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Abstract 
 This paper presents a novel, Fourier series based numerical method of open-loop control 

optimization. Due to its flexible assumptions, it can be applied in a large variety of systems, including 

discontinuous ones or even “black boxes”, whose equations are not fully known. This aspect is 

particularly important in mechanical systems, where friction or impact induced discontinuities are 

common. The paper includes a mathematical background of the new method, a detailed discussion of 

the algorithm and a numerical example, in which control function of a discontinuous capsule drive is 

optimized. It is expected that the proposed method can facilitate research in all areas where control 

of non-smooth, discontinuous or “black box” systems is crucial. In particular, authors hope that the 

presented algorithm is going to be used for control optimization of other capsule drives.  
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1. Introduction 
A control of a dynamical system is optimal if it allows to perform a desired action at the lowest 

cost. Obviously, determination of such control is desirable in various fields of science and engineering 

[1, 2]. It is not only expected that devices, systems and processes surrounding us act as it was planned 

and provide expected results. It is also required that goals are achieved without wasting time, energy 

or other precious resources, i.e. optimally, according to some predefined criterion. Therefore, 

development of optimal control is an important issue not only from the purely scientific point of view. 

The question of optimal control is vital in any area, in which limited resources must be used efficiently, 

for example in engineering or in economics [1]. 

As this work focuses on optimal control of mechanical systems, assume that the control object 

is described by a set of ordinary differential equations (ODEs) [1]. In such case, the necessary conditions 

for optimality of a solution of an optimal control problem (OCP) have been described in the classical 

work by Pontryagin [3] in terms of variational calculus. These conditions are commonly referred to as 

Pontryagin's minimum principle (PMP) [2, 4, 5]. They are founded on the Lagrange multipliers approach 

[6] and described by means of so called Hamiltonian control function [1, 2], which attains its minimum 

over the whole trajectory of the system if its control is optimal. 

Other classical result in the optimal control theory results from the dynamic programming 

method. Fundamental results in this field have been obtained by Bellman et al. [7, 8]. Dynamic 

programming is a general approach to optimization problems in which the task is divided into simpler 

subproblems in a recursive manner. In the context of optimal control, the dynamic programming 
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approach is founded on a so-called cost-to-go function [2]. The cost-to-go function answers the 

following question: what is the minimal cost of transition of the system from the current state to the 

desired final state ? By means of such function it is possible to apply the dynamic programming 

philosophy of breaking the original problem into simpler subproblems. For instance, in order to 

minimize the cost over the whole trajectory, one can minimize the cost-to-go function from an 

intermediate state to the final state and from the initial state to the intermediate one, and thus divide 

control optimization over the time interval into cost minimization in two sub-intervals [1]. At the limit, 

as the length of the time interval approaches zero, the widely known the Hamilton-Jacobi-Bellman 

(HJB) partial differential equation is obtained. It is the sufficient condition for control optimality [1]. 

In some simple problems [1, 2, 4], the Pontryagin’s minimum principle (PMP) allows direct 

calculation of the function which meets the necessary conditions for optimality. However, in most 

cases, determination of optimal control requires application of numerical methods. The vast family of 

numerical algorithms for solving OCPs is divided into three main classes [4, 5]. 

- Dynamic programming, 

- indirect methods based on calculus of  variations, 

- direct methods. 

The first class encompasses methods based on results by Bellman et. al. [7, 8], particularly the HJB 

equation. In most cases, the cost-to-go function must be approximated numerically. Possible 

approaches include function expansion, finite difference or finite element techniques [4]. This method 

can be practically used only for optimal control problems (OCPs) in which dimension of the state space 

is low (except for the special case of the linear-quadratic regulator – LQR) [1]. The second class includes 

algorithms founded on the Pontryagin’s Minimum Principle (PMP). The OCP is then reduced to solution 

of a boundary value problem [1], which usually requires application of numerical procedures. 

Exemplary methods include: single shooting (parametrization of the whole control function at once), 

multiple shooting (parametrization the control function in subsequent time intervals) and collocation 

methods (in which both state and control are parametrized using a predefined space of candidate 

solutions) [4, 5]. Note that the PMP yields necessary, but not sufficient, conditions of control 

optimality. The last  class covers methods based on direct discretization of the OCP and thus 

transforming it into a nonlinear programming problem (NLP) to be optimized using a selected 

algorithm. Similarly as in the previous class, applicable numerical methods include single or multiple 

shooting methods, as well as collocation algorithms [4, 5]. 

Recently, an interesting tool named CASADI has been developed [9]. This library includes 

methods for nonlinear optimization and algorithmic differentiation, which allows effective estimation 

of derivatives of functions defined in terms of a computer program code. Therefore, it provides a 

complete framework allowing to solve multiple OCPs. 

The OCP becomes more complicated when the system to be controlled is discontinuous, i.e. 

when the vector field, which defines the set of ODEs, is a discontinuous function. This often occurs in 

mechanical systems, in which impacts or dry friction play an important role [10, 11]. In such cases, the 

standard methods for solving OCPs fail. The PMP requires that the vector field is at least once 

continuously differentiable with respect to all its arguments [3], which precludes its application for 

non-smooth systems. Consequently, typical algorithms based on indirect numerical methods cannot 

be applied in such problems. Although the HJB equation does not involve differentiation of the vector 

field, so its smoothness is not formally required, it is reported that “optimize the discretization” 



strategy, being the foundation of numerical solutions of the HJB equations, causes excessive errors 

when vector field is discontinuous [11]. 

Several attempts have been made to solve OCP of non-smooth and discontinuous systems. In 

the works [12, 13] OCP of non-smooth, but continuous, systems has been discussed, whereas the 

publication [14] covers OCP of objects whose vector field is set-valued, but Lipschitz continuous.  The 

paper [15] describes an approach based on computation of Jacobian matrix of the trajectory with 

respect to the initial conditions. This is possible as long as neither the initial state nor the final state is 

on the discontinuity. According to [15], this method leads to analog of PMP conditions. However, 

computation of this Jacobian matrix is not a simple task. Another possibility is application of neural 

networks and evolutionary computation [16]. Last but not least, the publication [11] describes results 

of approximating the non-smooth vector field with smooth functions, which offers promising results, 

but in fact a qualitatively different system is analyzed. 

An interesting class of discontinuous control systems are so-called capsule drives. These 

devices, usually capsule-shaped, use an internal oscillator to produce inertia forces which, in the 

presence of dry friction, allow to move the capsule in a desired direction. Therefore, external moving 

parts, such as wheels, tracks, robotic arms etc., are no longer needed to produce motion. An interesting 

example is the vibro-impact drive [17], i.e. the drive in which a mass-on-spring oscillator is 

accompanied by a second spring, which can be impacted by the mass during its vibrations. Such 

arrangement causes that the resultant, horizontal force acting on the capsule is not symmetric and the 

capsule is able to move forward. Significant research on dynamics of such system and its modifications 

has already been conducted. The paper [17] provides a detailed bifurcation study. Optimization of 

progression of the capsule is presented, but only simple harmonic control functions are taken into 

account. The numerical studies have been verified experimentally in [18, 19]. The publications [20-22] 

present extensive analysis of different friction models and in [21] control functions which enable 

bidirectional motion are considered. The papers [23-25] contain a more detailed study of the harmonic 

control, including maximization of the rate of progression, as well as optimization of the energy 

consumption. Multistability control of the vibro-impact drive is available in [26]. Design and testing of 

a small-scale prototype are described in [27]. 

Other example is a pendulum capsule drive, in which the mass-on-spring oscillator is replaced 

by a pendulum. Its dynamics, analyzed in the paper [28], is somewhat more complex than in the 

previous case, as swinging of the pendulum influence contact force between the capsule and the 

underlying surface, which in turn affects the friction force. Different aspects of the system under 

consideration have already been investigated. The influence of viscoelasticity has been considered in 

[29] and the friction-induced hysteresis in [30]. Design and parameters optimization of a pre-designed 

control function profile is considered in the papers [31, 32]. In [33] the controller has been improved 

by implementation of a neural network based adaptation mechanism. Energy-related issues connected 

with the control function are studied in [34].  

It seems that, in general, the research on control optimization of the capsule drives, which 

have been conducted up to this moment, focus on the following strategy. Firstly, select a “shape” or 

“profile” of a control function and parametrize it. The selected profile was usually sinusoidal in papers 

connected with the vibro-impact drive [17, 23-25], whereas an object-specific shape was commonly 

used in works concerning the pendulum capsule drive [31-33]. Then, optimize parameters of the 

profile. However, it is expected that interesting results could be obtained by a method, in which the 

shape of the control function is not assumed a priori, but is subject to optimization as well.  



Such algorithm is presented in this paper. Authors would like to present a novel, Fourier series 

based numerical method of bounded optimal control estimation, which is intended to efficiently solve 

the optimal control problem (OCP) in non-smooth mechanical systems, including these with 

discontinuities resulting from dry friction or impacts. It is expected that the developed method is going 

to be applied in discontinuous systems of different kinds, as well as in objects whose dynamics is not 

fully known a priori (“black box” systems). In particular, it is shown that the algorithm is able to solve 

the problem of open-loop control optimization of capsule drives. In order to demonstrate correctness, 

efficiency and usefulness of the novel method, numerical simulation has been conducted, in which 

control of the pendulum capsule drive has been optimized. 

  



2. Description of the method 
In this chapter, the problem to be solved is precisely stated and the mathematical tools to be 

applied throughout its solution are introduced. Then, the proposed method of control optimization is 

precisely described and its correctness is proved. 

2.1. Problem statement 
Consider a controlled dynamical system described by the following ODE [1, 2]: 

�̇�(𝑡) = 𝒇[𝒙(𝑡), 𝒖(𝑡), 𝑡], 𝒙(𝑡0) = 𝒙0 (1) 

where 𝑡 ∈ ℝ is the time, 𝒙(𝑡) ∈ ℝ𝑛 is a state vector at the time 𝑡, �̇� =
𝑑𝒙

𝑑𝑡
, 𝑛 is the order of the system, 

𝒖(𝑡) ∈ 𝛀 ⊂ ℝ𝑟 is a control vector (at the time 𝑡) of a dimension 𝑟, 𝒇:ℝ𝑛 × ℝ𝑟 × ℝ → ℝ𝑛 is a vector 

field, 𝛀 ⊂ ℝ𝑟 is a bounded set of admissible controls and 𝒙0 ∈ ℝ𝑛  is a vector of initial conditions. 

Suppose that behavior of the system is considered only in the time range 𝑡 ∈ [𝑡0, 𝑡𝑓] where 𝑡0 is the 

initial time and 𝑡𝑓 is the final time. If the dynamical system under consideration is non-smooth in some 

regions of the state space, it may be necessary to supplement the equation (1) with appropriate 

transition rules, which define evolution of the system in these areas. 

Any piecewise smooth function 𝒖: [𝑡0, 𝑡𝑓] → 𝛀 is called an admissible control function, or 

shortly, an admissible control. Assume that for any admissible control 𝒖 there exists a unique solution 

𝒙:ℝ → ℝ𝑛, 𝑡 ≥ 𝑡0, 𝒙(𝑡0) = 𝒙0 called a trajectory of the system (1). Obviously, different controls 𝒖 

produce different trajectories 𝒙. Some of them may be desirable and some may not. In order to assess 

controls and resulting trajectories qualitatively, it is necessary to propose a performance measure [1]. 

The performance measure is defined in the following form: 

𝐽 = ℎ[𝒙(𝑡𝑓), 𝑡𝑓] + ∫ 𝑔[𝒙(𝑡), 𝒖(𝑡), 𝑡]𝑑𝑡
𝑡𝑓

𝑡0

(2) 

where ℎ:ℝ𝑛 × ℝ → ℝ and 𝑔:ℝ𝑛 × ℝ𝑟 × ℝ → ℝ are scalar functions. It is assumed that an admissible 

control 𝒖, which produces smaller value of 𝐽, is better than other admissible control which yields larger 

𝐽. An optimal control 𝒖∗ is the control which causes that the performance measure 𝐽 attains a global 

minimum. 

 Suppose that a single component 𝑢𝑗, 1 ≤ 𝑗 ≤ 𝑟 of an admissible control 𝒖 = [𝑢1, 𝑢2, … , 𝑢𝑟]
𝑇 

is analyzed. As 𝑢𝑗 is piecewise smooth and bounded, it is also integrable [35]. Therefore, it can be 

approximated in terms of the Fourier series: 

�̃�𝑗(𝑡) =
𝑎𝑗0

2
+∑𝑎𝑗𝑘 cos(𝑘𝜔𝑡)

𝐾

𝑘=1

+∑𝑏𝑗𝑘 sin(𝑘𝜔𝑡)

𝐾

𝑘=1

(3) 

where 𝜔 =
2𝜋

𝑡𝑓−𝑡0
, 𝑎𝑗0, 𝑎𝑗𝑘 , 𝑏𝑗𝑘 ∈ ℝ, 𝐾 ∈ ℕ+ and �̃�𝑗 is an approximation of 𝑢𝑗. If the function 𝑢𝑗 satisfies 

Dirichlet conditions [35], then �̃�𝑗 converges to 𝑢𝑗 as 𝐾 → ∞.2  

 Assume that an optimal control 𝒖∗ exists. In order to estimate it, the following approach could 

be utilized. 

 
2 Except, possibly, the points where 𝑢𝑖

∗ is discontinuous. At such points 𝑡, the series converges to the value 

lim
ℎ→0+

𝑢𝑖
∗(𝑡+ℎ)+𝑢𝑖

∗(𝑡−ℎ)

2
. 



1) Define each component of the control function 𝑢𝑗 in terms of Fourier coefficients 

𝑎𝑗0, 𝑎𝑗𝑘 , 𝑏𝑗𝑘 , 1 ≤ 𝑘 ≤ 𝐾 using the formula (3).  

2) Optimize the performance measure 𝐽 with respect to the parameters 𝑎𝑗0, 𝑎𝑗𝑘 , 𝑏𝑗𝑘, 1 ≤ 𝑘 ≤ 𝐾 

of each control component �̃�𝑗, i.e. find such values of 𝑎𝑗0, 𝑎𝑗𝑘 , 𝑏𝑗𝑘, for which 𝐽 attains the global 

minimum. 

However, such approach brings along a new difficulty: how to select the constraints of optimization, 

i.e. allowable ranges of the parameters 𝑎𝑗0, 𝑎𝑗𝑘 , 𝑏𝑗𝑘, so that the resulting approximation (3) meets the 

control constraints �̃�(𝑡) = [�̃�1(𝑡), �̃�2(𝑡),… , �̃�𝑚(𝑡)]
𝑇 ∈ 𝛀 for any 𝑡 ∈ [𝑡0, 𝑡𝑓] ? In order to answer this 

question, appropriate definitions and theorems should be introduced beforehand. 

2.2. Mathematical toolbox 
Firstly, two features of an admissible control are going to be considered: shape and span, since 

they play an important role in the proposed solution of control optimization problem. Moreover, as 

the presented algorithm involves application of spherical coordinates in an n-dimensional sphere, 

fundamental information in this topic is going to be provided. 

Definition 1. The span of a bounded function 𝑓:𝔻 → ℝ is the following ordered pair. 

(𝑖𝑓 , 𝑠𝑓) = (inf{𝑓(𝔻)} , sup{𝑓(𝔻)}) (4) 

The span of a function 𝑓 is understood as an ordered pair, which contains the infimum and the 

supremum [35] of its set of values (see Fig. 1). As the image 𝑓(𝔻) of the bounded function 𝑓 is a 

bounded subset of ℝ, existence and uniqueness of both, inf{𝑓(𝔻)} and sup{𝑓(𝔻)}, are guaranteed 

[35]. Please note that the assumed definition of the span is not connected with the term linear span, 

known from the linear algebra [35]. 

Definition 2. The shape of a bounded function 𝑓:𝔻 → ℝ, whose span equals (𝑖𝑓 , 𝑠𝑓) and 𝑠𝑓 > 𝑖𝑓, is the 

function 𝑓̅: 𝔻 → [0, 1] defined as follows. 

𝑓̅(𝑥) =
𝑓(𝑥) − 𝑖𝑓

𝑠𝑓 − 𝑖𝑓
(5) 

The assumption 𝑠𝑓 > 𝑖𝑓 implies that the shape is not defined for constant functions. Intuitively, the 

shape 𝑓 ̅of the function 𝑓 is its normalization to the interval [0, 1]. The notions of span and shape are 

illustrated in Fig. 1 below. 

 

Fig. 1. An exemplary function 𝑓 (solid line), its shape (dash-dotted line) and span (𝑖𝑓 , 𝑠𝑓) 



 

Note that the set of values of 𝑓,̅ i.e. 𝑓̅(𝔻), may not include 0 or 1 if the infimum or the supremum of 

𝑓(𝔻) is not equal to the minimum or the maximum of 𝑓 respectively. Moreover, as 𝑓 can be 

discontinuous, the set 𝑓̅(𝔻) might not be connected [35]. Nevertheless, the property 𝑓̅(𝔻) ⊂ [0, 1] 

holds for any bounded, non-constant function 𝑓:𝔻 → ℝ.  

 Along with the notions of span and shape, it is useful to introduce the following three 

theorems. 

Theorem 1. Any two bounded functions 𝑓:𝔻𝑓 → ℝ,𝑔:𝔻𝑔 → ℝ are of the same span if and only if the 

following relation holds. 

inf{𝑓(𝔻𝑓)} = inf{𝑔(𝔻𝑔)} ∧ sup{𝑓(𝔻𝑓)} = sup{𝑔(𝔻𝑔)} (6) 

Proof. The proof of this theorem results directly from Definition 1 and the basic property of the ordered 

pair [4], which implies that (𝑖𝑓 , 𝑠𝑓) = (𝑖𝑔, 𝑠𝑔) if and only if 𝑖𝑓 = 𝑖𝑔 ∧ 𝑠𝑓 = 𝑠𝑔. 

In other words, two functions are of the same span if both: the infimum and the supremum [35] of 

their images (sets of values) are equal. 

Theorem 2. Any two bounded, non-constant functions 𝑓:𝔻𝑓 → ℝ,𝑔:𝔻𝑔 → ℝ are of the same shape if 

and only if 𝔻𝑓 = 𝔻𝑔 = 𝔻 and there exist two constants 𝑎 ∈ ℝ+, 𝑏 ∈ ℝ such that for any 𝑥 ∈ 𝔻 the 

following relation holds. 

𝑔(𝑥) = 𝑎 ∗ 𝑓(𝑥) + 𝑏 (7) 

Proof. Assume that there exist 𝑎 ∈ ℝ+, 𝑏 ∈ ℝ such that 𝑔(𝑥) = 𝑎 ∗ 𝑓(𝑥) + 𝑏 for all 𝑥 ∈ 𝔻. Then, using 

Definition 2, the following result can be obtained: 

�̅�(𝑥) =
𝑔(𝑥) − 𝑖𝑔

𝑠𝑔 − 𝑖𝑔
=
𝑎 ∗ 𝑓(𝑥) + 𝑏 − 𝑎 ∗ 𝑖𝑓 − 𝑏

𝑎 ∗ 𝑠𝑓 + 𝑏 − 𝑎 ∗ 𝑖𝑓 − 𝑏
=
𝑓(𝑥) − 𝑖𝑓

𝑠𝑓 − 𝑖𝑓
= 𝑓̅(𝑥) 

as expected. Conversely, assume that �̅�(𝑥) = 𝑓̅(𝑥). Then, for all 𝑥 ∈ 𝔻, the following holds: 

𝑔(𝑥) − 𝑖𝑔

𝑠𝑔 − 𝑖𝑔
=
𝑓(𝑥) − 𝑖𝑓

𝑠𝑓 − 𝑖𝑓
→ 𝑔(𝑥) =

𝑠𝑔 − 𝑖𝑔

𝑠𝑓 − 𝑖𝑓
𝑓(𝑥) + 𝑖𝑔 − 𝑖𝑓

𝑠𝑔 − 𝑖𝑔

𝑠𝑓 − 𝑖𝑓
 

where 
𝑠𝑔−𝑖𝑔

𝑠𝑓−𝑖𝑓
∈ ℝ+ and (𝑖𝑔 − 𝑖𝑓

𝑠𝑔−𝑖𝑔

𝑠𝑓−𝑖𝑓
) ∈ ℝ. Thus, the proof is completed. 

The theorem above implies that multiplication of a bounded, non-constant function by a positive 

constant, as well as adding a constant to it, does not change its shape. 

Theorem 3. A bounded, non-constant function 𝑓:𝔻 → ℝ is uniquely defined by its domain 𝔻, its span 

(𝑖𝑓 , 𝑠𝑓) and its shape 𝑓̅: 𝔻 → [0, 1]. 

Proof. Suppose that the domain 𝔻, the shape 𝑓̅:𝔻 → [0, 1] and the span (𝑖𝑓 , 𝑠𝑓) of a function 𝑓:𝔻 →

ℝ are known. Then, using Definition 2, the following holds for all 𝑥 ∈ 𝔻: 

𝑓̅(𝑥) =
𝑓(𝑥) − 𝑖𝑓

𝑠𝑓 − 𝑖𝑓
→ 𝑓(𝑥) = 𝑓̅(𝑥)(𝑠𝑓 − 𝑖𝑓) + 𝑖𝑓 (8) 

which completes the proof. 



In accordance with the theorem above, in order to define a function, it is enough to specify its domain, 

shape and span.  

Last but not least, in the further parts of paper, the notion of a unit hypersphere (or a unit n-

sphere), is going to be necessary. Moreover, spherical coordinates specifying location of a point on the 

hypersphere will be utilized. Therefore, for completeness of the paper, it seems reasonable to provide 

the definition of the unit hypersphere and a theorem, which introduces spherical coordinates in the n-

sphere. Note that only the most rudimentary information in this topic is provided, for details please 

refer to the paper [36] and references therein. 

Definition 3. A unit n-sphere (hypersphere) 𝑆𝑛 is defined as follows [36]. 

𝑆𝑛 = {𝒙 ∈ ℝ𝑛+1: ‖𝒙‖ = 1} (9) 

The unit n-sphere is the set of points in ℝ𝑛+1, whose distance to the origin equals 1. Note that 

dimension of the hypersphere embedded in the Euclidean space ℝ𝑛+1 equals 𝑛, as it is enough to 

specify 𝑛 parameters in order to select a point in the n-sphere. This fact is illustrated in Fig. 2 and 

presented in the following theorem. 

Theorem 4. For any point 𝒙 ∈ 𝑆𝑛 ⊂ ℝ𝑛+1, there exists a unique n-dimensional vector of spherical 

coordinates 𝝋 = [𝜑1, 𝜑2, … , 𝜑𝑛]
𝑇, such that 𝜑1, 𝜑2, … , 𝜑𝑛−1 ∈ [0, 𝜋], 𝜑𝑛 ∈ [0, 2𝜋) and the following 

relations hold [36]. 

𝑥1 = cos(𝜑1) (10𝑎) 

𝑥2 = sin(𝜑1) cos(𝜑2) (10𝑏) 

… 

𝑥𝑛 = sin(𝜑1)… sin(𝜑𝑛−1) cos(𝜑𝑛) (10𝑐) 

𝑥𝑛+1 = sin(𝜑1)… sin(𝜑𝑛−1) sin(𝜑𝑛) (10𝑑) 

where 𝑥1, … , 𝑥𝑛+1 are cartesian coordinates of the point 𝒙. For the proof of Theorem 4, please refer 

to the paper [36]. 

 

Fig. 2. Illustration of Theorem 4 for the case 𝑛 = 2: the direction of a vector 𝒙 ∈ ℝ𝑛+1 = ℝ3 can be 

represented by a point in 𝑆𝑛 = 𝑆2, which is uniquely specified by 𝑛 = 2 spherical coordinates:  

𝜑1 ∈ [0, 𝜋], 𝜑2 ∈ [0, 2𝜋). 



2.3. The algorithm 
 As the necessary mathematical tools have been introduced, it is time to use them to solve the 

control optimization problem. According to the Theorem 3, approximation of each component of an 

admissible control �̃�𝑗 can be uniquely defined by its domain, shape and span. As in this paper control 

functions are approximated using the Fourier series (3), the domain of such approximation is always 

ℝ. Therefore, it is enough to investigate the shape and the span. Consequently, if it is possible to 

parametrize the shape and the span of each component of an admissible control using parameters 

belonging to well-defined intervals, then searching for the optimal control 𝒖∗, i.e. minimization of the 

functional (2), can be reduced to the nonlinear programming problem and can be solved using an 

appropriate numerical method. Details of such parametrization are provided in this subchapter. 

Firstly, the shape of an approximation of the admissible control component �̃�𝑗 is going to be 

parametrized. Let the formula (3) be transformed to the following form. 

�̃�𝑗(𝑡) =
𝑎𝑗0

2
+ [𝑎𝑗1, 𝑏𝑗1, … , 𝑎𝑗𝐾 , 𝑏𝑗𝐾][cos(𝜔𝑡) , sin(𝜔𝑡) , … , cos(𝐾𝜔𝑡) , sin(𝐾𝜔𝑡)]𝑇 =

=
𝑎𝑗0

2
+ 𝑯𝒋[cos(𝜔𝑡) , sin(𝜔𝑡) , … , cos(𝐾𝜔𝑡) , sin(𝐾𝜔𝑡)]𝑇 (11)

 

The attention should be focused at the horizontal vector of amplitudes of subsequent harmonics: 𝑯𝒋 =

[𝑎𝑗1, 𝑏𝑗1, … , 𝑎𝑗𝐾 , 𝑏𝑗𝐾]. Assume that the function (11) is non-constant, i.e. |𝑯𝒋| > 0. Let �̅�𝒋 be the 

normalized vector of amplitudes. 

�̅�𝒋 =
𝑯𝒋

|𝑯𝒋|
= [�̅�𝑗1, �̅�𝑗2, … , �̅�𝑗(2𝐾−1), �̅�𝑗(2𝐾)] =

[𝑎𝑗1, 𝑏𝑗1, … , 𝑎𝑗𝐾 , 𝑏𝑗𝐾]

√𝑎𝑗1
2 + 𝑏𝑗1

2 +⋯+ 𝑎𝑗𝐾
2 + 𝑏𝑗𝐾

2

(12)
 

Then, the function: 

1

|𝑯𝒋|
(�̃�𝑗(𝑡) −

𝑎𝑗0

2
) =

[𝑎𝑗1, 𝑏𝑗1, … , 𝑎𝑗𝐾 , 𝑏𝑗𝐾][cos(𝜔𝑡) , sin(𝜔𝑡) , … , cos(𝐾𝜔𝑡) , sin(𝐾𝜔𝑡)]𝑇

√𝑎𝑗1
2 + 𝑏𝑗1

2 +⋯+ 𝑎𝑗𝐾
2 + 𝑏𝑗𝐾

2

=

= �̅�𝒋[cos(𝜔𝑡) , sin(𝜔𝑡) , … , cos(𝐾𝜔𝑡) , sin(𝐾𝜔𝑡)]𝑇 (13)

 

is obtained by adding the constant (−
𝑎𝑗0

2
) to �̃�𝑗(𝑡) (11), followed by multiplying the result by 1/|𝑯𝒋|. 

According to Theorem 2, such operations do not change the shape of the function. Therefore, the 

function (13) is of the same shape as �̃�𝑗(𝑡) (11). Consequently, normalization of the vector of 

harmonics is the operation which preserves the shape of the function. As a result, when geometrical 

interpretation of the vector 𝑯𝒋 is taken into account, it can be stated that the shape of �̃�𝑗 is determined 

by the direction of 𝑯𝒋, but not by its length. Since the shape of the function (13) depends also on the 

vector [cos(𝜔𝑡) , sin(𝜔𝑡) , … , cos(𝐾𝜔𝑡) , sin(𝐾𝜔𝑡)], it is influenced by the parameters 𝜔 and 𝐾. Apart 

from the direction of 𝑯𝒋 and parameters 𝜔,𝐾,there are no other quantities which affect the shape of 

the function under consideration. Therefore, the shape of (13), equal to the shape of �̃�𝑗 (11), is 

uniquely defined by the direction of 𝑯𝒋 (or, equivalently, by �̅�𝒋) and the parameters 𝜔,𝐾. 

 The normalized vector of harmonics amplitudes �̅�𝒋 belongs to the Euclidean space ℝ2𝐾 and 

indicates a point in this space, whose distance to the origin equals 1. Consider a unit hypersphere 

𝑆2𝐾−1 embedded in ℝ2𝐾, i.e. the set containing these points in ℝ2𝐾, whose distance to the origin 

equals 1 (see Definition 3). Obviously, the point indicated by �̅�𝒋 belongs to this hypersphere, i.e. 

(�̅�𝑗1, �̅�𝑗2, … , �̅�𝑗(2𝐾−1), �̅�𝑗(2𝐾)) ∈ 𝑆2𝐾−1. According to Theorem 4, location of any point on the unit 



hypersphere 𝑆2𝐾−1 can be uniquely defined using 2𝐾 − 1 spherical coordinates 𝝋𝒋 =

[𝜑𝑗1, 𝜑𝑗2, … , 𝜑𝑗(2𝐾−1)]
𝑇

, such that 𝜑𝑗1, 𝜑𝑗2, … , 𝜑𝑗(2𝐾−2) ∈ [0, 𝜋], 𝜑𝑗(2𝐾−1) ∈ [0, 2𝜋) and the following 

relations hold. 

�̅�𝑗1 = cos(𝜑𝑗1) (14𝑎) 

�̅�𝑗2 = sin(𝜑𝑗1) cos(𝜑𝑗2) (14𝑏) 

… 

�̅�𝑗(2𝐾−1) = sin(𝜑𝑗1) sin(𝜑𝑗2)… sin(𝜑𝑗(2𝐾−2)) cos(𝜑𝑗(2𝐾−1)) (14𝑐) 

�̅�𝑗(2𝐾) = sin(𝜑𝑗1) sin(𝜑𝑗2)… sin(𝜑𝑗(2𝐾−2)) sin(𝜑𝑗(2𝐾−1)) (14𝑑) 

The equations above show that the direction �̅�𝒋 of the vector of amplitudes 𝑯𝒋 is defined by the 

spherical coordinates 𝜑𝑗1, 𝜑𝑗2, … , 𝜑𝑗(2𝐾−2) ∈ [0, 𝜋] and 𝜑𝑗(2𝐾−1) ∈ [0, 2𝜋). Consequently, the shape 

of the function �̃�𝑗 (11) is uniquely defined by the angular coordinates 𝝋𝒋 = [𝜑𝑗1, 𝜑𝑗2, … , 𝜑𝑗(2𝐾−1)]
𝑇

 

and the parameters 𝜔,𝐾. Since the value of the parameter 𝜔 =
2𝜋

𝑡𝑓−𝑡0
 is known from the problem 

statement and 𝐾 can be assumed any positive, natural number3, the spherical coordinates 𝝋𝒋 =

[𝜑𝑗1, 𝜑𝑗2, … , 𝜑𝑗(2𝐾−1)]
𝑇

 are sufficient to specify the shape of �̃�𝑗. 

 Now, as the method of shape parametrization has been presented, it is time to consider the 

span of an admissible control. Obviously, any admissible control must satisfy the condition 𝒖(𝑡) ∈ 𝛀 

for all 𝑡 ∈ [𝑡0, 𝑡𝑓]. As in real control systems signals cannot attain arbitrarily large values, it is 

reasonable to suppose that the set of admissible controls 𝛀 is bounded. In this paper, it is assumed 

that 𝛀 is defined using a set of inequalities in the form: 

𝑚𝑗 ≤ 𝑢𝑗(𝑡) ≤ 𝑀𝑗 (15) 

where 𝑚𝑗, 𝑀𝑗 ∈ ℝ, 𝑚𝑗 < 𝑀𝑗  1 ≤ 𝑗 ≤ 𝑟. In other words, each of 𝑟 components of a control function 

𝒖(𝑡) is bounded from above and from below by a constant value. Such constraints are applicable in 

many practical cases, when outputs of a controller are restricted by fixed parameters. 

 The inequality (15) presents a condition, which must be met by any admissible control. 

However, if (𝑖𝑢𝑗
∗ , 𝑠𝑢𝑗

∗) is the span of the 𝑗-th component of the optimal control 𝑢𝑗
∗, then obviously 𝑚𝑗 ≤

𝑖𝑢𝑗
∗ and 𝑠𝑢𝑗

∗ ≤ 𝑀𝑗, but equalities (𝑚𝑗 = 𝑖𝑢𝑗
∗ , 𝑠𝑢𝑗

∗ = 𝑀𝑗) may not be true. Intuitively, it means that the set 

of values of 𝑢𝑗
∗ does not necessarily cover the whole allowable range [𝑚𝑗, 𝑀𝑗]. Therefore, in order to 

effectively search for the optimal function 𝑢𝑗
∗,it is necessary to parametrize the span of the 

approximate control function �̃�𝑗 with respect to the boundaries 𝑚𝑗, 𝑀𝑗 in such a way that any value 

(𝑖�̃�𝑗 , 𝑠�̃�𝑗), which ensures that the conditions (15) are fulfilled, can be selected. For this purpose, the 

parameters defined as follows are used. 

𝑝𝑗 =
𝑠�̃�𝑗 −𝑚𝑗

𝑀𝑗 −𝑚𝑗

(16) 

 
3 As indicated in further parts of the paper, the greater 𝐾, the better accuracy of the method and the longer 
optimization time.  



𝑞𝑗 =
𝑠�̃�𝑗 − 𝑖�̃�𝑗
𝑠�̃�𝑗 −𝑚𝑗

(17) 

Note that 𝑝𝑗 , 𝑞𝑗 ∈ (0, 1]. Both parameters must be greater than 0, otherwise 𝑠�̃�𝑗 = 𝑖�̃�𝑗 and the 

approximate control function would have to be constant. If supremum of the set of values of �̃�𝑗 equals 

the upper boundary 𝑀𝑗, then 𝑝𝑗 = 1. Analogously, if infimum of the set of values of �̃�𝑗 equals the lower 

boundary 𝑚𝑗, then 𝑞𝑗 = 1. By choosing appropriate values of 𝑝𝑗 , 𝑞𝑗 ∈ (0, 1], any span (𝑖�̃�𝑗 , 𝑠�̃�𝑗) of the 

approximate control function, such that 𝑚𝑗 ≤ 𝑖�̃�𝑗 < 𝑠�̃�𝑗 ≤ 𝑀𝑗, can be obtained. The relation between 

parameters 𝑝𝑗 , 𝑞𝑗, the constraints 𝑚𝑗 , 𝑀𝑗 and the span (𝑖�̃�𝑗 , 𝑠�̃�𝑗) is illustrated in Fig. 3. 

 

Fig. 3. Illustration of relation between parameters 𝑝𝑗 , 𝑞𝑗, the constraints 𝑚𝑗, 𝑀𝑗 and the span 

(𝑖�̃�𝑗 , 𝑠�̃�𝑗). 

The above considerations lead to the following theorem. 

Theorem 5. Approximation of the j-th component �̃�𝑗 (9) of an admissible control function is uniquely 

defined by its boundaries 𝑚𝑗, 𝑀𝑗, the vector of angular coordinates 𝝋𝒋 = [𝜑𝑗1, 𝜑𝑗2, … , 𝜑𝑗(2𝐾−1)]
𝑇

 along 

with the constant 𝐾 and parameters 𝑝𝑗 , 𝑞𝑗, 𝜔. 

Proof. Suppose that the boundaries 𝑚𝑗, 𝑀𝑗, the vector of angular coordinates 𝝋𝒋 and the parameters 

𝑝𝑗 , 𝑞𝑗, 𝜔, 𝐾 are known. The shape of �̃�𝑗 (11) equals the shape of (13), which depends exclusively on �̅�𝒋 

(12) and the parameters 𝜔,𝐾. According to (14a)-(14d), �̅�𝒋 is uniquely defined by 𝝋𝒋. Consequently, 

the shape of �̃�𝑗 (11) is determined by 𝝋𝒋 = [𝜑𝑗1, 𝜑𝑗2, … , 𝜑𝑗(2𝐾−1)]
𝑇

, 𝜔 and 𝐾. According to (16) and 

(17), if the boundaries 𝑚𝑗, 𝑀𝑗 and parameters 𝑝𝑗 , 𝑞𝑗are known, then the span (𝑖�̃�𝑗 , 𝑠�̃�𝑗) of �̃�𝑗 can be 

calculated as follows. 

𝑠�̃�𝑗 = 𝑝𝑗(𝑀𝑗 −𝑚𝑗) + 𝑚𝑗 (18) 

𝑖�̃�𝑗 = (1 − 𝑞𝑗)𝑠�̃�𝑗 + 𝑞𝑗𝑚𝑗 = (𝑀𝑗 −𝑚𝑗)(1 − 𝑞𝑗)𝑝𝑗 +𝑚𝑗 (19) 

Therefore both: the shape and the span of �̃�𝑗 (11) are well defined. Its domain is ℝ. According to 

Theorem 3, as the shape, the span and the domain of �̃�𝑗 are known, the function �̃�𝑗 is well defined, 

which completes the proof. 



Theorem 5 leads directly to an approximate solution of the control optimization problem. Each 

component of an admissible control can be approximated by means of the Fourier series (3), (11). The 

shape of the function under consideration can be found from 𝝋𝒋,𝜔, 𝐾 using formulas (14a)-(14d) and 

(13). The function (13) is normalized using expression (5), which yields the desired shape4. Then, the 

span is found from parameters 𝑝𝑗 , 𝑞𝑗 by means of formulas (18), (19). Finally, as the shape and the 

span are known, �̃�𝑗is calculated from the expression (8). As a result, definition of the control function 

approximation �̃�𝑗in terms of the Fourier parameters 𝑎𝑗0, 𝑎𝑗𝑖, 𝑏𝑗𝑖, 1 ≤ 𝑖 ≤ 𝐾 (3), (11) is obtained. In such 

a manner, approximation of each component of the control function �̃�𝑗 is determined by 𝝋𝒋, 

𝑝𝑗 , 𝑞𝑗, 𝜔, 𝐾. Consequently, the cost functional 𝐽 (2) becomes a function of these parameters. 

𝐽 = 𝐽(𝝋𝒋, 𝑝𝑗 , 𝑞𝑗, 𝜔, 𝐾), 1 ≤ 𝑗 ≤ 𝑟 (20) 

The parameters satisfy the following conditions. 

𝜑𝑗𝑘 ∈ [0, 𝜋], 1 ≤ 𝑗 ≤ 𝑟, 1 ≤ 𝑘 ≤ 2𝐾 − 2 (21𝑎) 

𝜑𝑗(2𝐾−1) ∈ [0, 2𝜋), 1 ≤ 𝑗 ≤ 𝑟 (21𝑏) 

𝑝𝑗 , 𝑞𝑗 ∈ (0, 1], 1 ≤ 𝑗 ≤ 𝑟 (21𝑐) 

𝜔 ≥
2𝜋

𝑡𝑓 − 𝑡0
(21𝑑) 

𝐾 ∈ ℕ+ (21𝑒) 

Note that the value of the fundamental frequency 𝜔 =
2𝜋

𝑡𝑓−𝑡0
, as it was already explained, enables to 

approximate any piecewise smooth, bounded function in the time interval [𝑡0, 𝑡𝑓]. However, if the 

optimal control function turns out to be periodic or almost periodic with period 𝑇 ≪ 𝑡𝑓 − 𝑡0, then 

optimization of the parameter 𝜔 with the constraint (21d) can lead to more accurate results under the 

same number of harmonics 𝐾, comparing to optimization with fixed 𝜔 =
2𝜋

𝑡𝑓−𝑡0
. In the case of free 

parameter 𝜔, its upper limit is not restricted. In practice, the angular frequency of the highest 

harmonic, i.e. 𝐾𝜔, should not exceed the cutoff frequency of the controller, which is going to physically 

generate the optimized control function. Otherwise, the controller would not be able to reproduce the 

desired control accurately. 

The parameter 𝐾 determines the number of harmonics in the control approximation (3), (11). The 

greater 𝐾, the better accuracy of the method and the longer optimization time. In practice, it is 

suggested to start with a small value of 𝐾 and increase it if necessary. 

 In order to estimate the optimal control, the cost function (20) must be globally minimized 

with respect to its parameters 𝝋𝒋, 𝑝𝑗 , 𝑞𝑗, 1 ≤ 𝑗 ≤ 𝑟 under constraints (21a)-(21c) with a fixed value 𝐾. 

The fundamental frequency 𝜔 can be either fixed (𝜔 =
2𝜋

𝑡𝑓−𝑡0
) or optimized under the constraint (21d). 

Note that the cost function 𝐽 (20) may not be continuous with respect to its parameters and multiple 

minima of this function may exist. Therefore, non-gradient, global optimization methods should be 

used, such as the Differential Evolution [37] or the Particle Swarm Optimization [38]. 

 
4 Normalization of the function (11) requires estimation of its span, which can be easily done numerically. 



3. Numerical example 
In this section equations of the control object are derived, details of the simulation are 

provided and the obtained results are presented. 

3.1. System equations 
In this paper, open loop control of the capsule drive presented in Fig. 4 is optimized. The idea 

of the system under consideration is based on the papers [28-34]. In this device, swinging of the 

mathematical pendulum produces inertia forces, which can trigger motion of the whole capsule due 

to presence of dry friction between the capsule and the underlying surface. Motion of the pendulum 

can be induced by an external torque 𝐹𝜃(𝑡) to be determined. 

 

Fig. 4. Scheme of the capsule drive system. 𝑀 - mass of the capsule, 𝑚 – mass of the pendulum, 

𝑙 −length of the pendulum, 𝜃 – pendulum angle, 𝑘 – spring stiffness, 𝑐 – damping coefficient, 𝐹𝜃 – 

external torque acting on the pendulum, 𝐹𝑥 – friction force, 𝑥(𝑡), 𝑦(𝑡) – coordinates of the capsule. 

Equations of motion of the system are derived using the Lagrange approach and the contact 

force between the capsule and the ground (the constraint force) is determined by means of the 

Lagrange multipliers method [6]. Firstly, the Lagrange function is defined as if the vertical coordinate 

of the capsule 𝑦(𝑡) was variable. Then, in the Lagrange equation, the constraint 𝑦(𝑡) = 𝑐𝑜𝑛𝑠𝑡 is 

imposed along with Lagrange multipliers. Two of them vanish from the equations, as there are no 

constraints connected with the coordinates 𝑥(𝑡) and 𝜃(𝑡), yet the one related to the coordinate 𝑦(𝑡) 

attains the value of the contact load. 

 The coordinates of the mass center of the pendulum are as follows. 

𝑥𝐶(𝑡) = 𝑥(𝑡) − 𝑙 sin𝜃(𝑡) , 𝑦𝑐(𝑡) = 𝑦(𝑡) + 𝑙 cos𝜃(𝑡) (22) 

Then, the total kinetic energy of the system can be defined. 

𝑇 =
1

2
𝑀[�̇�2(𝑡) + �̇�2(𝑡)] +

1

2
𝑚[𝑥�̇�

2(𝑡) + 𝑦�̇�
2(𝑡)] (23) 

The potential energy of the system is as follows. 



𝑈 = 𝑀𝑔𝑦(𝑡) + 𝑚𝑔𝑦𝑐(𝑡) +
𝑘𝜃2(𝑡)

2
(24) 

In the system the following constraint is present. 

𝑓 = 𝑦(𝑡) = 𝑐𝑜𝑛𝑠𝑡 (25) 

By means of the Lagrange function:  

𝐿 = 𝑇 − 𝑈 (26) 

equations of motion and value of the contact force can be obtained by adding non-potential loads 

𝐹𝑥 , 𝑐�̇�, 𝐹𝜃 to the appropriate Lagrange equation with constraint forces [6]: 

𝑑

𝑑𝑡
(

𝜕𝐿

𝜕�̇�(𝑡)
) = 𝜆𝜃

𝜕𝑓

𝜕𝜃(𝑡)
+

𝜕𝐿

𝜕𝜃(𝑡)
− 𝑐�̇�(𝑡) + 𝐹𝜃(𝑡) (27𝑎) 

𝑑

𝑑𝑡
(
𝜕𝐿

𝜕�̇�(𝑡)
) = 𝜆𝑥

𝜕𝑓

𝜕𝑥(𝑡)
+

𝜕𝐿

𝜕𝑥(𝑡)
− 𝐹𝑥(𝑡) (27𝑏) 

𝑑

𝑑𝑡
(

𝜕𝐿

𝜕�̇�(𝑡)
) = 𝜆𝑦

𝜕𝑓

𝜕𝑦(𝑡)
+

𝜕𝐿

𝜕𝑦(𝑡)
(27𝑐) 

where 𝜆𝜃, 𝜆𝑥 , 𝜆𝑦 are the Lagrange multipliers. By substitution of expressions (25), (26) to equations 

(27a)-(27c), taking into account that 𝑦(𝑡) = 𝑐𝑜𝑛𝑠𝑡 and �̇�(𝑡) = �̈�(𝑡) = 0, two equations of motion 

(28a), (28b) and a value of the constraint force (29) are obtained.  

𝑚𝑙2�̈�(𝑡) − 𝑚𝑙�̈�(𝑡) cos𝜃(𝑡) = 𝑚𝑔𝑙 sin𝜃(𝑡) − 𝑘𝜃(𝑡) − 𝑐�̇�(𝑡) + 𝐹𝜃(𝑡) (28𝑎) 

(𝑀 +𝑚)�̈�(𝑡) − 𝑚𝑙�̈�(𝑡) cos 𝜃(𝑡) + 𝑚𝑙�̇�2(𝑡) sin 𝜃(𝑡) = −𝐹𝑥(𝑡) (28𝑏) 

𝑅𝑦(𝑡) = 𝜆𝑦(𝑡) = (𝑀 +𝑚)𝑔 −𝑚𝑙�̈�(𝑡) sin 𝜃(𝑡) − 𝑚𝑙�̇�2(𝑡) cos𝜃(𝑡) (29) 

Note that 𝑅𝑦 is the vertical, reaction (contact) force between the capsule and the underlying surface. 

In the system of equations under consideration, this is the constraint force and its value is equal to the 

Lagrange multiplier 𝜆𝑦. The complete derivation, conducted using Maxima software, is available in the 

research data linked to this paper [41]. 

 In the presented system, Coulomb friction model [20] is adopted. From the equation (28a) it 

can be noticed that the resultant, horizontal force acting on the capsule due to motion of the pendulum 

is as follows. 

𝑅𝑥(𝑡) = 𝑚𝑙�̈�(𝑡) cos 𝜃(𝑡) − 𝑚𝑙�̇�2(𝑡) sin𝜃(𝑡) (30) 

Then, the friction model can be formulated. 

𝐹𝑥(𝑡) = {

𝜇𝑅𝑦(𝑡)𝑠𝑔𝑛[�̇�(𝑡)] ↔ �̇�(𝑡) ≠ 0

𝜇𝑅𝑦(𝑡)𝑠𝑔𝑛[𝑅𝑥(𝑡)] ↔ �̇�(𝑡) = 0 ∧ |𝑅𝑥(𝑡)| ≥ 𝜇𝑅𝑦(𝑡)

𝑅𝑥(𝑡) ↔ |𝑅𝑥(𝑡)| < 𝜇𝑅𝑦(𝑡)

(31) 

The following dimensionless variables and parameters are assumed.  

Ω = √
𝑔

𝑙
, 𝜏 = Ω𝑡, 𝛾 =

𝑀

𝑚
, 𝑧 =

𝑥

𝑙
, 𝜌 =

𝑘

𝑚Ω2𝑙2
, 𝜈 =

𝑐

𝑚Ω𝑙2
,

𝑓𝑧 =
𝐹𝑥

𝑚Ω2𝑙
, 𝑢1 =

𝐹𝜃
𝑚Ω2𝑙2

, 𝑟𝑧 =
𝑅𝑥

𝑚Ω2𝑙
, 𝑟𝑦 =

𝑅𝑦

𝑚Ω2𝑙
(32)

 



All relations between derivatives with respect to the dimensional time 𝑡 and the dimensionless time 𝜏 

are established in the following manner. 

�̇� =
𝑑𝑥

𝑑𝑡
=
𝑑𝑥

𝑑𝜏

𝑑𝜏

𝑑𝑡
= Ω

𝑑𝑥

𝑑𝜏
= Ω𝑥′, �̈� =

𝑑2𝑥

𝑑𝑡2
=

𝑑

𝑑𝑡
(
𝑑𝑥

𝑑𝑡
) =

𝑑

𝑑𝜏
(Ω

𝑑𝑥

𝑑𝜏
)
𝑑𝜏

𝑑𝑡
= Ω2

𝑑2𝑥

𝑑𝜏2
= Ω2𝑥′′ (33) 

Using expressions (32), (33), the set of equations (28a), (28b), can be presented in the dimensionless, 

matrix form. 

[
1 − cos𝜃(𝜏)

− cos 𝜃(𝜏) 𝛾 + 1
] [
𝜃′′(𝜏)

𝑧′′(𝜏)
] = [

sin𝜃(𝜏) − 𝜌𝜃(𝜏) − 𝜈𝜃′(𝜏) + 𝑢1(𝜏)

−𝜃′2(𝜏) sin 𝜃(𝜏) − 𝑓𝑧(𝜏)
] (34) 

In an analogous manner, definitions of the contact load 𝑅𝑦 (29), the resultant horizontal force 

generated by motion of the pendulum 𝑅𝑥 (30) and the friction model 𝐹𝑥 (31) are transformed. 

𝑟𝑦(𝜏) = (𝛾 + 1) − 𝜃′′(𝜏) sin𝜃(𝜏) − 𝜃′2(𝜏) cos 𝜃(𝜏) (35) 

𝑟𝑧(𝜏) = 𝜃′′(𝜏) cos𝜃(𝜏) − 𝜃′2(𝜏) sin 𝜃(𝜏) (36) 

𝑓𝑧(𝜏) = {

𝜇𝑟𝑦(𝜏)𝑠𝑔𝑛[𝑧
′(𝜏)] ↔ 𝑧′(𝜏) ≠ 0

𝜇𝑟𝑦(𝜏)𝑠𝑔𝑛[𝑟𝑧(𝜏)] ↔ 𝑧(𝜏) = 0 ∧ |𝑟𝑧(𝜏)| ≥ 𝜇𝑟𝑦(𝜏)

𝑟𝑧(𝜏) ↔ |𝑟𝑧(𝜏)| < 𝜇𝑟𝑦(𝜏)

(37) 

Details of transformation of the model to the dimensionless form are available in the research data 

linked to this paper [41]. The inverse of the inertia matrix from Eq. (34), which can be useful in 

numerical simulations, is also provided in a PDF file. The equations (34)-(37) form a complete model of 

the capsule system, whose scheme is presented in Fig. 4. 

3.2. Simulation and optimization details 
 In this paper, the fundamental question concerning the system (34)-(37) is as follows: what is 

the forcing function of the pendulum 𝑢1, which causes that the capsule covers the maximum distance 

in a specified interval of dimensionless time ? An approximate answer is provided in the remaining part 

of this chapter. 

 First, parameters of the system must be established. In this paper, the following values have 

been assumed: 𝜇 = 0.3, 𝜌 = 2.5, 𝜈 = 1.0, 𝛾 = 10. In the system, there is only one control function to 

be optimized: the dimensionless torque acting on the pendulum 𝑢1. Obviously, the forcing function 𝑢1 

cannot attain arbitrary values. Therefore, it has been assumed that, at any time, the condition 𝑢1(𝜏) ∈

𝛀 = [−4, 4] must hold. Consequently, boundaries of the control function are: 𝑚1 = −4,𝑀1 = 4. All 

the simulations have been conducted in the time interval from 𝜏0 = 0 to 𝜏𝑓 = 100, starting from zero 

initial conditions: 𝜃(0) = 𝜃′(0) = 𝑧(0) = 𝑧′(0) = 0. 

 The goal of optimization is to find such allowable control 𝑢1: [𝜏0, 𝜏𝑓] → 𝛀 = [−4, 4], for which 

the total distance covered by the capsule is maximum. More formally, the performance measure (2) 

to be minimized can be defined as follows. 

𝐽 = −|𝑧(𝜏𝑓) − 𝑧(𝜏0)| (38) 

The absolute value results from the fact, that the system is symmetric: if a control 𝑢1 results in the 

distance 𝑧(𝜏𝑓), then the control −𝑢1 yields −𝑧(𝜏𝑓). Consequently, the crucial issue is to find a distance 

of a large absolute value, whereas the direction of motion is not so important, as it can be adjusted by 

changing the sign of the control function. 



 In accordance with the subchapter 2.3, in particular Theorem 5, approximation of the control 

function �̃�1 is uniquely defined by the parameters 𝝋𝟏, 𝑝1, 𝑞1, 𝜔, 𝐾. The number of harmonics 𝐾 is fixed 

in each optimization. Therefore, the performance measure (38) becomes a function 𝐽(𝝋𝟏, 𝑝1, 𝑞1, 𝜔), 

which associates each set of parameters 𝝋𝟏, 𝑝1, 𝑞1, 𝜔 (for a fixed 𝐾) to the negative absolute distance 

−|𝑧(𝜏𝑓) − 𝑧(𝜏0)| covered by the capsule in the specified interval of time. Obviously, values of this 

function are estimated numerically. First, using spherical coordinates transformation formulas (14a)-

(14d), the function (13) is estimated. This function is of a shape defined by the spherical coordinates 

𝝋𝟏 together with parameters 𝜔,𝐾, but its span requires adjustment. To do so, the current span of the 

function is estimated numerically: in one period of the function 𝑇 =
2𝜋

𝜔
, 1000 points are evenly spaced 

and the value of the function is computed in each of them using the formula (13). Then, the largest 

value of the obtained is treated as an approximation of the supremum, and the smallest value is an 

estimate of the infimum. These results enable normalization of the function to the interval [0, 1] with 

use of the formula (5), followed by setting the final span defined by the parameters 𝑝1, 𝑞1 according 

to the expression (8). In such a manner, an allowable control �̃�1(𝜏) (11), uniquely specified in terms of 

the Fourier parameters 𝑎10, 𝑎1𝑖, 𝑏1𝑖, 1 ≤ 𝑖 ≤ 𝐾, is obtained from 𝝋𝟏, 𝑝1, 𝑞1, 𝜔 (for a fixed 𝐾). 

Afterwards, this control is used in simulation of the capsule system (34)-(37) in the time interval from 

𝜏0 = 0 to 𝜏𝑓 = 100. As a result, the final distance 𝑧(𝜏𝑓) is obtained.  

In the conducted numerical research, conversion of the parameters 𝝋𝟏, 𝑝1, 𝑞1, 𝜔, 𝐾 to the 

control function approximation �̃�1(𝜏) (11) is conducted using a Python 3 script. Then, the Fourier 

parameters 𝑎10, 𝑎1𝑖, 𝑏1𝑖, 1 ≤ 𝑖 ≤ 𝐾 are conveyed to a dynamically linked library (DLL), which simulates 

the system (34)-(37). The library has been created in C++ by means of the CodeBlocks software with 

use of the Boost::Odeint library for ODE integration and built using the g++ compiler from the mingw 

package. Simulation of the system is conducted with use of the RK45 [39] variable step integration 

method, with the absolute tolerance 10−9 and the relative tolerance 10−12. Localization of stick/slip 

transitions is done by means of the bisection method [40]. The Python 3 script for parameters 

conversion, as well as the full code of the C++ library, are available in the research data linked to this 

paper [41]. Moreover, a MATLAB simulation of the system (34)-(37) is provided. Finally, optimization 

of the function 𝐽(𝝋𝟏, 𝑝1, 𝑞1, 𝜔), equivalent to optimal control approximation,  is conducted with use 

of the Differential Evolution method [37], implemented in the SciPy package for Python 3. The 

optimization boundaries are specified by expressions (21a)-(21e). Moreover, the upper bound for the 

parameter 𝜔 equal 10 is used. The optimization code is also included in the research data [41]. 

3.3. Optimization results 
 Fig. 5 presents the maximal distance covered by the capsule within the dimensionless time 

interval 0 ≤ 𝜏 ≤ 100, depending on the number of harmonics 𝐾 in the optimization process. 



 

Fig. 5. Maximal distance covered by the capsule 𝑧(𝜏𝑓) vs. number of harmonics used in the 

optimization process 𝐾. 

Fig. 5 provides interesting information concerning results of the numerical simulation and, in general, 

properties of the described algorithm. First of all, the distance covered by the capsule increases with 

the number of harmonics 𝐾. This result could be expected from the properties of the method: the 

larger the number of harmonics in the Fourier approximation �̃�1 (3), (11), the more accurately can the 

unknown optimal control 𝑢1
∗ be approximated5. Secondly, it can be noticed that the covered distance 

increases faster for smaller 𝐾. The result for 𝐾 = 2 is over 100% better then for 𝐾 = 1 (i.e. for the 

optimal harmonic control), whereas the distance for 𝐾 = 5 is only about 20% longer than for 𝐾 = 2. 

 Fig. 6 presents how the position of the capsule 𝑧(𝜏) changes in time, as the control function is 

optimized using different numbers of harmonics. 

 

Fig. 6. Position of the capsule 𝑧(𝜏) vs. dimensionless time 𝜏. 

 
5 Obviously, if the optimal control was described exactly in terms of a finite number of harmonics in the Fourier 
expansion, then the performance measure 𝐽 would not improve after exceeding this number of harmonics. 
Otherwise, it is expected that the distance should be increasing (or, equivalently,  𝐽 should be decreasing) and 
approaching the optimal value as 𝐾 → ∞. 



Fig. 6 shows that, although the average velocity increases with the number of harmonics 𝐾, 𝑧(𝜏) plots 

have similar features. First of all, none of them is monotonic, which suggests that the optimal control 

of the capsule drive requires a slight pull back in some moments of time in order to move forward 

faster later. Moreover, in each plot the stick-slip phenomenon is clearly visible: the flat pieces of graphs 

(stick) alternate with inclined fragments (slip) in a repetitive manner. 

 Fig. 7 depicts plots of the optimal control approximations for different values of 𝐾. 

 

Fig. 7. Optimal control approximations for different values of 𝐾 (legend as in Fig. 6). 

The dimensionless time range in Fig. 7 is the longest period from all the estimated controls. Apparently, 

as 𝐾 increases, the optimal control approximation deviates from a harmonic function. 

  



4. Summary and conclusion 
 The paper presents a novel, Fourier series based method of open-loop control optimization, 

which can be used also in non-smooth or discontinuous systems. In the 2nd chapter, the problem is 

strictly defined, necessary mathematical tools are introduced and the optimization algorithm is 

explained in details. In the 3rd chapter, a numerical example is presented. The capsule drive, whose 

motion is triggered by oscillations of an internal mathematical pendulum in presence of the dry 

friction, is introduced. Its equations of motion are derived using Lagrange method with constraint 

forces, estimated by means of Lagrange multipliers. Dimensionless parameters are introduced and 

non-dimensional equations are presented. The simulation procedure is explained and its results are 

depicted. 

 The proposed method seems to be a simple and convenient method of open loop optimal 

control estimation in the presence of control constraints. The presented algorithm has undeniable 

assets. It is very flexible, very little information about the control object is required. The only 

requirements are that the set of admissible controls is specified by constant ranges and that for any 

admissible control it is possible to evaluate the performance measure 𝐽, whose value is unique. Under 

these assumptions, it is not even necessary to know equations specifying the control object – it can be 

a “black box”. In particular, non-smooth or even discontinuous systems are not a problem, as long as 

their solutions exist and are unique for any admissible control. Moreover, the presented method 

reduces the problem of function optimization to the simpler task of parameters optimization 

(nonlinear programming), which enables its solution using many global optimization algorithms, such 

as popular Differential Evolution procedure (implemented in Python’s SciPy package). The drawback 

of the presented algorithm is that properties of the function to be optimized 𝐽(𝝋𝟏, 𝑝1, 𝑞1, 𝜔), such as 

its continuity, differentiability, number of minima, etc. are not known. Therefore, it is recommended 

to use non-gradient global optimization methods, which work relatively slowly and cannot guarantee 

finding the optimal solution. Nevertheless, the numerical example presented in this paper confirms 

efficiency of the proposed approach. It is expected that this method will enable approximate 

investigations of the optimal control in areas, in which it was very difficult or even impossible up to 

this moment. 
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