAMPLE

We will again consider the two-dimensional point mass
dynamics introduced in Section II-B. Recall that we designed
an exponential CBF with α = 5 and explored the effect of an
unmodeled delay of τ = 0.13sec. In this section we will use a
adapt the results in Section IV to derive a robust exponential
CBF for the two-dimensional point mass.

The first step is to derive a frequency domain bound on the
perturbation due to the unmodeled delay. We assume the true
delay τ is unknown but restricted to [0, τ̄ ] with τ̄ = 0.13. The
corresponding perturbation ∆(s) = (e−sτ − 1) is bounded
using the process described in Example 3 in Section IV-A.
Figure 4 shows frequency responses (red-dashed) for ∆̃(s) =
∆(s − α

2 ) with ten values of delay evenly spaced between
[0.1τ̄ , τ̄ ]. The first-order system F̃ (s) := 2.84s+5.81

s+14.48 satisfies
|F̃ (jω)| ≥ |∆̃(jω)| ∀ω and for each delay sample. This
choice of F̃ (s) was computed using fitmagfrd in Matlab.
Next, the α-IQC filter is obtained by shifting the frequency:
F (s) = F̃ (s+ α

2 ). The state-space data for the resulting filter
is (AF , BF , CF , DF ) = (−16.98, 6.20,−5.70, 2.84).
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Fig. 4. The delay perturbation is ∆(s) = (e−sτ − 1). The figure shows
frequency responses of (shifted) perturbation ∆̃(s) = ∆(s − α

2
) with ten

samples of delay (red dashed) and a bound F̃ (blue).

Equation 9 gives the optimization for safe control of the
two-dimensional point mass using an exponential CBF. This
can be adapted to include the α-IQC using the approach
in Section IV. This leads to the following optimization that
merges the exponential CBF with the α-IQC:

ksafe(x, xF , r) := arg min
u∈U

1

2
‖u− k(x, r)‖2

s.t. ḧ(x, u)− λI(xF , u, w
∗) ≥ −α2h(x)− 2αḣ(x)

(19)



Here ḣ(x) and ḧ(x, u) denote the expressions in (7) and
(8). Define h̃ = ḣ + αh so that the constraint in (19) is
˙̃
h − λI ≥ −αh̃. It follows from Theorem 2 that h̃(0) ≥ 0
implies h̃(t) ≥ 0. Moreover, h̃(t) ≥ 0 and h(0) ≥ 0 imply
h(t) ≥ 0 based on the discussion in Section II-B. Thus this
optimization, if feasible at each time, will yield safety.

Figure 5 shows the results of the nominal exponential CBF
controller (red dashed) and robust exponential CBF (blue)
on the point mass dynamics with delay of τ = 0.13sec. The
plant has two inputs (ux, uy) each of which has a delay.
An α-IQC for each direction was included for each delay
with a Lagrange multiplier λx = λy = 0.1. Figure 5 shows
that the robust exponential CBF controller takes a more
cautious (conservative and safe) path around the obstacle.
This accounts for the effect of the unmodeled dynamics.
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Fig. 5. Position for exponential CBF (red dashed) and robust exponential
CBF (blue) controllers on point mass with delay τ = 0.13sec.

Figure 6 shows the control inputs with the nominal expo-
nential CBF controller (red dashed) and the robust version
(blue). The robust version reduces the oscillations in the
control signals. Smaller values for the Lagrange multipliers
(λx, λy) further reduce the oscillations but also yield an even
more conservative path around the obstacle.
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Fig. 6. Control inputs for exponential CBF (red dashed) and robust
exponential CBF (blue) controllers on point mass with delay τ = 0.13sec.

VI. CONCLUSIONS

This paper presented a method to design control barrier
functions (CBFs) that are robust to unmodeled dynamics at
the plant input, e.g. unmodeled actuator dynamics or time
delays. The approach uses α-IQCs to bound the input/output
behavior of the uncertainty. A robust CBF condition is
derived using a version of the Grönwall-Bellman lemma.
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