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A Random Geometric Model of Blockages in
Vehicular Networks

Chang-Sik Choi and François Baccelli

Abstract—This paper presents a novel spatially consistent
approach for modeling line-of-sight (LOS) paths in vehicular
networks. We use stochastic geometry to model transmitters,
obstacles, and receivers located in three parallel lines, respec-
tively. Their geometric interactions are leveraged to characterize
the existence of LOS paths. Specifically, the proposed approach
focuses on the role of obstacles in blocking one or more LOS
paths, which has been overlooked in most statistical models
for blockage. Under the proposed framework, we derive the
probability that a typical vehicle is in LOS with respect to
transmitters with received signal-to-noise ratios greater than a
threshold. The proposed framework and LOS coverage analysis
are instrumental to the analysis of LOS-critical applications
such as positioning or mmWave communications in vehicular
networks.

Index Terms—Spatially consistent model, random geometric
model, vehicular networks

I. INTRODUCTION

A. Motivation and Background

Line-Of-Sight (LOS) paths play a key role in various com-
munication systems. For instance, in positioning systems, users
or vehicles can estimate their relative distances and positions
based on the time-of-arrivals (ToAs) and time-of-departures
(ToDs) of LOS signals from various transmitters [1]–[4].
In mmWave communication systems, beams are directional,
which leads to significant performance fluctuations. Neverthe-
less, users with access to LOS path signals can achieve a high
data rate [5], [6]. In such wireless systems, obstacles may
obstruct the direct LOS paths and this results in ranging and
positioning error, and possibly unstable communications [4],
[7]. Consequently, it is essential to accurately understand the
LOS and blockage probabilities in such systems.

Various papers, including [8]–[12], studied the statistical
behavior of LOS and blockage. The independent blockage
models in [8], [9] have been widely used for their simplicity, as
the LOS profile is independently created for each transmitter-
receiver pair. In other words, nearby or even co-located devices
are forced to have independently created LOS profiles and this
results in a LOS and blockage model that is not based on
the geometric interactions between obstacles and transmitter-
receiver pairs. Nevertheless, from first principles, the LOS
property is merely a manifestation of spatial interactions
between network components. For instance, if the direct path
between a transmitter and a receiver is not blocked by an
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Fig. 1. Here, we use λr = 10/km, λb = 20/km, λv = 30/km, and
1/µ = 2.5 meters.

Fig. 2. Here, we use λr = 5/km, λb = 20/km, λv = 10/km, and 1/µ = 5
meters.

obstacle, the receiver is in LOS. In a similar way, if two
receivers are very close, they are likely to experience the same
obstacles. It is essential to develop a model that simultaneously
captures LOS and blockage. For instance, in [13], such a spa-
tially consistent channel model was considered for mmWave
in-building networks. In the same vein, our aim is to develop
a spatially consistent approach to evaluate LOS probabilities
by incorporating the geometric interactions between obstacles,
receiver vehicles, transmitters in this context.

II. SYSTEM MODEL

A. Spatial Model

We first model the random locations of vehicle receivers as
a Poisson point process Φv = {Zi}i∈Z with intensity λv on
the x-axis. In this model, the x-axis corresponds to the road on
which the receiving vehicles move. Specifically, each vehicle

Typical vehicle @ origin
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Fig. 3. Transmitters at (xi, d1+d2) and (xj , d1+d2) and their projections
onto y = d1 + d2. For the analysis of blockage from obstacles, we assume
that obstacles are of width zero.

ar
X

iv
:2

10
8.

10
63

2v
1 

 [
cs

.I
T

] 
 2

4 
A

ug
 2

02
1



2

Obstacle

d_1

d_2

Obstacle

Transmitter

receiver i receiver j receiver k

Proj(receiver i) Proj(receiver j) Proj(receiver k) 

ObstacleX X X

Fig. 4. Receivers at line y = 0 and their projections onto y = d1.
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Fig. 5. Illustration of the vehicular networks where obstacles block the direct
LOS paths from transmitters to vehicle receivers.

receiver decides its moving direction—positive or negative x-
direction—according to a Bernoulli distribution (p = 0.5).
Their speeds are assumed to be constant and equal to v ≥ 0.

The locations of transmitters—base stations or roadside
units—are modeled as an independent Poisson point process
Φr = {Xi}i∈Z with intensity λt on the line y = d1 + d2,
where d1, d2 ≥ 1. Transmitters are assumed to be static.

Potential LOS-blocking obstacles—such as vehicles on dif-
ferent lanes—are modeled as one-dimensional segments paral-
lel to the x-axis. Specifically, we use the fact that in vehicular
networks, LOS-blockages are caused by obstacles of various
lengths. For analytical tractability, we model their centers as an
independent Poisson point process Φb = {Yj}j∈Z of intensity
λb on the line y = d1. Then, based on these centers, each
obstacle F j is modeled as a one-dimensional i.i.d. length
random segment parallel to the x-axis. The left and right points
of obstacle F j are denoted by Vj and Wj , respectively. See
Figs. 1 to 5. To capture the blocking obstacles’ variable sizes
and lengths, we propose to model the half-lengths of each
obstacle—namely Ṽj = ‖Yj − Vj‖ and W̃j = ‖Yj −Wj‖—as
i.i.d. exponential random variables with mean 1/µ. Therefore,
the full length of each obstacle follows an Erlang-2 distribution
with mean 2/µ. Note that this modeling of obstacles’ length
is proposed for analytical tractability. Similar to the motion
of vehicles, obstacles are assumed to move at constant speed
vo ≥ 0, where their moving directions on the line y = d1 are
independently and uniformly chosen at time 0. As a result, at
any given time, the set of obstacles is a Boolean model with
respect to the obstacle point process Φb [14].

Remark 1. In this paper, we assume that all obstacles are
located on a single line. Nevertheless, obstacles located on
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Fig. 6. Illustration of superposition of Boolean models on different lines.
Here, obstacles 1 and 2 are projected to the line 1. The projections of a
Boolean model onto line 1 form a Boolean model.

multiple parallel lines can be analyzed within the same frame-
work. Specifically, since we focus on direct paths between
transmitters and receivers, the obstacles on different lanes can
be projected onto a single line to characterize the blockage
of direct LOS paths. For instance, when obstacle centers
on different lines are modeled as independent Poisson point
processes and obstacles’ sizes are modeled as i.i.d. exponential
random variables, the projections of obstacles can also be
seen as a Boolean model created by the superposition of
independent Boolean models [14]–[16]. See Fig. 6 for the
projection of the Boolean models.

B. LOS and k-LOS Coverage Probability

A vehicle is LOS with respect to (w.r.t.) a transmitter X if
the direct path from X to it is not obstructed by any obstacle.
In a similar way, a vehicle is in non-line-of-sight (NLOS) if
the direct path is obstructed.

In addition to the investigation of the existence of geometric
direct LOS paths, we use the attenuation of signals to further
characterize LOS blockage. First, by averaging out small-
scale fading, we assume that the averaged received signal-to-
noise-ratio (SNR) of a LOS receiver at a distance d is given
by pd−αLOS

σ where p the transmit power, αLOS the path loss
exponent for a LOS channel, and σ the noise power. Then, we
assume that a transmitter is detectable by the typical receiver
if pd−αLOS

σ is greater than a given threshold, namely if it would
be detected when LOS.

We define a receiver as being in full LOS coverage if it
is in LOS w.r.t. all of its detectable transmitters. Similarly, a
receiver is in k-LOS coverage if it is LOS w.r.t. at least k of
its detectable transmitters. In this paper, we consider a typical
receiver at the origin and derive the probability that it is in
full LOS coverage and is in k-LOS coverage, respectively.
Since receivers are assumed to be distributed as a Poisson
point process, the typical LOS coverage probability seen from
the typical receiver corresponds to the LOS coverage spatially
averaged over all receivers in the x-axis, as we shall see.

Remark 2. The k-LOS coverage probability is proposed to
address various use cases in LOS-critical wireless systems.
For instance, in a mmWave cellular network, the significant
penetration loss makes it necessary for users to have at
least one direct LOS base station [7], [17]. Similarly, for
triangulation and positioning systems which leverage ToAs and
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ToDs, users are able to accurately localize themselves when
two or more LOS paths are available to them [1]–[4]. Full
coverage is also useful for advanced positioning systems where
multiple time-series of ToAs and ToDs are fused to differentiate
and isolate LOS paths out of NLOS paths [18], [19].

III. MAIN RESULTS

A. LOS Probability
We first evaluate the probability of having direct LOS paths.

Lemma 1. The transmitter point process Φr, the set of
obstacles F and the receiver point process Φv are jointly
stationary, i.e., invariant w.r.t. translation on the x-axis.

Proof: The set F—collection of obstacles—is stationary
because the centers of the obstacles are stationary and the
lengths of all obstacles are modeled as an i.i.d. sequence.
Therefore, F is a stationary Boolean model [14] .

Proposition 1. The probability that a typical vehicle receiver
at the origin is LOS w.r.t. a transmitter at (x, d1 + d2)
is e−2λb/µ. Correspondingly, the NLOS probability is 1 −
e−2λb/µ.

Proof: Let LOS(x) denote the event that the typical
vehicle at the origin is LOS w.r.t. the transmitter at (x, d1+d2).
By using an indicator function, we write P(LOS(x)) =
1−P(NLOS(x)) = 1−E[1NLOS(x)]. Furthermore, the typical
vehicle is NLOS w.r.t. the transmitter if and only if the direct
path is blocked by some obstacle F j ∈ F . Let 1LOS(x;Yj) be
an indicator function that takes a value of one if the path from
the transmitter to the typical vehicle is not blocked by obstacle
F j centered at Yj . Then, we have

E
[
1NLOS(x)

] (a)
= E

[
E
[
1− 1LOS(x;yj∀yj∈Φb) |Φb

]]
(b)
= E

1−
∏
yj∈Φb

E
[
1LOS(x;yj)

∣∣Φb]


= 1−E

 ∏
yj∈Φb

E
[
1LOS(x;yj) |Φb

] .
We obtain (a) by conditioning on Φb and (b) from the indepen-
dence of the Poisson point process, respectively. Conditional
on the center of obstacles Φb, the left and right end points of
each obstructor are denoted by {Vj}, and {Wj}, respectively.
See Fig. 3. The distances from Yj to Vj and to Wj—denoted
by Ṽj and W̃j—are given by i.i.d. exponentials with mean
1/µ. Then, for all j such that yj < d1x

d1+d2
, the direct path

is not blocked by the obstacle at yj iff its right end point
Wj is less than d1x

d1+d2
, i.e., W̃j <

d1x
d1+d2

− yj . Similarly, ∀j
such that yj > d1x

d1+d2
, the direct path is not blocked by the

obstacle at yj iff its left end point Vj is greater than d1x
d1+d2

,
i.e., Ṽj > yj − d1x

d1+d2
. Since Ṽ , W̃ are exponential with mean

1/µ, we have

E[1LOS(x;yj) |Φb]

=

 1− exp
(
−µ
(

d1x
d1+d2

− yj
))

∀j s.t. yj < d1x
d1+d2

,

1− exp
(
−µ
(
yj − d1x

d1+d2

))
∀j s.t. yj > d1x

d1+d2
.

Then, the NLOS probability is given by

E
[
1NLOS(x)

]
= 1−E

yj<
d1x
d1+d2∏

yj∈Φb

(
1− e−µ(d1x/(d1+d2)−yj)

)
yj>

d1x
d1+d2∏

yj∈Φb

(
1− e−µ(yj−d1x/(d1+d2))

)
(c)
= 1− exp

(
−λb

∫ ∞
d1x
d1+d2

e−µ(y−d1x/(d1+d2)) dy

)

× exp

(
−λb

∫ d1x
d1+d2

−∞
e−µ(d1x/(d1+d2)−y) dy

)
(d)
= 1− exp

(
−2λb

∫ ∞
0

e−µu du

)
= 1− e−2λb/µ.

To obtain (c), we use the probability generating functional of
the obstacle point process of intensity λb on line y = d1 [14].
We have (d) from a change of variables.

Remark 3. The LOS analysis can also be understood by the
use of projections of transmitters and receivers onto the line
y = d1. For instance, a transmitter on the line y = d1 + d2 is
projected onto line y = d1 where the projection is defined
as the intersection of the path from the transmitter to the
typical receiver at the origin and the line y = d1. See Fig. 3.
Then, the probability that the typical receiver is LOS w.r.t. a
transmitter coincides with the probability that its projection is
not contained in the obstacle Boolean model. In a similar way,
receivers on the line y = 0 are projected onto the line y = d1

where the projections are defined by the intersections of the
paths from receivers to a tagged transmitter at (x, d1 + d2)
and the line y = d1. See Fig. 4.

Based on the stationarity of the vehicle receiver point
process, the derived LOS probability of the typical receiver
coincides with the statistical average of the LOS profiles of
all vehicle receivers Φv over the line y = d1 (ergodic theorem)
[14]. This follows from the fact that the projections of receiver
vehicles form an independent stationary Poisson point process
of intensity λv

d1+d2
d2

on line y = d1. Therefore, among all
vehicle receivers, a fraction of e−2λb/µ are in LOS w.r.t. any
typical transmitter, and 1−e−2λb/µ are in NLOS, respectively.

In addition, under the proposed dynamics of vehicles, the
joint probability distribution for the receiver and obstacle point
processes at time 0 and time t are the same [20], [21]. As a
result, the obtained LOS probability w.r.t. transmitter (x, d1 +
d2) also corresponds to the time-average of the LOS profile
of a single receiver as it moves along the x-axis.

Remark 4. Proposition 1 gives the probability that the ob-
stacle Boolean model contains a single point, where the point
is the projection of the transmitter onto y = d1. Since F is
stationary, the probability for the Boolean model to contain a
single point is the same as the volume fraction of the Boolean
model [16].
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The derived LOS probability is a function of the density of
obstacles and the average size of the obstacles, and it is not
a function of the location of the transmitter. We observe that
with a single transmitter, the LOS probability is decreasing
exponentially with the density of obstacles and their average
lengths.

Nevertheless, this formulation is not enough to characterize
the spatial interactions between obstacles and transmitters.
Below, we first consider two transmitters located on the line
y = d1 + d2.

Proposition 2. Suppose we have two transmitters at (x1, d1 +
d2) and (x2, d1 + d2), respectively. The probability that the
typical receiver is LOS w.r.t. these two transmitters is

exp

(
−4λb

µ
+

2λbe
−µ(x̂2−x̂1)

µ
+ λb(x̂2 − x̂1)e−µ(x̂2−x̂1)

)
,

where x̂1= d1
d1+d2

x1 and x̂2= d1
d1+d2

x2.

Proof: Let 1LOS(x1,x2;Yj) be the indicator that takes a
value of one when none of paths from two these transmitters
are blocked by any obstacle. Then, we have

E[1NLOS(x,y)] = E[1− 1LOS(x1,x2;yj∀yj∈Φb)]

= E

1−
∏
yj∈Φb

E[1LOS(x1,x2;yj) |Φb]


= 1−E

 ∏
yj∈Φb

E[1LOS(x1,x2;yj) |Φb]

 .
The above conditional expression is decomposed into three
intervals based on the relative locations of obstacles w.r.t.
the projections of the two transmitters. See Fig. 3 for the
projection. For instance, for an obstacle with yj < x̂1, its
right-hand side segment length should be less than x̂1 − yi
to avoid blocking the LOS path from the transmitter at
(x1, d1 + d2) to the typical receiver. Similarly, for an obstacle
with x̂1 < yj < x̂2, its right-hand side and left-hand side
segment lengths should be less than x̂2 − yj and yj − x̂2,
respectively. Therefore, we have to evaluate the following
conditional probabilities:

For all yj < x̂1,P
(
W̃j < x̂1 − yj |Φb

)
,

For all x̂1 < yj < x̂2,P
(
Ṽj < yj − x̂1, W̃j < x̂2 − yj |Φb

)
,

For all yj < x̂2 : P
(
Ṽj < x̂2 − yj |Φb

)
.

The three expressions can be evaluated further since {Vj ,Wj}
are i.i.d. exponential random variables with mean 1/µ. Notice
that the expression in the middle captures the condition
that any obstacle whose center is within [x̂1, x̂2] should not
simultaneously block the direct paths from x1 and x2 at the
same time. By using the density function of the exponential
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Fig. 7. Illustration of derived formulas in Propositions 1 and 2.

distribution and by using the probability density function of the
exponential random variable, the NLOS probability is given by

1−EΦb

 ∏
yj∈Φb(I1)

(
1− e−µ(x̂1−yj)

)
∏

yj∈Φb(I2)

(
1− e−µ(yj−x̂1)

)(
1− e−µ(x̂2−yj)

)
∏

yj∈∩Φb(I3)

(
1− e−µ(yj−x̂2)

) ,
where

I1 = (−∞, x̂1) , I2 = (x̂1, x̂2) , I3 = (x̂2,∞) .

Then, we use the probability generating functional of the
obstacle point process to obtain the final result.

Fig. 7 illustrates that the formulas provided in Propositions
1 and 2. We consider d1 = d2 = 10 meters, and the x-
coordinate of the first transmitters is 0. It numerically shows
that when the distance d between the two transmitters—located
at (0, 20) and at (d, 20), respectively— is small, the probability
that the typical receiver is LOS w.r.t. these two transmitters
corresponds to the probability that the typical receiver is LOS
w.r.t. a single transmitter. This shows that the direct paths from
these two transmitters experience the same set of obstacles.
Therefore, Fig. 7 illustrates that assuming the independence
across transmitter-receiver pairs is inaccurate, especially when
they are close. As the distance d increases, the direct paths
from two transmitters start to experience independent sets of
obstacles. Therefore, the probability that the typical receiver is
LOS w.r.t. two transmitters decreases. When the distance d is
greater than 100 meters, it stops decreasing. In this example,
the obstruction of direct paths from these two transmitters
are almost independent when the distance is greater than 100
meters. Fig. 8 plots the probability that the typical receiver is
LOS w.r.t. these two transmitters as the density of obstacles
varies.
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Fig. 8. Illustration of the derived formula in Proposition 2 with d1 = 10
meters and d2 = 40 meters.

Proposition 3. Suppose n ≥ 2 transmitters on line y = d1+d2

with ordered x-coordinates: x1 < . . . < xn . The probability
that the typical receiver is LOS w.r.t. all n transmitters is

exp

(
−2λb

µ
+

n∑
k=2

(
2

µ
+ ∆k

)
λbe
−µ∆k

)
,

where x̂k = d1x1

d1+d2
for k = 1, . . . , n, and ∆k = x̂k − x̂k−1

for k = 2, . . . , n.

Proof: The NLOS probability of the typical receiver is

E[1NLOS(x1,...,xn)]

= E[1− 1LOS(x1,...,xn;Yj∀Yj∈Φb)]

= E[E[1− 1LOS(x1,...,xn;yj∀yj∈Φb) |Φb]]

= E

1−
∏
yj∈Φb

E[1LOS(x1,...,xn;yj) |Φb]


= 1−E

 ∏
yj∈Φb

E[1LOS(x1,...,xn;yj) |Φb]

 ,
where E[1LOS(x1,...,xn;yj) |Φb] denotes the conditional expec-
tation that the direct paths from x1, . . . , xn are not blocked.
Let x̂i = d1

d1+d2
xi for i = 1, . . . , n. Note we have x̂1 < x̂2 <

. . . < x̂n.
Similar to the proof of Proposition 2, we write the condi-

tional probability that obstacles do not block the direct paths
as follows:

For all yj ∈ Φb(I1) : P(W̃j < x̂1 − yj |Φb),
For all yj ∈ Φb(I2) : P(Ṽj < yj − x̂1, W̃j < x̂2 − yj |Φb),

...

For all yj ∈ Φb(In+1) : P(Ṽj < yj − x̂n|Φb),

where

I1 = (−∞, x̂1), . . . , Ik = (x̂k−1, x̂k), . . . , In+1 = (x̂n,∞).

Similar to the proof of Proposition 2, we have

EΦb

 ∏
yj∈Φb(I1)

(
1− e−µ(x̂1−yj)

)
n∏
k=2

 ∏
yj∈Φb(Ik)

(
1− e−µ(x̂k−yj)

)(
1−e−µ(x̂k−1−yj)

)
∏

yj∈Φb(In+1)

1− e−µ(yj−x̂n)

 .
We obtain the final result by using the probability generating
functional of the obstacle point process of intensity λb.

B. LOS Coverage Probability

We now consider the signal attenuation and detection thresh-
old in the characterization of LOS to account for the use in
wireless applications. Recall the typical receiver is in full LOS
coverage if it is in LOS w.r.t. all of its detectable transmitters.
On the other hand, the typical receiver is in k-LOS coverage
if it is in LOS w.r.t. at least k detectable transmitters.

First, let d? be the maximum distance at which a transmitter
is detectable by the typical receiver. We have

d? = arg max
d

{
pd−αLOS

σ
> τ

}
=
( p

στ

) 1
αLOS ,

where τ is the minimum SNR detection threshold at receivers.

Theorem 1. The full LOS coverage probability of the typical
receiver is given by Eq. (1).

Proof: Let Ξ denote the intersection of a ball of radius
d? centered at the origin and the line y = d1 + d2. Then, the
LOS coverage probability is given by

∞∑
n=1

P(full LOS cov|Φr(Ξ) = n)P(Φr(Ξ) = n), (3)

where P(full LOS|Φr(Ξ) = n) is full LOS coverage condi-
tional on n detectable transmitters within a distance d? from
the origin. We have

P(Φr(Ξ) = n) = e−λtξ
(λtξ)

n

n!
,

where ξ = 2
√
d2
? − (d1 + d2)2.

On the other hand, the conditional expression in Eq. (3) is

E[1LOS(X1,...,Xn) |n]

= EX[n]

EΦb

 ∏
yj∈Φb

E[1LOS(x[n];yj) |Φb, X[n], n]


= EX[n]

EΦb

 ∏
yj∈Φb

E[1LOS(x[n];yj) |Φb, X[n], n]

 , (4)

where 1LOS(x1,...,xn;yj) is 1 if none of the direct paths from the
transmitters x1 to xn are blocked by the obstacle centered at
yj . We denote by X[n] the locations of the n transmitters. To
have (4), we condition on the the locations of the n transmitters
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λtξe
−λtξ−2λbµ +

∞∑
n=2

e−λtξ
(λtξ)

n

n!

∫
− ξ̂2≤x̂1<...<x̂n≤ ξ̂2︸ ︷︷ ︸

n-fold

exp

(
−2λbn

µ
+

n∑
k=2

(
2

µ
+ ∆k

)
λbe
−µ∆k

)
dx̂1 . . . dx̂n. (1)

λtξe
−λtξ−2λbµ +

∞∑
n=2

e−λtξ
(λtξ)

n

n!

∫
− ξ̂2≤x̂1<...<x̂n≤ ξ̂2︸ ︷︷ ︸

n-fold

 n∑
j=1

(−1)j+1
∑

1≤i1<...<ij≤n

e−
2λbn

µ +
∑j
m=2( 2

µ+ζm)λbe−µζm

 dx̂1 . . . dx̂n.

(2)

and the locations of obstacles. Note the outermost expectation
is w.r.t. the joint distribution of the ordered locations of the n
points on the segment of length ξ: X[n] ≡ {X1, . . . , Xn}. For
their joint distributions, see [22, pp. 24]

Based on the conditioning on n transmitters, the innermost
expectation coincides with the LOS probability derived in
Proposition 3. Therefore, the conditional expression of Eq.
(3) is given by

EX[n]

[
exp

(
−2λbn

µ
+

n∑
k=2

(
2

µ
+ ∆k

)
λbe
−µ∆k

)]
,

where the expectation is w.r.t. the joint distribution of the loca-
tions of n projections, namely x̂[n] ≡ {x̂1, . . . , x̂n where x̂i =
d1

d1+d2
xi}.

The LOS probabilities for various densities of obstacles and
transmitters are provided in Fig. 9. It shows that the derived
formula matches the simulation results for various parameters.
We use λb = {6, 10, 14} per kilometer, and these values
correspond to the inter-obstacle distances of 166, 100, and
71 meters on average, respectively. As the average length of
obstacles increases, the LOS coverage probability decreases.

Theorem 2. The probability that the typical receiver is LOS
w.r.t. at least one transmitter is given by Eq. (2).

Proof: Conditional on the presence of n transmitters on
the segment Ξ and conditional on their ordered x-coordinates,
denoted by x1 < · · · < xn, the 1-LOS coverage probability is

P(1-LOS) =

∞∑
n=0

P(1-LOS|Φr(Ξ) = n)P(Φr(Ξ) = n)

=

∞∑
n=1

P

(
n⋃
i=1

Li

∣∣∣∣∣Φr(Ξ) = n

)
P(Φr(Ξ) = n)

=

∞∑
n=1

E

[
P

(
n⋃
i=1

Li

∣∣∣∣∣X[n],Φr(Ξ) = n

)]
×P(Φr(Ξ) = n).

Here, Li denotes the event that the typical receiver is LOS
w.r.t. the transmitter indexed by i. Then, based on the
inclusion-exclusion formula [23], we have

P

(
n⋃
i=1

Li

∣∣∣∣∣X[n],Φr(Ξ) = n

)

=

n∑
j=1

(−1)j+1
∑

{1≤i1<i2<...<ij≤n}

P
(
Li1,i2,...,ij |X[n],Φr(Ξ) = n

)
,

where Li1,i2,...,ij is the event that the typical receiver at the
origin is LOS w.r.t. the transmitters i1, . . . , ij .

As in proof of Proposition 3, conditional on n transmitters
and their ordered locations, the typical receiver is LOS w.r.t.
all the transmitters ii, . . . , ij iff

∀yk ∈ Φb(Ii1) : W̃k < x̂i1 − yk,
∀yk ∈ Φb(Ii2) : W̃k < yk − x̂i1 , Ṽk < x̂i2 − yk,

...

∀yk ∈ Φb(Iij+1) : Ṽk < yk − x̂ij ,

where

Ii1 = (−∞, x̂i1), Ii2 = (x̂i1 , x̂i2), . . . , Iij+1
= (x̂ij ,∞),

and x̂ij is the x-coordinate of the projection of the transmitter
at (xij , d1 + d2). Then, P

(
Li1,i2,...,ij |X[n],Φr(Ξ) = n

)
is

EΦb

 ∏
yk∈Φb(Ii1 )

(
1− e−µ(x̂i1−yk)

)
j∏

m=2

 ∏
yk∈Φb(Iim )

(
1− e−µ(x̂im−yk)

)(
1−e−µ(x̂im−1

−yk)
)

∏
yk∈Φb(Iij+1

)

(
1− e−µ(yk−x̂ij )

)
= exp

(
−2λb

µ
+

j∑
m=2

(
2

µ
+ ζm

)
λbe
−µ∆m

)
,

where ζm = x̂im − x̂im−1
for m = 2, . . . , j. We get the

final result by deconditioning w.r.t. the ordered locations of
n transmitters, and w.r.t. the number of transmitters.

Example 1. The probability that the typical receiver is LOS
w.r.t. at least two transmitters can be derived as in Theorems 1
and 2. Let Li,j denote the event that the typical receiver is in
LOS coverage w.r.t. the two transmitters i and j. Conditionally
on n transmitters on the segment Ξ and their ordered x-
coordinates, namely x1 < · · · < xn, the event that the
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typical user is LOS w.r.t. at least two transmitters is given
by

⋃
1≤i<j≤n

Li,j . From the inclusion-exclusion formula,

P

 ⋃
1≤i<j≤n

Li,j |X[n],Φr(Ξ) = n


=

n(n−1)
2∑

m=1

(−1)m+1
∑
S

P
(
Li1,j1,...,im,jm |X[n],Φr(Ξ) = n

)
,

(5)

where S = 1, 2 ≤ i1, j1 < . . . < im, jm ≤ n−1, n in the lexi-
cographical order and Li1,j1,...,im,jm is the event that the typ-
ical receiver is LOS w.r.t. the transmitters i1, j1, . . . , im, jm.
Suppose transmitters indexed in Eq. (5) corresponds to k
distinct transmitters. Then, using their projections, one can
derive the set of conditions that the typical receiver is in LOS
w.r.t the k transmitters as in Theorems 1 and 2.

Finally, one have the final result by (i) exploiting the prob-
ability density function of the exponential random variable,
(ii) using the probability generating functional of the obstacle
point process, (iii) deconditioning w.r.t. the ordered locations
of the n transmitters, and (iv) deconditioning w.r.t. the number
of transmitters in the segment of length ξ.

IV. CONCLUSION

This paper proposes a spatially consistent random geometric
model to identify blockage and LOS in vehicular networks.
This paper uses a simple stochastic geometry model for
vehicular networks to characterize the spatially correlated LOS
paths in the presence of obstacles. Quantifying the geometric
interactions between transmitters, receivers, and obstacles, we
derive the probability that a typical receiver is in the LOS.
Then we evaluate the LOS coverage probability to account for
the signal attenuation and the detection threshold in practice.
This paper will be useful to the accurate evaluation of LOS-
critical applications in vehicular networks such as positioning
of vehicles or mmWave communications.
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