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Abstract—In this paper, the impacts of imperfect channel
covariance matrix on the spectral efficiency (SE) of cell-free dis-
tributed massive multiple-input multiple-output (MIMO) systems
are analyzed. We propose to estimate the channel covariance
matrix by alternately using the assigned pilots and their phase-
shifted pilots in different coherent blocks, which improves the
accuracy of channel estimation with imperfect covariance matrix
and reduces pilot overhead. Under this scheme, the closed-form
expressions of SE with maximum ratio combination (MRC) and
zero-forcing (ZF) receivers are derived, which enables us to
select key parameters for better system performance. Simulation
results verify the effectiveness of the proposed channel estimation
method and the accuracy of the derived closed-form expressions.
When more coherent blocks are used to estimate the covariance
matrix, we can get better system performance. Moreover, some
insightful conclusions are arrived at from the SE comparisons
between different receiving schemes (ZF and MRC) and different
pilot allocation schemes (orthogonal pilot and pilot reuse).

Index Terms—Cell-free distributed massive MIMO, covariance
matrix estimation, channel estimation, spectral efficiency, pilot
contamination.

I. INTRODUCTION

DUE to the increasing requirements for high system

throughput, low latency, ultra-reliability and near-instant

connection, more innovative technologies are needed to pave

the way for the development of B5G and 6G technologies

[1]. A large number of access points (APs) distributed in

an area serve all users in the same time-frequency resource

[2], [3]. Cell-free distributed massive MIMO can get all the

benefits from massive MIMO (which facilitates propagation

and channel strengthening when multiple antennas are used

at the APs [4]) and network MIMO (which increases macro-

diversity gain). Therefore, it has a very high spectral efficiency,

energy efficiency and coverage. In addition, the cell-free

structure can solve the problem that user performance and user

location are related in the cellular network. Compared with

the centralized system, the cell-free distributed massive MIMO
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system has advantages such as channel diversity, no switching,

higher coverage and no need deploying cells in specific areas

[5]. Therefore, in recent years, cell-free distributed massive

MIMO has aroused widespread research interest [6]–[10].

Obtaining channel state information (CSI) is essential for

taking advantage of the cell-free distributed massive MIMO

system. There have been some studies on channel estimation

methods. In most of these studies, the minimum mean square

error (MMSE) channel estimation method is extended to the

cell-free distributed MIMO system, or make certain improve-

ments on this basis [6], [11]–[14]. There may be other channel

estimation methods, such as least-squares (LS) channel esti-

mation, but this results in very poor system performance [15].

However, these estimations are performed under the premise

that the covariance matrix is perfect. Actually, the covariance

matrix is usually imperfect, and the imperfect covariance

matrix will have an impact on system performance. Because

covariance matrix information is important for resource alloca-

tion and to suppress pilot contamination, imperfect covariance

matrix will cause serious pilot contamination and affect the

system performance [16].

Generally speaking, there are six typical methods to obtain

the covariance matrix: 1) Use a specific phase for learning

the covariance matrix where every user in the network uses

a unique orthogonal pilot, from which a sample correlation

matrix can be formed, possibly by using regularization to get

robustness [17]; 2) Eliminate the interference by sending pilots

from other interfering users to obtain the covariance matrix

of the target user [16]; 3) Add additional pilot sequences for

covariance estimation in the coherent blocks to obtain accurate

channel estimation [18]; 4) Instead of reserving a specific

phase for learning the covariance matrix, the pilot assignment

is changed between different coherence blocks [19]; 5) Use

the MMSE estimator of the structure model as the blueprint

of the neural network structure, and a similarly effective

(but suboptimal) estimator was obtained [20]; 6) Phase-rotate

the pilot sequence in each coherence block to approximately

decorrelate the channel observations at the APs [21]. However,

these methods are all covariance matrix acquisition methods in

a centralized cellular scenario, and there is no relevant research

in a cell-free distributed massive MIMO scenario.

To meet the needs of super-dense user scenarios, the total

number of antennas in cell-free massive MIMO systems need

to be increased greatly. With the increase of the total number

of antennas in the system, the spatial multiplexing gain of

the system will be greatly improved, and the number of

http://arxiv.org/abs/2108.10574v1
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users who can serve in the same frequency will also be

greatly increased. However, the increase of system capacity

is established when the CSI is known. If the orthogonal pilot

is used to estimate the CSI, the pilot overhead will increase

linearly with the increasing of the number of antennas. If a

completely orthogonal pilot is used, the pilot overhead will

be very large, which ultimately restricts the improvement

of the overall transmission efficiency. For uplink wireless

transmission, although the pilot overhead is only proportional

to the number of users and independent of the number of

antennas, it is still too overhead if the completely orthogonal

pilot is adopted considering the large number of users the cell-

free distributed massive MIMO needs to support. Therefore, it

is necessary to adopt a pilot multiplexing scheme to improve

the utilization of pilot resources, which will result in pilot

contamination [22]–[25]. Pilot contamination makes the esti-

mation of the covariance matrix more complicated, because the

users using the same pilot sequences will cause interference,

so the channel estimates from which the covariance matrix

estimates are obtained are themselves contaminated. Naively

utilizing the contaminated channel estimates in a sample

covariance estimator will result in the target user covariance

matrix estimate containing the covariance matrices of the

interference users, which in turn leads to inaccurate estimation

of the covariance matrix and ultimately affects the overall

transmission efficiency.

In this paper, we propose a new covariance matrix esti-

mation method and derive the closed-form expressions for

the uplink achievable rates in a cell-free distributed massive

MIMO system with both MRC and ZF receiver under pilot

contamination. The main contributions of this paper are sum-

marized as follows:

1) We propose to estimate the channel covariance matrix

by using alternate assigned pilots and their phase-shifted

pilots in different coherent blocks, which obtains accu-

rate channel estimation with low complexity and without

extra pilots.

2) Given the estimated channel covariance matrix, we

derived accurate closed-form expressions of the up-

link achievable rates with both MRC and ZF receivers

which enables the spectral efficiency analysis of cell-

free distributed massive MIMO systems with imperfect

covariance matrix.

3) Numerical simulations are performed to corroborate

our theoretical analysis, and insightful conclusions are

drawn from the comparison between system perfor-

mance with perfect and imperfect covariance matrix

using different receivers with different pilot allocation

and the analyze of the relationship between the number

of coherent blocks used to calculate the covariance

estimation and the SE.

The remainder of the paper is organized as follows. In

Section II, we describe the system model including the system

configuration, channel model, and channel estimation with

pilot contamination in the case of perfect or imperfect co-

variance matrix. Section III contains pilot structure design

and covariance matrix estimation. The spectral efficiency is

analyzed in section IV. Representative numerical results are

given in Section V before we conclude the paper in Section

VI.

Notation: Boldface letters stand for matrices (upper case) or

vectors (lower case). The transpose and conjugate transpose

are denoted by (·)T
and (·)H

respectively. IMN stands for the

M ×N identity matrix, and CN (µ, σ2) denotes the circularly

symmetric complex Gaussian distribution with mean µ and

variance σ2, while W(N,R) denotes Wishart matrix with

N degrees of freedom and R is the covariance matrix that

corresponds to underlying Gaussian random vectors.

II. SYSTEM MODEL

This paper considers a cell-free distributed massive MIMO

system. There are M APs equipped with N antennas and K
single-antenna users. Assuming that the system adopts a time

division duplex (TDD) mode, the BS uses the reciprocity of

the uplink and downlink channels to perform downlink multi-

user precoding based on the uplink channel estimation results.

A. Channel Model

Considering a block fading channel, and the channel vector

from user k to all APs can be modeled as [26]

gk=Λ
1/2
k hk ∈ C

MN×1, (1)

with

Λk = diag([λk,1 · · ·λk,M ]T)⊗ IN ∈ C
MN×MN , (2)

where λkm
∆
= d−ζ

k,msk,m represents the large-scale fading

between user k and AP m. dk,m is the distance from user

k to AP m, ζ is the path loss exponent, sk,m is a log-normal

shadow fading variable. In addition, hk ∈ C
MN×1 models

small-scale fast fading, and each elements follows CN (0, 1).
So the channel gk satisfies Nc (0,Λk), that is E [gk] = 0,

cov (gk,gk) = Λk.

The uplink received signal model is:

y =
√
ρ

K
∑

k=1

gkxk + n, (3)

where y represents information received from all users, ρ is the

sending power, xk is the sending information, n ∼ Nc

(

0, σ2
)

is the noise and σ2 is the noise power. We assume that gk and

n are independent of each other.

B. Uplink Channel Estimation

As widely recognized in most of articles, we first assume

that the large-scale fading Λk is known to the BS, and the

small-scale fading hk needs to be estimated at the BS. Then,

based on the actual situation that the covariance matrix is

unknown, so the large-scale fading Λk is also unknown to the

BS, and both the large-scale fading Λk and the small-scale

fading hk need to be estimated at the BS.

1) Case I: Perfect covariance matrix

It is assumed that there are P orthogonal pilot sequences

of length τ to be used for uplink channel estimation, which is

a constant independent of K , and the pilot signal is allocated
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to K users when accessing the network. When P < K , there

will be multiple users using the same pilot frequency, resulting

in pilot contamination, which leads to the deterioration of

the accuracy of channel estimation. Let Up ⊂ {1, . . . ,K}
denote the subset of users using the pilot p, all users using

the pth pilot transmit the pilot signal Xp on the same time-

frequency resource, and satisfy XpX
H
p = IP . After correlating

the received training signal with the conjugate of the pilot

sequence, the BS estimates the channel based on the following

observations

yp =
√
ρ
∑

i∈Up

gi + np. (4)

Since gk satisfies Nc (0,Λk), for k ∈ Up, the minimum

mean square error (MMSE) estimate of channel gk should be

ĝk =E [gk] + cov (gk,yp) cov (yp,yp)
−1

(yp − E [yp])

=
Λk√
ρ





∑

i∈Up

Λi +
σ2

ρ
IMN





−1

yp, (5)

with

Σp = cov (yp,yp) = ρ





∑

i∈Up

Λi +
σ2

ρ
IMN



, (6)

where Σp is the covariance matrix of the received signal.

Therefore, for k ∈ Up, the channel estimation expression

with perfect covariance matrix is

ĝk =
√
ρΛkΣ

−1
p yp. (7)

2) Case II: Imperfect covariance matrix

In practice, the covariance matrix is usually imperfect,

and the aforementioned channel estimation under the perfect

covariance matrix does not meet actual requirements. At this

point, both Λk and Σp are unknown quantities, so the channel

estimation expression is transformed into

ĝk = Λ̂kΣ̂
−1
p yp. (8)

Hence, if we want to obtain the accurate channel estimation

with imperfect covariance matrix ,we must accurately estimate

the covariance matrix. At the same time, it can also be seen in

both (6) and (8) that the covariance matrix cannot be calculated

directly by simply using the contaminated channel, and the

covariance matrix needs to be estimated separately.

Assuming that the channel is a block fading model, the

channel remains unchanged within a certain coherence band-

width Bc and a certain coherence time Tc, that is, the channel

remains unchanged within τc = BcTc symbols. The covariance

matrix is constant in the transmission bandwidth. Compared

with the rapid change of the small-scale fading, it changes

slowly in time, so it can be reasonably assumed that it remains

unchanged within τs = BsTs/BcTc = BsTs/τc coherent

blocks. Therefore, channel estimation is required for each

coherent block, but the covariance matrix only needs to be

estimated once in τs coherent block. Therefore, according to

this property, we estimate the covariance matrix and channel

by using a special pilot structure.

!"#$
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Fig. 1. The structure of pilot in some coherent blocks with invariant
covariance matrix

In the following section, we propose a method of using

different pilot in adjacent coherent blocks. Compared with the

common method of adding extra pilots for covariance matrix

estimation, this scheme can greatly reduce the pilot overhead

without losing the estimation accuracy.

III. PROPOSED PILOT STRUCTURE AND METHOD FOR

ESTIMATING COVARIANCE MATRIX

In this section, we first describe the pilot structure design.

Then based on the structure, we estimate the sample covari-

ance and individual covariance respectively.

A. Pilot Structure Design

Considering the block fading model, multiple coherent

blocks can be used to estimate the covariance matrix. Since

each coherent block sends pilots for channel estimation, in

order not to add additional pilot, we consider using the

channel estimated pilots for simultaneous covariance matrix

estimation. However, due to pilot contamination, in order to

obtain interference-free observations for each user, we should

change the pilot structure. This pilot structure needs to be

able to eliminate interference for accurate covariance matrix

estimation without affecting channel estimation, so we can

change the pilot by introducing random phase shift.

In addition, in order to have a low complexity system, we

should use a relatively simple pilot structure. So we consider

a use of alternate pilots to estimate the covariance matrix, that

is, each user alternately sends allocated pilot Xp and phase-

shifted pilot Φk in adjacent coherent blocks. Φk is the pilot

after the pilot Xp undergoes a random phase shift

Φk [2n] = ejθk,2nXp [2n− 1] , n = 1, 2, · · ·, (9)

where n is the index of coherent blocks, θk,2n is a random

phase shift, which is irrelevant to the channel vector and noise

and satisfies E
[

ejθk,2n

]

= 0. So this random phase-shiftedt

pilot Φk is irrelevant to the channel and noise. The detailed

structure of the pilot is depicted in Fig. 1.

Assuming that different users using the same pilot has

different random phase shift θk,2n. By observing the received

signals of the alternate pilot, using the phase shift term

irrelevance to remove interference from other users and noise,

an accurate covariance matrix estimation can be obtained. In
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practical applications, θk,2n can be obtained by a pseudo-

random sequence generator, and it is assumed that these phase

shifts are known at the central processing unit (CPU).

B. Sample Covariance Matrix Estimation

Based on the pilot structure, the sample correlation matrix

is used to approximate Σp. We select the coherent blocks

that send pilot Xp , that is, the interval coherent blocks are

used to estimate Σp. Assuming that the pilots of NΣ ≤ τs/2
coherent blocks are received, the sample covariance matrix can

be obtained as

Σ̂p =
1

NΣ

NΣ
∑

n=1

yp[2n− 1](yp[2n− 1])
H
, (10)

where yp[2n− 1] represents the received signal of the (2n−
1)th coherent block. When NΣ is larger, the estimated Σ̂p will

be more accurate.

In fact, it is not necessary to select coherent blocks sending

pilot Xp, as long as the interval coherence blocks are selected

to estimate the sample correlation matrix, the same result will

be obtained.

C. Individual Covariance Matrix Estimation

In order to estimate individual covariance matrix Λ̂k, ad-

jacent coherent blocks are needed to remove the correlation.

Based on the pilot sequence Φk, the pilot signal received by

the APs from the users is:

y(Φ)
p =

√
ρ
∑

i∈Up

gie
jθi,2n + np. (11)

According to the received signals of the alternate pilots, for

k ∈ Up, the observed values of the received pilot signals of

the two adjacent coherent blocks (i.e. coherent block pairs)

are respectively

ĥ
(1)
k [2n− 1] = yp =

√
ρ
∑

i∈Up

gi + np, (12)

and

ĥ
(2)
k [2n] =y(Φ)

p /ejθi,2n

=
√
ρgk +

√
ρ

∑

i6=k,i∈Up

gie
j(θi,2n−θk,2n) + npe

jθk,2n ,

(13)

where ĥ
(1)
k [2n− 1] is obtained by (4).

For k ∈ Up, the covariance matrix of the channel estimated

according to the observations of the adjacent alternate pilot

signals is

cov(ĥ
(1)
k [2n− 1], ĥ

(2)
k [n]) =E

[

ĥ
(1)
k [2n− 1]

(

ĥ
(2)
k [n]

)H
]

=E
[

ρgkg
H
k

]

=ρΛk. (14)

The equation is established because it is assumed that gk and

np are independent of each other, and because the random

phase θk,2n is introduced, the two noises are not correlated

and interference terms from other users using the same pilot

can also be eliminated. Therefore, the estimate of Λk can be

obtained as

Λ̂k =
1

NΛρ

NΛ
∑

n=1

ĥ
(1)
k [2n− 1]

(

ĥ
(2)
k [2n]

)H

. (15)

However, for a finite NΛ , the estimate Λ̂k in (15) is

not necessarily Hermitian symmetric. Therefore, this ma-

trix can be regularized by approximating it with a positive

semidefinite matrix. We approximate Λ̂k with the positive

semidefinite matrix closest to the Frobenius norm, i.e., Λ̂PSD
k ,

UD+U
H, where D+ is a diagonal matrix that contains only

the positive eigenvalues of the symmetric part of Λ̂k, i.e.,

D+ ,

(

Λ̂k + Λ̂H
k

)

/2 , and U contains the corresponding

eigenvectors. Therefore, Λ̂k is written in the form of Λ̂PSD
k ,

which is written as

Λ̂k =
1

2NΛρ

NΛ
∑

n=1

(ĥ
(1)
k [2n− 1]

(

ĥ
(2)
k [2n]

)H

+
(

ĥ
(1)
k [2n− 1]

)H

ĥ
(2)
k [2n]), (16)

where NΛ represents the number of coherent block pairs

required to estimate Λk. When NΛ → ∞, the estimated

covariance matrix converges to the real covariance matrix, i.e.,

Λ̂k → Λk.

In summary, we substitute the estimated Λ̂k and Σ̂p into (8),

and we can get the channel estimation when the covariance

matrix is imperfect

ĝk = Λ̂kΣ̂
−1
p yp = Ŵkyp, (17)

where

Ŵk = Λ̂kΣ̂
−1
p (18)

is the deterministic matrix for the estimators.

Remark 1: We select alternate pilots with different phase

shifts for individual covariance matrix estimation, and then use

interval phase-shift-free pilots for sample covariance estima-

tion. In this scheme, we can obtain accurate covariance matrix

estimation and accurate channel estimation without adding

additional pilots in the case of low system complexity.

IV. UPLINK PERFORMANCE WITH IMPERFECT CHANNEL

COVARIANCE INFORMATION

In this section, we analyze the spectral efficiency of the

system based on the above channel estimation method. To

derive the closed-form expressions of the achievable rates, we

first give the ideal lower boundary of the user achievable rates

and then use random matrix theory to perform expectation

transformation.

The signal model (3) received by the APs can be rewritten

as [27]

wH
kyp =

√
ρE
[

wH
kgk

]

+
√
ρ
(

wH
kgk − E

[

wH
kgk

])

+
∑

i6=k

√
ρwH

kgi +wH
knp, (19)
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where wk represents the receiving vector, which can be

defined as

wk =

{

ĝk, for MRC,

ẑk, for ZF,
(20)

where ẑk is the kth column of Ĝ
(

ĜHĜ
)−1

, Ĝ =

[ĝ1, ĝ2, · · · , ĝK ], and ĝk is the estimation of gk.

The lower boundary of the user achievable rate can be

expressed as [18]

Rk =

(

1− P

τc

)

log2 (1 + γk) , (21)

where P/τc represents the symbols occupied by the pilot.

According to (19), the signal-to-noise ratio (SINR) γk is

defined as

γk=

∣

∣E
[

wH
k gk

]∣

∣

2

K
∑

i=1

E

[

∣

∣wH
k gi

∣

∣

2
]

−
∣

∣E
[

wH
k gk

]∣

∣

2
+ σ2E

[

wH
k wk

]

. (22)

A. MRC

When MRC receiver is used, the receiver vector is equal to

the channel estimate. Substituting (8) into (22) and based on

Lemma 1 shown below, we can get the closed-form expression

of uplink achievable rates.

Lemma 1: For a complex Wishart matrix W satisfies

W(n, I) and n > m, it has the property [28]

E
[

tr
{

W−1
}]

=
m

n−m
. (23)

For n > m+ 1

E
[

tr
{

W−2
}]

=
mn

(n−m)
3 − (n−m)

, (24)

E

[

∣

∣tr
(

W−1A
)∣

∣

2
]

=
|tr (A)|2 + 1

n−m tr
(

AAH
)

(n−m)
2 − 1

, (25)

where A ∈ Cm×m is a random matrix.

Theorem 1: When MRC receiver is used, the closed-form

approximation of SINR is given by

γMRC
k =

NΣ

NΣ−M×N tr(W̄H
k Λk)

K
∑

i=1

IEX
i +

∑

i∈Up

I IN
i − NΣ

NΣ−M×N tr(W̄H
k Λk) + σ2Nk

,

(26)

where IEX
i = µ1MN

2NΛ

tr(ΛiΣp) +
µ1

2NΛ

tr(WH
k ) tr(ΛiΛk) +

µ1 tr(W
H
k ΛiΛk), I IN

i = µ1

2NΣNΛ

tr(Σ−2
p Λk) tr(Λi

2Λk) +
µ1

NΣ

tr(WH
k Λi

2Wk) + µ1MN
2NΣNΛ

tr(Σ−1
p ) tr(Λi

2Σp) +

µ2| tr(ΛkWi)|2 + µ2

2NΛ

tr(WiΣpW
H
i Σp) + µ2

2NΛ

tr(WiΛkW
H
i Λk), Nk = µ1 tr(WkΛk) +

µ1MN
2NΛ

tr(Σp) +
µ1

2NΛ
tr(Λk) tr(W

H
k ), W̄k = Λ̄kΣ

−1
p , Λ̄k = E

[

Λ̂k

]

= Λk,

µ1 = NΣ
3

[(NΣ−M×N)2−1](NΣ−M×N)
and µ2 = NΣ

2

(NΣ−M×N)2−1
.

Proof: Please refer to Appendix A.

In addition, when the total number of antennas MN → ∞,

the limit rate of each user given in (27) at the top of next page.

It can be seen that when the MRC receiver is used, even if the

AP is equipped with a large number of antennas, the SINR of

the receiver still tends to be a constant related to the covariance

matrix, and its performance still has a bottleneck. It can also

be seen that the SINR of the receiver can be improved by

reasonably allocating users using the same pilot.

B. ZF

After ZF detection, the received signal can be written as

(

ĜHĜ
)−1

ĜHy = x+
(

ĜHĜ
)−1

ĜH
(

G̃x+ n
)

, (28)

where G̃ = [g̃1, g̃2, · · · , g̃K ], g̃k represents the error of

channel estimation

g̃k = gk − ĝk. (29)

Therefore, the SINR γk can be expressed as

γZF
k =

1

eH
k

(

ĜHĜ
)−1

ĜHΓ̃ĜH

(

ĜHĜ
)−1

ek

, (30)

where Γ̃ is defined as the interference item

Γ̃ =cov
(

G̃x+ n
)

=

K
∑

k=1

(

Λk − Λ̂kΣ̂
−2
p Λ̂kΣp

)

+ σ2IMN . (31)

Lemma 2: For k ∈ Up, the channels between the users using

the same pilot and the APs have the following relationship

1

MN
ĜH

p Ĝi
a.s.−−−−−−→

MN→∞
0, p 6= i, (32)

1

MN
ĜH

p Γ̃Ĝi
a.s.−−−−−−→

MN→∞
0, p 6= i, (33)

1

MN
ĜH

p Ĝp −
1

M
Ξp

a.s.−−−−−−→
MN→∞

0, (34)

1

MN
ĜH

p Γ̃Ĝp −
1

M
Ξ̃p

a.s.−−−−−−→
MN→∞

0, (35)

where, for i ∈ Up has

[Ξp]q,j = tr
(

Λ̂kΣ̂
−1
p Σ̂−1

p Λ̂iΣp

)

, (36)
[

Ξ̃p

]

q,j
= tr

(

Λ̂kΣ̂
−1
p Σ̂−1

p Λ̂iΣpΓ̃
)

. (37)

Based on the above expressions, when MN → ∞, (30) can

be transformed into

γZF
k =

N

eH
qΞ

−1
p Ξ̃pΞ

−1
p eq

. (38)

Next, by approximating the estimates, the theoretical ex-

pression of SINR of the ZF receiver can be obtained.

Theorem 2: When ZF receiver is used, the closed-form

approximation of SINR is given by

γZF
k =

N

eH
q

(

Ξth
p

)−1
Ξ̃th

p

(

Ξth
p

)−1
eq

, (39)
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γMRC
k →

∣

∣tr
(

W̄H
k Λk

)∣

∣

2

∑

i∈Up

(

|tr (ΛkΛiΣp)|2 +
1

2NΛ

(

tr
(

ΛiΣp(ΛiΣp)
H (

Σ2
p +Λ2

k

)

)

+ tr
(

Σ−1
p

)

tr
(

Λi
2Σp

)

)

)

+

K
∑

i=1

NΣ

2NΛ

tr (ΛiΣp) +
1

ρ

NΣ

2NΛ

tr (Σp)−
∣

∣tr
(

W̄H
k Λk

)∣

∣

2

(27)

Γ̃ =

K
∑

k=1

[

Λk −
(

N2
Σ
ΛkΣ̃

−1
p Σ−1

p Σ̃−1
p Λk +

µ1

2NΛ

Σ2
p tr
(

Σ−1
p

)

+
µ1

2NΛ

ΛkΣp tr (Λk)

)]

+ σ2IMN . (42)

where

[

Ξth
p

]

q,j
=µ1 tr

(

ΛkΣ
−1
p Λi

)

+
µ1MN

2NΛ

tr (Σp)

+
µ1

2NΛ

tr (Λk) tr
(

Σ−1
p Λi

)

, (40)

[

Ξ̃th
p

]

q,j
=µ1tr

(

ΛkΣ
−1
p ΛiΓ̃

)

+
µ1MN

2NΛ

tr
(

ΣpΓ̃
)

+
µ1

2NΛ

tr
(

ΛkΓ̃
)

tr
(

Σ−1
p Λi

)

, (41)

and Γ̃ is (42) at the top of the page, where Σ̃p is a Wishart

matrix, and it satisfies W (NΣ, IMN ).
Proof: Please refer to Appendix B.

It can be seen that unlike MRC, using ZF receiver, when

the number of antennas of each APs N → ∞, the SINR

increases linearly as (39). At the same time, it can be known

that the characteristic of matrix Ξp is an important factor that

restricts system performance, and it is closely related to pilot

contamination. When Ξp is rank-deficient, the performance of

the ZF receiver will also be seriously degraded.

In summary, the closed-form expressions of SINR in both

MRC and ZF receivers are related to the number of coherent

blocks NΣ and NΛ to calculate the covariance matrix. Better

estimation of the covariance matrix can lead to higher SINR

and thus improve the system performance.

V. SIMULATION RESULTS

In this section, we fit the closed-form expressions with the

simulation value, and compare them with the case where the

covariance matrix is perfect. With the numerical result, we

analyze the accuracy of channel estimation with imperfect

covariance matrix.

We consider a cell-free distributed massive MIMO system,

and there are M = 5 APs with N = 50 antennas randomly

distributed in the area. We use the channel model in (1), where

the path loss exponent ζ is 3.7, the reference distance is 1,

and the variance of shadow fading satisfies exponential normal

distribution. Set all APs to be uniformly distributed in a circle

with a diameter of 1 km, and all K = 5 users are randomly

distributed in the area. We set the number of coherent blocks

with constant channel covariance matrix τs = 20000, the

number of symbols in a coherent block τc = 200 , and the

number of pilot symbols τ = 10. For comparison, we consider

the following three aspects.
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Fig. 2. The sum of user rates when NΣ = 1000 with completely orthogonal
pilots

• Channel estimation with perfect covariance ma-

trix(Cov known): The covariance matrix satisfies (2),

and we perform the MMSE estimation of the channel to

get the sum of user rates.

• The simulated value of channel estimation with im-

perfect covariance matrix(Simulated): We directly use

the covariance matrix estimation results of (10) and (16)

for channel estimation, and get the sum of user rates to

judge system performance.

• The theoretical value of channel estimation with

imperfect covariance matrix(Theoretical): We derive

the Theorem 1 and the Theorem 2, and obtain the closed

expression of the SINR to get the sum of user rates.

Based on the above three aspects, we simulate MRC and ZF

respectively.

Fig. 2 and Fig. 3 respectively show the sum of user rates

when NΣ = 1000 and NΣ = 3000 with completely orthogo-

nal pilots. It can be seen from Fig. 2 and Fig. 3 that the simu-

lated value fits well with the theoretical value. Therefore, the

correctness of our derived closed-form expressions is proved.

When using MRC and ZF, the sum of user rates with perfect

covariance are close to the situation when the covariance is

imperfect, and MRC is closer than ZF. We can even see

that when using MRC receivers, our covariance estimation
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Fig. 3. The sum of user rates when NΣ = 3000 with completely orthogonal
pilots
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Fig. 4. The sum of user rates when NΣ = 1000 with P=8 pilots

scheme can achieve 95% or higher spectral efficiency with

a perfect covariance matrix. This proves that the covariance

matrix estimation method we used can bring good system

performance. But when using ZF, the sum of user rates are

higher than using MRC. This is because the ZF receiver can

eliminate inter-user interference. From the curve of the sum

of user rates with perfect covariance matrix, it can be seen

that the sum of user rates increase as the number of pilots NΛ

used to calculate the individual covariance estimate increases.

This result is due to the fact that the covariance estimation is

not accurate when the inserted NΛ is small, and the inaccurate

channel estimation results in a lower sum of user rates. As NΛ

continues to increase, the accuracy of the channel estimation

improves, and the sum of user rates increase accordingly.

In addition, comparing Fig. 2 and Fig. 3, it can be seen

that the number coherent blocks NΣ used to estimate the

covariance matrix Σp of the received signal will actually affect

the system performance, and a more accurate estimation of Σp

will have better system performance. The increase of NΣ does

not change the trend of the curve, because the increase of NΣ

is only a better estimate of Σp under the existing structure,

and does not change the relationship between sum of user rates

and NΛ. At this time, the sum of user rates of the imperfect

covariance matrix are closer to the perfect situation. This is

at the cost of calculation. In actual situations, a good CPU to

increase NΣ to get better system performance is required.

Fig. 4 shows the sum of user rates when NΣ = 1000 with

P = 8 pilots. Because of the large number of users in a

dense distributed MIMO system, the situation of each user

using completely orthogonal pilots cannot be satisfied. So it

is necessary to consider the situation of pilot contamination,

that is, multiple users use the same pilot. It can be seen that

pilot contamination has a certain impact on the performance of

MRC and ZF. Pilot multiplexing can improve system resource

utilization, and a good pilot allocation method can achieve a

trade-off between resource utilization and system performance.

VI. CONCLUSION

This paper proposes a method to estimate the covariance

matrix by alternating pilot in adjacent coherent blocks. This

method improves the channel estimation method without extra

pilot overhead to achieve better system performance when

the covariance matrix is imperfect. We derived the closed-

form expression of uplink SE with MRC and ZF receivers

and verified the closed-form expressions. We also analyze the

influence of the covariance matrix calculation with different

number of coherent blocks on the system performance. The

simulation results show that the channel estimation algorithm

with imperfect channel covariance information can achieve

high estimation accuracy. At the same time, a better estimation

of the covariance matrix of the received signal leads to better

system performance. In addition, for different receivers, pilot

contamination can decrease system performance.

APPENDIX A

PROOF OF THEOREM 1

Based on the random matrix theory (see ( [28])), we provide

the following proof which is divided into two steps. First, if

the combining vector wk = Ŵkyp is used, we need to convert

the expression to Ŵk. For E
[

wH
kgk

]

,

E
[

wH
k gk

]

= E

[

yH
p Ŵ

H
k gk

]

(a)
= EW

[

tr
(

ŴH
k Λk

)]

, (43)

where (a) is obtained because the noise np and the channel

gk are independent of each other, and xHy = tr
(

yxH
)

for

any vectors x, y. By using the same trace rule as above and

identifying Σp, for E
[

wH
kwk

]

, we have

E
[

wH
k wk

]

=E

[

(yp)
H
ŴH

k Ŵkyp

]

=EW

[

tr
(

ŴkE

[

yp(yp)
H
]

ŴH
k

)]

=EW

[

tr
(

ŴkΣpŴ
H
k

)]

. (44)

Finally, for E
[

∣

∣wH
k gi

∣

∣

2
]

,

E

[

∣

∣wH
k gi

∣

∣

2
]

= E
[

wH
k gig

H
i wk

]

. (45)
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If i /∈ Up, then

E
[

wH
k gig

H
i wk

]

=E
[

wH
k Λiwk

]

=EW

[

tr(ŴkE
[

ypy
H
p

]

ŴH
k Λi)

]

=EW

[

tr
(

ŴkΣpW
H
k Λi

)]

. (46)

If i ∈ Up, wk and gi are not independent of each other, they

will be coupled together, and thus cannot be solved according

to the above method. So, we have

E
[

wH
k gig

H
i wk

]

(a)
=E

[

∣

∣

∣

∣

(

wk − Ŵkgi

)H

gi

∣

∣

∣

∣

2
]

+ E

[

∣

∣

∣g
H
i Ŵkgi

∣

∣

∣

2
]

=EW

[

tr(Ŵk (Σp −Λi)Ŵ
H
k Λi) +

∣

∣

∣tr
(

ŴH
k Λi

)∣

∣

∣

2
]

+ EW

[

tr
(

ŴkΛiŴ
H
k Λi

)]

=EW

[

tr
(

ŴkΣpŴ
H
k Λi

)]

+ EW

[

∣

∣

∣
tr
(

ŴH
k Λi

)∣

∣

∣

2
]

, (47)

where (a) is because wk − Ŵkgi and gi are independent.

Next, continue to solve the expectation of Ŵk and convert

the above expressions into closed-form expressions. For any

random vector g that is independent of each other and each

elements obeying the Nc (0, 1) distribution

E
[

ggHAggH
]

= A+ Itr (A) , (48)

define

Σ̃p = NΣ

(

Σ−1/2
p Σ̂pΣ

−1/2
p

)

, (49)

then Σ̃p is a Wishart matrix, and it satisfies W (NΣ, I). Hence,

for EW

[

tr
(

ŴH
k Λk

)]

, we have that

EW

[

tr
(

ŴH
k Λk

)]

=EW

[

tr
(

Σ̂−1
p Λ̂kΛk

)]

(a)
=EΣ

[

tr
(

Σ−1/2
p NΣΣ̃

−1
p Σ−1/2

p Λ̂kΛk

)]

(b)
=NΣEΛ

[

tr

(

Σ
−1/2
p IΣ

−1/2
p

NΣ −M ×N
Λ̂kΛk

)]

=
NΣ

NΣ −M ×N
tr
(

W̄H
k Λk

)

, (50)

where (a) and (b) are obtained by substituting (49) and (23),

respectively. In addition, for EW

[

tr
(

ŴkΣpŴ
H
k

)]

,

EW

[

tr
(

ŴkΣpŴ
H
k

)]

=EW

[

tr
(

Λ̂kΣ̂
−1
p ΣpΣ̂

−1
p Λ̂k

)]

(a)
=NΣ

2
EW

[

tr
(

Λ̂kΣ
−1/2
p Σ̃−1

p Σ̃−1
p Σ−1/2

p Λ̂k

)]

(b)
=µ1EΛ

[

tr
(

Λ̂kΣ
−1
p Λ̂k

)]

(c)
=µ1 tr (WkΛk) +

µ1MN

2NΛ

tr (Σp) +
µ1

2NΛ

tr (Λk) tr
(

WH
k

)

,

(51)

where (a) , (b) and (c) result from (49) , (24) and (48),

respectively. And for EW

[

tr
(

ŴkΣpŴ
H
k Λi

)]

,

EW

[

tr
(

ŴkΣpŴ
H
k Λi

)]

=EW

[

tr
(

Λ̂kΣ̂
−1
p ΣpΣ̂

−1
p Λ̂kΛi

)]

(a)
=EW

[

tr
(

Λ̂kΣ
−1/2
p NΣΣ̃

−1
p NΣΣ̃

−1
p Σ−1/2

p Λ̂kΛi

)]

=NΣ
2
EW

[

tr
(

Λ̂kΣ
−1/2
p Σ̃−2

p Σ−1/2
p Λ̂kΛi

)]

(b)
=µ1EΛ

[

tr
(

Σ−1
p Λ̂kΛiΛ̂k

)]

(c)
=µ1 tr

(

WH
k ΛiΛk

)

+
µ1MN

2NΛ

tr (ΛiΣp)

+
µ1

2NΛ

tr
(

WH
k

)

tr (ΛiΛk) , (52)

where (a) , (b) and (c) are obtained by substituting (49) , (24)

and (48), respectively. Finally, for EW

[

∣

∣

∣
tr
(

ŴH
kΛi

)∣

∣

∣

2
]

,

EW

[

∣

∣

∣tr
(

ŴH
k Λi

)∣

∣

∣

2
]

=EW

[

∣

∣

∣
tr
(

Σ̂−1
p Λ̂kΛi

)∣

∣

∣

2
]

(a)
=EW

[

∣

∣

∣NΣ tr
(

Σ̃−1
p Σ−1/2

p Λ̂kΛiΣ
−1/2
p

)∣

∣

∣

2
]

(b)
=µ2EΛ

[

∣

∣

∣tr
(

Σ−1
p Λ̂kΛi

)∣

∣

∣

2
]

+
µ1

NΣ

EΛ

[

tr
(

Σ−1
p Λ̂kΛi

2Λ̂kΣ
−1
p

)]

(c)
=µ2|tr (ΛkWi)|2 +

µ2

2NΛ

tr
(

WiΣpW
H
i Σp

)

+
µ2

2NΛ

tr
(

WiΛkW
H
i Λk

)

+
µ1

NΣ

tr
(

WH
k Λi

2Wk

)

+
µ1MN

2NΣNΛ

tr
(

Σ−1
p

)

tr
(

Λi
2Σp

)

+
µ1

2NΣNΛ

tr
(

Σ−2
p Λk

)

tr
(

Λi
2Λk

)

, (53)

where (a) , (b) and (c) are obtained by substituting (49) , (25)

and (48), respectively.

This completes the proof.

APPENDIX B

PROOF OF THEOREM 2

Similarly, using random matrix theory to solve (39) param-

eters. For Ξth
p , we have

[

Ξth
p

]

q,j
=tr
(

Λ̂kΣ̂
−1
p Σ̂−1

p Λ̂iΣp

)

(a)
=tr
(

Λ̂kΣ
−1/2
p NΣΣ̃

−1
p NΣΣ̃

−1
p Σ−1/2

p Λ̂iΣp

)

=N2
Σ

tr
(

Λ̂kΣ
−1/2
p Σ̃−2

p Σ−1/2
p Λ̂i

)

(b)
=µ1tr

(

Λ̂kΣ
−1
p Λ̂i

)

(c)
=µ1tr

(

ΛkΣ
−1
p Λi

)

+
µ1MN

2NΛ

tr (Σp)

+
µ1

2NΛ

tr (Λk) tr
(

Σ−1
p Λi

)

, (54)
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where (a) , (b) and (c) result from (49) , (24) and (48),

respectively. Follow the same steps as above, we have
[

Ξ̃th
p

]

q,j
=tr
(

Λ̂kΣ̂
−1
p Σ̂−1

p Λ̂iΣpΓ̃
)

(a)
=tr
(

Λ̂kΣ
−1/2
p NΣΣ̃

−1
p NΣΣ̃

−1
p Σ−1/2

p Λ̂iΣpΓ̃
)

=N2
Σtr
(

Λ̂kΣ
−1/2
p Σ̃−2

p Σ−1/2
p Λ̂iΓ̃

)

(b)
=µ1tr

(

Λ̂kΣ
−1
p Λ̂iΓ̃

)

(c)
=µ1tr

(

ΛkΣ
−1
p ΛiΓ̃

)

+
µ1MN

2NΛ

tr
(

ΣpΓ̃
)

+
µ1

2NΛ

tr
(

ΛkΓ̃
)

tr
(

Σ−1
p Λi

)

, (55)

where (a) is obtained by substituting (49), (b) results from (24)

and (c) results from (48). Here, we regard the interference Γ̃

as an independent variable, and we also can get approximately

accurate results. So the variable Γ̃ is

Γ̃ =
K
∑

k=1

[Λk − Ecov] + σ2IMN , (56)

where

Ecov =Λ̂kΣ̂
−1
p Σ̂−1

p Λ̂kΣp

(a)
=ΛkΣ̂

−1
p Σ̂−1

p ΛkΣp +
1

2NΛ

Σ2
ptr
(

Σ̂−1
p Σ̂−1

p Σp

)

+
1

2NΛ

ΛkΣptr
(

Σ̂−1
p Σ̂−1

p Λk

)

(b)
=N2

Σ
ΛkΣ

−1/2
p Σ̃−1

p Σ−1
p Σ̃−1

p Σ−1/2
p ΛkΣp

+
µ1

2NΛ

Σ2
ptr
(

Σ−1
p

)

+
µ1

2NΛ

ΛkΣptr (Λk) , (57)

(a) results from (48), and (b) from (49).

This completes the proof.
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