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Abstract. We consider the ill-posed inverse problem of identifying a nonlinearity in a
time-dependent PDE model. The nonlinearity is approximated by a neural network, and
needs to be determined alongside other unknown physical parameters and the unknown
state. Hence, it is not possible to construct input-output data pairs to perform a supervised
training process. Proposing an all-at-once approach, we bypass the need for training data
and recover all the unknowns simultaneously. In the general case, the approximation via
a neural network can be realized as a discretization scheme, and the training with noisy
data can be viewed as an ill-posed inverse problem. Therefore, we study discretization of
regularization in terms of Tikhonov and projected Landweber methods for discretization
of inverse problems, and prove convergence when the discretization error (network approx-
imation error) and the noise level tend to zero.

Key words: Neural networks, unsupervised learning, discretization of regularization, pa-
rameter identification, nonlinear PDEs, Tikhonov regularization, Landweber iteration.

1 Introduction

Parameter identification in partial differential equations (PDEs) from indirect observation
is a category of inverse problems that arises in numerous applications, such as medical
imaging, geophysical prospection and nondestructive testing.

In this paper, we focus on transient models and the appearance of unknown nonlin-
earities. In order to find a finite dimensional representation of the latter, we make use
of the powerful approximation properties and computational efficiency of neural networks
(NNs). Due to the inherent ill-posedness of these inverse problems, however, regularization
must be employed. We therefore study two such regularization methods: the variational
Tikhonov method and the iterative projected Landweber method. These reconstruction
methods are analyzed in the spirit of regularization theory, with a discretization by neural
networks, as well as other general discretization schemes. We must therefore investigate the
interplay between noise level, regularization parameter and discretization error (approxi-
mation error in case of discretization by NNs). In the language of machine learning, this
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is the interplay between approximation error and optimization/estimation error, with the
impact of ill-posedness and data noise additionally taken into consideration. The resulting
convergence analysis hints at a dependence of the network size (discretization parameter)
on the noise level. This constitutes one of the main contributions of the paper.

We point to the fact that a regularization theoretical viewpoint for the training problems
has already been taken in [5], although there the focus is on linear problems. In [5], the
authors solve Au = y without making use of the linear forward map A, relying solely on
the input-output training pairs [um, ym]m=1...M satisfying Aum = ym. This data-driven
approach is interpreted as regularization by projection, where the subspaces are spanned
by the training data. Along this line, [13] investigates the supervised training problem of
approximating a smooth function via one-layer feed-forward networks with noisy data as
an ill-posed problem. This is shown to be equivalent to least-squares collocation for a linear
integral equation. The core result is the derivation of an optimal choice of the network size
depending upon on the data error δ. In the same spirit, our work focuses on the connection
between machine learning and regularization. Our objective is to establish a convergence
analysis of regularization methods under the influence of the network approximation error
in a nonlinear PDE. As the considered problem already exhibits multi-faceted complexity,
namely parameter identification, a nonlinear model and unsupervised training, the task of
deriving convergence rates as in [13] is deferred to future research.

Our use of neural networks in parameter identification is inspired by [18]. There, the
focus is on stationary problems, and the nonlinearity is represented by a neural network.
In [18], the network is learned beforehand via supervised training, and then it is inserted
into the PDE model underlying the parameter identification. The supervised learning
thus requires exact and full measurements of the state u, as well as physical parameters
of the PDE, in order to form the training pairs. In contrast to this, we here consider
time-dependent models; in addition, by virtue of our all-at-once formulation, the super-
vised training is skipped, hence no access to the exact state and physical parameters is
involved. The application of an all-at-once approach for unsupervised learning is another
main contribution of our paper.

Another advantage of the all-at-once formulation lies in the fact that it avoids the
evaluation of a parameter-to-state map, thus bypassing the need for a nonlinear PDE
solver in a practical implementation. Additionally, this setting simplifies verification of the
so-called tangential cone condition, a requirement for convergence guarantees of gradient-
based methods, whose verification in many applications is neglected. This, may be consid-
ered another advantage of our approach.

This work is a continuation of [1], in which we also parametrize the unknown nonlin-
earities in time-dependent PDEs by NNs. There, a so-called learning-informed parameter
identification was investigated by way of discretized inverse problems (i.e. when f is al-
ready approximated by some NN). The present study develops a theoretical framework for
[1], in the sense that we show convergence of the regularized and discretized reconstruc-
tions towards a ground truth. The approximation/discretization is incorporated into the
regularization, which places a stronger emphasis on regularization theory in the light of
existing literature. The analysis applies not only to discretization by NNs, but also to more
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general discretization schemes.
The field of deep learning for PDEs is well developed, with many novel results and

techniques available in the literature. One such technique is physics informed neural net-
works (PINNs) [47], where one parametrizes the solution to the PDE, as opposed to using
NNs to parametrize the unknown nonlinearities as in our case. A theoretical justification
for using NNs to parametrize PDE solutions or parameter-to-solution maps can be found
in [35].

Recovery of hidden physics laws from empirical observations is, in fact, an active field
with a significant history. Recently, the rapid advances in computing power and data
acquisition open the door for advanced techniques. For example [10, 49] are concerned
with the recovery of the governing PDE from full measurements of the state u. These two
papers suggest to first construct a rich library of possible basis elements and then optimize
the corresponding coefficients using sparse regression. Adding deep learning techniques,
[46] proposes to use two deep neural networks, one representing the solution u, the other
representing the nonlinear dynamics f := ut−N (t, x, u,∇u,∇u2 . . .). Algorithmic differen-
tiation is employed for computing the required derivatives. On the other hand, PDE-NET
[38] represents another flexible framework, in which one approximates the model f by a
feed-forward NN, while numerically approximating the differential operators ∇,∇2 . . . by
convolutional NNs. In all these mentioned studies, the problems are studied in a discrete
setting and the collocation points (ti, xi) range over the entire time and space [0, T ]× Ω.
In this work, we put more emphasis on the aspect of the PDE model being derived from
physical laws, and use data-driven methods solely to complement this approach. Further,
our study combines a functional setting for the unknown physical parameters and states
with a network parametrization for the unknown nonlinearity in an hybrid form.

While [5, 13, 18, 47, 10, 49, 46, 38, 1] are the recent publications that our work is most
closely related to, there is clearly a vast amount of existing and emerging literature on the
mathematics of machine learning. In the context of data-driven inverse problems, we refer
to [4] for an excellent review. For a profound exposition on the theory of deep learning,
we refer to the lecture series and associated upcoming publication [22].

1.1 The inverse problem

Quite often, the nonlinearity is not the only unknown quantity, but rather must be deter-
mined alongside other coefficients in the PDE, as exemplified in the following application.

Application. Consider the problem of recovering the unknown nonlinearity f , the po-
tential c, the source ϕ, and the initial data u0 in

u̇−∆u+ cu+ h(u) = f(u) + ϕ in Ω×(0, T )

u(0) = u0 on Ω ,
(1)

from measurements y of the state u. The state u is a function on the finite time line (0, T )
and the bounded, smooth domain Ω with its time derivative being denoted by u̇. In (1),
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h is the known nonlinear part of the model; the unknown nonlinear part f , which needs
to be determined, plays the role of a model correction, thus helping to refine the physical
model. The additional data y available to identify the unknown quantities are observations
of the state u expressed via some observation operator M (which could e.g., be the trace
of u at the boundary over time or its values at some fixed times instance(s) in Ω)

Mu = y . (2)

In more complex settings, for the purpose of identifying the unknown functions, sev-
eral repeated or possibly also different observations ym = Mmum, m = 1 . . .K will be
needed. These observations entail a variation in the data, and possibly also in some of
the unknown coefficients, while the nonlinearity remains the same. Different measured
data ym correspond to the model (1) at different parameters, thus at different states, i.e.
(c, ϕ, u0)

m, um, m = 1 . . .K may vary between observations, while the unknown function
f describing the underlying physical law is fixed. There are several real life inverse prob-
lems obeying this setting. In medical imaging MRI, this situations appears when different
patients are scanned, resulting in K sets of patient-dependent physical/body parameters.
These patient-specific parameters, however, enter the same model governed by the same
underlying physical law, e.g. the Bloch-Torrey equation model [8]. Thus, the unknown
nonlinear response f can be considered as being fixed, while relaxation and diffusion pa-
rameters are allowed to vary between patients.

Remark 1 (uniqueness). In the context of restricted measurements (2) such as boundary
observations, as relevant in tomographic applications, the question arises whether f can
be determined uniquely from these observations. Answers to this question can be found in
the literature in the case of unknown f and known initial data u0 as well as coefficients
c, ϕ, see, e.g., [15, 19, 44], or in the case of known f and unknown initial data u0 or
coefficients c, ϕ, see, e.g., [26, 27], but more rarely on simultaneous identifiability of all
these quantities. As the unknown f case is the most relevant for our study, we point to the
fact that a range condition on the exact state uexact

uexact(Ω× (0, T )) ⊆ uexact(ω × (0, T ))

is essential for establishing unique recovery of f(u) from observations of u in some subset
ω of Ω or its boundary.

We will study such inverse problems in a more general framework of the following form.

Inverse Problem. Before stating the inverse problem, we point out that in the model
(5) below, the unknown nonlinearity f : Rn+1 → R is identified with the corresponding
Nemitskii operator (cf. Section 1.2)

f : Rn × V → W via [f(α, u)](x, t) := f(α, u(x, t)), (3)

4



and similarly, the known part F : (0, T ) × X × V → W is identified with the Nemitskii
operator

F : X × V → W via [F (λ, u)](t) := F (t, λ, u(t)), (4)

with V denoting the state space and W denoting the image space of the model. Here,
V ⊆ L2(0, T ;V ) and W ⊆ L2(0, T ;W ) are Bochner spaces (cf. Section 1.2) and with V
being a space of x dependent functions, in (3) we make the identification u(x, t) = (u(t))(x).

We now investigate the inverse problem of determining the physical parameters λm ∈ X
(parameter space), um0 ∈ H (initial data space), αm ∈ R

n, m ∈ {1, . . . , K}, and the
nonlinearity f ∈ C ⊆ C(Rn+1;R), in the evolution system

u̇ = F (λ, u) + f(α, u) in (0, T )

u(0) = u0
(5)

from K noisy measurements ym,δ ∈ Ym (data space) of the states um ∈ V (state space)
under the measurement operator Mm according to

ym =Mmum, Mm : V → Ym

0 ≤ Sm(ym, ym,δ) ≤ δ m ∈ {1, . . . , K}, (6)

where um solves (5) with (λ, u0, α) = (λm, um0 , α
m). Here, the distance between the exact

data ym and the noisy data ym,δ under the misfit measure Sm is assumed to be bounded
by the noise level δ. Typical choices of Sm are norms (as in Section 3 below) or more
general distance measures such as the Kullback-Leibler divergence. If (5) represents an
evolutionary PDE such as (1), the spaces V,W,X,H are typically Banach spaces of space-
dependent functions, and C is a function space over R

n+1 that will be approximated by
neural networks later on. The data spaces Ym are Banach spaces as well and, depending on
what type of observations are made, may consist of space and/or time dependent functions.

This parameter identification problem can equivalently be written as the all-at-once
system (cf. Section 1.2)
(
E(ζm, um, f)
Mmum

)K

m=1

=

(
0
ym

)K

m=1

, ζm := (λm, um0 , α
m) ∈ Z := X ×H × R

n (7)

for the parameters ζm, the nonlinearity f , and the states um, with

E(ζ, u, f) :=

(
u̇− F (λ, u)−f(α, u)
u(0)− u0

)
∈ W ×H. (8)

We denote by (ζ†, u†, f †) an exact solution to the inverse problem, that is

E(ζ†, u†, f †) = 0 , Mu† = y,

leading to a vanishing PDE residual and a perfect match of the measurements to the noise
free data y.

In particular, the application (1) is a special case of (5) in the setting (7) with

K = 1, n = 0, λ = (c, ϕ), F (λ, u) = ∆u− cu− h(u) + ϕ. (9)
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1.2 Preliminaries

Before launching a detailed discussion of discretization for Tikhonov and Landweber regu-
larization, we briefly elaborate on some concepts that have been mentioned in the preceding
section.

Bochner spaces. Given a Banach space V , the Bochner space Lp(0, T ;V ) [48, Section

1.5] consists of the Bochner integrable functions u : [0, T ] → V satisfying
∫ T

0
‖u(t)‖pV dt <

+∞. It is a Banach space under the norm

‖u‖Lp(0,T ;V ) :=

(∫ T

0

‖u(t)‖pV dt
)1/p

1 ≤ p <∞.

Likewise, the Bochner spaces L∞(0, T ;V ) and C(0, T ;V ) are Banach spaces under the
respective norms

‖u‖L∞(0,T ;V ) := sup
t∈[0,T ]

‖u(t)‖V , ‖u‖C(0,T ;V ) := max
t∈[0,T ]

‖u(t)‖V .

Given a convex Banach space V1 and a locally convex Banach space V2 ⊃ V1, we define the
Sobolev-Bochner space W 1,p,q(0, T ;V1, V2) [48, Section 7.1], which itself is a Banach space,
as

W 1,p,q(0, T ;V1, V2) := {u ∈ Lp(0, T ;V1) : u̇ ∈ Lq(0, T ;V2)} 1 ≤ p, q ≤ ∞,

‖u‖W 1,p,q(0,T ;V1,V2) = ‖u‖Lp(0,T ;V1) + ‖u̇‖Lq(0,T ;V2).

An example that is used in Section 3.3 is W 1,2,2(0, T ;V1, V2) = L2(0, T ;V1) ∩H1(0, T ;V2).

Nemitskii operators. A mapping f : I×A → B with Banach spaces A, B and I ⊂ R
d is

called a Caratheodory mapping if f(·, u) is measurable for all u ∈ A and f(z, ·) is continuous
for a.e. z ∈ I. The so-called Nemitskii operator F assigns a function v : I → A to a
function w : I → B by

[F(v)](z) := f(z, v(z)).

In (3), we have, for any fixed α ∈ R
n, f = f(α, ·), v = u, I = Ω× (0, T ), A = B = R, while

in (4), we have for any fixed λ ∈ X , f = F (λ, ·), v = u, I = (0, T ), A = V , B = W .
For a detailed discussion on Nemitskii operators in Bochner spaces, we refer to [48, Sections
1.3, 1.4].

All-at-once formulation. The classical way to formulate the inverse problem (5)-(6)
(for simplicity of exposition setting K = 1 and therefore skipping the superscripts m) is to
construct the reduced forward operator

G : Z × C → Y G(ζ, f) :=M ◦ P (ζ, f) = y,
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which composes the observation operator M with the parameter-to-state map

P : Z × C → V P (ζ, f) = u, where u solves (5).

This formulation involves evaluating well-definedness of P via unique existence theory for
the nonlinear PDE (5), and in practice requires solving this nonlinear equation.

Alternatively, the all-at-once approach formulates (5)-(6) into a system

E(ζ, u, f) = 0

Mu = y

of model and observation equation as in (7)-(8). Hence, we can define the forward operator

G : Z × V × C → W × Y G(ζ, u, f) := (E(ζ, u, f),Mu) = (0, y).

The all-at-once formulation bypasses the construction of the parameter-to-state map P ,
which is nonlinear and often requires restrictive assumptions on F, f . This formulation
therefore allows more general classes of F, f , and is also advantageous in practical imple-
mentation, where a PDE solver is not needed. All-at-once approaches have been studied
in PDE constrained optimization in [33, 34, 36, 55, 42, 51, 52] and more recently, for ill-
posed inverse problems, in [11, 12, 23, 28, 29, 55]; a comparison between the reduced and
all-at-once formulation for time dependent problems can be found in [31, 41].

Neural networks (NNs). In the setting of this paper, we make use of the feedforward
neural network of depth L on (α, u(x, t)) ∈ R

n+1, expressed as a function of the form

N : Rn+1 → R N (α, u(x, t)) := AL ◦ . . . A1(α, u(x, t)), Aℓ(z) := σℓ(wℓz+ bℓ),

where the matrix wℓ ∈ L(Rpℓ−1,Rpℓ) and the vector bℓ ∈ R
pℓ are the so-called hyperpa-

rameters at layer ℓ = 1 (input) . . . L (output). The activations σℓ : R → R are nonlinear
point-wise functions allowed to differ between layers, and σL = Id. In summary, at layer
ℓ−1 the affine operator Aℓ transforms an input vector in R

pℓ−1 into one in R
pℓ , applies the

activation σℓ pointwise, and returns the input to the next layer ℓ. Some standard activation
functions include the RELU function σ(z) = max{z, 0}, tansig function σ(z) = tanh(z),
softsign function σ(z) = z

1+|z|
and softplus function σ(z) = ln(1 + ex).

Based on the universal approximation theorem for smooth functions [25], we use stan-
dard feedforward neural networks to approximate the nonlinearity f : R

n+1 → R in
the finite dimensional set CN (cf. (11)), whose number of hyperparameters is N =∑L

ℓ=1(pℓ−1+1)pℓ with p0 = n+1, pL+1 = 1. Fitting this into the formulation of the inverse
problem, we identify f as a Nemitskii operator between Bochner spaces, as introduced in
(3).

7



Notation

We will use shortcut notations L2(L2) = L2(0, T ;L2(Ω)), C(L2) = C(0, T ;L2(Ω)),
L2 = L2(Ω), and analogously for some further Sobolev spaces, when they appear as
subscripts in some norms or constants.

We will make use of boundedness of some Sobolev embeddings according to, e.g.,
[3, Chapter 4], [37, Chapter 11] and more generally denote embedding constants
between spaces X and Y by CX→Y . Generic constants will be denoted by C > 0,
and continuity or compactness of embeddings is indicated by X →֒ Y or X →֒→ Y ,
respectively.

Partial derivatives are denoted by subscripts, e.g., fα, fu, while ordinary or total
derivatives by a prime, e.g. f ′.

The remainder of this paper is organized as follows. In Sections 2, we prove convergence
of Tikhonov regularization with an appropriate choice of the regularization parameter.
Section 3 presents convergence results for Landweber regularization with an appropriate
stopping index. In both approaches, the discretization level N needs to be chosen too, in
order to achieve convergence as the noise level δ tends to zero. The required conditions
are thoroughly discussed and interpreted for the particular Application 1.

2 Tikhonov regularization

With positive definite model and data misfit as well as regularization functionals

Q : W → [0,∞] s.t. Q(w) = 0 ⇔ w = 0,

S : Y 2 → [0,∞] s.t. S(y1, y2) = 0 ⇔ y1 = y2,

R1 : Z × V → [0,∞], R2 : C → [0,∞],

consider the objective functional T δ
γ given by

T δ
γ (
~ζ, ~u, f) :=

K∑

m=1

(
Q(E(ζm, um, f)) + S(Mmum, ym,δ) + γR1(ζ

m, um)
)
+ γR2(f).

Here, K is the number of parameters and states corresponding to K different observations
of the data ym,δ, while f is the common nonlinearity across all experiments. The objective
functional T δ

γ depends on the noise level δ, measured data ym,δ and the regularization
parameter γ > 0. We then define regularized approximations as minimizers of T δ

γ , that is,

(~ζγ,δ, ~uγ,δ, f γ,δ) ∈ argmin(ζ1,u1),...,(ζK ,uK)∈(Z×V)K ,f∈CT
δ
γ (
~ζ, ~u, f). (10)

The unknown nonlinearity f is approximated by NNs, that is, within the finite dimen-
sional set

CN := {neural networks on R
n+1 with N parameters} ⊆ C. (11)
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Denoting by N the discretization parameter, we define partially discretized regularized
approximations as

(~ζγ,δ,N , ~uγ,δ,N , f γ,δ,N) ∈ argmin(ζ1,u1),...,(ζK ,uK)∈(Z×V)K ,f∈CN
T δ
γ (
~ζ, ~u, f). (12)

In comparison to (10), the discretization parameter N in (12) enters the minimization as
another parameter, which needs to be properly controlled. The focus of this section is on
deriving a rule for the regularization parameter γ and the discretization parameter N with
respect to the noise level δ, such that convergence of the Tikhonov regularization method
is guaranteed. For simplicity of exposition, we set K = 1, and mention in passing that an
alternative way to take into account multiple observations, as opposed to summing over
them in the Tikhonov functional, is the use of Kaczmarz methods. That is, implementing
a cyclic iteration over the individual observations, see, e.g., [41] for the all-at-once setting
relevant here, as well as the references therein.

2.1 Convergence

We now study convergence of the Tikhonov regularized approximations in the sense of
regularization, so as δ → 0 with an appropriate choice of regularizer parameter γ(δ) and
discretization parameter N(δ).

Assumption 1. There exist topologies τ1 :=τZ×V on Z×V and τ2 :=τC on C such that the
following holds:

(T1) sublevel sets of R1 are τZ×V compact, and sublevel sets of R2 are τC compact;

(T2) (Q ◦ E, S ◦M) is τZ×V × τC sequentially closed:
∀(ζj, uj, f j, yj)j∈N ⊆ Z × V × C × Y :

(
(ζj, uj, f j)

τZ×V×τC−→ (ζ̄ , ū, f̄) and Q(E(ζj, uj, f j)) → 0

and S(Muj, yj) → 0 and S(y, yj) → 0
)

=⇒
(
Q(E(ζ̄ , ū, f̄)) = 0 and S(Mū, y) = 0

)
;

(T3) (Q ◦ E, S ◦M), R1, R2 are τZ×V × τC lower semicontinuous:
∀(ζj, uj, f j)j∈N ⊆ Z × V × C :

(ζj, uj, f j)
τZ×V×τC−→ (ζ̄ , ū, f̄)

=⇒
(
Q(E(ζ̄ , ū, f̄)) ≤ lim inf

j→∞
Q(E(ζj, uj, f j)) and S(Mū, yδ) ≤ lim inf

j→∞
S(Muj , yδ)

and R1(ζ̄ , ū) ≤ lim inf
j→∞

R1(ζ
j, uj) and R2(f̄) ≤ lim inf

j→∞
R2(f

j)
)
.
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The choice of R1 and R2 is dictated by the continuity requirements (T2) and (T3).
Accordingly, the topology τZ×V × τC needs to be sufficiently strong. This topology is then
linked to R1, R2 via the constraint on compactness of the sublevel sets expressed in (T1).
Overall, these assumptions are thus criteria to choose the regularizers R1 and R2. The
latter two requirements in (T3) are automatically satisfied if R1, R2 are defined by norms
on Z × V and C, provided the spaces are reflexive or duals of separable spaces and τi is
defined by the corresponding weak(*) topology.

Proposition 1. Under the assumptions (T1)-(T3), the discrete minimization problems
(12) admit minimizers.

Proof. The proof follows from standard results [20, 54] that essentially assume com-
pactness of sublevel sets of Ri, i = 1, 2, τZ×V × τC closedness of (Q ◦ E, S ◦M), and lower
semicontinuity of T δ

γ .
♦

Thus, under these assumptions, the method is well defined by (12). In order to prove
that it actually defines a convergent regularization method, we need further assumptions
on the approximation quality and on the choice of the regularization and discretization
parameters.

Moroever, we allow for inexact minimization by introducing the tolerance η ≥ 0 in the
relaxed definition

T δ
γ (
~ζγ,δ,N , ~uγ,δ,N , f γ,δ,N) ≤ T δ

γ (
~ζ, ~u, f) + η ∀(ζ1, u1), . . . , (ζK, uK) ∈ (Z × V)K , f ∈ CN .

(13)
This definition actually does not even require existence of a minimizer.

Assumption 2. .

(T4) approximation by NNs:

qN := inf
fN∈CN

Q(E(ζ†, u†, fN)) + γN(R2(fN)− R2(f
†))

= inf
fN∈CN

(Q(E(ζ†, u†, fN))−Q(E(ζ†, u†, f †))) + γN(R2(fN)− R2(f
†)) → 0 ,

as N → ∞;

(T5) asymptotics of the parameters as δ → 0: There exists C > 0 such that

γ(δ) → 0 ,
δ

γ(δ)
≤ C,

qN(δ)

γ(δ)
≤ C,

η

γ(δ)
≤ C, N(δ) → ∞, η(δ) → 0 as δ → 0

Proposition 2. Under Assumptions 1, 2 we have τZ×V × τC subsequential convergence of
(ζγ(δ),δ,N(δ), uγ(δ),δ,N(δ), f γ(δ),δ,N(δ)) to a solution of the inverse problem (7), (8) as δ → 0,
i.e., every sequence (ζγ(δj),δ,N(δj), uγ(δj),δj ,N(δj), f γ(δj),δ,N(δj)) with δj → 0 as j → ∞ has a
τZ×V × τC convergent subsequence, and the limit of every τZ×V × τC convergent subsequence
solves the inverse problem.
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Note that unlike [45] we assume convergence qN → 0 of the “discretization error” to
zero only at the exact solution, not uniformly over all elements of Z × V × C. Also, it is
not necessary to assume any vector space structure on CN and S does not need to satisfy
a triangle inequality.
Proof. By minimality, that is, T δ

γ (ζ
γ,δ,N , uγ,δ,N , f γ,δ,N) ≤ T δ

γ (ζ, u, fN) + η for all ζ ∈ Z,
u ∈ V, fN ∈ CN , setting ζ = ζ†, u = u†, and thus Q(E(ζ†, u†, f †) = 0,Mu† = y, shows
that

T δ
γ (ζ

γ,δ,N , uγ,δ,N , f γ,δ,N)

≤ inf
fN∈CN

(
Q(E(ζ†, u†, fN)) + S(Mu†, yδ) + γR1(ζ

†, u†) + γR2(fN ) + η
)

≤ Q(E(ζ†, u†, f †)) + S(y, yδ) + γR1(ζ
†, u†) + γR2(f

†) + η

+ inf
fN∈CN

((
Q(E(ζ†, u†, fN)−Q(E(ζ†, u†, f †))

)
+ γ

(
R2(fN)− R2(f

†)
))

= δ + γR1(ζ
†, u†) + γR2(f

†) + qN + η.

(14)

By employing S ≥ 0, Q ≥ 0, and dividing by γ > 0, we then obtain

R1(ζ
γ,δ,N , uγ,δ,N) +R2(f

γ,δ,N) ≤ R1(ζ
†, u†) +R2(f

†) +
qN
γ

+
δ

γ
+
η

γ
, (15)

which by (T1)–(T3) implies existence of a τZ×V×τC convergent subsequence (ζj, uj, f j)j∈N of
(ζγ(δ),δ,N(δ), uγ(δ),δ,N(δ), f γ(δ),δ,N(δ))δ>0 with limit (ζ∗, u∗, f ∗). Since from the same minimality
estimate, by R1 ≥ 0, R2 ≥ 0 we also get

Q(E((ζj, uj, f j))) + S(Muj, yδj)

≤ γ(δj)
(
R1(ζ

†, u†) +R2(f
†)
)
+ qN (δ

j) + δj+η(δj) → 0 as j → ∞

for any such τZ×V × τC convergent subsequence, from (T4) we conclude that (ζ∗, u∗, f ∗)
solves the inverse problem E(ζ∗, u∗, f ∗) = 0, Mu∗ = y.

♦

Note that due to estimate (15) and τi-lower semiconituity of Ri in (T3), if in addition
to (T5)

δ

γ(δ)
→ 0,

qN(δ)

γ(δ)
→ 0,

η(δ)

γ(δ)
→ 0, as δ → 0,

then the limit according to Proposition 2 is even an R1, R2 minimizing solution of the
inverse problem, that is, (ξ∗, u∗, f ∗) = min(R1(ξ, u)+R2(f)), where the minimum is taken
over all (ξ, u, f) solving the inverse problem.

Discussion 1 (Quantitative approximation error). Assumption (T4) follows by application
of the universal approximation theorem [25] in our setting. This theorem states that for
any continuous function f on a compact domain, there exists a NN with a sufficiently large
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number of neurons approximating f with arbitrary prescribed accuracy. Recently, advanced
studies on quantifying the size of NNs have been carried out, even in terms of width and
depth, to obtain approximation rates. Seminal results in this direction include [6, 7], which
show an asymptotic approximation rate O(1/

√
N)) in the L2-norm of NNs with N neurons

and sigmoidal activation to any target function f with finite Fourier moments. The study
on approximation rates has greatly evolved in recent years [40, 56, 43, 16]. For a full survey
on approximation theory, we refer to [17], as well as [35, Section 1.4.2], [39, Table 1] for
brief summaries.

Incorporating these approximation rates into qN in (T4) enables an analysis for the
convergence rate of Tikhonov regularization, under so-called source conditions, see, e.g.,
[20, 50]. The asymptotics of the parameters (T5) shows that when δ → 0, the NNs size
should increase accordingly, that is, N(δ) → ∞. The relation reveals a choice of the network
size dependent on the noise level δ. This potentially reduces the overfitting problem caused
by noisy training data. By virtue of (14)-(15), the approximation errors both w.r.t the
model Q ◦ E and w.r.t the regularizer R2 contribute to the total convergence rate, hinting
at a possible mutual effect of these two factors in the overall rate. If a convergence rate
analysis for Tikhonov regularization integrating the quantitative approximation error can
be carried out, a choice of N with respect to δ (c.f. [13]), as well as Q ◦ E and R2 can be
made explicit. We leave this interesting task for future research.

2.2 On Assumptions 1, 2: Discussion, Examples, and Applica-
tion

Discussion 2 (on (T1)-(T2)). Assume the following:

(i) ∃ τW×H such that E is τZ×V × τC − to − τW×H continuous at the exact solutions of
the PDE.

(ii) ∃ τY such thatM is τV−to−τY continuous at the exact states. In addition, S(y, yj) →
0 implies yj → y in τY .

(iii) (Q, S) is (τW×H , (τY × τY)) lower semicontinuous.

(iv) (R1, R2) is (τZ×V , τC) lower semicontinuous and its sublevel sets are (τZ×V , τC) com-
pact.

Then (T1)-(T2) hold.
First, Q ◦ E is lower semicontinuous as it is a composition of a lower semicontinuous

function and a continuous function assumed in (i)-(iii). Next, Q ◦ E is closed since by
positivity of Q, lower semicontinuity of Q ◦ E and the premise of (T2), one has

0 ≤ Q(E(ζ̄ , ū, f̄)) ≤ lim inf
j→∞

Q(E(ζj, uj, f j)) ≤ lim
j→∞

Q(E(ζj, uj, f j)) = 0

thus Q(E(ζ̄ , ū, f̄)) = 0.

12



Note that closedness in the sense of (T2) is weaker than in the standard definition, (see,
e.g., [45] and the references therein), as we require the closedness property only at the exact
solutions of the PDE, i.e. at Q(E(ζ̄ , ū, f̄)) = 0.
Furthermore, if S(y, yj) → 0, that is the premise of (T2), induces yj → y in τY (cf. (ii)),
then S ◦M is closed due to

0 ≤ S(Mū, y) ≤ lim
j→∞

S(Muj, yj) = 0 =⇒ thus S(Mū, y)) = 0,

provided that S is lower semicontinuous in its two arguments (see (iii)).

Remark 2 (on (T3)). In Discussion 2, if E is τZ×V × τC − to− τW×H continuous on the
whole space Z×V and M is τV − to− τY continuous on V, then lower semicontinuity of T δ

γ

on Z × V × CN ((T3)) holds. In some particular examples where convexity of Ri, i = 1, 2
is given, e.g. Ri = ‖ · ‖p, i = 1, 2, for some p ∈ [1,∞] weaker conditions on continuity of
E,M might be sufficient.

Remark 3. In case of full measurement, the term S(Mu, y) = S(u, y) can play the role of
a regularizer on u with τV = τY .

Discussion 3 (on (T4)). The topology τC induced by R2 could be chosen as the weak∗

topology induced by the L∞-norm to make use of available approximation rates of deep
neural networks to smooth functions. In particular, these rates are with respect to arbitrary
depths (number of layers) and widths (number of neurons per layer) [39, Table 1] to which
N in (12) generally refers.
This and the discretization error assumption (T4)

qN := inf
fN∈CN

Q(E(ζ†, u†, fN)) = inf
fN∈CN

Q(E(ζ†, u†, fN(u
†))) → 0

require uniform boundedness only on the exact state u†. Therefore, a candidate for R2 is
R2(fN) = ‖fN‖L∞(Ω

y†
) with Ωy† = u†((0, T )× Ω).

In the following examples of settings satisfying Assumptions 1, 2, we consider reflexive
spaces or duals of separable spaces.

Example 1. Let

Q(E(ζ, u, fN)) = ‖E(ζ, u, fN)‖2W×H, S(Mu, y) = ‖Mu− y‖2Y ,
R1(ζ, u) = ‖(ζ, u)‖2Z×V, R2(f) = ‖f‖2W 1,∞(Ωy)

,

with a bounded interval Ωy ⊂ R containing Ωy† = u†((0, T )×Ω) as detailed below. Since the
required compactness and continuity properties are straightforward on the finite dimensional
space R

n, for simplicity of exposition we skip α as an argument of f .
Then:
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• Let τX × τV be the weak topology on X × V and assume that

Ẽ := (
d

dt
− F ) is (X weak)× (V weak)− to− (W weak)

continuous at the exact solution.
(16)

This weak continuity, thus closedness (T2), depends on the PDE models and the
choice of function spaces.

• Now, with τC being the weak topology on W 1,∞(Ωy), we show continuity of the rest
of E. In particular, we prove that (uN , fN) → (u, f) in the topology (V weak) ×
(W 1,∞(Ωy) weak) implies fN (uN) → f(u) weakly in W under appropriate conditions
on V, W to be derived here. First, we observe

fN(uN(x, t))− f(u(x, t)) = (fN (uN(x, t))− fN(u(x, t))) + (fN(u(x, t))− f(u(x, t)))

=

∫ 1

0

(fN)
′ (u(x, t) + θ(uN(x, t)− u(x, t))) dθ (uN(x, t)− u(x, t)) (17)

+ (fN (u(x, t))− f(u(x, t)))

〈fN(uN(x, t))− f(u(x, t)), ψ〉W ,W∗ (18)

≤ ‖(fN)′‖L∞(Ωy)‖uN − u‖Lp((0,T )×Ω)‖ψ‖Lp∗((0,T )×Ω) + ‖fN − f‖L∞(Ωy)‖ψ‖L1((0,T )×Ω),

for any ψ ∈ W∗, with p ∈ [1,∞] and p∗ being the conjugate index of p. If

V ⊂ L∞((0, T )× Ω), (19)

then for uN
V
⇀ u, one has ‖uN‖L∞(0,T )×Ω, ‖u‖L∞(0,T )×Ω ≤ C, ∀N ∈ N, and may set

Ωy := [−C−1, C+1]. Note that the inclusion V ⊂ L∞((0, T )×Ω) allows us to apply
the fact that neural networks are dense in the space of smooth functions on compact
sets. Next, fN ⇀ f in W 1,∞(Ωy) shows that ‖(fN)′‖L∞(Ωy) is bounded for all N , and
due to W 1,∞(Ωy) →֒→ L∞(Ωy) we have fN → f in L∞(Ωy). If

V →֒→ LpW ((0, T )× Ω) ⊂ W (20)

for some pW ∈ [1,∞], then (17) shows fN (uN)⇀ f(u) inW, meaning τV×τC−to−τW
continuity of (u, f) 7→ f(u) on V × C.
Recall that for closedness of (u, f) 7→ f(u), we require only its continuity at exact
solutions (u†, f †) of the PDE. Therefore, by

fN(uN(x, t))− f †(u†(x, t))

=
(
f †(uN(x, t))− f †(u†(x, t))

)
+
(
fN(uN(x, t))− f †(uN(x, t))

)

we only need to assume boundedness of ‖(f †)′‖L∞(Ωy) thus can choose the weaker
R2(f) = ‖f‖2C, C →֒→ L∞(Ωy). Note that the inclusions (19), (20) are still needed.
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• The part on the initial condition E0(u0, u) = u(0)− u0 is linear, thus requiring just
the embedding V →֒ C(0, T ;H) and the regularizer R1(u0) = ‖u0‖H induces τH , the
weak topology on H.

• Regarding the observation M , if M is linear and bounded, then it is V weak −to−Y
weak continuous.

Example 2 (norm of the hyperparameter as R2). In the previous example, we consider
the Sobolev W 1,∞-norm for f, fN ∈ C. As the discretized regularization is carried out
for fN ∈ CN , the space of neural networks of N hyperparameters, a natural question is
whether one can replace the Sobolev norm by some equivalent norm on the hyperparameters.
The answer in the general case is no. Consider e.g. the function f(x) = x expressed
via a 2 layers neural network of identity activation f(x) = x = 1 · Id(x + b) − b. The
hyperparmeters are θ := (w2, b2, w1, b1) = (1, b, 1,−b). So, when b tends to infinity ‖θ‖ →
∞ while ‖f‖L∞(Ω) <∞ for any bounded domain Ω.
Let us study a standard case of a neural network with fixed depth two

fN (y) = WN
2 · σ(WN

1 y + bN1 ) + bN2 ,

where y ∈ R, σ : R → R,WN
1 ∈ R

N×1, b ∈ R
N ,WN

2 ∈ R
1×N , bN2 ∈ R, and · denotes matrix

multiplication. This means when N → ∞, the width of the neural network sequence tends
to infinity. Assuming that σ is Lipschitz continuous with Lipschitz constant Lσ, we have

|fN(uN)− fN(u)| ≤ Lσ|WN
2 | · |WN

1 ||uN − u|, (21)

where | · | represents element-wise absolute value. The class of Lipschitz activations used
in practice is large; some examples include ReLU σ(x) := max{0, x} (with approximation
rates), tansig σ(x) := tanh(x), softplus σ(x) := ln(1 + ex), sigmoid or soft step σ(x) :=

1
1+e−x , softsign σ := x

1+|x|
etc.

Furthermore, we assume that σ is coercive in the sense that ∃Cσ > 0 : |y| ≤ Cσ|σ(y)|, ∀y ∈
R, σ(y) ≥ 0 for y ≥ 0, all hyperparameters are nonnegative. We can then estimate

|WN
2 | · |WN

1 | ≤ |WN
2 | · (|WN

1 |+ bN1 ) ≤ CσW
N
2 · σ(WN

1 + bN1 )

≤ Cσ

(
WN

2 · σ(WN
1 1 + bN1 ) + bN2

)
= CσfN(1) ≤ sup

x∈[0,1]

Cσ|fN(x)| = Cσ‖fN‖L∞([0,1]).

Combining this with (21) and (17), we can replace boundedness of ‖(fN)′‖L∞(Ω) by bounded-
ness of ‖fN‖L∞(Ωy), and use the weaker regularizer R2 = ‖ · ‖2L∞(Ωy)

instead of ‖ · ‖2W 1,∞(Ωy)
.

When considering R
+, some examples for Lipschitz continuous and coercive activation

functions are: ReLU, Leaky ReLU (coercive on R), softplus etc. Assume further that the
exact f † can be expressed exactly via a neural network, possibly with infinitely many hyper-
parameters, say f † ∈ C∞ with f †(0) = 0, similar to (21) we have

|f †(y)| = |f †(y)− f †(0)| ≤ Lσ|W2| · |W1||y| ≤ |Ωy|Lσ|W2| · |W1| ≤ C‖W2‖ℓ2‖W1‖ℓ2 ≤ C‖θ‖2ℓ2 .
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Then one can also use the stronger norm ‖ · ‖ℓ2 in the regularizer R2, alternatively ‖ · ‖ℓ1,
due to norm equivalence in finite dimensional hyperparameter spaces. The application of
sparsity-promoting techniques, such as incorporating ℓ1 regularizers, has been proven as
one of the remedies for overfitting in machine learning in practice. Indeed, the sparse
optimization performs feature selection, yielding more interpretable trained models [53].

Example 3. Consider R1(u) = TV(u), the total variation of u on ΩT := (0, T )× Ω,Ω ⊂
R

d.
In order for R1 to be lower semicontinuous and have τV compact sublevel sets, we have

some options:

1. τV is the weak∗ topylogy on BV(ΩT ), the space of functions of bounded variation on

(0, T )×Ω. Recall that uj
∗
⇀ u in BV(ΩT ) is defined as uj

L1

→ u,TV(uj) → TV(u). TV
is weak∗ lower semicontinuous on BV(ΩT ), and its sublevel sets are weak∗ compact
in BV(ΩT ) [14].

2. τV is the strong topology on L
d+1
d

−ǫ(ΩT ) for arbitrary small ǫ > 0. Application of the

compact embedding BV(ΩT ) →֒→ L
d+1
d

−ǫ(ΩT ) yields that TV is lower semiconinuous

on L
d+1
d

−ǫ(ΩT ), and its sublevel sets are compact in L
d+1
d

−ǫ(ΩT ) [2, Theorem 2.5].

3. τV is the weak topology on L
d+1
d (ΩT ). Weak compactness of the sublevel sets is clear

from the compact embedding mentioned above. Weak lower semicontinuity of TV was
shown, e.g. in [2, Theorem 2.3].

Let us consider, for instance, the second case where τV is the strong topology on V =

L
d+1
d

−ǫ(ΩT ) with Ẽ = u̇ − ∆u, and assume uj
V→ u, uj(T )

L1(Ω)→ u(T ), uj(0) = u(0) =
0, uj(∂Ω) = u(∂Ω) = 0. Let ǫ̃ = ǫd2/(1− ǫd), then due to the estimate

〈u̇− u̇j −∆(u− uj), ψ〉W ,W∗ =

∫

ΩT

(u− uj)(−ψ̇ −∆ψ) dx dt+

∫

Ω

(u− uj)(T )ψ(T ) dx

≤ ‖u− uj‖
L

d+1
d

−ǫ(ΩT )
‖ψ̇ +∆ψ‖Ld+1+ǫ̃(ΩT )

+ CW 1,d+1+ǫ̃(Ω)→L∞(Ω)‖u(T )− uj(T )‖L1(Ω)‖ψ(T )‖W 1,d+1+ǫ̃(Ω),

for any ψ ∈ W∗, one can chose τW as the strong topology on

W :=
(
Ld+1+ǫ̃(0, T ;W 2,d+1+ǫ̃) ∩W 1,d+1+ǫ̃(0, T ;Ld+1+ǫ̃(Ω))

)∗
.

Note that continuity of the embedding W∗ →֒ C(0, T ;W 1,d+1+ǫ̃(Ω)) [48, Lemma 7.3] implies
finiteness of ‖ψ(T )‖W 1,d+1+ǫ̃(Ω).

Regarding f , since V 6⊂ L∞(ΩT ), in order to obtain uniform boundedness of uj, u, we
invoke full measurement data in a sufficiently strong observation space, e.g. M = Id,Y =
L∞(ΩT ). Then observe that the inclusions V →֒→ L

d+1
d

−ǫ(ΩT ) ⊂ W hold, so convergence of

the neural network sequence f j(uj)
j→∞→ f †(u†), as discussed in Example 1, is guaranteed.
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As such, we have two types of convergence for the sequence uj: the strong convergence in
V = L

d+1
d

−ǫ(ΩT ), and the weak∗ convergence in Y = L∞(ΩT ). These types of convergence
are in general not equivalent. An example for this is the sequence of Rademacher functions
fn : [0, 1] → {0, 1} [45, Example 4.13]

fn(x) = (−1)i+1 for x ∈ [(i− 1)/2n, i/2n], 1 ≤ i ≤ 2n,

which weak∗ converges to zero in L∞([0, 1]), but not in the L1-norm, thus not in the L
d+1
d

−ǫ-
norm.

Example 4. Consider S = KL, the Kullback–Leibler divergence defined by

for y ∈ L1(ΩT ),KL(g, y) :=






∫
ΩT
y

(
g

y
− log

(
g

y

)
− 1

)
dx dt g, y ≥ 0 a.e.

∞ else

It is clear that S = KL does not satisfy a triangle inequality, a situation that is taken into
account in this work. Positivity of KL is obvious as (g/y−1) ≥ log(g/y) and, KL(g, y) = 0
iff g = y = 0.

[9, Lemma A.2] states that KL(y, yj) → 0 implies ‖yj − y‖L1(Ω′) → 0 for some Ω′, and
for {gj} ∈ L1(Ω′) with gj ⇀ g in L1(Ω′) as j → ∞, then KL(g, yj) ≤ lim infj→∞KL(gj, yj).
Fitting into our framework, in particular for existence of τY in Discussion 2, from S(y, yj) =
KL(y, yj) → 0 inducing yj → y in L1(ΩT ), one can choose τY as the strong topology on
L1(ΩT ). Also by this lemma, S is τY × τY lower semicontinuous. Therefore, we need M
to be τV − to − L1(ΩT ) continuous; this condition is very much obtainable in practice.
In case M = Id, an estimate similar to the one in Example 3 could be carried out for
uj → u in L1(ΩT ). Still, convergence of the neural network part requires R1(u) = ‖u‖V
with V ⊂ L∞((0, T )× Ω) and L1((0, T )× Ω) ⊂ W.

Application. We now return to Application (1), (2) and from Propositions 1 and 2
conclude a result for Tikhonov regularization in the setting of Example 1

(cγ,δ,N , ϕγ,δ,N , uγ,δ,N0 , uγ,δ,N , f γ,δ,N) ∈ argmin(c,ϕ,u0,u,fN)∈Xc×Xϕ×H×V×CN
T δ
γ (c, ϕ, u0, u, fN)

(22)
for

T δ
γ (c, ϕ, u0, u, fN) =‖u̇−∆u+ cu+ h(u)− ϕ− fN(u)‖2W×H + ‖Mu− y‖2Y

+ γ‖(c, ϕ, u0, u)‖2Xc×Xϕ×H×V + γ‖fN‖2W 1,∞(Ωy)
,

(23)

where we can replace the W 1,∞(Ωy) norm of fN by the hyperparameter norm according to
Example 2.

For this purpose, recall the following requirements on the underlying spaces: (16), (19),
(20), as well as boundedness of M : V → Y and of trt=0 : V → H . Here, we have the
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operator Ẽu = u̇−∆u+ cu+ h(u)− ϕ, and the X space is decomposed as X = Xc ×Xϕ;
recall that h is known. We use the spaces

H = W tV ,qV (Ω) , Xc = Lr(Ω), Xϕ = W =W−s,p(0, T ;W−t,q(Ω)) ,

V =W 1−s,p(0, T ;W−t,q(Ω)) ∩W−s,p(0, T ;W 2−t,q(Ω)) ∩W sV ,pV (0, T ;W tV ,qV (Ω))
(24)

with

sV >
1

pV
, tV >

d

qV
, r ≤ pW := min{p, q} (25)

to satisfy (19), (20) and part of (16). To see the latter for the c part of the operator Ẽ,
observe that for any sequence (cn, un) converging weakly to (c, u) in Xc×V, by our choice of
sV , pV , tV , qV there exists a subsequence (cnk

, unk
) such that cnk

converges weakly in Lr(Ω)
and unk

converges strongly in L∞(0, T ;L∞(Ω)), so that for any ψ ∈ W∗ ⊆ Lp∗W ((0, T )×Ω)

we have
∫ T

0
ψu ∈ Lr∗(Ω) and thus

∫ T

0

∫

Ω

(
cnk

unk
− cu

)
ψ dx dt =

∫ T

0

∫

Ω

cnk
(unk

− u)ψ dx dt+

∫

Ω

(cnk
− c)

∫ T

0

uψ dt dx→ 0 .

Likewise, it is straightforward to see that on the strength of the embeddings available for V,
it suffices to assume continuity of the real function h to achieve (V weak)− to− (W weak)
continuity of the mapping u 7→ h(u) contained in Ẽ. Note that continuity of trt=0 : V → H
also holds for any subspace H in which W tV ,qV (Ω) is continuously embedded.

Corollary 1. With the spaces according to (24), (25), M : V → Y linear and bounded as
well as h : R → R continuous, Tikhonov regularization is well-defined by (22), (23), and
with a choice of γ(δ), N(δ) according to Assumption 2 (T5) we have weak(*) subsequential

convergence of (cγ(δ),δ,N(δ), ϕγ(δ),δ,N(δ), u
γ(δ),δ,N(δ)
0 , uγ(δ),δ,N(δ), f γ(δ),δ,N(δ)) to a solution of the

inverse problem (1), (2) as δ → 0.

3 Landweber iteration

In this section, for simplicity of exposition, collecting all unknowns λm, um0 , α
m, um, f in a

single variable x and setting y =

(
0
ym

)K

m=1

we rewrite (7) as an operator equation

F(x) = y. (26)

Moreover, we restrict the setting to Hilbert spaces X, Y with Hilbert space adjoints denoted
by a superscript ∗.

Landweber iteration defines regularized approximations as gradient descent steps for
the least squares cost functional ‖F(x)− yδ‖2, explicitly,

xδ
k+1 = xδ

k − F
′(xδ

k)
∗(F(xδ

k)− yδ) .
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Here, the stopping index k = k∗(δ,y
δ), which depends on the noise level δ and data yδ,

acts as a regularization parameter. In order to accommodate additional constraints, e.g.,
on the magnitude or sign of x, we consider a subset M of X. Constraints formulated by
membership in the subset M can be incorporated by projection via

xδ
k+1 = PM

(
xδ
k − F

′(xδ
k)

∗(F(xδ
k)− yδ)

)
, (27)

where the metric projection operator PM onto a closed convex set M is characterized by
the variational inequality

x = PM(x̃) ⇔ (x ∈ M and ∀z ∈ M : 〈x̃− x, z− x〉 ≤ 0) . (28)

PM is nonexpansive and monotone, that is, for all x, x̃ ∈ X,

‖PM(x)− PM(x̃)‖ ≤ ‖x− x̃‖ (29)

and
〈PM(x)− PM(x̃),x− x̃〉 ≥ ‖PM(x)− PM(x̃)‖2 (30)

as well as continuous and, in general, nonlinear.
Discretization by restriction to a linear subspace XN ⊆ X can be easily done by replacing

F : X → Y by its restriction

FN := F|XN
: XN → Y.

In our case, XN = (Z × V)K × CN , so XN is a linear space in case of a linear activation
function σ albeit not necessarily finite dimensional (for approximation on manifolds, see
e.g. [21]). It yields the k-th iterate

xδ
N,k+1 = PM

(
xN,k − F

′
N(x

δ
N,k)

∗(FN(x
δ
N,k)− yδ)

)
(31)

in XN . Doing so, we use the Hilbert space adjoint of F′
N(x

δ
N,k) : XN → Y that is uniquely

determined by the identity

〈F′
N(x

δ
N,k)

∗y,xN〉 = 〈y,F′
N(x

δ
N,k)xN〉 for all y ∈ Y,xN ∈ XN .

Therefore, the adjoint in the discretized and projected Landweber (31) equals to

F
′
N(x

δ
N,k)

∗ : Y → XN F
′
N(x

δ
N,k)

∗ = PXN
F
′(xδ

N,k)
∗, (32)

the concatenation of F′(xδ
N,k)

∗ with the orthogonal projection PXN
: X → XN onto XN in

the Hilbert space X.
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3.1 Convergence

Also for the discretized and projected Landweber iteration, we will show that with an
appropriate choice of the stopping index k∗(δ) and discretization parameter N(δ) it is a
regularization method.

We denote by x† ∈ X a solution of the inverse problem with exact data, that is,
F(x†) = y, by x∞,k the iterates in X according to (27), and make the following assumptions

Assumption 3. (L1) Approximation by XN : There exists a sequence (x†
N)N∈N, x†

N ∈
XN ∩M such that for some d̄

dN := ‖x†
N − x†‖ ≤ d̄ , mN := ‖FN(x

†
N )− y‖ = ‖F(x†

N)− F(x†)‖ → 0 ,

and sN := sup
x∈BR(x†)

‖(I − PXN
)F′(x)∗(F(x)− y)‖ → 0 as as N → ∞;

(L2) Convergence and boundedness of the starting values

‖xδ
N,0 − x∞,0‖ ≤ ρN → 0 as N → ∞ ,

‖xδ
N,0 − x†‖ ≤ ρ , ‖F(xδ

N,0)− y‖ ≤ ρ̃ , for all N ∈ N

(e.g., by setting xδ
N,0 := PXN

x0);

(L3) Local boundedness and tangential cone condition on F as well as Lipschitz continuity
of F′: There exists R > ρ+ 2d̄, µR > 0, MR > 0, KR > 0, LR > 0, such that for all
x ∈ BR(x

†) and for all N ∈ N

‖F′(x)‖ ≤MR ≤
√
2 (33)

as well as

2〈F(x)− F(x†
N ),F

′(x)(x− x†
N )〉 ≥ (M2

R + µR)‖F(x)− F(x†
N)‖2

‖F′(x)(x− x†
N )‖ ≤ KR‖F(x)− F(x†

N)‖ ;
(34)

‖F′(x)− F
′(x̃)‖ ≤ LR‖x− x̃‖ ; (35)

(L4) Asymptotics of the parameters as δ → 0:

k∗(δ) → ∞ , N(δ) → ∞
( 4
µR
KR + (1 + 4

µR
M2

R)M
2
R) k∗(δ) (mN(δ) + δ)2 ≤ (R− d̄)2 − (ρ+ d̄)2;

(L5) The mapping x 7→ PM

(
x− F

′(x)∗(F(x)− y)
)
− x is weakly sequentially closed;

(L6) For all y ∈ Bδ̄(y) the mapping x 7→ F
′(x)∗(F(x) − z) is Lipschitz continuous with

constant L < 2.
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Remark 4 (On (L1), approximation by NNs). Note that the first part of (L1) (boundedness
of dN and convergence of mN) only requires approximation of the single element x†. By
smoothness assumptions on x†, this assumption therefore can be achieved, even with rates
for discretization by NNs, as mentioned in Discussion 1.

The second part of (L1) which is supposed to hold for all x ∈ BR(x
†) can be obtained

by using the fact that F′(x)∗ is a smoothing operator and therefore even norm convergence
‖(I − PXN

)F′(x)∗‖ → 0 follows from error estimates of I − PXN
under a priori regularity

conditions.

Remark 5 (on (L3), tangential cone condition). A sufficient condition for (34) is the
classical tangential cone condition (cf. [30])

‖F(x)− F(x†
N)− F

′(x)(x− x†
N)‖ ≤ ctc‖F(x)− F(x†

N)‖ . (36)

for some ctc < 1 independent of x ∈ BR(x
†) with and all N ∈ N, since by the inverse

triangle inequality it is readily checked that we can then set KR = 1 + ctc and MR + µr =
1− c2tc + (1− ctc)

2.

We start with an estimate on the propagated noise and discretization error.

Lemma 1. Under conditions (L1), (33), (35), for any k ∈ N the estimates

‖xδ
N,k − x∞,k‖ ≤ (1 + 5

2
MRLRR)

kρN +
2

5MRLRR
(1 + 5

2
MRLRR)

k(sN +MRδ)

and
‖F′

N(x
δ
N,k)

∗(FN(x
δ
N,k)− yδ)− F

′(x∞,k)
∗(F(x∞,k)− y)‖

≤ sN +MR(MR + 3
2
LRR)‖xδ

N,k − x∞,k‖+MRδ

hold, provided that for all ℓ ≤ k, xδ
N,ℓ, x∞,ℓ ∈ BR(x

†).

Proof. We make use of the recursions

xδ
N,k+1 − x† =

(
I − PXN

Kδ
N,k

∗
K̄δ

N,k

)
(xδ

N,k − x†) + PXN
Kδ

N,k

∗
(yδ − y)

x∞,k+1 − x† =
(
I −K∞,k

∗K̄∞,k

)
(x∞,k − x†)

where Kδ
N,k = F

′(xδ
N,k), K̄

δ
N,k =

∫ 1

0
F
′(x† + θ(xδ

N,k − x†)) dθ, K∞,k = F
′(x∞,k), K̄∞,k =∫ 1

0
F
′(x† + θ(x∞,k − x†)) dθ. This yields

xδ
N,k+1 − x∞,k+1

=
(
I −K∞,k

∗K∞,k

)
(xδ

N,k − x∞,k) +K∞,k
∗(K∞,k − K̄∞,k)(x

δ
N,k − x∞,k)

+
(
K∞,k

∗(K̄∞,k − K̄δ
N,k) + (K∞,k −Kδ

N,k)
∗K̄δ

N,k

)
(xδ

N,k − x†)

+ (I − PXN
)Kδ

N,k

∗
K̄δ

N,k(x
δ
N,k − x†) + PXN

Kδ
N,k

∗
(yδ − y)
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thus by MR ≤
√
2, which implies ‖I −K∞,k

∗K∞,k‖ ≤ 1

‖xδ
N,k+1 − x∞,k+1‖ ≤ (1 + 5

2
MRLRR)‖xδ

N,k − x∞,k‖+ sN +MRδ

≤ (1 + 5
2
MRLRR)

k+1‖xδ
N,0 − x∞,0‖+

k∑

j=0

(1 + 5
2
MRLRR)

j(sN +MRδ)

Moreover,

F
′
N(x

δ
N,k)

∗(FN(x
δ
N,k)− yδ)− F

′(x∞,k)
∗(F(x∞,k)− y)

= PXN
Kδ

N,k

∗
K̄δ

N,k(x
δ
N,k − x†)−K∞,k

∗K̄∞,k(x∞,k − x†) + PXN
Kδ

N,k

∗
(y − yδ)

= −(I − PXN
)Kδ

N,k

∗
K̄δ

N,k(x
δ
N,k − x†) +Kδ

N,k

∗
K̄δ

N,k(x
δ
N,k − x∞,k) + PXN

Kδ
N,k

∗
(y − yδ)

+
(
Kδ

N,k

∗
(K̄δ

N,k)− K̄∞,k) + (Kδ
N,k −K∞,k)

∗K̄∞,k

)
(x∞,k − x†)

♦
Remark 6. In the linear case F(x) = Kx with ‖K‖ ≤ 1 the much better estimates

‖xδ
N,k − x∞,k‖ ≤ ‖xδ

N,0 − x0‖+ k
(
‖(I − PXN

)K∗K‖R + δ
)

and
‖F′

N(x
δ
N,k)

∗(FN(x
δ
N,k)− yδ)− F

′(x∞,k)
∗(F(x∞,k)− y)‖

≤ 1

k + 1
‖xδ

N,0 − x0‖+
(
1 +

k−1∑

j=0

1

j + 1

)(
‖(I − PXN

)K∗K‖R + δ
)

can be easily verified by means of spectral theoretic methods. More precisely, we use the
fact that ‖K∗K(I −K∗K)j‖ ≤ 1

j+1
, and the identities

xδ
N,k − x∞,k = (xδ

N,k − x†)− (x∞,k − x†)

= (I −K∗K)k(xδ
N,0 − x†)− (I −K∗K)k(x∞,0 − x†)

+

k−1∑

j=0

(I −K∗K)j
(
(I − PXN

)K∗K(xδ
N,k−j−1 − x†) + PXN

K∗(yδ − y)
)

PXN
K∗(Kxδ

N,k − yδ)−K∗(x∞,k − y)

= K∗K(xδ
N,k − x∞,k)− (I − PXN

)K∗K(xδ
N,k − x†)− PXN

K∗(yδ − y)

= K∗K(I −K∗K)k(xδ
N,0 − x∞,0)

+

k−1∑

j=0

K∗K(I −K∗K)j
(
(I − PXN

)K∗K(xδ
N,k−j−1 − x†) + PXN

K∗(yδ − y)
)

− (I − PXN
)K∗K(xδ

N,k − x†)− PXN
K∗(yδ − y)

They can actually be transferred to the nonlinear setting under an adjoint range invari-
ance condition on F, which is a stronger assumption than the tangential cone condition,
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similarly to the convergence rates estimates in [24]. However, in our example, this assump-
tion does not seem to be verifiable, whereas the tangential cone condition can be established,
see below.

While uniform boundedness of the iterates can be shown under the assumptions (L1)-
(L4), in order to control the propagated noise in the iterates, we will therefore have to
additionally impose

Assumption 4.

(1 + 5
2
MRLRR)

kρN(k) → 0 , (1 + 5
2
MRLRR)

ksN(k) → 0 as k → ∞ (37)

in case of exact data δ = 0 and

(1 + 5
2
MRLRR)

k∗(δ)ρN(δ) → 0 , (1 + 5
2
MRLRR)

k∗(δ)(sN(δ) +MRδ) → 0 as δ → 0 . (38)

Proposition 3. Under the above assumptions (L1)-(L6) with M closed and convex, the
iterates are well-defined by (31) and remain in BR(x

†).
Under the additional condition (38), we also have weak subsequential convergence of

xδ
N(δ),k∗(δ)

to a solution of (26) as δ → 0.

With exact data δ = 0 and N = N(k) chosen according to (37), we have weak subse-
quential convergence of xN(k),k to a solution of (26) as k → ∞.

Proof. We follow the classical monotonicity proof from [24], see also [32], but do so with
FN instead of F so that we can exploit the identity 〈F′

N(x
δ
N,k)

∗(FN(x
δ
N,k) − yδ), (xδ

N,k −
x†
N)〉 = 〈FN(x

δ
N,k)− yδ,F′

N(x
δ
N,k)(x

δ
N,k − x†

N)〉 in the first equality below. It is also for this

reason that we had to introduce the auxiliary variable x†N as a substitute for x† in XN .
Therewith we obtain, for arbitrary N ∈ N, using the fact that we can skip the subscript
N when applying FN to an element of XN and nonexpansivity (29) together with the fact
that PM(x

†
N) = x†

N

‖xδ
N,k+1 − x†

N‖2 − ‖xδ
N,k − x†

N‖2

= ‖F′
N(x

δ
N,k)

∗(FN(x
δ
N,k)− yδ)‖2 − 2〈FN(x

δ
N,k)− yδ,F′

N(x
δ
N,k)(x

δ
N,k − x†

N)〉
= ‖F′

N(x
δ
N,k)

∗(FN(x
δ
N,k)− FN(x

†
N))‖2 − 2〈FN(x

δ
N,k)− FN(x

†
N),F

′
N(x

δ
N,k)(x

δ
N,k − x†

N)〉
+ 2〈yδ − FN(x

†
N ),F

′
N(x

δ
N,k)

(
(xδ

N,k − x†
N)− F

′
N(x

δ
N,k)

∗(FN(x
δ
N,k)− FN(x

†
N ))

)
〉

+ ‖F′
N(x

δ
N,k)

∗(yδ − FN(x
†
N))‖2

≤ −µR‖F(xδ
N,k)− F(x†

N)‖2 + (2
ǫ
+M2

R)‖yδ − F(x†
N)‖2

+ ǫ‖F′(xδ
N,k)(x

δ
N,k − x†

N)‖2 + ǫM4
R‖F(xδ

N,k)− F(x†
N)‖2

≤ −(µR − ǫKR − ǫM4
R)‖F(xδ

N,k)− F(x†
N)‖2 + (2

ǫ
+M2

R)(δ +mN)
2

≤ −µR

2
‖F(xδ

N,k)− F(x†
N)‖2 + ( 4

µR
KR + (1 + 4

µR
M2

R)M
2
R)(δ +mN)

2
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provided xδ
N,k ∈ BR(x

†). Here we have employed Young’s inequality in the form 2a(b+c) ≤
2
ǫ
a2 + ǫ

2
(b+ c)2 ≤ 2

ǫ
a2 + ǫb2 + ǫc2 with ǫ = µR

2(KR+M4
R)
.

Summing up for k from zero to k̃ − 1 we obtain

µR

2

k̃−1∑

k=0

‖F(xδ
N,k)− F(x†

N)‖2 + ‖xδ
N,k̃

− x†
N‖2

≤ ‖xδ
N,0 − x†

N‖2 + k̃( 4
µR
KR + (1 + 4

µR
M2

R)M
2
R)(δ +mN)

2 ,

(39)

which by (L1), (L2) and (L4) inductively implies that the iterates xδ
N(δ),k̃

remain in BR(x
†)

for all k̃ ≤ k∗(δ). Thus (x
δ
N(δ),k∗(δ)

)δ>0 has a weakly convergent subsequence

xδj

N(δj ),k∗(δj )
⇀ x̄ . (40)

and in case δ = 0, with N = N(k) in place of N = N(δ)

xN(kj),kj ⇀ x̄ . (41)

Since M is closed and convex, hence weakly closed, x̄ is contained in M.

To prove that this limit solves the inverse problem, like in [32, Lemma 3.1] with

Jδ
N(x) =

1

2
‖FN(x)− yδ‖2 , ∆δ

N,k := xδ
N,k+1 − xδ

N,k = PM

(
xδ
N,k − Jδ

N

′
(xN,k)

)
− xδ

N,k

and (L6), which implies that for all xN , x̃N ∈ BR(x
†)

‖Jδ
N

′
(xN)− Jδ

N

′
(x̃N)‖ = ‖F′

N(xN)
∗(FN (xN)− yδ)− F

′
N(x̃N)

∗(FN(x̃N)− yδ)‖
= ‖PXN

(
F
′(xN )

∗(F(xN)− yδ)− F
′(x̃N )

∗(F(x̃N)− yδ)
)
‖ ≤ L‖xN − x̃N‖

.

We then obtain, for any k and for both the discretized problem in XN as well as non-
discretized problem in X (i.e. N = ∞),

Jδ
N (xN,k+1)− Jδ

N(xN,k) =

∫ 1

0

Jδ
N

′
(xδ

N,k + θ∆δ
N,k)∆

δ
N,k dθ

≤ −‖∆δ
N,k‖2 +

∫ 1

0

(Jδ
N

′
(xδ

N,k + θ∆δ
N,k)− Jδ

N

′
(xδ

N,k))∆
δ
N,k dθ ≤ −(1 − L

2
)‖∆δ

N,k‖2 ,

where we have used the fact that monotonicity (30) with x = xδ
N,k−Jδ

N
′
(xδ

N,k), x̃ = xδ
N,k =

PM(x
δ
N,k) since xδ

N,k ∈ M implies

−Jδ
N

′
(xδ

N,k)∆
δ
N,k ≥ ‖∆δ

N,k‖2 .

After summation and by (L2) and Jδ
N ≥ 0 this implies that

sup
δ∈(0,δ̄], N∈N

∞∑

k=0

‖∆δ
N,k‖2 ≤

1

2− L
sup
N∈N

‖F(xδ
N,0)− yδ‖2 ≤ 1

2− L
(ρ̃+ δ̄)2 , (42)
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where
∆δ

N,k = PM

(
xN,k − F

′
N(x

δ
N,k)

∗(FN(x
δ
N,k)− yδ)

)
− xN,k

= PM

(
xN,k − PXN

F
′(xN,k)

∗(F(xN,k)− yδ)
)
− xN,k

In particular, in case δ = 0 (thus skipping the superscript δ and setting N = N(k))
with nonexpansivity of PM

‖∆δ
N,k‖ = ‖PM

(
xN(k),k − F

′(xN(k),k)
∗(F(xN(k),k)− y)

)
− xN(k),k‖

= ‖PM

(
xN(k),k − PXN

F
′(xN(k),k)

∗(F(xN(k),k)− y)
)
− xN(k),k

+ PM

(
xN(k),k − F

′(xN(k),k)
∗(F(xN(k),k)− y)

)

− PM

(
xN(k),k − PXN

F
′(xN(k),k)

∗(F(xN(k),k)− y)
)
‖

≤ ‖∆N(k),k‖+ ‖(I − PXN(k)
)F′(xN(k),k)

∗(F(xN(k),k)− y)‖
≤ ‖∆∞,k‖+ 2‖(I − PXN(k)

)F′(xN(k),k)
∗(F(xN(k),k)− y)‖+ 2‖xN(k),k − x∞,k‖

+ ‖F′(xN(k),k)
∗(F(xN(k),k)− y)− F

′(x∞,k)
∗(F(x∞,k)− y)‖

→ 0 as k → ∞ ,

due to (42), (L1) and (37), according to Lemma 1.

Thus from (41), x̄ ∈ M and (L5) we get PM

(
x̄− F

′(x̄)∗(F(x̄)− y)
)
− x̄ = 0, hence due

to (28) with x̃ = x̄− F
′(x̄)∗(F(x̄)− y), x = x̄, z = x† and (L3)

0 ≥ 〈F′(x̄)(x̄− x†),F(x̄)− F(x†)〉 ≥ M2
R + µR

2
‖F(x̄)− F(x†)‖2 .

This gives subsequential convergence of xN(δ),k(δ) to a solution x† of (26) as k → ∞ with
exact data, for both the discretized and the nondiscretized problem.

Convergence with noisy data can be concluded from Lemma 1 under the more restrictive
assumption (38). Indeed, in the decomposition

xδ
N(δ),k(δ) − x† = (xδ

N(δ),k(δ) − x∞,k(δ)) + (x∞,k(δ) − x†),

convergence of the first term follows from Lemma 1 and the rule (38), while weak conver-
gence of the second term is a consequence of the result with exact data in the nondiscretized
setting N = ∞, that we have just proven above.

♦

3.2 Adjoint

We will now write out F′(x)∗ and the expression F
′(x)∗(F(x) − y) that plays a role both

in the definition of the Landweber iteration and in the verification of the conditions (L5),
(L6).
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To do so, we recall the setting

F(x) =




u̇− F (λ, u)− f(α, u)
u(0)− u0
Mu


 ∈ V ×H × Y , y =




0
0
y


 , ỹ =




w̃

h̃
ỹ


 ,

F
′(x)x̃ =




−Fλ(λ, u)λ̃− fα(α, u)α̃+ ˙̃u− Fu(λ, u)ũ− fu(α, u)ũ− f̃(α, u)
ũ(0)− ũ0
Mũ


 ,

x =




λ
u0
α
u
f



, x̃ =




λ̃
ũ0
α̃
ũ

f̃



, F

′(x)∗ỹ =




µ̃
ṽ0
β̃
ṽ
g̃




∈ X ×H × R
n × V × C,

V = H1(0, T ;V ∗) ∩ L2(0, T ;V ) , W = L2(0, T ;V ∗) , Y = L2(0, T ; Y ) , (43)

〈ũ, ṽ〉V =

∫ T

0

(
〈 ˙̃u(t), ˙̃v(t)〉V ∗ + 〈ũ(t), ṽ(t)〉V

)
dt

=

∫ T

0

(
〈 ˙̃u(t), IV ˙̃v(t)〉V ∗,V + 〈DV ṽ(t), ũ(t)〉V ∗,V

)
dt,

〈w, w̃〉W =

∫ T

0

〈w(t), w̃(t)〉V ∗ dt =

∫ T

0

〈w(t), IV w̃(t)〉V ∗,V dt

with the Riesz isomorphisms IV : V ∗ → V , DV : V → V ∗ and V →֒ H →֒ V ∗ forming a
Gelfand triple, and a Hilbert parameter space X . We use the integration by parts identity

∫ T

0

(
〈 ˙̃u(t), z(t)〉V ∗,V + 〈ż(t), ũ(t)〉V ∗,V = 〈ũ(T ), z(T )〉H − 〈ũ(0), z(0)〉H .

Moreover, in order to work in a Hilbert space setting, we will use the Bochner Sobolev
space

C = Hℓ(Rn, Hr(R)) , 〈f̃ , g̃〉C :=

∫

Rn

(1 + |κ|2)ℓ
∫

R

(1 + |ω|2)r(F f̃)(κ, ω)F g̃)(κ, ω)dω dκ
(44)

with ℓ, r large enough to allow for C ⊆ C(Rn,R)∩C(Rn;W 1,∞(R)), see (50) below, where
F denotes the Fourier transform. Therewith, the defining identity for the Hilbert space
adjoint F′(x)∗ỹ, that is,

0 = 〈F′(x)∗ỹ, x̃〉 − 〈ỹ,F′(x)x̃〉 for all x ∈ X

reads as follows:

0 =〈λ̃, µ̃〉X + 〈ũ0, ṽ0〉H + 〈α̃, β̃〉Rn +

∫ T

0

(
〈 ˙̃u(t), IV ˙̃v(t)〉V ∗,V + 〈DV ṽ(t), ũ(t)〉V ∗,V

)
dt+ 〈f̃ , g̃〉C
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+

∫ T

0

〈Fλ(λ, u)λ̃+ fα(α, u)α̃− ˙̃u+ Fu(λ, u)ũ+ fu(α, u)ũ+ f̃(α, u), IV w̃〉V ∗,V dt

− 〈ũ(0)− ũ0, h̃〉H −
∫ T

0

〈Mũ, ỹ〉Y dt

=

∫ T

0

(
〈−IV ¨̃v + IV ˙̃w + Fu(λ, u)

∗IV w̃ + fu(α, u)
∗IV w̃ −M∗ỹ +DV ṽ, ũ〉V ∗,V dt

+ 〈IV ˙̃v(T )− IV w̃(T ), ũ(T )〉H − 〈IV ˙̃v(0)− IV w̃(0)− h̃, ũ(0)〉H + 〈h̃+ ṽ0, ũ0〉H

+ 〈
∫ T

0

Fλ(λ, u)
∗IV w̃ dt+ µ̃, λ̃〉X + 〈

∫ T

0

fα(α, u)
∗IV w̃ dt+ β̃, α̃〉Rn

+

∫

Rn

∫

R

(
(1 + |κ|2)ℓ(1 + |ω|2)rF g̃(κ, ω)

+
1

2π(n+1)/2

[∫ T

0

∫

Ω

eiκ·αeiωu(x,t)(IV w̃)(x, t) dx dt
])

F f̃(β, ω) dω dκ

where we have rewritten

f̃(α, u(x, t)) =
1

2π(n+1)/2

∫

Rn

∫

R

eiκ·αeiωu(x,t)F f̃(κ, ω) dω dκ

by the definition of the Fourier transform. This leads us to defining

F
′(x)∗ỹ =

(
µ̃ ṽ0 β̃ ṽ g̃

)T

∈ X ×H × R
n × V × C,

µ̃ = −
∫ T

0

Fλ(λ, u)
∗IV w̃ dt,

ṽ0 = −h̃

β̃ = −
∫ T

0

fα(α, u)
∗IV w̃ dt, (45)

ṽ = I−1
V z̃,

g̃ = − 1

2π(n+1)/2
F−1

[
(1 + |κ|2)−ℓ(1 + |ω|2)−r

(∫ T

0

∫

Ω

e−iκ·αe−iωu(x,t)(IV w̃)(x, t) dx dt,
)]
,

where z̃ solves the two point boundary value problem

¨̃z −DV I
−1
V z̃ = IV ˙̃w + Fu(λ, u)

∗IV w̃ + fu(α, u)
∗IV w̃ −M∗ỹ

˙̃z(0) = IV w̃(0) + h̃ , ˙̃z(T ) = IV w̃(T )
(46)

and Fu(λ, u)
∗, fu(α, u)

∗ : V → V ∗, Fλ(λ, u)
∗ : V → X, f ∗

α(α, u) : V → R
n andM∗ : Y → V ∗

are Banach space adjoints. (Note that in case V = H1
0(Ω), we have DV = I−1

V = −∆ and
so the above is a wave equation with the bi-Laplace operator.)
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3.3 Discussion of the Assumptions for Application 1

We focus on the special case from the Application (1), (2), that is,

F(x) = F(c, ϕ, u0, u, f) =




u̇−∆u+ cu+ h(u)− f(u)− ϕ
u(0)− u0
Mu


 , (47)

with
H = L2(Ω), V = H1

0 (Ω), X = Xc ×Xϕ, Xc = L2(Ω), Xϕ = V ∗, (48)

(cf. (43), (44) for the resulting spaces V, W, Y , C) and the known nonlinearity h ∈
W 2,∞(B).

At the end of this section, we will conclude convergence of Landweber iteration and
also of Tikhonov regularization for this application from the analysis of the requirements
in the following Sections 3.3.1–3.3.3.

3.3.1 Tangential cone condition

‖F(u, f)− F(ũ, f̃)− F
′(u, f)(u− ũ, f − f̃)‖W×H×Y

≤ ‖(c− c̃)(u− ũ)‖W + ‖h(u)− h(ũ)− h′(u)(u− ũ)‖W
+ ‖f(u)− f̃(ũ)− f ′(u)(u− ũ)− (f − f̃)(u)‖W

= I + II + III,

where

III = ‖f̃(u)− f̃(ũ)− f ′(u)(u− ũ)‖W

= ‖
∫ 1

0

(
f̃ ′(u+ θ(ũ− u))− f ′(u)

)
dθ(u− ũ)‖W

= ‖
∫ 1

0

(
f̃ ′(u+ θ(ũ− u))− f̃ ′(u)

)
dθ (u− ũ) + (f − f̃)′(u)(u− ũ)‖W

= ‖
∫ 1

0

∫ 1

0

f̃ ′′(u+ sθ(ũ− u)) ds θdθ (u− ũ)2 + (f − f̃)′(u)(u− ũ)‖W .

So with full observations Mu = u and a choice of spaces

Y = L2(0, T ;L2(Ω)), Lp(0, T ;Lp(Ω)) ⊆ W for p ∈ {1, 2}, C ⊆W 1,∞(B) (49)

with the embedding constant Cp, p ∈ {1, 2}, and supp(u) ∪ supp(ũ) ⊂ B, we obtain

‖F(u, f)− F(ũ, f̃)− F
′(u, f)(u− ũ, f − f̃)‖W×H×Y

≤ C1‖c− c̃‖L2‖u− ũ‖L1(L2) +
1
2
C1‖h′′‖L∞(B)‖u− ũ‖2L2(L2)

+ 1
2
C1‖f̃ ′′‖L∞(B)‖u− ũ‖2L2(L2) + C2‖(f − f̃)′‖L∞(B)‖u− ũ‖L2(L2)

≤
(
C1

√
T‖c− c̃‖L2 + 1

2
C1(‖h′′‖L∞(B) + ‖f̃ ′′‖L∞(B))CV→Y‖u− ũ‖V

+ C2‖f − f̃‖C
)
‖Mu−Mũ‖Y

≤ ctc‖F(u, f)− F(ũ, f̃)‖W×H×Y

(50)
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for all (ũ, f̃) = (u†N , f
†
N), N ∈ N, (u, f) ∈ BV×C

R (u†, f †), provided R, and hence ρ, are small
enough so that

sup
N∈N

(
C1

√
T + 1

2
C1((‖h′′‖L∞(B) + ‖f †

N

′′‖L∞(B))CV→Y + C2

)
(R + d̄) ≤ ctc .

3.3.2 Weak sequential closedness of x 7→ −F
′(x)∗(F(x)− y)

In this section, we study the more general case, namely the application (47) with f =
f(α, u). We will derive weak closedness via weak continuity.

In the following, we frequently employ the embeddings [48, Theorems 1.20, 1.21, Lem-
mas 7.3, 7.7], [3, Chapter 4], [37, Chapter 11] cf. (43), (48)

V →֒ C(0, T ;L2(Ω)), V →֒→ L2(0, T ;L6−ǫ′(Ω)), 0 < ǫ′ ≤ 5, W∗ →֒ L2(0, T ;L6(Ω)),

C = Hs(Rn+1) →֒ Cb(R
n+1), s > (n+ 1)/2

C = Hs(Rn+1) →֒ W 2,∞(Rn+1), s > (n + 1)/2 + 2

as well as the Hölder inequalities

∫

Ω

abc dx ≤ ‖a‖L3/2‖b‖L6‖c‖L6,

∫

Ω

abc dx ≤ ‖a‖L2‖b‖L3‖c‖L6 .

Let un
V
⇀ u, fn

C
⇀ f, (c, ϕ)n

X
⇀ (c, ϕ), (u0)n

H
⇀ u0, αn

Rn

→ α. We first show weak
continuity of the model operator x 7→ (F(x)− y).

Proposition 4. The operator F defined by (47) is weakly continuous on the spaces (48).

Proof. Assuming

|h(x)− h(y)| ≤ C|x− y|1−ǫ(1 + |x|4/3 + |y|4/3), ∀x, y ∈ R (51)

for some C > 0, 0 < ǫ < 1, we have

|〈h(un)− h(u), v〉W ,W∗| ≤ C(‖u‖
4
3

C(L2), ‖un‖
4
3

C(L2))︸ ︷︷ ︸
<∞

‖un − u‖1−ǫ
L2(L6−6ǫ)︸ ︷︷ ︸

→0

‖v‖L2(L6) → 0.

Next,

|〈fn(αn, un)− f(α, u), v〉W ,W∗|

=

∣∣∣∣
∫ T

0

∫

Ω

(fn − f)(α, u)v dx dt+

∫ T

0

∫

Ω

(fn(αn, un)− fn(α, u))v dx dt

∣∣∣∣

≤
∣∣∣∣
∫ T

0

∫

Ω

(fn − f)(α, u)v dx dt

∣∣∣∣
︸ ︷︷ ︸

=:An

+ ‖(fn)′α,u‖L∞(Rn+1)︸ ︷︷ ︸
<∞

(|αn − α|+ ‖un − u‖L2(L2))︸ ︷︷ ︸
→0

‖v‖L2(L2).
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In An, for fixed u ∈ V and each v ∈ W ⊂ L1((0, T )×Ω), we observe that µv ∈ (L∞(Rn+1))∗

with ‖µv‖ = ‖v‖L1((0,T )×Ω) by defining µv :=
∫ T

0

∫
Ω
(·)(α, u)v dx dt. Since fn

L∞(Rn+1)
⇀ f , it

yields An = µv(fn − f) → 0. Now, the bilinear term is estimated as

|〈cnun − cu, v〉W ,W∗| =
∣∣∣∣
∫ T

0

∫

Ω

cn(un − u)v dx dt+

∫ T

0

∫

Ω

(cn − c)uv dx dt

∣∣∣∣

≤ ‖cn‖L2︸ ︷︷ ︸
<∞

‖u− un‖L2(L3)︸ ︷︷ ︸
→0

‖v‖L2(L6) +
∣∣∣
∫

Ω

(cn − c)︸ ︷︷ ︸
⇀ 0 in L2(Ω)

∫ T

0

uv dt

︸ ︷︷ ︸
∈L2(Ω)

dx
∣∣∣ → 0. (52)

Weak continuity of the remaining part (u, ϕ, u0) 7→ (u̇−∆u−ϕ, u(0)−u0) is straightforward,
as it is a linear, bounded operator from V ×Xϕ ×H to W×H. Altogether, we claim weak
continuity of x 7→ (F(x)− y) := w̃ ∈ W, thus of x 7→ IV w̃ ∈ L2(0, T ;V ).

♦

With this result, we now study the week sequential continuity of x 7→ −F
′(x)∗(F(x)− y).

Weak continuity of x 7→ µ̃ in (45). For λ = (c, ϕ), µ̃ = (µ̃c, µ̃ϕ), µ̃c = −
∫ T

0
Fc(λ, u)

∗IV w̃ dt
where w̃ = F(x)− y as above, we write

|〈µ̃n
c − µ̃c, c̃〉Xc| :=

∣∣∣∣
∫ T

0

∫

Ω

(unIV w̃
n − uIV w̃)c̃ dx dt

∣∣∣∣

≤ ‖un − u‖L2(L6−ǫ)︸ ︷︷ ︸
→0

‖(IV w̃n)c̃‖L2(L(6−ǫ)/(5−ǫ))︸ ︷︷ ︸
<∞

+

∣∣∣∣∣∣∣

∫ T

0

∫

Ω

uc̃︸︷︷︸
∈L2(V ∗)

IV (w̃
n − w̃) dx dt︸ ︷︷ ︸

⇀ 0 in L2(V )

∣∣∣∣∣∣∣
→ 0

for any c̃ ∈ Xc, thus showing weak continuity of x 7→ µ̃c(x). Weak continuity of x 7→ µ̃ϕ(x)
could be obtained in a similar way, replacing Fϕ(λ, u)

∗ = Id.

Weak continuity of x 7→ ṽ0 in (45). As (u, u0) 7→ ṽ0 := u(0)−u0 is linear and bounded,
its weak continuity is clear.

Weak continuity of x 7→ β̃ in (45). We consider

|〈β̃n − β̃, ζ〉Rn| :=
∣∣∣−

∫ T

0

∫

Ω

(fn)
′
α(αn, un) ζ IV w̃

n dx dt+

∫ T

0

∫

Ω

f ′
α(α, u) ζ IV w̃ tx dt

∣∣∣

=
∣∣∣−

∫ T

0

∫

Ω

[(fn)
′
α(αn, un)− (fn)

′
α(α, u)] ζ IV w̃

n dx dt−
∫ T

0

∫

Ω

f ′
α(α, u) ζ IV (w̃

n − w̃) dx dt

−
∫ T

0

∫

Ω

[(fn)
′
α(α, u)− f ′

α(α, u)] ζ IV w̃
n dx dt

∣∣∣
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≤ ‖(fn)′α‖W 1,∞(Rn+1)︸ ︷︷ ︸
<∞

(|α− αn|+ ‖u− un‖C(L2))︸ ︷︷ ︸
→0

‖ζIV w̃n‖L1(L2)︸ ︷︷ ︸
<∞

(53)

+

∣∣∣∣∣∣∣

∫ T

0

∫

Ω

f ′
α(α, u) ζ︸ ︷︷ ︸
∈L2(V ∗)

IV (w̃
n − w̃)︸ ︷︷ ︸

⇀ 0 in L2(V )

dx dt

∣∣∣∣∣∣∣
(54)

+ ‖ζIV w̃n‖L2(L2)︸ ︷︷ ︸
<∞

√∫ T

0

∫

Ω

|(fn)′α(α, u)− f ′
α(α, u)|2 dx dt

︸ ︷︷ ︸
:=A′

n

.

Regarding A′
n, let us fix (α, u), then set ΩT := {(t, x) ∈ (0, T )×Ω : |u(t, x)| <∞}. Now ΩT

has nonzero measure, as u ∈ V ⊂ L1((0, T )× Ω). Moreover, |((0, T )× Ω)\ΩT | = 0. Next,
for each (t, x) ∈ ΩT , the functional defined by µt,x := (·)(α, u(t, x)) belongs to Cb(R

n+1)∗

with ‖µx,t‖ = 1. From this, we ascertain

(fn − f)′α(α, u)(x, t) = (fn − f)′α(α, u(x, t)) = µt,x((fn − f)′α) → 0 ∀a.e. (t, x) ∈ (0, T )×Ω

for (fn)
′
α ⇀ f ′

α in Cb(R
n+1). In addition,

sup
n

‖(fn)′α(α, u)‖L∞((0,T )×Ω)+‖f ′
α(α, u)‖L∞((0,T )×Ω) ≤ sup

n
‖(fn)′α‖L∞(Rn+1)+‖f ′

α‖L∞(Rn+1) <∞.

Applying the Dominated Convergence Theorem yields A′
n = ‖(fn)′α(α, u)−f ′

α(α, u)‖L2((0,T )×Ω) →
0. Note that this argument remains valid even for ‖ · ‖Lp((0,T )×Ω), 1 ≤ p <∞. This demon-

strates the weak convergence of x 7→ β̃(x).

Weak continuity of x 7→ ṽ = I−1
V z̃ in (45). In the first step, testing (46) with ∆z̃

where z̃ ∈ V ′ := L2(0, T ;H3(Ω) ∩H2
0 (Ω)) ∩H1(0, T ;H1(Ω)), yields

‖∇ ˙̃z‖2L2(L2) + ‖∇∆z̃‖2L2(L2)

= 〈ϕ̃,∆z〉V∗,V +

∫

Ω

(
IV w̃(t)− ˙̃w(t)

)
∆z(t)|t=T

t=0 dx−
∫ T

0

∫

Ω

IV w̃∆ ˙̃z dx dt

≤ ‖ϕ̃‖V∗‖∆z̃‖V + ‖h̃‖L2‖∆z̃(0)‖L2 + ‖∇IV w̃‖L2(L2)‖∇ ˙̃z‖L2(L2)

≤
(
‖ϕ̃‖V∗ + CV ′→C(H2)‖h̃‖L2 + ‖IV w̃‖L2(V )

)
‖z̃‖′V , (55)

where ϕ̃ := F ′
u(λ, u)

∗IV w̃+fu(α, u)
∗IV w̃−M∗ỹ is the right hand side of the wave equation

(46) without the first term IV ˙̃w. Here F ′
u(λ, u) = −∆ + c + h′(u) under the assumption

|h′(x)− h′(y)| ≤ C|x− y|1−ǫ(1 + |x|1/3 + |y|1/3), ∀x, y ∈ R.
As previously, when xn ⇀ x, one has IV w̃

n ⇀ IV w̃ in L2(0, T ;V ) and h̃n ⇀ h̃ in L2(Ω).
We now show ϕ̃n ⇀ ϕ̃ in V∗. Indeed,

〈−∆∗(IV w̃
n − IV w̃, v〉V∗,V = −

∫ T

0

∫

Ω

IV (w̃
n − w̃)︸ ︷︷ ︸

⇀ 0 in L2(0,T ;V )

∆v︸︷︷︸
∈W

dx dt→ 0,
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〈cnIV w̃n − cIV w̃, v〉V∗,V → 0 similarly to (52) with IV w̃ in place of u,

|〈h′(un)∗IV w̃n − h′(u)∗IV w̃), v〉V∗,V |

≤ ‖h′(un)− h′(u)‖L2(L3)︸ ︷︷ ︸
≤C(‖u‖

1
3
C(L2)

)‖un−u‖1−ǫ

L2(L6−6ǫ)
→0

‖IV w̃n‖L2(L6)‖v‖C(L2)︸ ︷︷ ︸
<∞

+

∣∣∣∣∣∣∣

∫ T

0

∫

Ω

IV (w̃
n − w̃)︸ ︷︷ ︸

⇀ 0 in L2(0,T ;V )

h′(u)v︸ ︷︷ ︸
∈W

dx dx

∣∣∣∣∣∣∣
,

〈f ′
u(αn, un)

∗IV w̃
n − f ′

u(α, u)
∗IV w̃, v〉V∗,V → 0

similarly to (53) with f ′
u in place of f ′

α, v in place of ζ.

The last estimate is analogous to (53), but modifies the upper bound for the term involving
A′

n to ‖v‖C(L2)‖IV w̃n‖L2(L6)‖(fn)′u(α, u)− f ′
u(α, u)‖L2(L3). This yields ϕ̃n ⇀ ϕ̃ in V∗ when

x⇀ 0, as claimed.
In order to form the full V ′-norm on the left hand side of (55), we test (46) by z̃. By

then applying Young’s inequality with ǫ > 0, we eventually obtain

(1− 3ǫ)‖z̃n − z̃‖2V ′ ≤ 1

ǫ

(
‖ϕ̃n − ϕ̃‖2V∗ + (CV ′→C(H2))

2‖h̃n − h̃‖2L2 + ‖IV (w̃n − w̃)‖2L2(V )

)
.

(56)

Using Galerkin approximation, one can show that for each (ϕ̃, h̃, w̃) ∈ V∗ × L2(Ω) × W,
there exists a unique z̃ ∈ V ′ solving (46). Moreover, z̃ depends continuously on the data
(ϕ̃, h̃, w̃) through the expression (56). Since V∗×L2(Ω)×W ∋ (ϕ̃, h̃, w̃) 7→ z̃ ∈ V ′ is linear
and bounded, it is weakly continuous. In conclusion, when xn ⇀ x, we have z̃n⇀z̃ in V ′,
equivalently I−1

V z̃n⇀I−1
V z̃ in V, proving weak continuity of x 7→ ṽ := I−1

V z̃ in (45).

Weak continuity of x 7→ g̃ in (45). For g̃ as in (45) and setting Cπ := 1
2π(n+1)/2 , we

evaluate, for any ψ ∈ C

〈g̃n − g̃, ψ〉C =

∫

Rn+1

(1 + |κ|2)ℓ(1 + |ω|2)rFψ(κ, ω)F(g̃n − g̃)(κ, ω) dκ dω

= Cπ

∫

Rn+1

Fψ(κ, ω)
[∫ T

0

∫

Ω

e−iκ·αn−iωun(x,t)IV w̃
n − e−iκ·α−iωu(x,t)IV w̃ dx dt

]
dκ dω

= Cπ

∫

Rn+1

Fψ(κ, ω)
[
−

∫ T

0

∫

Ω

e−iκ·α−iωu
︸ ︷︷ ︸
∈L2(V ∗)

IV (w̃
n − w̃)︸ ︷︷ ︸

⇀ 0 in L2(V )

dx dt

+

∫ T

0

∫

Ω

∫ 1

0

e−iκ·(α−θ(αn−α))−iω(u+θ(un−u)) dθ

︸ ︷︷ ︸
∈[−1,1]

(−iκ · (αn − α)− iω(un − u))IV w̃
n

︸ ︷︷ ︸
→ 0 in L1(0,T ;L1(Ω))

dx dt

]
dκ dω

=: Cπ

∫

Rn+1

Fψ(κ, ω)Bn(κ, ω) dκ dω.
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and deduce pointwise convergence in (κ, ω) of Bn. Together with uniform boundedness via

∫

Rn+1

Fψ(κ, ω)Bn(κ, ω) dκ dω

≤
∫

Rn+1

|(1 + |κ|2)1/2(1 + |ω|2)1/2Fψ(κ, ω)|
(

C

(1 + |κ|2)1/2(1 + |ω|2)1/2
)

︸ ︷︷ ︸
∈L2(Rn+1)

dκ dω

≤ C‖ψ‖H1(Rn+1) ≤ C‖ψ‖C,

and application of the Dominated Convergence Theorem, we conclude 〈g̃n − g̃, ψ〉C → 0,
yielding weak continuity of x 7→ g̃(x).

3.3.3 Lipschitz continuity of x 7→ F
′(x)∗(F(x)− z)

Above, we have verified weak continuity of x 7→ −F
′(x)∗(F(x)−y), where all the estimates

were written in the form of ‖xn − x‖. Therefore, Lipschitz continuity of F′(x)∗(F(x)− z)
could be established in the same manner, the Lipschitz constant L < 2 being obtained in
the ball BR(x

†) with sufficiently small R.

As a consequence, we can conclude from Propositions 4, 3 the following convergence
results on Tikhonov regularization and Landweber iteration.

Corollary 2 (Tikhonov). For the operator F defined by (47) on the spaces (43), (48),
(49), C = Hs(R), s > 5

2
with M : V → Y linear and bounded and h satisfying (51) we

have subsequential convergence of (cγ(δ),δ,N(δ), ϕγ(δ),δ,N(δ), u
γ(δ),δ,N(δ)
0 , uγ(δ),δ,N(δ), f γ(δ),δ,N(δ)) to

a solution of the inverse problem (1), (2) as δ → 0.

Corollary 3 (Landweber). Let the assumptions of Corollary 2 hold and additionally as-
sume full measurements M = idV→Y and (38). Then we have weak subsequential conver-
gence of (cδN(δ),k∗(δ)

, ϕδ
N(δ),k∗(δ)

, u0
δ
N(δ),k∗(δ)

, uδN(δ),k∗(δ)
, f δ

N(δ),k∗(δ)
) to a solution of the inverse

problem (1), (2) as δ → 0.

4 Outlook

In this study, we have carried out a convergence analysis for discretizations of Tikhonov
and projected Landweber regularization using Neural Networks. The convergence analysis
is based on a priori choice of the regularization and discretization parameters, where the
latter relates to the network approximation error. Our analysis is applicable not only for
discretization by NNs, but also for general discretization schemes. As an application, we
have presented a parameter identification problem for a time-dependent PDE, whose un-
known nonlinearity is approximated by a neural network. Our all-at-once approach does
not require a training process for learning the nonlinearities beforehand, instead simulta-
neously determining it alongside the unknown coefficients and the solution of the PDE.
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This paper focuses on the theoretical aspects. Numerical results for the regularization
with neural networks can be found in [1]. Also in [1], further details on the discretized
problem are discussed, such as differentiability of the forward mapping, unique existence
for the learning-informed PDEs (NN as a reaction term in the PDE), the tangential cone
condition for networks and so forth. A potential extension to our study is the inclusion of
further components in the unknown nonlinear response, e.g. f(α, u,∇u,∇2u . . .), for more
flexible models, as was done in [10, 38, 46].

On the analytical side, an open problem is determining convergence rates for Tikhonov
regularization, based on quantified approximation results for neural networks as in [13]
(see also Discussion 1 in the introduction). These rates require enhanced regularity of the
exact solution in terms of so-called source conditions, whose interpretation for the problem
setting considered here is another interesting task.
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[48] T Roub́ıček. Nonlinear Partial Differential Equations with Applications. Springer
Basel, 2013.

[49] Hayden Schaeffer. Learning partial differential equations via data discovery and sparse
optimization. Proc. R. Soc. A, 473, 2016.

[50] Thomas Schuster, Barbara Kaltenbacher, Bernd Hofmann, and Kamil S. Kazimierski.
Regularization Methods in Banach Spaces. Walter de Gruyter, Berlin, 2012.

[51] A. R. Shenoy, M. Heinkenschloss, and E. M. Cliff. Airfoil design by an all-at-once
method. International Journal for Computational Fluid Mechanics, 11:3–25, 1998.

[52] Shlomo Ta’asan. ”one shot” methods for optimal control of distributed parameter
systems: I finite dimensional control. Technical report, Institute for Computer Appli-
cations in Science and Engineering : NASA Langley Research Center, 1991.

37



[53] R. Tibshirani. Regression shrinkage and selection via the lasso. J. R. Stat. Soc.,
58:267–288, 1996.
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